96,268 research outputs found

    Uniqueness in the Freedericksz transition with weak anchoring

    Get PDF
    In this paper we consider a boundary value problem for a quasilinear pendulum equation with nonlinear boundary conditions that arises in a classical liquid crystals setup, the Freedericksz transition, which is the simplest opto-electronic switch, the result of competition between reorienting effects of an applied electric field and the anchoring to the bounding surfaces. A change of variables transforms the problem into the equation x = −f(x) for ∈ (−T, T), with boundary conditions x = ± T f(x) at = ∓T, for a convex nonlinearity f. By analyzing an associated inviscid Burgers' equation, we prove uniqueness of monotone solutions in the original nonlinear boundary value problem. This result has been for many years conjectured in the liquid crystals literature, e. g. in E. G. Virga, Variational Theories for Liquid Crystals,Chapman and Hall, London, 1994 and in I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction, Taylor and Francis, London, 2003

    Boundary regularity of weakly anchored harmonic maps

    Get PDF
    In this note we study the boundary regularity of minimizers of a family of weak anchoring energies that model the states of liquid crystals. We establish optimal boundary regularity in all dimensions n3.n\geq 3 . In dimension n=3,n=3, this yields full regularity at the boundary which stands in sharp contrast with the observation of boundary defects in physics works. We also show that, in the cases of weak and strong anchoring, regularity of minimizers is inherited from that of their corresponding limit problems.The analysis rests in a crucial manner on the fact that the surface and Dirichlet energies scale differently; we take advantage of this fact to reduce the problem to the known regularity of tangent maps with zero Neumann conditions.Comment: 6 page

    The dynamics of bistable liquid crystal wells

    Get PDF
    A planar bistable liquid crystal device, reported in Tsakonas et al. [27], is modelled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micron-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W ≥ 0 while rotated solutions only exist for W ≥ Wc > 0, where Wc is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal to rotated and rotated to diagonal switching by allowing for variable anchoring strength across the domain boundary

    Analytical calculation of the Stokes drag of the spherical particle in a nematic liquid crystal

    Full text link
    As an approach to the motion of particles in an anisotropic liquid, we analytically study the Stokes drag of spherical particles in a nematic liquid crystal. The Stokes drag of spherical particles for a general anisotropic case is derived in terms of multipoles. In the case of weak anchoring, we use the well-known distribution of the elastic director field around the spherical particle. In the case of strong anchoring, the multipole expansion may be also used by modifying the size of a particle to the size of the deformation coating. For the case of zero anchoring (uniform director field) we found that the viscosities along the director η\eta_{\parallel} and perpendicular direction η\eta_{\perp} are almost the same, which is quite reasonable because in this case the liquid behaves as isotropic. In the case of non-zero anchoring, the general ratio η/η\eta_{\parallel}/\eta_{\perp} is about 2 which is satisfied by experimental observations.Comment: 8 pages, 1 figur

    Friction Drag on a Particle Moving in a Nematic Liquid Crystal

    Full text link
    The flow of a liquid crystal around a particle does not only depend on its shape and the viscosity coefficients but also on the direction of the molecules. We studied the resulting drag force on a sphere moving in a nematic liquid crystal (MBBA) in a low Reynold's number approach for a fixed director field (low Ericksen number regime) using the computational artificial compressibility method. Taking the necessary disclination loop around the sphere into account, the value of the drag force anisotropy (F_\perp/F_\parallel=1.50) for an exactly computed field is in good agreement with experiments (~1.5) done by conductivity diffusion measurements. We also present data for weak anchoring of the molecules on the particle surface and of trial fields, which show to be sufficiently good for most applications. Furthermore, the behaviour of the friction close to the transition point nematic isotropic and for a rod-like and a disc-like liquid crystal will be given.Comment: 23 pages RevTeX, including 3 PS figures, 1 PS table and 1 PS-LaTeX figure; Accepted for publication in Phys. Rev.

    Binding tactile and visual sensations via unique association by cross-anchoring between double-touching and self-occlusion

    Get PDF
    Binding is one of the most fundamental cognitive functions, how to find the correspondence of sensations between different modalities such as vision and touch. Without a priori knowledge on this correspondence, binding is regarded to be a formidable issue for a robot since it often perceives multiple physical phenomena in its different modal sensors, therefore it should correctly match the foci of attention in different modalities that may have multiple correspondences each other. We suppose that learning the multimodal representation of the body should be the first step toward binding since the morphological constraints in self-body-observation would make the binding problem tractable. The multimodal sensations are expected to be constrained in perceiving own body so as to configurate the unique parts of the multiple correspondence reflecting its morphology. In this paper, we propose a method to match the foci of attention in vision and touch through the unique association by cross-anchoring different modalities. Simple experiments show the validity of the proposed method
    corecore