15,086 research outputs found

    Finite-Block-Length Analysis in Classical and Quantum Information Theory

    Full text link
    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects

    Universal Secure Multiplex Network Coding with Dependent and Non-Uniform Messages

    Full text link
    We consider the random linear precoder at the source node as a secure network coding. We prove that it is strongly secure in the sense of Harada and Yamamoto and universal secure in the sense of Silva and Kschischang, while allowing arbitrary small but nonzero mutual information to the eavesdropper. Our security proof allows statistically dependent and non-uniform multiple secret messages, while all previous constructions of weakly or strongly secure network coding assumed independent and uniform messages, which are difficult to be ensured in practice.Comment: 10 pages, 1 figure, IEEEtrans.cls. Online published in IEEE Trans. Inform. Theor

    Photonic entanglement as a resource in quantum computation and quantum communication

    Full text link
    Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments that will underline the advantages of photonic entanglement for quantum information processing.Comment: 33 pages, 4 figures, OSA styl

    Quantum Cryptography

    Get PDF
    Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic

    The Security of Practical Quantum Key Distribution

    Full text link
    Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdropper's power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).Comment: Identical to the published version, up to cosmetic editorial change
    corecore