6,354 research outputs found

    Robust MPC of constrained nonlinear systems based on interval arithmetic

    Get PDF
    A robust MPC for constrained discrete-time nonlinear systems with additive uncertainties is presented. The proposed controller is based on the concept of reachable sets, that is, the sets that contain the predicted evolution of the uncertain system for all possible uncertainties. If processes are nonlinear these sets are very difficult to compute. A conservative approximation based on interval arithmetic is proposed for the online computation of these sets. This technique provides good results with a computational effort only slightly greater than the one corresponding to the nominal prediction. These sets are incorporated into the MPC formulation to achieve robust stability. By choosing a robust positively invariant set as a terminal constraint, a robustly stabilising controller is obtained. Stability is guaranteed in the case of suboptimality of the computed solution. The proposed controller is applied to a continuous stirred tank reactor with an exothermic reaction.Ministerio de Ciencia y Tecnología DPI-2001-2380-03- 01Ministerio de Ciencia y Tecnología DPI-2002-4375-C02-0

    On the computation of invariant sets for constrained nonlinear systems: An interval arithmetic approach

    Get PDF
    This paper deals with the computation of control invariant sets for constrained nonlinear systems. The proposed approach is based on the computation of an inner approximation of the one step set, that is, the set of states that can be steered to a given target set by an admissible control action. Based on this procedure, control invariant sets can be computed by recursion. We present a method for the computation of the one-step set using interval arithmetic. The proposed specialized branch and bound algorithm provides an inner approximation with a given bound of the error; this makes it possible to achieve a trade off between accuracy of the computed set and computational burden. Furthermore an algorithm to approximate the one step set by an inner bounded polyhedron is also presented; this allows us to relax the complexity of the obtained set, and to make easier the recursion and storage of the sets.Ministerio de Ciencia y Tecnología DPI2004-07444-c04-01Ministerio de Ciencia y Tecnología DPI2003-04375-c03-01Ministerio de Ciencia y Tecnología DPI2003-07146-c02-0

    Interval Approaches to Reliable Control of Dynamical Systems

    Get PDF

    Suspended Load Path Tracking Control Using a Tilt-rotor UAV Based on Zonotopic State Estimation

    Full text link
    This work addresses the problem of path tracking control of a suspended load using a tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic behavior imposed by the load, which is usually coupled to the UAV by means of a rope, adding unactuated degrees of freedom to the whole system. Furthermore, to perform the load transportation it is often needed the knowledge of the load position to accomplish the task. Since available sensors are commonly embedded in the mobile platform, information on the load position may not be directly available. To solve this problem in this work, initially, the kinematics of the multi-body mechanical system are formulated from the load's perspective, from which a detailed dynamic model is derived using the Euler-Lagrange approach, yielding a highly coupled, nonlinear state-space representation of the system, affine in the inputs, with the load's position and orientation directly represented by state variables. A zonotopic state estimator is proposed to solve the problem of estimating the load position and orientation, which is formulated based on sensors located at the aircraft, with different sampling times, and unknown-but-bounded measurement noise. To solve the path tracking problem, a discrete-time mixed H2/H\mathcal{H}_2/\mathcal{H}_\infty controller with pole-placement constraints is designed with guaranteed time-response properties and robust to unmodeled dynamics, parametric uncertainties, and external disturbances. Results from numerical experiments, performed in a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model of the system, are presented to corroborate the performance of the zonotopic state estimator along with the designed controller

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed

    Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof

    Full text link
    We present a computer assisted method for proving the existence of globally attracting fixed points of dissipative PDEs. An application to the viscous Burgers equation with periodic boundary conditions and a forcing function constant in time is presented as a case study. We establish the existence of a locally attracting fixed point by using rigorous numerics techniques. To prove that the fixed point is, in fact, globally attracting we introduce a technique relying on a construction of an absorbing set, capturing any sufficiently regular initial condition after a finite time. Then the absorbing set is rigorously integrated forward in time to verify that any sufficiently regular initial condition is in the basin of attraction of the fixed point.Comment: To appear in Topological Methods in Nonlinear Analysis, 201
    corecore