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Abstract. In recent years, powerful interval arithmetic tools have been
developed for the computation of guaranteed enclosures of the sets of
all reachable states for dynamical systems. In such simulations, uncer-
tainties in initial conditions and parameters are considered in terms of
intervals which contain their complete possible range. The resulting en-
closures are verified in the sense that all reachable states are guaran-
teed to be inside these bounds. For that purpose, both the influence
of the above-mentioned uncertainties and numerical inaccuracies aris-
ing from computer implementations using finite-precision floating-point
arithmetic are taken into account. In this contribution, we present a com-
putational framework for both offline and online applications of interval
tools in control design. We summarize verified computational procedures
and their application to the solution of initial value problems for both or-
dinary differential equations and differential algebraic equations. These
algorithms are employed for feedforward control design as well as state
and disturbance estimation for a distributed heating system. An exten-
sion of a basic experimental setup for this system and its corresponding
mathematical model are used to describe directions for future research.

1 Introduction

The basis of the methods summarized in this paper are interval techniques
which were developed to quantify rounding errors in finite-precision floating-
point arithmetic as well as to determine the influence of uncertainties in mathe-
matical system models [8,17]. For technical applications, these models are given
either by sets of algebraic equations, discrete-time difference equations, ordinary
differential equations (ODEs), differential-algebraic equations (DAEs), or partial
differential equations (PDEs).

Software libraries for basic interval arithmetic functionalities such as the eval-
uation of arithmetic operations and functions (e.g. trigonometric and other tran-
scendental functions) are, for instance, the C++ toolboxes Profil/BIAS [9]
and filib++ [14]. In addition, most verified computational algorithms, such as
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those presented in this article, make use of partial derivatives of the first and
higher orders as well as Taylor coefficients. Such derivatives can be obtained
with the help of algorithmic differentiation [7]. The C++ library that is used
for this purpose in this contribution is FADBAD++ [2].

On the basis of these software libraries, routines for verified integration of
initial value problems (IVPs) for sets of ODEs were developed. Examples for
interval-based tools are VNODE-LP [18] and ValEncIA-IVP [1]. In addition,
program packages such as VSPODE [15] and COSY VI [3] make use of Taylor
model arithmetic in order to reduce the influence of overestimation. Overestima-
tion is a general problem of verified computations. Its meaning is that enclosures
of the desired solutions might get too conservative for practical purposes. It often
arises if naive implementations of interval algorithms are applied.

On the one hand, packages for verified simulation of dynamical systems build
the basis for offline approaches for verification, design, stability analysis and
optimization of robust open-loop and closed-loop control strategies (cf. [26, 27,
31–33]). On the other hand, they are also applicable under certain prerequisites
to the online computation of feedforward control strategies as well as state and
disturbance estimates.

In offline applications, interval tools are used to quantify the effects of uncer-
tainties which result from, for example, manufacturing tolerances or measure-
ment errors occurring unavoidably in any technical application. In the offline
design and proof of feasibility, verified enclosures of all possibly admissible solu-
tions of control synthesis are determined after verified enclosures of all reachable
states have been calculated. In this case, the actual computing time is of minor
importance. In online applications, however, we have to fulfill given real-time
requirements. For that reason, the computation is restricted to determining only
one guaranteed admissible solution taking into account the influence of all pos-
sible uncertainties in such a way that constraints on state and control variables
are not violated. In addition to directly solving IVPs for ODEs or DAEs over
sufficiently short time intervals, verified sensitivity analysis (implemented, for
example, in ValEncIA-IVP) can be applied to solve this problem. The sensi-
tivity analysis provides a means for the online adjustment of control strategies.
For that purpose, the sensitivity of the outputs (as well as the inputs) of a dy-
namical system with respect to its control inputs (and the desired output) as
well as uncertain parameters can be investigated [29,30].

Verified simulation algorithms for sets of ODEs and DAEs are summarized in
the Sections 2 and 3, respectively. In Section 4, DAE-based solution procedures
for feedforward control synthesis as well as state and disturbance estimation are
presented for finite-dimensional system models. The stability of feedback control
structures consisting of independently designed controllers and state estimators
is not guaranteed for nonlinear systems. For that reason, suitable procedures
for a verified stability analysis and for the computation of guaranteed regions of
attraction of stable operating points are necessary as summarized in Section 5.
The strategies for feedforward control design and state estimation are applied
in real-time to a finite volume representation of a distributed heating system
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in Section 6. In Sections 7 and 8 we discuss the task of exact feedback control
for a modification of the basic heating system and other control tasks for which
dynamic extensions of the state equations are required. These problems include
the control of non-quasi-linear sets of DAEs and multiple-input multiple-output
systems. Conclusions and an outlook on future work are given in Section 9.

2 Verified Simulation of ODEs in ValEncIA-IVP

In this section, we consider the verified solution of IVPs to the set of ODEs

ẋ (t) = f (x (t) , t) , x ∈ Rnx (1)

with the uncertain initial conditions x (0) ∈ [x (0)] := [x (0) ; x (0)], xi (0) ≤
xi (0) for all i = 1, . . . , nx with the help of the verified solver ValEncIA-IVP.

In the basic version of ValEncIA-IVP, time-varying state enclosures

[xencl (t)] := xapp (t) + [R (t)] (2)

are computed iteratively which consist of a non-verified approximate solution
xapp (t) with guaranteed error bounds [R (t)]. For the sake of simplicity, we spec-
ify the iteration formulas for the ODE (1) in the time interval 0 ≤ t ≤ T . In this
case, an interval containing the derivatives

[
Ṙ(t)

]
of the desired error bounds

[R(t)] can be computed by[
Ṙ(κ+1) (t)

]
= −ẋapp (t) + f

([
x

(κ)
encl (t)

]
, t
)

= −ẋapp (t) + f
(
xapp (t) +

[
R(κ) (t)

]
, t
)

=: r
([

R(κ) (t)
]
, t
) (3)

if [
Ṙ(κ+1) (t)

]
⊆
[
Ṙ(κ) (t)

]
(4)

holds with [
R(κ+1) (t)

]
⊆
[
R(κ+1) (0)

]
+ t · r

([
R(κ) ([0 ; t])

]
, [0 ; t]

)
(5)

and t = T as well as [x (0)] ⊆ xapp (0) +
[
R(κ+1) (t)

]
.

In addition, we can apply the approach of computing exponential state en-
closures to prevent the growth of interval diameters for asymptotically stable
systems. The basic idea is to use the representation

[xencl (t)] := exp ([Λ] · t) · [xencl (0)] (6)

for the guaranteed state enclosures with the diagonal matrix

[Λ] := diag {[λi]} , (7)
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where the coefficients [λi] are computed iteratively by

[
λ

(κ+1)
i

]
:=

fi

(
exp

([
Λ(κ)

]
· [0 ; T ]

)
· [xencl (0)] , [0 ; T ]

)
exp

([
λ

(κ)
i

]
· [0 ; T ]

)
· [xencl,i (0)]

(8)

for all i = 1, . . . , nx in the case of convergence, that means, for
[
λ

(κ+1)
i

]
⊆
[
λ

(κ)
i

]
.

The iteration formula (8) is only admissible if the value zero does not be-
long to the set of all reachable states in the time interval [0 ; T ]. To check this
property, we compute guaranteed enclosures for all states by the basic iteration
formulas (3)–(5) before evaluating the tighter exponential state enclosures.

A detailed derivation of the iteration formulas of ValEncIA-IVP can be
found, for example, in [1,26]. To further tighten the computed state enclosures,
consistency tests are available which exclude domains resulting from overestima-
tion by constraint propagation based on conservation properties obtained from
suitable balance equations such as energy balances for mechanical systems [6,25].
In control systems, the above-mentioned algorithms can be used to prove whether
the enclosures of all reachable states remain within given bounds for known con-
trol strategies. In the case of feedback control, it is moreover possible to show
whether the resulting control u (x (t)) (given by analytic expressions) matches
the corresponding physical constraints on u (t).

3 Verified Solution of IVPs for DAEs in ValEncIA-IVP

In this section, we consider semi-explicit DAEs

ẋ (t) = f (x (t) , y (t) , t) (9)
0 = g (x (t) , y (t) , t) (10)

with f : D 7→ Rnx , g : D 7→ Rny , D ⊂ Rnx × Rny × R1, and the consistent
initial conditions x (0) and y (0). As for the ODEs in Section 2, these DAEs
may further depend on uncertain parameters p. To simplify the notation, the
dependency on p is not explicitly denoted. However, all presented results are
also applicable to pi ∈

[
p

i
; pi

]
with p

i
< pi, i = 1, . . . , np. The basis for the

applications in Sections 6–8 is the computation of guaranteed enclosures for both
consistent initial conditions and solutions to IVPs for DAEs. The enclosures for
the differential and algebraic variables xi (t) and yj (t), respectively, are defined
by

[xi (t)] := xapp,i (tk) + (t− tk) · ẋapp,i (tk) + [Rx,i (tk)] + (t− tk) · [Ṙx,i (t)] (11)

and
[yj (t)] := yapp,j (tk) + (t− tk) · ẏapp,j (tk) + [Ry,j (t)] (12)

with i = 1, . . . , nx, j = 1, . . . , ny, and t ∈ [tk ; tk+1], t0 ≤ t ≤ tf .
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In (11) and (12), tk and tk+1 are two subsequent points of time between
which guaranteed state enclosures are determined. For t = t0, the conditions

[x (t0)] = xapp (t0) + [Rx (t0)] (13)

and
[y (t0)] = yapp (t0) + [Ry (t0)] (14)

have to be fulfilled with approximate solutions xapp (t) and yapp (t). They are
computed, for example, by the non-verified DAE solver DAETS [19–22].

The following three-stage algorithm allows us to determine guaranteed state
enclosures of a system of DAEs using the Krawczyk iteration [13] which solves
nonlinear algebraic equations in a verified way.

Step 1. Compute hidden constraints that have to be fulfilled for the veri-
fied enclosures of the initial conditions x (0) and y (0) as well as for the time
responses x (t) and y (t) by considering algebraic equations gi (x) which do not
depend explicitly on y. Differentiation with respect to time leads to

djgi (x)
dtj

=

(
∂Lj−1

f gi (x)
∂x

)T

· f (x, y) = Lj
fgi (x) = 0 (15)

with L0
fgi (x) = gi (x). The Lie derivatives Lj

fgi (x) are computed automatically
by using FADBAD++ [2] up to the smallest order j > 0 for which Lj

fgi (x)
depends on at least one component of y.

Step 2. Compute initial conditions for the equations (9) and (10) such that
the constraints (10) and (15) are fulfilled using the Krawczyk iteration.

Step 3. Substitute the state enclosures (11) and (12) for the vectors x (t)
and y (t) in (9) and (10) and solve the resulting equations for [Ṙx (t)] and [Ry (t)]
with the help of the Krawczyk iteration. The hidden constraints (15) are em-
ployed to restrict the set of feasible solutions.

4 DAEs for Verified Feedforward Control and State
Estimation

Besides simulation of systems with known control inputs, ValEncIA-IVP can
be employed for trajectory planning and computation of feedforward control
strategies for ODE and DAE systems. In the case of trajectory planning, refer-
ence signals w (t) of open-loop controllers (S is open in Fig. 1) or closed-loop
controllers (S is closed in Fig. 1) are calculated in such a way that the output
y (t) follows a desired time response yd (t) within given tolerances. For closed-loop
control, the structure and parameters of u (x̂, w) are assumed to be determined
beforehand using classical techniques for control synthesis.

State estimation techniques can be employed in the closed loop in Fig. 1
to reconstruct non-measured components of xs, p, and q. The corresponding
estimates x̂ are then fed back as a substitute for the unknown quantities in the
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closed-loop control u (x̂, w). In Fig. 1, the vectors p and q contain uncertainties
of system parameters as well as interval bounds for measurement tolerances and
errors.

To determine feedforward control strategies (and reference signals), we com-
pute the inputs u (t) (and w (t)) as components of the vector y (t) of algebraic
state variables in the DAEs (9),(10) after describing the desired system outputs
by additional algebraic equations

0 = h (xs (t) , u (t) , q (t) , t)− (yd (t) + ytol (t)) . (16)

In these constraints, [ytol (t)] represents worst-case interval bounds for the tol-
erances ytol (t) between the actual and desired outputs y (t) and yd (t). The re-
sulting DAE system is solved by ValEncIA-IVP for the control sequence u (t)
and the consistent state trajectories x (t).

Compared with approaches based on symbolic formula manipulation which
can be applied to feedforward control of nonlinear exactly input-to-state lin-
earizable sets of ODEs (as a special case of differentially flat systems) [5, 16],
numerical interval-based approaches are more flexible. First, uncertainties and
robustness requirements can be expressed directly in the constraints (16). In
addition, the verified approach can also handle differentially non-flat systems if
stability of the internal dynamics can be guaranteed [4,32]. A short summary of
verified stability analysis is also given in Section 5. For most of these non-flat
systems, the output y (t) does not coincide exactly with yd (t). However, verified
techniques still allow us to compute control sequences (if they exist) for which
the tolerances [ytol (t)] 6= [0 ; 0] in (16) are not violated.

ẋ = f (x, p, u, t)

observer for

state

reconstruction

y = h (x, u, q, t)u (x̂, w)
u

x̂

control law plant

y
w

sensor characteristics

S

x

Fig. 1: Observer-based closed-loop control of nonlinear dynamical systems.

Since most control structures rely on information about estimates for non-
measured states, parameters, and disturbances, the DAE approach has to be
extended. In classical interval observers, a two-stage method is used. First, the
non-measured quantities are reconstructed in a filter step by solving the mea-
surement equations for the same number of variables as linearly independent
measurements (cf. [11]). In a second stage, this estimate is predicted over time
with the techniques from Sections 2 and 3 up to the point at which the next
measured data are available.
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In contrast, we can use the DAE-based solution procedure to implement a
one-stage approach. To estimate the non-measured quantities, the equation

q(x) =
[
yT

m ẏT
m . . . y

(nx−1)
m

T
]T

=
[
h(x)T Lfh(x)T . . . L

(nx−1)
f h(x)T

]T (17)

describing the measured variables ym (t) and their i-th derivatives y
(i)
m (t) has to

be solved for the state vector x (t) ∈ Rnx .
In (17), y

(i)
m (t) is expressed as the Lie derivative

Li
fh(x) = Lf

(
Li−1

f h(x)
)

, i = 0, . . . , nx − 1 , (18)

of the output h (x) along the vector field f (x) with

L0
fh(x) = h (x) and Lfh(x) =

∂

∂x
h(x) · f(x) . (19)

The equation (17) can be solved (at least locally) for x, if the observability
matrix

Q(x) =
[
QT

0 (x) QT
1 (x) . . . QT

nx−1 (x)
]T (20)

with Qi (x) = ∂
∂xLi

fh(x), corresponding to the Jacobian of q (x) with respect
to the state vector x, has the full rank nx. The rank of Q (x) yields sufficient
information about the dimension of the observable manifold of the dynamical
system [29,32].

In ValEncIA-IVP, this functionality is implemented with the help of algo-
rithmic differentiation, that is, without computation of the derivatives in (17)–
(20) using symbolic formula manipulation.

For state, parameter, and disturbance estimation, the system’s output equa-
tion ym (t) = h (x (t)) is included in the interval-based DAE solver as a further
time-dependent algebraic constraint with interval uncertainties of the measured
variables and their derivatives. In that way, the Lie derivatives required in (17)
coincide directly with the hidden constraints (15). These constraints are eval-
uated in each time interval in which ValEncIA-IVP is used to integrate the
dynamical system model by solving the corresponding IVP. Therefore, the in-
fluence of measurement uncertainties on the quality of state estimates can be
quantified directly by determining guaranteed consistent state enclosures.

Asymptotic stability of nonlinear closed-loop systems is not guaranteed if —
as is usually the case — controllers and state estimators are parameterized inde-
pendently. The procedures described in the following section should be applied
to prove stability and to identify regions of attraction of (asymptotically) stable
equilibria in a rigorous way.

5 Verified Stability Analysis of Uncertain Systems

For nonlinear dynamical systems, Lyapunov functions provide a suitable means
for the numerical and — in special cases — analytical proof of asymptotic stabil-
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ity. In general, both nominal system models and system models with parameter
uncertainties can be considered.

The following verified approach for stability analysis relies on the selection
of positive-definite candidates V (x, p) for suitable Lyapunov functions.

An equilibrium x∞ of a nonlinear dynamical system

ẋ(t) = f (x(t), p, u, t) (21)

is stable, if a continuously differentiable function V (x, p) : D 7→ R with

V (x, p) = 0 for x = x∞ ,

V (x, p) > 0 for x 6= x∞ , and

V̇ (x, p) ≤ 0 for x 6= x∞

(22)

exists. The equilibrium x∞ of the dynamical system (21) is characterized by

f (x∞, p, u, t) = 0 with
∂f

∂t
= 0 , (23)

where u = u (x∞) = u∞ = const and p = p∞ = const hold. The validity of the
stability criterion (22) must be guaranteed in a neighborhood of the equilibrium
x∞. A dynamical system is globally stable if (22) holds for all x ∈ Rnx (assuming
that V is radially unbounded).

If the derivative with respect to time of the function V (·) in (22) can be
proven to be negative definite instead of negative semi-definite along the tra-
jectories of the dynamical system, it is asymptotically stable in a neighborhood
of the equilibrium [10, 16]. Furthermore, using these conditions, we can often
identify domains in the state-space which belong to the region of attraction of
asymptotically stable equilibria [16].

Using interval arithmetic techniques, two different approaches for the verifica-
tion of stability properties of nonlinear dynamical systems can be distinguished:

– Stability analysis based on interval evaluation of the above-mentioned Lya-
punov functions and

– Tests for convergence of guaranteed enclosures of the sets of all reachable
states over time towards an equilibrium.

Before we can apply these approaches, a guaranteed enclosure [x∞] of the
unique equilibrium x∞ has to be computed using, for example, interval Newton
techniques. If the dynamical system model depends on interval parameters p ∈
[p], the equilibrium is usually parameter dependent. Then, the set of all possible
equilibria has to be included within the box [x∞]. For simplicity, only time-
invariant dynamical systems are considered in the following.

5.1 Stability Analysis Using Interval Evaluation of Lyapunov
Functions

The following description of interval-based stability analysis using Lyapunov
functions is based on [4]. Having computed the interval enclosure [x∞], we choose
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a double-valued approximate solution x̃∞ ∈ [x∞]. Then, an approximation A of
the system’s Jacobian is determined for x̃∞ according to

A :=
∂f

∂x

∣∣∣∣
x=x̃∞

. (24)

With this matrix, the Lyapunov equation

AT P + PA = −I (25)

of the linearized system is solved for the symmetric matrix P . Using this ap-
proach, stability analysis of the linearized system model is considered in a first
stage to derive a suitable candidate for a quadratic Lyapunov function. If the
matrix P is positive definite, that is, if the linearized system can be proven to
be asymptotically stable, an estimate for the region of attraction of an asymp-
totically stable equilibrium of the original nonlinear system can be determined.

For that purpose, an interval box [x0] for which [x∞] ⊂ [x0] holds is chosen.
Additionally, this box must not contain further equilibria. Therefore, the ini-
tialization of the interval Newton iteration used to determine [x∞] is typically
chosen.

To analyze the stability of the dynamical system, the quadratic Lyapunov
function

V (x, p) = (x− x∞)T · P · (x− x∞) (26)

with P determined in (25) is used. For the time derivative of this Lyapunov
function, the properties

V̇ (x, p)
∣∣∣
x=x∞

= 0 and
∂V̇ (x, p)

∂x

∣∣∣∣∣
x=x∞

= 0 (27)

hold. Then, the Hessian

H := −∂2V̇ (x, p)
∂x2

(28)

has to be shown to be positive definite for all x ∈ [x0]. This can be done using
a procedure described in [34].

A symmetric interval matrix

[H] = {H|Hc −∆ ≤ H ≤ Hc + ∆} (29)

with
Hc = 1

2

(
H + H

)
and ∆ = 1

2

(
H −H

)
(30)

is positive definite if the following 2nx−1 point matrices Hz = H−z are positive
definite. The matrices Hz are defined according to

Hz := Hc − Tz ·∆ · Tz with Tz := diag {(z)} . (31)

The vector z has to be replaced by all possible combinations of the components
zi = ±1, i = 1, . . . , nx. Thus, Hz = H−z holds.
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As shown in [4], the interval box [x] with center in [x∞] and radius√
nx

λmin

λmax
d ([x∞] , [x0]) (32)

certainly belongs to the region of attraction of an asymptotically stable equilib-
rium x∞. In (32), λmin and λmax are the minimum and maximum eigenvalues
of P , respectively. Furthermore, d is a function defined on IRnx × IRnx with

d : ([x] , [y]) 7→ sup {r ∈ R|B (r, [x]) ⊂ [y]} , (33)

an interval box [x] ⊂ IRnx , and B (r, [x]) denoting the set{
x ∈ Rnx

∣∣∣ min
a∈[x]

‖a− x‖ < r

}
. (34)

5.2 Stability Analysis by Propagation of Guaranteed State
Enclosures

In addition to stability analysis using Lyapunov functions, the computation of
guaranteed state enclosures can also be used to determine interval boxes included
in the regions of attraction of stable equilibria. For that purpose, the set of all
reachable states is computed, starting from an interval box [x0] at a point of
time t = t1, see left hand side of Fig. 2.

If it can be shown that the set of reachable states at a point of time t2 > t1 is
included completely in the interior of [x0], the stability of the dynamical system
is proven under the condition that the mathematical system model does not
explicitly depend on time. On the right hand side of Fig. 2, a typical result is
shown. In order to identify stability, we often have to split interval enclosures into
smaller subdomains. The result of propagation of these subintervals is illustrated
by gray boxes in Fig 2.

Note that due to overestimation which often occurs in interval evaluation
of dynamical system models, both approaches for the verification of stability
properties are only sufficient criteria. If one of these methods fails to verify
(asymptotic) stability, we either have to prove instability or exploit further tech-
niques for reduction of overestimation, that is, for computation of tighter interval
bounds.

Example 5.1 Consider the nonlinear system

ẋ(t) = ax3 (t) + u (t) (35)

with the given linear feedback control structure

u (t) = −kx (t) (36)

and the uncertain parameter a ∈ [a ; a]. Using the verified approach for stability
analysis, the candidate for a Lyapunov function

V = x2 (37)
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[x0]
x∞

x1 x1

x2x2
[x0]

t = t1 t = t2 > t1

x∞

Fig. 2: Stability analysis of nonlinear dynamical systems using verified integration of
ODEs.

is obtained if the equilibrium x∞ = 0 is checked for stability. After computation
of its derivative

V̇ = 2ax4 − kx2 (38)

one obtains

H = −∂2V̇

∂x2
= −24ax2 + 4k

!
> 0 for all a ∈ [a] , x ∈ [x] (39)

as the prerequisite for the guaranteed domain of attraction of the stable equilib-
rium. This means that

k > 6ax2 (40)

must hold for all a ∈ [a] if x ∈ [x] is the desired region of attraction, correspond-
ing to

k > 6amax
{
x2;x2

}
. (41)

�

Example 5.2 Now, stability of the uncertain system

ẋ(t) = −x3 (t) + p , p ∈ [p] , p > 0 (42)

with the interval enclosure [x∞] = 3
√

[p] of its equilibria is analyzed. For this
system,

V = (x− [x∞])2 = (x− 3
√

p)2 , p ∈ [p] (43)

and
V̇ = −x4 + px + 3

√
px3 − p 3

√
p , p ∈ [p] (44)

hold if p is a constant but uncertain parameter. Again, positivity of

H = 12x2 − 6 3
√

px
!
> 0 , p ∈ [p] (45)
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has to be verified leading to the set

x >
1
2

3
√

p (46)

as the guaranteed region of attraction of the stable equilibria [x∞]. Note that
this is only a conservative condition since V̇ in (44) is negative definite for all
x ∈ R and all p ∈ [p] = const > 0, meaning that all equilibria are globally
asymptotically stable. �

6 Control of a Distributed Heating System

6.1 Basic Experimental Setup

To visualize the practical applicability of verified DAE solvers for feedforward
control as well as state and disturbance estimation, we consider the distributed
heating system in Fig. 3. The controlled variable of this system is the temperature
at a given position of the rod. Control and disturbance inputs are provided
by four Peltier elements and cooling units. The temperature ϑ (z, t) of the rod
depends both on the spatial variable z and on the time t.

Mathematically, the temperature distribution is given by the parabolic PDE

∂ϑ(z, t)
∂t

− λ

ρcp

∂2ϑ(z, t)
∂z2

+
α

hρcp
ϑ(z, t) =

α

hρcp
ϑU (47)

which is discretized in its spatial coordinate into finite volume elements to ob-
tain a model for offline simulation as well as for online state and disturbance
estimation. Balancing of heat exchange between four volume elements leads to
the ODEs

ẋ1 (t)
ẋ2 (t)
ẋ3 (t)
ẋ4 (t)

 =


a11 a12 0 0
a12 a22 a12 0
0 a12 a22 a12

0 0 a12 a11

 ·


x1 (t)
x2 (t)
x3 (t)
x4 (t)

+
1

mscp


1
0
0
0

u (t) +
αA

mscp


e1 (t)
e2 (t)
e3 (t)
e4 (t)

 (48)

for the temperatures xi (t) in the segments i = 1, . . . , n = 4 with the coefficients

a11 = −αAls + λsbh

lsmscp
, a12 =

λsbh

lsmscp
, and a22 = −αAls + 2λsbh

lsmscp
. (49)

In (48), the input signal u (t) corresponds to the heat flow into the first
segment of the rod. The goal of feedforward control (determined by ValEncIA-
IVP or DAETS) is the computation of an input u (t) = u1 (t) in such a way
that the output temperature y (t) in an arbitrary segment tracks the desired
temperature profile

yd (t) = ϑ0 +
(ϑf − ϑ0)

2

(
1 + tanh

(
k

(
t− 3600 s

2

)))
(50)
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(z,t) temperature profile
xi temperature in i-th segment

Fig. 3: Experimental setup of a distributed heating system.

with ϑ0 = ϑU (0), ϑf = ϑ0 + 10 K, and k = 0.0015 exactly. The prediction time
horizon for the DAE solver is tk+1 − tk = 1 s. For defuzzification of the control
intervals, the definition u1 (t) = 0.5 · (u1 (t) + u1 (t)) with t ∈ [tk; tk+1) is used.

The additive terms ei (t), i = 1, . . . , n = 4 summarize errors resulting from
the discretization of the PDE and unmodeled disturbances which are estimated
by a Luenberger observer and the novel DAE-based approach, see the experi-
mental results in Fig. 4. The interval observer detects the point of time from
which on the Luenberger observer yields consistent estimates. Both estimators
make use of the measured temperatures y1 = x1 and y2 = x4. If model errors
are neglected, all ei are equal to the ambient temperature ϑU (0).

For the implementation of the disturbance observer, the ODEs (48) are ex-
tended by ė = 0 with e = e1 = . . . = e4. To quantify the influence of measure-
ment errors, the uncertainties xi ∈ yj +[−1 ; 1]K, ẋi ∈ [−0.5 ; 1.5] ẏj , i ∈ {1, 4},
j ∈ {1, 2} are considered in the DAE-based estimator. To compensate model er-
rors and disturbances, output feedback u2 (t) is introduced in addition to the
feedforward control u1 (t) by a PI controller

u2 (t) = KI ·

(yd (t)− y (t)) +
1
TI

t∫
0

(yd (τ)− y (τ)) dτ

 (51)
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with KI = 3 and TI = 786 s compensating the largest time constant TI of the
plant (48). Therefore, the total control input is given by u (t) = u1 (t) + u2 (t).
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Fig. 4: Experimental results for closed-loop control of the heating system.

6.2 Structural Analysis for Specification of Flat Outputs

For specification of the flat output

g (x, t) = x4 (t)− yd (t) = 0 (52)

of the system, the same state equations as in Subsection 6.1 are considered with
the assumption that the error terms ei (t) are piecewise constant. In this case,
the structural analysis performed in ValEncIA-IVP provides the following re-
sult:

x1 x2 x3 x4 t u
ẋ1 • • •
ẋ2 • • •
ẋ3 • • �
ẋ4 • �

g(x, t) � �

x1 x2 x3 x4 t u
L0

fg � �
L1

fg • � �
L2

fg • • � �
L3

fg • • • � �
L4

fg • • • � � •

Legend:

� a-priori known
• determined via algebraic constraints of the DAE system

The Lie derivative L4
fg corresponds to the smallest order of the derivative of

the output equation g (x, t) which is influenced directly by the control input u.
Since the number of unknowns (all unknowns are marked by • in the previous
scheme) and the number of hidden constraints are identical in this case, the
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equations L1
fg = 0, . . . , L4

fg = 0 can be solved directly by application of interval
Newton techniques for the consistent states x1, x2, and x3, as well as the desired
control input u. Since all internal states xi, i = 1, . . . , 4, and the control u are
uniquely defined by yd and a finite number of its derivatives, the output y = x4

corresponds to the system’s flat output. Note that the value of x4 is known a-
priori by evaluation of g = L0

fg = 0 for each point of time t, which is denoted
by �. In the case described in this subsection, the solution is uniquely defined
by specification of the desired system output. That is, besides specification of
the output profile in (52), no additional initial conditions are required for the
synthesis of the corresponding feedforward control. However, this also means
that deviations of the initial temperature distribution in the rod from the values
specified by the equations L1

fg = 0, . . . , L4
fg = 0 inevitably lead to tracking

errors y (t)−yd (t) 6= 0. These deviations can be compensated by output feedback
controllers according to Subsection 6.1.

As an alternative to the interval-based computation of feedforward control
using ValEncIA-IVP (and its structural analysis which allows us to determine
guaranteed enclosures of all admissible initial conditions in a given domain), the
non-verified solver DAETS can be used if no interval uncertainties are consid-
ered for parameters and modeling errors. In Fig. 5, the control inputs u(t) are
displayed which lead to the output defined in (52). For the visualization with-
out interval uncertainties, the non-verified DAE solver DAETS has been used to
determined the feedforward control for different variations ∆ϑ = ϑf − ϑ0 of the
output temperature as well as for different values of k influencing the slope of
yd (t) in the transient phase.

6.3 Structural Analysis for Specification of Non-Flat Outputs

For specification of a non-flat output, for example

g (x, t) = x3 (t)− yd (t) = 0 , (53)

the order δ of the derivative of the output equation g which is influenced directly
by the control input u is smaller than the number of unknown variables. For that
reason, the relative degree δ of the system is smaller than the dimension of the
state vector.

Since the number of unknowns is now larger than the number of hidden
constraints, the equations L1

fg = 0, . . . , Lδ
fg = 0 cannot be solved directly by

application of interval Newton techniques to obtain the missing consistent states
(denoted by •) and the desired control input u. This is also demonstrated by the
following result of the structural analysis.

x1 x2 x3 x4 t u
ẋ1 • • •
ẋ2 • • �
ẋ3 • � •
ẋ4 � •

g(x, t) � �

x1 x2 x3 x4 t u
L0

fg � �
L1

fg • � • �
L2

fg • • � • �
L3

fg • • � • � •
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(d) Feedforward control for k = 0.0035,
yd (t) = x4 (t).

Fig. 5: Feedforward control for specification of the flat output x4 (t).

Therefore, to solve this system, further information about the initial condi-
tions has to be taken into account in the following two-stage procedure. In the
first stage, we identify a set of ODEs or DAEs which includes the system’s output
and can be solved as an IVP by specification of a suitable number of initial con-
ditions. The resulting equations describe either an IVP for ODEs or an IVP for
a set of DAEs. In the first case, all initial conditions can be specified arbitrarily.
In the second case, the initial conditions have to be computed consistently with
the help of the output equation g = L0

fg = 0 and, if necessary, the lower-order
constraints L1

fg = 0, . . . , Lτ
fg = 0, τ < δ. In the second stage, this solution to

the IVP is substituted for the corresponding state variables (denoted by ◦) in
Lτ+1

f g = 0, . . . , Lδ
fg = 0. These equations, which are purely algebraic, are now

solved for the remaining states (denoted by •) and the control input u (t) using
interval Newton techniques.

In the following, this procedure is demonstrated for the system model (48)
and the output specification (53). For specification of x3 as the desired output
(denoted by �), it is at least necessary to know the initial temperature x4(0).
Then, an IVP for the ODE for x4 (t) is solved in the first stage with the known
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temperature profile x3 (t). This information is substituted for x4 (t) in the con-
straints L1

fg = 0, . . . , Lδ
fg = 0, which can now be solved for the remaining

unknowns.

x1 x2 x3 x4 t u
ẋ1 • • •
ẋ2 • • �
ẋ3 • � ◦
ẋ4 � ◦

g(x, t) � �

x1 x2 x3 x4 t u
L0

fg � �
L1

fg • � ◦ �
L2

fg • • � ◦ �
L3

fg • • � ◦ � •

Alternatively, the solution of IVPs using a DAE solver with the given initial
conditions x2(0), x4(0), and the constraint L1

fg = 0 (or the initial conditions
x1(0), x2(0), x4(0), and the constraints L1

fg = 0, L2
fg = 0, respectively) produces

the same result. The variables which are determined by the verified DAE solver
in this first stage are denoted by ∗ in the following schemes. The remaining
constraints L2

fg = 0, L3
fg = 0 (or only L3

fg = 0, respectively), are used to
compute the consistent internal system states and the input u in the stage 2 of
the solution approach, denoted again by •.

x1 x2 x3 x4 t u
ẋ1 • ∗ •
ẋ2 • ∗ �
ẋ3 ∗ � ◦
ẋ4 � ◦

g(x, t) � �

x1 x2 x3 x4 t u
L0

fg � �
L1

fg ∗ � ◦ �
L2

fg • ∗ � ◦ �
L3

fg • ∗ � ◦ � •

x1 x2 x3 x4 t u
ẋ1 ∗ ◦ •
ẋ2 ∗ ◦ �
ẋ3 ◦ � ◦
ẋ4 � ◦

g(x, t) � �

x1 x2 x3 x4 t u
L0

fg � �
L1

fg ◦ � ◦ �
L2

fg ∗ ◦ � ◦ �
L3

fg ∗ ◦ � ◦ � •

Legend:

� a-priori known
◦ determined via IVP solver (ODE/ DAE)
∗ determined via algebraic constraints of DAE (stage 1)

(not required if the flat output is specified directly)
• determined via algebraic constraints of DAE (stage 2)

In analogy to the specification of the flat system output, the non-verified
solver DAETS is applied as an alternative solution procedure. In Fig. 6, the
corresponding control inputs (as feedforward control sequence) are displayed for
the non-flat case if x3 is specified by the function (50) as the system output. For
the visualization by DAETS, the feedforward control is determined for different
variations ∆ϑ = ϑf − ϑ0 of the output temperature and different values of k.
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yd (t) = x3 (t).

Fig. 6: Feedforward control for specification of the non-flat output x3 (t).

7 Extended Experimental Setup of the Distributed
Heating System

7.1 Derivation of a Control-Oriented Model

After extending the experimental setup depicted in Fig. 3 by an air canal on
top of the metallic rod, we can formulate a new control task: Control the mass
flow of air in the canal by adjusting the speed of a corresponding fan so that the
temperature in the metallic rod does not exceed a predefined maximum value.

For that purpose, a first simple finite-dimensional model can be identified to
approximate the dynamics of the temperature distribution in the rod and in the
air canal similarly to the finite volume model in (48). If the volume of the air
canal is discretized into the same number of segments as the rod, we obtain the
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ODEs

ϑ̇1 =
1

ρScSVSE

[
Q̇H1 −

λSASq

lSE
(ϑ1 − ϑ2)− αSASE (ϑ1 − ϑ8)

]
ϑ̇2 =

1
ρScSVSE

[
Q̇H2 +

λSASq

lSE
(ϑ1 − ϑ2)−

λSASq

lSE
(ϑ2 − ϑ3)− αSASE (ϑ2 − ϑ7)

]
ϑ̇3 =

1
ρScSVSE

[
Q̇H3 +

λSASq

lSE
(ϑ2 − ϑ3)−

λSASq

lSE
(ϑ3 − ϑ4)− αSASE (ϑ3 − ϑ6)

]
ϑ̇4 =

1
ρScSVSE

[
Q̇H4 +

λSASq

lSE
(ϑ3 − ϑ4)− αSASE (ϑ4 − ϑ5)

]
ϑ̇5 =

1
ρLcLVLE

[ṁcL (ϑ6 − ϑ5)− αLALE (ϑ5 − ϑU ) + αSASE (ϑ4 − ϑ5)]

ϑ̇6 =
1

ρLcLVLE
[ṁcL (ϑ7 − ϑ6)− αLALE (ϑ6 − ϑU ) + αSASE (ϑ3 − ϑ6)]

ϑ̇7 =
1

ρLcLVLE
[ṁcL (ϑ8 − ϑ7)− αLALE (ϑ7 − ϑU ) + αSASE (ϑ2 − ϑ7)]

ϑ̇8 =
1

ρLcLVLE
[ṁcL (ϑE − ϑ8)− αLALE (ϑ8 − ϑU ) + αSASE (ϑ1 − ϑ8)] .

(54)

This model takes into account heat conduction in the metallic rod, convective
heat transfer between the rod and the air canal, as well as between the air canal
and the ambient air. Furthermore, the transport of air in the interior of the canal
with different inlet and outlet temperatures is described under consideration of
the specific heat capacity cL of air and the corresponding mass flow ṁ.

In contrast to the previous setup in Fig. 3, the heat flow Q̇H1, . . . Q̇H4 of
the four Peltier elements does not serve as a control input but as a distributed
disturbance to be compensated by variations of the mass flow ṁ. The compen-
sation has to be performed in such a way that the maximum temperature in
the interior of the rod does not exceed a predefined value. Since the position of
this temperature is not a-priori known, it has to be determined with the help of
suitable estimation strategies on the basis of the available measured data. In a
first stage, the temperatures ϑ1, . . . , ϑ4 in the four rod segments as well as the
air temperature at the inlet and outlet segments of the air canal (ϑ8 and ϑ5,
respectively) are measured.

The temperatures ϑi, i = 5, . . . , 8, in the finite volume elements for the air
canal are indexed such that the following rod and air canal segments are on top
of each other: 1 and 8, 2 and 7, 3 and 6, 4 and 5. Moreover, the ambient air
temperature is denoted by ϑU and the inlet temperature by ϑE .

According to Fig. 3, VSE = VS

4 denotes the volume of one segment in the rod
(total volume VS), ASE = AS

4 its surface (total surface AS), lSE = lS
4 the length

of one segment, ASq the area of the cross section of the rod, cS its specific heat
capacity, and ρS the density of iron. Similarly, the parameters for the air canal
are defined, namely the volume of one element VLE = VL

4 , its surface ALE = AL

4 ,
the length of one segment lLE = lL

4 , and its cross section ALq. The air stream is
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parameterized by its specific heat capacity cL, its density ρL, and the mass flow
ṁ.

The remaining parameters are the coefficient for heat conduction λS in the
rod, the convective heat transfer coefficients αS and αL between the rod and the
air canal as well as between the air canal and the ambient air, respectively.

All geometric and physical parameters except for the effective values of the
coefficients for convective and conductive heat transfer can be assumed to be in-
dependent of the mass flow ṁ. Therefore, they are known a-priori. In contrast, it
is inevitable to identify the exact influence of the mass flow ṁ on the parameters
λS , αS , and αL experimentally, see the following subsection.

7.2 Model-Based Parameter Identification

To quantify the influence of ṁ on the parameters λS , αS , and αL, the tempera-
tures ϑ1 (t) , . . . , ϑ4 (t) in the metallic rod as well as the temperatures ϑ8 (t),ϑ5 (t)
in the inlet and outlet segments of the air canal were measured for known and
constant Q̇H1, . . . , Q̇H4 and variable ṁ, see Fig. 7.

Since no sensors are available in the experimental setup to determine the
temperatures ϑ6 (t) and ϑ7 (t) directly, they are replaced by the following linear
interpolation

ϑ6 (t) = ϑ5 (t) +
1
3

(ϑ8 (t)− ϑ5 (t)) and

ϑ7 (t) = ϑ5 (t) +
2
3

(ϑ8 (t)− ϑ5 (t))
(55)

for the experimental identification of λS , αS , and αL.
In order to determine these parameters with the help of least-squares esti-

mates, the state equations (54) are replaced by the state-space model

ϑ̇1 = K1Q̇H1 − p1 (ϑ1 − ϑ2)− p2 (ϑ1 − ϑ8)

ϑ̇2 = K1Q̇H2 + p1 (ϑ1 − ϑ2)− p1 (ϑ2 − ϑ3)− p2 (ϑ2 − ϑ7)

ϑ̇3 = K1Q̇H3 + p1 (ϑ2 − ϑ3)− p1 (ϑ3 − ϑ4)− p2 (ϑ3 − ϑ6)

ϑ̇4 = K1Q̇H4 + p1 (ϑ3 − ϑ4)− p2 (ϑ4 − ϑ5)

ϑ̇5 = p3ṁ (ϑ6 − ϑ5)− p4 (ϑ5 − ϑU ) + p5 (ϑ4 − ϑ5)

ϑ̇6 = p3ṁ (ϑ7 − ϑ6)− p4 (ϑ6 − ϑU ) + p5 (ϑ3 − ϑ6)

ϑ̇7 = p3ṁ (ϑ8 − ϑ7)− p4 (ϑ7 − ϑU ) + p5 (ϑ2 − ϑ7)

ϑ̇8 = p3ṁ (ϑE − ϑ8)− p4 (ϑ8 − ϑU ) + p5 (ϑ1 − ϑ8) .

(56)

This modified system model depends linearly on the unknown coefficients p1, p2,
p4, and p5. Therefore, these parameters can be identified easily by minimizing
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the quadratic cost function

J =
M∑

k=1

∑
i∈{1,2,3,4,5,8}

(
(ϑi (tk+1)− ϑi (tk))

− Tfi (ϑ1 (tk) , . . . , ϑ8 (tk) , ϑE , ϑU , p1 (ṁ) , . . . , p5 (ṁ) ,K1)
)2

.

(57)

Here, T = 0.5 s denotes the sampling period between two subsequent measure-
ments and fi the i-th equation of the system model (56).

The cost function (57) has been minimized in usual floating point arithmetic.
In compliance with theoretical results from physics, it could be shown in this
identification that especially the parameters related to the air canal depend
significantly on the mass flow ṁ, see also Fig. 8. For further stages in control
design, these dependencies can be approximated using polynomials of the order 6.

The approximation quality obtained by this identification procedure can be
checked by comparing the measured temperature profiles and the corresponding
results for solution of an IVP (performed with a classical Runge-Kutta method)
for the equations (56) with identical initial conditions, see Fig. 9. Note that the
visible offset between measurements and simulations is mainly caused by errors
in the temperatures of the ambient air and the inlet into the air canal. These
temperatures ϑU and ϑE cannot be measured so far in the experiment and are
therefore replaced by rough estimates. In an extension of the presented approach,
it is possible either to include measurements of these values (after integration of
further sensors in the setup) or to estimate these values by minimization of the
deviation between experiment and simulations.

Future work for the design of controllers and verified models for the extended
heating system will take into account verified least-squares estimates to deter-
mine the parameters p1, p2, p4, and p5. With their help, we can quantify esti-
mation errors resulting from inaccurate measurements and spatial discretization
errors in the replacement of the original infinite-dimensional model by the finite
volume representations (54) and (56). For that purpose, additive disturbances
can be considered similarly to the terms ei in (48), see also [24].

Note that the direct computation of consistent state and control trajectories
as discussed for the simple heating system in the Section 6, is very difficult
for the extended setup if, for example, a desired profile is specified for one of
the rod temperatures ϑi, i = 1, . . . , 4. The reason for this is that the extended
system model is no longer quasi-linear. Already the first derivatives of each of
the rod temperatures depend on the control input ṁ which has to determined if
an open-loop or closed-loop control design is investigated. In the open-loop case,
it is necessary to compute consistent trajectories of all internal system states
ϑi, i = 1, . . . , 8 in addition to ṁ via hidden constraints (cf. Subsections 6.2
and 6.3). Since the system is no longer quasi-linear it is necessary to specify
initial conditions for the remaining state variables and, additionally, for ṁ and
several of its derivatives.

This task will be dealt with in future work. Alternatively, it will be inves-
tigated how verified sensitivities ∂ϑi

∂ṁ can be used to adapt the air mass flow ṁ
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Fig. 7: Control inputs and measured data for the parameter identification.

online and to select the best suitable controlled variable for output feedback if
the maximum internal temperature in the rod is to be controlled.

For non-quasi-linear systems, it is not guaranteed in all cases that the pro-
cedure in Subsection 6.3 leads directly to a set of hidden algebraic constraints
which can be used directly to compute consistent feedforward control strate-
gies. In this case, it is necessary to introduce dynamic extensions of the state
equations. A further class of systems for which this is the case are differentially
flat, multiple-input multiple-output systems for which the sum of the relative
degrees1 of the system outputs is larger than the dimension of the state vector,
see Section 8. For such systems, dynamic extensions are usually necessary to de-
rive feedforward control laws in such a way that the physical output quantities
coincide with predefined trajectories.

For practical applications, the finite-volume models studied in this section
are not the only possible representation that can be used for control and esti-
mator synthesis on the basis of a finite-dimensional approximation to the PDE
characterizing heat and mass transfer problems. In [12,23,28], further modeling
approaches were derived which led to sets of ODEs for the description of tem-
perature distributions in applications such as the considered heating systems.
Thus, for all of these models, verified approaches can be used to identify the
most suitable mathematical system representation for robust control synthesis
and sensitivity analysis with respect to uncertain parameters.

1 In control engineering, the relative degree of an output yi is defined as the smallest
order δi of its time derivative d(δi)yi/dt(δi) which explicitly depends on a considered
system input.



23
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Fig. 8: Results of experimental parameter identification.

8 Dynamic Extensions for Feedforward Control Design

In this section, we demonstrate the basic procedure for dynamic extension of
system models for the design of exact feedforward control strategies using the
example of an autonomous robot. The investigation of possibilities to automatize
this procedure in the framework of verified DAE solvers is a subject for future
research.

8.1 Example — Modeling of an Autonomous Robot

Consider the autonomous robot in Fig. 10. Its equations of motion on the
(x1 ; x2)–plane with the translational velocity u1 and the angular velocity u2

as inputs are given by the ODEs

ẋ (t) =

cos (x3 (t))
sin (x3 (t))

0

u1 (t) +

0
0
1

u2 (t) . (58)
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Fig. 9: Comparison between measured and simulated temperatures in the rod and in
the air canal.

In these state equations x3 denotes the angle of the orientation of the robot
according to Fig. 10.

Bsp. : Dynamische ZRF für einen autonomen Roboter

• Nachweis der Flachheit für die flachen Ausgänge yf1= x1 und yf2= x2

• Dynamische Zustandsrückführung durch Integratorerweiterung von u1

• Quasi-statische Zustandsrückführung

Prof. Dr.-Ing. H. Aschemann * Nichtlineare Regelung * Kapitel 7 – Folie 21         

Fig. 10: Control of an autonomous robot.

In the following, we consider the computation of feedforward control strate-
gies for the inputs u1 and u2 such that the actual position of the robot is con-
sistent with a predefined trajectory (x1,d ; x2,d). Obviously, we have to assume
consistent initial positions x1(0) = x1,d(0) and x2(0) = x2,d(0) for this task.
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8.2 Feedforward Control Design

To determine dependencies of all system states x1 (t), x2 (t), x3 (t) and all inputs
u1 (t), u2 (t) on the desired trajectories x1,d (t), x2,d (t), both output equations
y1 = x1 and y2 = x2 have to be differentiated twice. The relative degrees of the
control input u2 are equal to δ1 = δ2 = 2 in both cases according to

ẋ1 (t) = cos (x3 (t))u1 (t)
ẍ1 (t) = − sin (x3 (t)) ẋ3 (t) u1 (t) + cos (x3 (t)) u̇1 (t)

= − sin (x3 (t))u2 (t) u1 (t) + cos (x3 (t)) u̇1 (t)
(59)

and
ẋ2 (t) = sin (x3 (t))u1 (t)
ẍ2 (t) = cos (x3 (t)) ẋ3 (t)u1 (t) + sin (x3 (t)) u̇1 (t)

= cos (x3 (t))u2 (t) u1 (t) + sin (x3 (t)) u̇1 (t) .

(60)

Thus, for this system there are four constraints but only three unknowns
(x3,u1,u2). In order to solve this problem, we extend the dynamical system
model (58) with an additional state variable for the input u1 which appears as
the the first derivative u̇1 in the equations for both ẍ1 and ẍ2. Thus, we obtain
the new system model

ż (t) =


cos (z3 (t))
sin (z3 (t))

0
0

 z4 (t) +


0
0
0
1

 ν1 (t) +


0
0
1
0

 ν2 (t) (61)

with the state variables z1 := x1, z2 := x2, z3 := x3, z4 := u1. The differentiation
of the output equations now leads to

ż1 (t) = cos (z3 (t)) z4 (t)
z̈1 (t) = − sin (z3 (t)) ż3 (t) z4 (t) + cos (z3 (t)) ż4 (t)

= − sin (z3 (t)) z4 (t) ν2 (t) + cos (z3 (t)) ν1 (t)
(62)

and
ż2 (t) = sin (z3 (t)) z4 (t)
z̈2 (t) = cos (z3 (t)) ż3 (t) z4 (t) + sin (z3 (t)) ż4 (t)

= cos (z3 (t)) z4 (t) ν2 (t) + sin (z3 (t)) ν1 (t)
(63)

with the new control inputs ν1 (t) and ν2 (t). These controls as well as the states
z3 (t) and z4 (t) can be computed in the feedforward control design by substitut-
ing the desired trajectories x1,d (t) and x2,d (t) for x1 (t) and x2 (t), respectively.

This procedure is typical for non-quasi-linear DAE systems and, generally,
for differentially flat systems for which the sum of the relative degrees exceeds
the dimension of the state vector. For the extended system (61), the feedforward
control and state estimation procedures introduced in Section 4 can be applied.
A systematic procedure for dynamic extension of state equations in control and
estimator design according to the scheme presented in this section will be devel-
oped in future work for more general application scenarios.
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9 Conclusions and Outlook on Future Research

In this paper, interval-based approaches for the verification and implementation
of robust control strategies were presented and applied to a finite volume repre-
sentation of a distributed heating system. For this system, the online computa-
tion of feedforward control using ValEncIA-IVP was extended by a classical
output feedback for compensation of model and parameter uncertainties and ne-
glected disturbances. Furthermore, a verified estimation procedure for internal
system states and disturbances was described. It is implemented using a one-
stage approach instead of the classical two-stage procedure usually employed
by other interval observers. This observer can be applied to verify the admissi-
bility and reliability of classical non-verified observers such as Luenberger-type
observers. For that purpose, the non-verified estimates are compared with the
verified error bounds obtained in the interval approach.

In future work, we will investigate further relations between reachability
and controllability of states and the solvability of DAEs describing feedfor-
ward control problems. Moreover, we will generalize the routine implemented
in ValEncIA-IVP for the detection of hidden algebraic constraints. The goal
will be to extend the presented automated feedforward control to multiple-input
multiple-output systems for which desired output trajectories are prescribed for
non-flat outputs and for which ambiguities in the solution might exist. Finally,
combinations with verified tools for stability analysis based on interval evalua-
tion of Lyapunov functions will be developed further to prove stability of non-
observable or non-controllable internal dynamics and simultaneously to adapt
controller structures to ensure asymptotically stable behavior.
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