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Abstract

A robust MPC for constrained discrete-time nonlinear systems with additive uncertainties is presented.

The proposed controller is based on the concept of the reachable sets,that is, the sets that contain the

predicted evolution of the uncertain system for all possible uncertainties. If processes are nonlinear these

sets are very difficult to compute. A conservative approximation basedon interval arithmetic is proposed

for the on-line computation of these sets. This technique provides good results with a computational

effort only slightly greater than the one corresponding to the nominal prediction.

These sets are incorporated in the MPC formulation in order to achieve robust stability. By choosing

a robust positively invariant set as a terminal constraint, a robustly stabilizing controller is obtained. Sta-

bility is guaranteed in case of suboptimality of the computed solution. In orderto illustrate the proposed

controller, it is applied to a Continuous Stirred Tank Reactor (CSTR) with an exothermic reaction.
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1 Introduction

The main reasons for the success of Model Predictive Control(MPC) is that it is one of the few techniques

that is able to handle explicitly constraints and model uncertainties. Furthermore, underlying theoretic

problems on linear MPC and on nonlinear MPC are well studied [1]. See [2, 3] for a survey on the process

industry application issues and [4, 5] for a survey on nonlinear MPC. Particularly interesting is [1] where a

standard formulation of the MPC is established and sufficient conditions to guarantee asymptotic stability

are given.

Although it has been proved that the controller has some degree of robustness [6, 7], if the system

differs from the prediction model, the stabilizing properties may be lost. In order to get robust stability

when uncertainties are present, they must be taken into account in the computation of the control law. Two

different approaches have been proposed: open-loop and closed-loop MPC.

In the open-loop MPC formulation the decision variables area sequence of control actions as in the

nominal case. Any feasible sequence applied in an open-loopmanner must steer the system to the terminal

region in an admissible way for any possible uncertainty. Then the reaction of the controller to the uncer-

tainty (due to the feedback structure) is not considered in the predictions, which makes the controller quite

conservative. Consequently, the domain of attraction may be small (or even empty) compared with the real

robustly stabilizable region. In [8] an open-loop dual-mode MPC controller is proposed and robustness

under decaying additive uncertainties is achieved.

This conservativeness can be overcome if a sequence of control laws is used as decision variables, which

leads us to the closed-loop formulation. In this case, the problem is mitigated at expense of a quite more

complex optimization problem to solve. The feasibility region is quite larger than the one of the open-loop

formulation and it tends to the maximal robustly stabilizable region when the control horizon increases. In

case of constrained linear systems, the closed loop MPC has been characterized [9] and explicit solutions

of the controller can be obtained by means of multi-parametric programming (see [10] and references there

in). In the case of nonlinear systems, the optimization problem is prohibitively complex and it must be

considered as a merely theoretical controller.

In this paper, an open-loop robust MPC for constrained discrete-time nonlinear systems with additive

bounded uncertainties is presented. It is based on the reachable sets: the sets which contain the predicted
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evolution of the uncertain system under any possible uncertainty. Since the nonlinearity of the model

makes these sets difficult to be accurately obtained, conditions are established to compute them by using

approximate procedures.

Interval arithmetic is used for the computation of the approximate reachable sets. This procedure is very

useful for the on-line implementation of the proposed controller, since the computational effort is similar

to the nominal prediction. Furthermore, quite good resultsare obtained since the method provides local

approximations to the reachable set.

Based on these sets, a robustly stabilizing dual-mode MPC controller is proposed. The controller is

based on the addition of a robust invariant set as a terminal constraint with an associated robust local

control law. Thus, the dual-mode controller applies the MPCsolution as control input when the state is not

in the terminal region, and once the system has reached it, the local control law is applied. For all initial

states such that the optimization problem is feasible, robust stability is guaranteed. Hence, the uncertain

closed-loop system reaches the terminal region in a finite number of steps and it remains in it all the time.

Robust stability is ensured in case of suboptimality of the solution.

The paper is organized as follows: In section 2, some preliminary results are established, the exact and

approximate reachable sets are presented and some basic results in interval arithmetic are given; in section

3, the Robust MPC strategy is demonstrated, and in the following section, closed loop stability is proved.

The application of the proposed controller to a CSTR is shownin section 5, and finally some conclusions

are given at the end of the paper.

2 Preliminary results

2.1 System description

Consider an uncertain nonlinear discrete-time system given by

xk+1 = f (xk,uk)+wk (1)

wherexk ∈ IRn is the state of the system anduk ∈ IRm is the control vector at sample timek. The vector

wk ∈ IRn is the disturbance or uncertainty which is assumed to be additive and bounded in a compact setW
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that contains the origin.

wk ∈W (2)

The system is subject to constraints on the statexk ∈ X and on the control actionuk ∈U .

Note that the additive uncertainty can model perturbed systems and a wide class of model mismatches

taking into account that these ones might depend on the stateof the system, since

xk+1 = f̃ (xk,uk) = f (xk,uk)+∆ f (xk,uk) ⇒ wk = ∆ f (xk,uk) ∈W, ∀xk ∈ X,uk ∈U

whereX is a closed set andU a compact set, both of them containing the origin.

The model given by

x̂k+1 = f (x̂k,uk) (3)

denotes the nominal model of the system. The vectoruF(k) denotes a sequence of control ofM inputs

uF(k) = {u(k|k),u(k+1|k), · · · ,u(k+M−1|k)}

where the number of future inputsM is derived from the context. For a given statexk and a sequence of

control actionsuF(k), the future state of the system at timek+ j predicted by using the nominal model is

denoted aŝx(k+ j|k). Hence,̂x(k+ j +1|k) = f (x̂(k+ j|k),u(k+ j|k)), wherex̂(k|k) = xk.

2.2 Reachable sets

Since there are mismatches between the real system and the nominal model, the predicted evolution using

the nominal model differs from the real evolution of the system. In order to consider this effect in the

controller synthesis, it is interesting to compute the region around the nominal prediction that confines the

state of the system under any possible uncertainties.

This idea is the basis of the so-called reachable sets. Consider that the state of the system at sample time

k is xk and a sequence of control inputsuF(k) is applied to the uncertain system. The evolution of the system

depends on the uncertainties, that are known to belong to thebounded setW. The reachable set at sample

time k+ j is denoted asX j(xk,uF(k)). This set is the region that confines the evolution of the uncertain

system under any possible realization of the uncertaintiesuntil sample timek+ j, that is∀ wk+i ∈ W, for

i = 0, · · · ,k+ j − 1. Note that this set depends onxk, on the sequence of inputs fromk to k+ j − 1, i.e.

{u(k|k), · · · ,u(k+ j −1|k)} and on the set of uncertaintiesW.
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Hereafter some definitions and results related to the reachable sets are presented. First some notations

are introduced; consider setsA andB ⊂ IRn, a vectorx ∈ IRn and a functiong(x) : IRn → IRn then the

following sets are defined:x+A = {x+a, a∈ A}, g(A) = {g(a), a∈ A}, A+B = {a+b, a∈ A, b ∈ B},

andA∼ B = {c∈ IRn : c+B⊆ A}.

Definition 1 (Reachable set)Consider a system (1) and consider a given state at sample time k,xk, and a

sequence of control inputsuF(k). Then the reachable set at sample time k+ j, X j(xk,uF(k)), is given by

the following recursion

X j(xk,uF(k)) = f (X j−1(xk,uF(k)),u(k+ j −1|k))+W (4)

whereX1(xk,uF(k)) = f (xk,u(k|k))+W.

Note thatX j(xk,uF(k)) is the set that contains the uncertain evolution of all the states ofX j−1(xk,uF(k)),

that is

X j(xk,uF(k)) =
⋃

x∈X j−1

f (x,u(k+ j −1|k))+W

Due to the nonlinear nature of the model, for a given setA⊆ IRn and a given control actionu, the setf (A,u)

is very difficult to compute and thus, the reachable sets are not useful from a practical point of view. In

order to reduce the complexity of the computation, these sets can be substituted by tractable approaches

denoted as approximate reachable sets. The approximation is based on a procedureψ(A,u) to compute a

conservative and tractable approximation off (A,u) with a lower computational burden. This procedure

must satisfy the following conditions.

Assumption 1 The approximate procedureψ(A,u), where A⊆ X andu ∈U satisfies the following condi-

tions:

• Inclusion condition: f(A,u) ⊆ ψ(A,u).

• Monotonic condition: If B is a set such that B⊆ A, thenψ(B,u) ⊆ ψ(A,u).

Based on this procedure, it is possible to compute conservative approximations to the reachable sets.

Definition 2 (Approximate reachable set) Consider a system (1) and a procedureψ(·, ·) that satisfies as-

sumption 1 for the system. Then for a given state at sample time k,xk, and a sequence of control inputs
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uF(k), the approximate reachable set at sample time k+ j, X̂ j(xk,uF(k)), is given by the following recursion

X̂ j(xk,uF(k)) = ψ(X̂ j−1(xk,uF(k)),u(k+ j −1|k))+W (5)

whereX̂1(xk,uF) = f (xk,u(k|k))+W = X1(xk,uF(k)).

These approximate reachable sets have the following properties.

Property 1 Consider a given statexk and a sequence of M control inputsuF(k),

uF(k) = {u(k|k),u(k+1|k), · · · ,u(k+M−1|k)}

Consider the sequence of M−1 inputsūF(k+1) given by

ūF(k+1) = {u(k+1|k), · · · ,u(k+M−1|k)}

then we have:

(i) The approximate reachable set contains all the predicted states for all possible realization of the

uncertainties, that is

X j(xk,uF(k)) ⊆ X̂ j(xk,uF(k)) j = 1, · · · ,M (6)

(ii) For any possiblexk+1 = f (xk,u(k|k))+wk, then

X̂ j(xk+1, ūF(k+1)) ⊆ X̂ j+1(xk,uF(k)) j = 1, · · · ,M−1 (7)

Proof: Both properties are proved by induction.

(i) From the definition we have that̂X1(xk,uF(k)) = X1(xk,uF(k)). Assume thatX j−1(xk,uF(k)) ⊆

X̂ j−1(xk,uF(k)), then

X j(xk,uF(k)) = f (X j−1,u(k+ j −1|k))+W ⊆ ψ(X j−1,u(k+ j −1|k))+W

⊆ ψ(X̂ j−1,u(k+ j −1|k))+W = X̂ j(xk,uF(k))

(ii) It is clear thatxk+1 ∈ X̂1(xk,uF(k)). In virtue of the monotony condition ofψ(·, ·), we have

X̂1(xk+1, ūF(k+1)) = ψ(xk+1,u(k+1|k))+W

⊆ ψ(X̂1(xk,uF(k)),u(k+1|k))+W = X̂2(xk,uF(k))
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Consider that̂X j−1(xk+1, ūF(k+1))⊆ X̂ j(xk,uF(k)). From the inclusion condition ofψ(·, ·) we have

X̂ j(xk+1, ūF(k+1)) = ψ(X̂ j−1(xk+1, ūF(k+1)),u(k+ j|k))+W

⊆ ψ(X̂ j(xk,uF(k)),u(k+ j|k)+W = X̂ j+1(xk,uF(k))

The first property proves that assumption 1 suffices to compute approximate reachable sets; the second

property establishes that the obtained sets are consistent, that is, the sequence of approximate reachable

sets computed at the next sampling time for the remaining control sequence is included in the sequence of

approximate reachable sets computed at the current sampling time.

In order to implement the computation of the approximate reachable sets, it is necessary to find pro-

cedures that satisfy assumption 1. A procedure based on interval arithmetic is used in this paper. In the

following section, some well-known results are shown.

2.3 Interval arithmetic

Interval mathematics is a generalization of real mathematics in which interval numbers replace real num-

bers, interval arithmetic replaces real arithmetic, and interval analysis replaces real analysis [11]. Interval

arithmetic has been applied in numerical analysis and in thestudy of the solutions of equations in com-

pact domains [12], bounding the solution of ordinary differential equations [13] and global optimization

problems [14, 15, 16].

An interval numberX = [a,b] is the set of real numbers such that{x : a≤ x ≤ b}. The same concept

is extended to interval vectors, where each component is an interval variable. Note that an interval vector

X is a set in IRn. The set of real compact intervals[a,b], a,b∈ IR is denoted byI , and the sets of interval

vectors in IRn is denoted byIn.

Interval arithmetic is an arithmetic defined on sets of intervals, instead of sets of real numbers. The four

basic interval operations [11] are given by

[a,b]+ [c,d] = [a+c,b+d]

[a,b]− [c,d] = [a−d,b−c]

[a,b]× [c,d] = [min(a·c,a·d,b·c,b·d),max(a·c,a·d,b·c,b·d)]

[a,b]/ [c,d] = [a,b]×
[

1
d , 1

c

]

i f 0 /∈ [c,d]

(8)
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The ranges of the four elementary interval arithmetic operations are exactly the ranges of the corre-

sponding real operations. Extension of the interval arithmetic to include 0 in division can be found in [17].

The interval extension of standard functions, such assin, cos, tan, arctan, exp, ln, abs, sqrt, is also possible.

Consider a functiong : IRn → IRm and consider an interval vectorX ∈ In, then the setg(X) denotes the

range ofg(·) over the intervalX. Note that it is not an interval vector in general. Computingthe exact range

of an arbitrary functiong(·) over an interval vectorX is a difficult problem. However, interval arithmetic

can be used to obtain interval bounds of the exact rangeg(X).

Definition 3 (Inclusion function) A function G: IRn → IRm is called an inclusion function for g(·) if

g(X) ⊆ G(X) for any X of In.

Definition 4 (Inclusion monotonic function) The inclusion function G(·) is inclusion monotonic if for ev-

ery X,Y ∈ I such that X⊆Y it is satisfied that G(X) ⊆ G(Y).

Definition 5 (Natural interval extension [14]) If g : IRn → IRm is a function computable as an expression,

algorithm or computer program involving the four elementary operations interspersed with evaluations of

standard functions, then a natural interval extension of g(·) is obtained by replacing each occurrence of

each component xi of x by the corresponding interval Xi of X, by executing all operations according to the

formulas (8) and by computing exact ranges of standard functions.

Note that a natural interval extension of a functiong(x) : IRn → IRm is a functionψ(X) : In → Im.

Theorem 1 ([14]) Natural interval extensions are inclusion monotonic functions, i.e. for any X∈ In,

g(X) ⊆ ψ(X) and for any X⊆Y,ψ(X) ⊆ ψ(Y).

The conclusion is that natural interval extensions can be obtained for any function or any procedure. Bounds

on the ranges can be computed from any expansion (rational, Taylor series, etc.) that has an explicit formula

for the error term.

Now, let ψ(X,u) be a natural interval extension of the modelf (x,u), considering the inputsu as a

parameter. Hence, it can be used as inclusion functions. From theorem 1, we get that for anyX, Y ∈ In such

thatX ⊆Y and for anyu, f (X,u) ⊆ ψ(X,u), andψ(X,u) ⊆ ψ(Y,u).

Therefore this procedure satisfies assumption 1 and it can beused to compute the approximate reachable

sets. Note that the set of uncertaintiesW must be an interval vector, since the setψ(X,u)+W must be an
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interval vector in order to compute the following set in (5).This is a mild condition since an interval vector

which containsW can be used for the computation of the approximate reachablesets.

It is worth noting that the computational cost of the evaluation of the procedureψ(X,u) is of the same

order of complexity that the evaluation of the functionf (x,u) (see for instance the interval extensions of

the basic arithmetic operations, where an interval productoperation requires at most 8 scalar products and

6 comparisons).

The approximate character of the obtained interval ranges can be reduced using several methods.

• Analyzing the function, reordering and grouping terms to reduce the so-called multi-incidence prob-

lem. This problem appears when a variable is repeated in an expression [14]. For example, when

interval arithmetic evaluates an expression like x-x, the result is an outer approximation of the real

solution.

• If the model function does not satisfy some monotony condition [15, remark 3.2], then the range of

the function can not be exactly enclosed by an interval vector. In this case, when the sequence of

approximate reachable sets is computed, the so-calledwrapping effectmay appear. This problem has

been widely studied and some procedures to overcome it have been proposed [11, 12, 15]. In [13],

the intervals have been extended to the notion of zonotopes:a zonotope is an affine mapping of an

hypercube and it is quite more general than standard intervals. In this case, zonotopes can be used to

obtain tighter approximations of the range of a function. The Kühn’s method has been used in [18]

to obtain tighter approximations of the reachable sets.

• Using a pre-stabilization structure: in this case, the control actionuk is given byuk = K(xk) + vk,

whereK(xk) is a given controller andvk is the new control input; thus the system is given by

xk+1 = f (xk,uk) = f (xk,K(xk)+vk) = fK(xk,vk)

The control lawK(x) is designed to stabilize the system or merely to reduce the error of the approx-

imation of the interval extension. That is, it is designed toobtain a functionfK(x,v) such that its

interval extension provides better approximations. It canbe obtained for instance to cancel terms

which induce large errors in the interval extension.

Once we have a method to compute the approximate reachable sets, these are used to design a new
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robust MPC controller. This technique is presented in the following section.

3 Robust MPC strategy

Model predictive control is a well established optimal control strategy which considers constraints on the

states and on the control actions [1]. The control lawKMPC(xk) is obtained solving a constrained optimiza-

tion problem and applying the optimal control action to the system in a receding horizon manner. Consider

the finite horizon MPC optimization problem stated as follows

min
uF (k)

JN(xk,uF(k)) =
N−1

∑
i=0

L(x̂(k+ i|k),u(k+ i|k))+V(x̂(k+N|k))

subject to:

x̂(k+ j|k) ∈ X ∀ j = 1, · · · ,N

u(k+ j|k) ∈U ∀ j = 0, · · · ,N−1

x̂(k+N|k) ∈ Ω

where the vector of decision variablesuF(k) = {u(k|k),u(k+1|k), · · · ,u(k+N−1|k)} denotes the future

sequence of control inputs of the system along the prediction horizonN and x̂(k+ i|k) is the predicted

nominal state of the system applyinguF(k). L(x,u) is the so-called stage cost, which is a semi-definite

positive function. Notice that the MPC includes a terminal costV(·) in the cost function and a terminal

constraint given by the regionΩ.

Taking into account that the optimal minimizeru∗
F(xk) only depends onxk, and the receding horizon

policy, the control law is given byuk = KMPC(xk) = u∗(k|k). In absence of uncertainties, this control law

asymptotically stabilizes the system under some assumptions on the terminal cost and the terminal region

[1]. Moreover, the optimal cost functionJ∗N(xk) is a Lyapunov function of the closed loop system. The

domain of attraction of the controllerXN is the set where the optimization problem is feasible.

If the system is uncertain, then stability, and probably, feasibility of the nominal MPC may be lost. In

[8] a terminal constraint is added to the MPC and dual-mode controller is proposed. The terminal set is

considered a subset of a robust invariant set to ensure robust stability. Based on the Lipschitz continuity

of the model, a bound of the uncertainties such that the uncertain system is stabilized is given. Due to the

global nature of the Lipschitz constant, the obtained boundmay be over-conservative.
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In this paper a robust dual-mode MPC is proposed. It is based on the computation of the approximate

reachable sets shown in section 2.2. These sets allow us to consider all possible realizations of the uncer-

tainties in the computation of the MPC control law. It is worth pointing out that the approximate reachable

sets are local bounds on the effect of the uncertainties and hence, less conservative than global bounds based

on a global Lipschitz constant.

In what follows, it is considered that the system satisfies the following assumption.

Assumption 2 There is a regionΩ ⊆ X with an associated control lawu = h(x) such thatΩ is an ad-

missible robust positively invariant set for the uncertainsystem. That is, ifx ∈ Ω, then h(x) ∈ U and

f (x,h(x))+w ∈ Ω, ∀w ∈W.

There exists well-established methods to compute robust controllers for nonlinear systems [19]. If an

associated robust Lyapunov function is obtained then it canbe used as terminal cost and a level set can

be used as terminal set. This choice can be considered as a quasi-infinite prediction horizon, and hence it

provides an enhanced closed loop performance [20].

Note that we only require that this controller robustly stabilizes the system in a neighborhood of the

steady state; this allows us to use local approximation to the nonlinear system around the steady state.

Thus, a linear approximation can be used in a similar way thatthe proposed one in [20]. Another technique

is approximating the nonlinear system by a linear differential inclusion (LDI) and compute a robust linear

controller and the maximal robust invariant set, which is a polyhedron [21].

The proposed controller is derived from the following optimization problem:

Robust dual-mode MPC optimization problem (Pd
k (xk))

min
uF (k)

JN−k(xk,uF(k)) =
N−k−1

∑
i=0

L(x̂(k+ i|k),u(k+ i|k))+V(x̂(N|k))

s.t X̂ j(xk,uF(k)) ⊆ X ∀ j = 1, · · · ,N−k (9)

u(k+ j|k) ∈U ∀ j = 0, · · · ,N−k−1 (10)

X̂N−k(xk,uF(k)) ⊆ Ω (11)

The robust dual-mode control law is such that when the systemis not in the terminal region, then the

solution ofPd
k (xk) is applied, and when the system is in the terminal region, then the local robust control
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law is applied. Thus, the dual-mode control law is given by

Kd
MPC(xk) =















u∗(k|k) if xk /∈ Ω

h(xk) if xk ∈ Ω

whereu∗(k|k) is the first control input ofu∗
F(k), solution to the optimization problemPd

k (xk).

Note that the control horizon of the optimization problem isreduced at each sample time. Therefore,

this optimization problem is only defined fork = 0 to k = N−1. In the next section it will be proved that

the system reaches the terminal region inN steps, i.e.xN ∈ Ω, and, hence, the local control lawu = h(x)

makes the system remains inΩ. Consequently, the controller is well defined.

The approach proposed in this paper is different to the one proposed in [8]: the notion of reachable set

is added and hence the effect of the uncertainty is considered along the control horizon. This fact allows us

to consider the constraints on the states in a more natural way. Consequently, it is not necessary to use a

more conservative terminal region as in [8].

We propose the use of local procedures for the computation ofthe approximate reachable sets. This

constitutes the main difference with respect to [8], where aglobal Lipschitz constant is used. Hence, our

method is potentially less conservative, which leads to a larger domain of attraction.

4 Stability analysis

Since the uncertainties are merely bounded and they may not be decaying, the origin is not a steady state

of the uncertain system. Hence, the aim of a stabilizing controller is to steer the state to a neighborhood of

the origin and keep the state evolution in it. This set is a robust positively invariant set for the closed loop

system and its size depends on the bound on the uncertainties. Therefore, the notion of asymptotic stability

is not suitable and the definition of system ultimately bounded is introduced:

Definition 6 ([19]) A system is asymptotically ultimately bounded if the systemevolves asymptotically to a

bounded set, i.e. there exist positive constants b and c suchthat for everyα ∈ (0,c), there is a k∗ such that

for all ‖x0‖ ≤ α then‖xk‖ ≤ b,∀k > k∗.

This definition of stability is closely related to the notionof Input-to-state stability (ISS). In this case,

sufficient stability conditions are imposed by means of the so-called ISS-Lyapunov function. See for in-

stance [22] where an ISS MPC controller is proposed.
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As it is proved in the following theorem, for any feasible initial state, the proposed controller steers the

uncertain system to the terminal region where it remains forall the time. Hence, the closed loop system is

ultimately bounded.

Theorem 2 (Stability) Consider a system (1) with additive uncertainties subject to (2) and with constraints

on the statesxk ∈ X and on the inputsuk ∈ U. Consider a robust invariant set for the systemΩ with an

associated local controlleru = h(x) such that both satisfy assumption 2. Consider that a procedure to

compute the approximate reachable sets satisfying assumption 1 is available. Then the system controlled

byu = Kd
MPC(xk) is ultimately bounded for allx0 such that the optimization problem Pd

0 (x0) is feasible.

Proof: The stability is based on the feasibility of the optimization problem for all the time. That is, if the

initial statex0 is feasible, then the optimization problemPd
k (xk) is feasible for allk ≥ 0. Since the control

horizon is reduced at each sampling time, the system reachesthe terminal region inN steps. Once the

system is inΩ, the controller switches toh(x) and this controller makes the system never leaveΩ.

Feasibility is proved by induction. By assumption,x0 is such that the optimization problemPd
o (x0) is

feasible. Assume that inxk−1 the optimization problemPd
k−1(xk−1) is feasible and the optimal (a feasible)

solution is

u∗
F(k−1) = {u∗(k−1|k−1),u∗(k|k−1), · · · ,u∗(N−1|k−1)}

Let xk = f (xk−1,Kd
MPC(xk−1))+wk−1 be the state where the uncertain system evolves atk, and letūF(k) be

a sequence of control inputs given by

ūF(k) = {u∗(k|k−1),u∗(k+1|k−1), · · · ,u∗(N−1|k−1)} (12)

then we are going to prove thatūF(k) is a feasible solution toPd
k (xk) for all possible uncertaintywk−1 ∈W.

• Input constraints: Sinceu∗
F(k−1) is a feasible solution toPd

k−1(xk−1), thenu∗( j|k−1) ∈ U for all

j = k−1, · · · ,N−1. Therefore, from (12) we derive thatūF(k) is admissible.

• State constraints: It is clear thatxk ∈ X̂1(xk−1,u∗
F(k−1)); then in virtue of property 1 we have that

X̂ j−1(xk, ūF(k)) ⊆ X̂ j(xk−1,u∗
F(k−1)) ⊆ X for j = 2, · · · ,N−k+1

• Terminal constraint: From the state constraints we also derive that

X̂N−k(xk, ūF(k)) ⊆ X̂N−k+1(xk−1,u∗
F(k−1)) ⊆ Ω (13)
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Therefore,̄uF(k) is a feasible solution ofPd
k (xk) and by induction, the optimization problem is feasible for

all the time.

Now, we are going to prove that the state of the closed loop system at timeN is in the terminal region,

i.e. xN ∈ Ω. In effect, from (13), we have that at sampling timek = N−1, the control action must guarantee

thatX̂1(xN−1,u∗(N−1|N−1)) ⊆ Ω, and hence, due toxN ∈ X̂1(xN−1,u∗(N−1|N−1)) for all wN−1 ∈W,

we derive thatxN ∈ Ω.

Once the system reaches the terminal set the controller switches to the local controlleru = h(x) which,

by assumption 2, guarantees that the closed loop system evolution remains into the terminal regionΩ .

Thus, the closed loop system is ultimately bounded.

Remark 1 Note that the stability is guaranteed thanks to the feasibility of the computed control action at

each sample time. Hence, optimality is not required and a suboptimal solution of the optimization problem

suffices to guarantee stability. This property allows us to relax the computational burden of the optimization

problem.

Moreover, from the stability proof we derive that at each sampling time we can compute an initial feasible

solution based on the solution obtained at the previous sampling time; this initial state is a hot start for the

optimization problem. This property and the relaxation of the optimality requirement allow us to reduce the

computational burden necessary to compute the control action at each sampling time.

Remark 2 The feasibility is guaranteed by means of the reduction of the control horizon at each sampling

time. In order to maintain the horizon considered in the costto minimize, a constant prediction horizon

Np can be considered. In this case, the local control law is usedto predict the evolution from the control

horizon to the prediction horizon [23]. This is equivalent to use he following modified terminal cost

V(x̂(N|k)) =
Np

∑
j=N−k

L(x̂(k+ j|k),h(x̂(k+ j|k)) (14)

wherex̂(k+ j +1|k) = f (x̂(k+ j|k),h(x̂(k+ j|k))) for j = N−k, · · · ,Np.

Note that stability is independent on both the stage cost andthe terminal cost. Thus, this choice of the

terminal cost function has only effect on the performance but not on the stability of the closed-loop system.

The proposed controller can be extended to fixed control horizon considering the robust invariance condi-

tion [24].
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Remark 3 The proposed controller is able to stabilize the system at any feasible initial state. Thus, the

size of the domain of attraction of the closed loop system is related with the considered bounds of the

uncertainties; in fact, if the uncertainty is reduced, the domain of attraction is enlarged. The open-loop

nature of the proposed robust MPC makes the controller conservative in the sense that the resulting domain

of attraction is probably smaller than the robustly stabilizable region.

This conservativeness can be reduced considering a pre-stabilization policy. This provides some degree of

feedback in the prediction (although it is not a closed-loopformulation). Note that in this case, the input

constraints are interval constraints, since an interval estimation of the control action for every approximate

reachable set is required.

Additionally, this technique can also improve the accuracyof the approximation of the reachable sets, as

it was shown in the section 2.3. Another technique to reduce the conservativeness is to consider zonotopic

estimations of the approximate reachable sets [18].

5 Application to a CSTR model

To illustrate the proposed robust MPC controller, it is applied to a benchmark system [23]: the continuous

stirred tank reactor (CSTR). A CSTR for an exothermic, irreversible reactionA → B with constant liquid

volume is considered. The continuous time model is derived from the mass and energy balances and it is

given by [25, 23]:

dCA

dt
=

q
V
·(CA f −CA)−k0·exp

(

−
E

R·T

)

·CA +wCA

d T
dt

=
q
V
·(Tf −T)−

∆H·k0

ρ·Cp
·exp

(

−
E

R·T

)

·CA +
U ·A

V·ρ·Cp
·(Tc−T)+wT

whereCA is the concentration ofA in the reactor,T is the reactor temperature andTc is the temperature of

the coolant stream.wCA andwT model the uncertainty on both states.

The considered parameters of the model [23]:ρ = 1000 g/l,Cp = 0.239 J/g K,∆H = −5×104 J/mol,

E/R= 8750 K,k0 = 7.2×1010 min−1, U ·A= 5×104J/min K. The nominal operating conditions are given

by[23]: q = 100 l/min, Tf = 350 K,V = 100 l, CA f = 1.0 mol/l. In these conditions, the steady state is

Co
A = 0.5 mol/l, To = 350 K andTo

c = 300 K, which is an unstable equilibrium point. The temperature of

the coolant is constrained to 280K≤ Tc ≤ 370K, the concentration ofA is constrained to 0.4mol/l ≤CA ≤
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0.6mol/l. As in [23], the model is discretized using a sampling period Ts = 0.03 min. We consider that the

uncertainties are bounded by

|wCA| ≤ 0.1 mol/(lmin) and |wT | ≤ 8o K/min

The objective is to regulate in an admissible way the concentrationCA and the reactor temperatureT around

the steady state manipulating the temperature of the coolant in its admissible range, for any possible uncer-

tainty.

In order to improve the robust controller, a pre-stabilization structure is considered. This controller

stabilizes locally the system, thus it is used also as local control law for the dual-mode MPC controller. The

control law is

K(x) =

(

33.46−7.2·1012exp

(

−
E

R·T

))

·CA−1.868·T +987.07

The closed loop system has been approximated by a LDI to compute a robust invariant setΩ. The obtained

polytope is used as terminal region in the MPC formulation. As terminal cost is considered a cost function

given by (14), withNp= 50. The considered stage costL(x,u) = xT ·Q·x+uT ·R·u, with

Q =









2.0 0

0 2.9·10−3









and R= 3.33·10−3

as in [23]. The MPC controller has been executed with a control horizonN = 15. In figure 1, the sequence

of N approximate reachable sets computed for the optimal solution in a given initial state is shown.

To illustrate the evolution of the system, the uncertainty has been considered as constant along the time

with an extreme value. Thus, four different scenarios have been considered: scenario #1 withwCA = 0.1

andwT = 8, scenario #2 withwCA = 0.1 andwT = −8, scenario #3 withwCA = −0.1 andwT = −8 and

scenario #4 withwCA = −0.1 andwT = 8. The state portrait of the closed loop evolution for several initial

points in the four considered scenarios are depicted in figures 2, 3, 4 and 5 respectively. In these ones, the

admissible convergence of the closed loop system in spite ofthe uncertainties is demonstrated. Moreover,

the collection of the chosen initial state shows the size of the domain of attraction of the controller. It

is worth remarking that in these figures, the system evolves to an steady state which is different at each

scenario due to the uncertainties; the steady state is depicted with a circle. Note how the uncertainties affect

to this steady state, which gives an idea of the amount of the uncertainty considered.
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6 Conclusions

In this paper, a robust dual-mode MPC controller for constrained discrete-time nonlinear systems with

additive uncertainties is presented. It is based on the addition of the uncertain prediction of the system in

the MPC optimization problem. This is done via the so-calledapproximate reachable sets, which provide a

tractable way of considering the effect of the uncertainties on the predictions. It has been demonstrated that

interval arithmetic is an appropriate and tractable technique for the on-line computation of the approximate

reachable sets.

Based on the computation of the approximate reachable sets,a robust dual-mode MPC strategy is pro-

posed. Considering a robust positively invariant set as terminal region, any feasible initial state is robustly

steered to the terminal set, where it remains. Thus, under feasibility of the optimization problem in the ini-

tial state, robust stability and feasibility of the closed-loop system is guaranteed. The local character of the

approximate reachable sets makes that the proposed controller improves previous robust dual-mode MPC

formulations. Furthermore, suboptimal solution of the optimization problem guarantees stability and hence

optimality is not necessary. Finally, the proposed controller has been applied to a CSTR model in order to

illustrate some of its properties and how interval arithmetic is used to compute the uncertain evolution sets.
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[4] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright. Nonlinear model predictive

control and moving horizon estimation - an introductory overview. In P. M. Frank, editor,Advances

in Control, pages 391–449. Springer, 1999.

[5] D. Q. Mayne. Nonlinear model predictive control: Challenges and opportunities. In F.Allgöwer and

A.Zheng, editors,Nonlinear Model Predictive Control, pages 23–44. Birkhauser, 2000.

[6] P. O. M. Scokaert, J. B. Rawlings, and E. S. Meadows. Discrete-time stability with perturbations:

Application to model predictive control.Automatica, 33(3):463–470, 1997.

[7] D. Limon, T. Alamo, and E. F. Camacho. Stability analysisof systems with bounded additive uncer-

tainties based on invariant sets: Stability and feasibility of MPC. InProceedings of the ACC, 2002.

[8] H. Michalska and D. Q. Mayne. Robust receding horizon control of constrained nonlinear systems.

IEEE Transactions on Automatic Control, 38(11):1623–1633, 1993.

[9] P. O. M. Scokaert and D. Q. Mayne. Min-max feedback model predictive control for constrained

linear systems.IEEE Transactions on Automatic Control, 43(8):1136–1142, 1998.

[10] V. Sakizlis, N. M. P. Kakalis, V. Dua, J. D. Perkins, and E. N. Pistikopoulos. Design of robust model-

based controllers via parametric programming.Journal of Process Control, 40:189–201, 2004.

[11] E. Moore.Interval analysis. Prentice Hall, 1996.

[12] A. Neumaier.Interval methods for systems of equations. Cambridge University Press, 1990.
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Figure 1: Sequence of predicted approximate reachable setsof the optimal solution atk = 0.
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Figure 2: Scenario #1: trajectories of the closed loop system.
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Figure 3: Scenario #2: trajectories of the closed loop system.
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Figure 4: Scenario #3: trajectories of the closed loop system.
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Figure 5: Scenario #4: trajectories of the closed loop system.
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