6,725 research outputs found

    Rotorcraft technology at Boeing Vertol: Recent advances

    Get PDF
    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems

    GTTC Future of Ground Testing Meta-Analysis of 20 Documents

    Get PDF
    National research, development, test, and evaluation ground testing capabilities in the United States are at risk. There is a lack of vision and consensus on what is and will be needed, contributing to a significant threat that ground test capabilities may not be able to meet the national security and industrial needs of the future. To support future decisions, the AIAA Ground Testing Technical Committees (GTTC) Future of Ground Test (FoGT) Working Group selected and reviewed 20 seminal documents related to the application and direction of ground testing. Each document was reviewed, with the content main points collected and organized into sections in the form of a gap analysis current state, future state, major challenges/gaps, and recommendations. This paper includes key findings and selected commentary by an editing team

    DATA MINING METHODOLOGY FOR DETERMINING THE OPTIMAL MODEL OF COST PREDICTION IN SHIP INTERIM PRODUCT ASSEMBLY

    Get PDF
    In order to accurately predict costs of the thousands of interim products that are assembled in shipyards, it is necessary to use skilled engineers to develop detailed Gantt charts for each interim product separately which takes many hours. It is helpful to develop a prediction tool to estimate the cost of interim products accurately and quickly without the need for skilled engineers. This will drive down shipyard costs and improve competitiveness. Data mining is used extensively for developing prediction models in other industries. Since ships consist of thousands of interim products, it is logical to develop a data mining methodology for a shipyard or any other manufacturing industry where interim products are produced. The methodology involves analysis of existing interim products and data collection. Pre-processing and principal component analysis is done to make the data “user-friendly” for later prediction processing and the development of both accurate and robust models. The support vector machine is demonstrated as the better model when there are a lower number of tuples. However as the number of tuples is increased to over 10000, then the artificial neural network model is recommended

    Integrating Aircraft Cost Modeling into Conceptual Design

    Get PDF
    The article presents cost modeling results from the application of the Genetic-Causal cost modeling principle. Industrial results from redesign are also presented to verify the opportunity for early concept cost optimization by using Genetic-Causal cost drivers to guide the conceptual design process for structural assemblies. The acquisition cost is considered through the modeling of the recurring unit cost and non-recurring design cost. The operational cost is modeled relative to acquisition cost and fuel burn for predominately metal or composites designs. The main contribution of this study is the application of the Genetic-Causal principle to the modeling of cost, helping to understand how conceptual design parameters impact on cost, and linking that to customer requirements and life cycle cost

    Towards a semantic Construction Digital Twin: directions for future research

    Get PDF
    As the Architecture, Engineering and Construction sector is embracing the digital age, the processes involved in the design, construction and operation of built assets are more and more influenced by technologies dealing with value-added monitoring of data from sensor networks, management of this data in secure and resilient storage systems underpinned by semantic models, as well as the simulation and optimisation of engineering systems. Aside from enhancing the efficiency of the value chain, such information-intensive models and associated technologies play a decisive role in minimising the lifecycle impacts of our buildings. While Building Information Modelling provides procedures, technologies and data schemas enabling a standardised semantic representation of building components and systems, the concept of a Digital Twin conveys a more holistic socio-technical and process-oriented characterisation of the complex artefacts involved by leveraging the synchronicity of the cyber-physical bi-directional data flows. Moreover, BIM lacks semantic completeness in areas such as control systems, including sensor networks, social systems, and urban artefacts beyond the scope of buildings, thus requiring a holistic, scalable semantic approach that factors in dynamic data at different levels. The paper reviews the multi-faceted applications of BIM during the construction stage and highlights limits and requirements, paving the way to the concept of a Construction Digital Twin. A definition of such a concept is then given, described in terms of underpinning research themes, while elaborating on areas for future research
    corecore