58 research outputs found

    An Integration Framework For Control/Communication/Computation (3C) Co-design With Application In Fleet Control Of AUVs

    Get PDF
    International audienceIn this paper we introduce an integration framework for Control/Communication/Computation (3C) co-design based on the motivating example of fleet control of Autonomous Underwater Vehicles (AUVs). Specifically, we address the problem of almost sure stability of an unstable system with multiple observations over packet erasure channel with emphasize on coding computational complexity. We look at the tradeoff between duty cycle for feedback channel use, coding computational complexity, and performance. We compare coding computational complexity and performance for two cases: a) No feedback channel at all, and b) Feedback channel all the time. It is shown that the strategy of using feedback channel results in a better performance

    A future for intelligent autonomous ocean observing systems

    Get PDF
    Ocean scientists have dreamed of and recently started to realize an ocean observing revolution with autonomous observing platforms and sensors. Critical questions to be answered by such autonomous systems are where, when, and what to sample for optimal information, and how to optimally reach the sampling locations. Definitions, concepts, and progress towards answering these questions using quantitative predictions and fundamental principles are presented. Results in reachability and path planning, adaptive sampling, machine learning, and teaming machines with scientists are overviewed. The integrated use of differential equations and theory from varied disciplines is emphasized. The results provide an inference engine and knowledge base for expert autonomous observing systems. They are showcased using a set of recent at-sea campaigns and realistic simulations. Real-time experiments with identical autonomous underwater vehicles (AUVs) in the Buzzards Bay and Vineyard Sound region first show that our predicted time-optimal paths were faster than shortest distance paths. Deterministic and probabilistic reachability and path forecasts issued and validated for gliders and floats in the northern Arabian Sea are then presented. Novel Bayesian adaptive sampling for hypothesis testing and optimal learning are finally shown to forecast the observations most informative to estimate the accuracy of model formulations, the values of ecosystem parameters and dynamic fields, and the presence of Lagrangian Coherent Structures

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    An intelligent navigation system for an unmanned surface vehicle

    Get PDF
    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS)A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to enhance the robustness and fault tolerance of the onboard navigation system. This thesis not only provides a holistic framework but also a concourse of computational techniques in the design of a fault tolerant navigation system. One of the principle novelties of this research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading angle under various fault situations for Springer. This algorithm adapts the process noise covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach to enhance the fault tolerance of the heading angles for Springer. To the author's knowledge, the work presented in this thesis suggests a novel way forward in the development of autonomous navigation system design and, therefore, it is considered that the work constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in which the work presented in this thesis can be extended to many other challenging domains.DEVONPORT MANAGEMENT LTD, J&S MARINE LTD AND SOUTH WEST WATER PL

    Arctic Domain Awareness Center DHS Center of Excellence (COE): Project Work Plan

    Get PDF
    As stated by the DHS Science &Technology Directorate, “The increased and diversified use of maritime spaces in the Arctic - including oil and gas exploration, commercial activities, mineral speculation, and recreational activities (tourism) - is generating new challenges and risks for the U.S. Coast Guard and other DHS maritime missions.” Therefore, DHS will look towards the new ADAC for research to identify better ways to create transparency in the maritime domain along coastal regions and inland waterways, while integrating information and intelligence among stakeholders. DHS expects the ADAC to develop new ideas to address these challenges, provide a scientific basis, and develop new approaches for U.S. Coast Guard and other DHS maritime missions. ADAC will also contribute towards the education of both university students and mid-career professionals engaged in maritime security. The US is an Arctic nation, and the Arctic environment is dynamic. We have less multi-year ice and more open water during the summer causing coastal villages to experience unprecedented storm surges and coastal erosion. Decreasing sea ice is also driving expanded oil exploration, bringing risks of oil spills. Tourism is growing rapidly, and our fishing fleet and commercial shipping activities are increasing as well. There continues to be anticipation of an economic pressure to open up a robust northwest passage for commercial shipping. To add to the stresses of these changes is the fact that these many varied activities are spread over an immense area with little connecting infrastructure. The related maritime security issues are many, and solutions demand increasing maritime situational awareness and improved crisis response capabilities, which are the focuses of our Work Plan. UAA understands the needs and concerns of the Arctic community. It is situated on Alaska’s Southcentral coast with the port facility through which 90% of goods for Alaska arrive. It is one of nineteen US National Strategic Seaports for the US DOD, and its airport is among the top five in the world for cargo throughput. However, maritime security is a national concern and although our focus is on the Arctic environment, we will expand our scope to include other areas in the Lower 48 states. In particular, we will develop sensor systems, decision support tools, ice and oil spill models that include oil in ice, and educational programs that are applicable to the Arctic as well as to the Great Lakes and Northeast. The planned work as detailed in this document addresses the DHS mission as detailed in the National Strategy for Maritime Security, in particular, the mission to Maximize Domain Awareness (pages 16 and 17.) This COE will produce systems to aid in accomplishing two of the objectives of this mission. They are: 1) Sensor Technology developing sensor packages for airborne, underwater, shore-based, and offshore platforms, and 2) Automated fusion and real-time simulation and modeling systems for decision support and planning. An integral part of our efforts will be to develop new methods for sharing of data between platforms, sensors, people, and communities.United States Department of Homeland SecurityCOE ADAC Objective/Purpose / Methodology / Center Management Team and Partners / Evaluation and Transition Plans / USCG Stakeholder Engagement / Workforce Development Strategy / Individual Work Plan by Projects Within a Theme / Appendix A / Appendix B / Appendix

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties
    corecore