
MODELING, CONTROL, AND OPTIMIZATION OF NETWORKED

VEHICLE SYSTEMS

By

João Tasso de Figueiredo Borges de Sousa

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

UNIVERSIDADE DO PORTO

PORTO, PORTUGAL

AUGUST 2014

c© Copyright by João Tasso de Figueiredo Borges de Sousa, 2014



UNIVERSIDADE DO PORTO

DEPARTMENT OF
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Abstract

This thesis concerns the development of a model and of a control framework for networked vehicle systems

composed of physical and computational entities with coupled dynamics. This is done in the framework of

dynamic optimization and of models of systems with evolving structure.

The model encompasses physical and computational dynamics coupled through physical interactions and

communications. The physical entities and link layers establish computational environments within which

computational entities evolve and interact. These provide the physical layer which will embody complex

organizations, such as the ones envisaged for future generations of networked vehicle systems.

A control and computational framework for organizations of networked vehicles systems is proposed and

a systematic design methodology within which properties of the organization can be proved is introduced.

The framework encompasses a control and computation architecture and a design methodology. The archi-

tecture derives from a few design principles and is implemented with the help of a few mechanisms. The

design methodology introduces a compositional layered approach to control and computation that is uniform

for all vehicles.

The compositional layered approach allows the use of assume guaranteed reasoning techniques to prove

properties of the system. Lower level properties are studied in the framework of reach set computations. This

allows to check the feasibility of planned motions and provides a framework to derive motion controllers

with guaranteed results. Higher level properties are then proved under the assumptions of guaranteed low

level behavior. This is done in the framework of simulation and bi-simulation relations relative to formal

specifications.

The problem of optimizing the behavior of networked vehicle systems is addressed in the framework

of dynamic optimization. This allows the consideration of optimization problems for systems with non-

trivial state-space and control spaces. The results are specialized to the problem of iterated multi-vehicle

rendezvous. This is because the structure of these problems allows a structured application of the principle of

optimality that results in coordinated optimization problems formulated in lower-dimensional spaces. Struc-

ture induces the composition of value functions in these lower-dimensional spaces. However, the structure of

some problems, which is derived from the associated cost functions, may preclude the direct application of

the principle of optimality. This problem is also addressed in this work.

xii
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Notation and definitions

Here, we adopt the notation from [39]

• X – real Hilbert space or Banach space with norm ‖ . ‖.

• B – open ball of radius 1 centered at 0. B is its closure.

• 〈ξ, x〉 – inner product of x and ξ when X is a Hilbert space or the evaluation at x ∈ X of the linear

functional ξ ∈ X∗, the space of linear continuous functionals defined in X, when X is a Banach space.

• w∗ – weak∗ topology on the space X∗

• B∗ – open unit ball in X∗

• x = w-limi→∞xi signifies that the sequence {xi} converges weakly to x.

• Consider a set S. Then:

– int S – interior of S.

– cl S – closure of S.

– bdry S – boundary of S.

– co S – convex hull.

– co S – closed convex hull of S.

• F(U), where U ⊂ X is open, designates the class of all functions f : X → (−∞,∞] which are lower

semicontinuous on U and such that dom f ∩ U 6= ∅.

• The graph and the epigraph of a function f ∈ F(X) are given respectively by:

– grf := {(x, f(x)) : x ∈ domf}
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– epif := {(x, r) ∈ domf ×< : r ≥ f(x)}

• The indicator function of a set S, denoted by IS(.) or I(S, .) is the extended-valued function defined

by:

IS(x) =

{
0 : if x ∈ S,

+∞ : otherwise

We need the following definitions.

Definition 0.0.1 (Effective domain of a function). Unless otherwise stated, we will be considering extended
real valued functions of the class F . To single out those points at which f is not +∞, the effective domain of
f is defined as the set:

domf := {x ∈ X : f(x) < +∞}

Definition 0.0.2 (Positive homogeneous function). A function g is positive homogeneous if:

g(λv) = λg(v)forλ ≥ 0

Definition 0.0.3 (Subadditive function). A function g is subadditive if:

g(w + v) = g(v) + g(w)

Definition 0.0.4 (Upper semicontinuous multifunction). Consider the multi-function F : <n → <n. The
multivalued function F is upper semicontinuous at x if:

∀ε > 0,∃δ > 0 : ‖x− y‖ < δ ⇒ F (y) ⊂ F (x) + εB

Definition 0.0.5 (Lower semicontinuous multifunction). Consider the multi-function F : <n → <n. The
multivalued function F is lower semicontinuous at x if:

∀v ∈ F (x) and ε > 0,∃δ > 0 : x′ ∈ dom F, x′ ∈ x+ εB ⇒ v ∈ F (x′) + εB

Definition 0.0.6 (Norm in X∗). ‖ξ‖∗ denotes the norm in X∗

‖ξ‖∗ := sup{〈ξ, v〉 : v ∈ X, ‖v‖ = 1}

Definition 0.0.7 (Lipschitz condition of rank K). A function f ∈ F is said to satisfy a Lipschitz condition of
rank K on a given set S if it is finite on S and satisfies:

|f(x)− f(y)| ≤ K‖x− y‖,∀x, y ∈ S

Definition 0.0.8 (Locally Lipschitz). F is said to be locally Lipschitz provided that every point x admits a
neighborhood U = U(x) and a positive constant K = K(x) such that:

∀x1, x2 ∈ U ⇒ F (x2) ⊆ F (x1) +K ‖ x1 − x2 ‖ B (0.0.1)

Then F is said of rank K on the set U.



List of symbols

ASV Autonomous Surface Vehicle
AUV Autonomous Underwater Vehicle
CMRE Centre for Maritime Research and Experimentation
CTD Conductivity, Temperature and Depth
DOD Department of Defense
DTN Delay-Tolerant Networking
EDA European Defense Agency
EEZ Exclusive Economic Zone
GPS Global Positioning System
GSM Global System for Mobile communications
IMU Inertial Motion Unit
JAUS Joint Architecture for Unmanned Systems
JCGUAV NATO Joint Capability Group UAV
LAUV Light Autonomous Underwater Vehicle from LSTS
LSTS Laboratório de Sistemas e Tecnologias Subaquáticos (in Portuguese)

Underwater Systems and Technologies Laboratory from Porto University
LBL Long BaseLine
LCM Life Cycle Management
MTOW Maximum Take-Off Weight
NATO North Atlantic Treaty Organization
NRP Navio da República Portuguesa
OCS Outer Continental Shelf
ROV Remotely Operated Vehicle
RPA Remotely-Piloted Aircraft
RPV Remotely Piloted Vehicle
SATCOM Satellite Communication
SEAD Suppression of Enemy Air Defenses
SLAM Simultaneous Localization and Mapping
STANAG Standardization Agreement (North Atlantic Treaty Organization (NATO))
UAV Unmanned Air Vehicle (obsolete term)
UAS Unmanned Aircraft System
USA United States of America
UUV Unmanned Underwater Vehicle
UXS Unmanned Air/Surface/Ground/Underwater Vehicle System

Table 1: List of symbols
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Glossary

A glossary of relevant terms is presented next.

Airworthiness. The basic requirement for any aircraft system, manned or unmanned, to enter the National

Air Space.

Automated vehicles. Vehicles in which there is no on-board deliberation – “Automatic means that a system

will do exactly as programmed, it has no choice” (from [18]).

Autonomous vehicles. Vehicles in which deliberation takes place on-board without human intervention –

“Autonomous means that a system has a choice to make free of outside influence”(from [18]).

Capability. The ability to achieve a desired effect under specified standards and conditions through com-

binations of ways and means to perform a set of tasks [49].

Life Cycle Management (LCM). A management process, applied throughout the life of a system, that

bases all programmatic decisions on the anticipated mission-related and economic benefits derived over the

life of the system [49].

Mission. The objective or task, together with the purpose, which clearly indicates the action to be taken

[49].

Mixed initiative planning and execution control. Computational planning and execution control proce-

dures allowing intervention by experienced human operators.

Process. The combination of people, equipment, materials, methods, and environment that produces

output - a given product or service [49].

System. The organization of hardware, software, material, facilities, personnel, data, and services needed

to perform a designated function with specified results, such as the gathering of specified data, its processing,

and delivery to users [49].
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Subsystem. A functional grouping of components that combine to perform a major function within an

element such as electrical power, attitude control, and propulsion [49].



Chapter 1

Introduction

“It is in beauty that the scientist and the engineer differ: for the scientist it is nature’s beauty,

for the engineer it is the beauty of creation.”

— Louis Brown, Technical and Military Imperatives: A Radar History of World War, Taylor

and Francis, 1997.

1.1 Scope and goals

Networks of systems are pervasive, their behaviors can be highly complex, and network effects are now being

perceived as something fundamental to understand what is going around us. This is the reason why networks

are receiving a significant attention in physics, biology, climatology, and social , to name just a few. In spite

of this diversity, some patters of network behavior seem to be pervasive across these domains, as we can

infer from the literature in the field [5]. Graph theory and statistical analysis have been used heavily in the

literature, and the focus has been more on descriptive methods.

Network behavior is also receiving the attention of the robotics and, consequently, in control, computa-

tion, and communications. Swarm robotics is concerned with the problem of developing group behaviors

from simple behaviors; the tools and techniques resemble some of the ones from physics and biology. Soc-

cer robotics, and other types of robotic games, address problems of team control and coordination that go

beyond swarm behavior. This is done with distributed algorithms and coordination. Formation flying and

control is also receiving significant attention from the controls community. The study of feedback laws and

of their dependency on communication topologies and sensing capabilities is underway and uses techniques

from graph theory and stability theory. These techniques are also being used to study formation control in

6
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nature. Problems of controlling systems over networks are also receiving significant attention from both the

control and communication communities. Estimation and control, along with event-based controllers, have

been successfully used to tackle these problems.

However, there are multiple aspects of network behavior in multi-vehicle systems which have not been

addressed in the literature. These aspects arise from the nature of network vehicle systems: information and

commands are exchanged among multiple vehicles, and the roles, relative positions, and dependencies of

these vehicles and systems change during operations. In addition, these systems may exhibit properties that

are a function of structure, where structure arises from interactions established over physical, sensing and

communication links

These aspects of the behavior of network vehicle systems pose new challenges to computation and control:

from prescribing and controlling the behavior of isolated systems to prescribing and controlling the behavior

of interacting systems. The is was first noticed in computer science by Robin Milner [76, 74, 75].

This thesis is about the development of a model and of a control framework for networked vehicle systems

composed of physical and computational entities with coupled dynamics. The goal is to develop a framework

within which we can analyze and design these systems. The ultimate goal is the deployment of this control

framework in a new generation of networked vehicle systems under development at Porto University for novel

scientific and military applications.

1.2 Why is it interesting

Autonomous and/or operator assisted networked multi-vehicle systems are on the rise, especially in new

applications, such as oceanographic or atmospheric studies, or in new developments for more traditional

applications, such as automated automotive systems. However, and in spite of this trend, the theory of

networked vehicle systems is lagging behind the applications.

The control and computer science communities are addressing this challenge in the context of distributed

systems, and contribute complementary views and techniques. The inter-disciplinary nature of networked

vehicle systems requires a new description language. This language is in the process of being developed.

Over the years control engineers have developed a collection of idioms, patterns and styles of organization that

serves as a shared, semantically rich, vocabulary among them. However, this shared vocabulary is still deeply

rooted in the underlying mathematical framework – differential equations – and lacks some semantically rich
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concepts invoked by distributed computing. The cause may be that experience and functionality in computing

are acquired at a rate unmatched by the rate of evolution of concepts in control systems. For example, it was

only recently that the expressiveness of the language of differential equations and dynamic optimization was

enlarged with concepts from mathematical logic, under the denomination of hybrid control (see for example

[81], [68], [11], [37]).

Today, we are still far from being able to design and deploy networked vehicle systems in a systematic

manner and within an appropriate scientific framework. To achieve this goal we need a clear understanding

of the fundamental challenges, which have to be abstracted away from a wide range of applications. This

requires: 1) some familiarity with both applications and concepts in related fields, namely control theory and

computer science; and 2) a framework within which we can structure our ideas.

While practitioners are focussed on the engineering systems and on operations, theoreticians may lack

the in-depth understanding of the problem domain required to identify the fundamental questions in the field.

In addition, there is no readily available mathematical tool set to address this problem domain.

This thesis builds on experience in the design, construction, and deployment of networked vehicles. Ap-

plications are as diverse as automated highway systems [102, 26], Mobile Offshore Base [83, 44], mixed

initiative control of automata teams [34], coordinated air and ocean vehicles for marine biology and oceanog-

raphy, plume tracking, and security and defense [71]. Tools and technologies included hybrid systems,

dynamic optimization, models of computation, non-linear control, computer-aided verification, and, more

recently, deliberative planning. This experience was also journey in networked development, in which I have

been fortunate to interact with experts in all of these fields, each one with his own views and perspectives,

contributed to bridge this gap between application and conceptual development. In addition, it contributed to

the development of the approach presented in this work.

1.3 Approach

This is an inherently inter-disciplinary work at the intersection of control and computation.

The modeling problem is address in the framework of computational and physical models. This is done

in a uniform manner to preserve notions of state and control spaces, as well as of system dynamics, which are

extended to accommodate the novel aspects of network behavior and coupled dynamics. Models expressing

the benefits of composition and the emergence of capabilities arising from interactions are handled in the
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framework of a layered control and computation architecture.

The control and computation problem is addressed in the framework of a layered control and computation

architecture, and associated design methodology. The layered architecture introduces specialized controllers

and controller dependencies within which organizations of networked vehicles are formed and controlled.

This with done with the support of a few mechanism of access control embedded in hierarchies of physical

and communication channels. The controller structures are design for structure control, but also to support

organizations of networked vehicles in delivering unprecedented behaviors.

The architectural design is targeted at the formal verification of properties. This will be done in the

framework of assume guaranteed techniques, to abstract low level motion behaviors, and automata theory, to

analyze bi-simulation relations between implementations and formal specifications.

The planning and execution control problems will be addressed in the framework of dynamic optimiza-

tion. This is because dynamic optimization, in spite of the associated computational complexity, provides

a uniform framework for handling problems of reachability, invariance, and optimization formulated in ex-

tended state and control spaces. The structure of a significant number of problems in networked vehicle

systems can be formulated as iterated rendezvous problems. This is because of operations in communications-

challenged environments. The application of the principle optimality to iterated rendezvous problems induces

an organization of coupled problems in lower-dimensional spaces. This significantly reducing the computa-

tional complexity associated to the dynamic programming approach.

1.4 Developments at the Laboratório de Sistemas e Tecnologias Sub-
aquáticas

1.4.1 Laboratory overview

The Laboratório de Sistemas e Tecnologias Subaquáticas (LSTS) at the Faculty of Engineering from Porto

University has been designing, building and operating unmanned underwater, surface and air vehicle systems

for innovative applications with strong societal impact since it was established in 1997. Currently the LSTS

team has over 30 researchers, including faculty and students, with Electrical and Computer Engineering,

Mechanical Engineering and Computer Science backgrounds.

In 2006 the LSTS received the national BES Innovation National Award for the design of the Light

AUV (LAUV). This vehicle is now in its 5th generation. The LSTS delivered three LAUV units to the



10

Portuguese Navy and has transitioned the technology to the spin-off company OceanScan Marine Systems

and Technology.

The LSTS fleet includes two remotely operated submarines (rated for 200m), two autonomous underwater

vehicles (AUV) of the Isurus class, six AUVs of the Light Autonomous Underwater Vehicle (LAUV) class,

one autonomous surface vehicle (Swordfish), and twelve autonomous air vehicles (wingspans ranging from

1.8m to 3.6m).

LSTS uses the IEEE P1220-standard [52] for the systems engineering process in the design, develop-

ment, and operation of several generations of unmanned air, surface, and air vehicles for defence and civil

applications. Vehicles in the LSTS fleet are engineered for networked operations and use modular hardware

and software components to facilitate development, maintenance, and operations. The LSTS open source

software tool chain for networked vehicle systems is now in use in the United States, Germany, Switzer-

land, Norway, France, England, Spain, and India. This tool chain allows the operators at the LSTS control

stations to command and control all types of vehicles in a uniform manner, with special support for sense

and avoid. The tool chain supports onboard autonomy through the integration of the deliberative on-board

planning framework TREX (developed at the Monterey Bay Aquarium Research Institute).

LSTS has successfully fielded unmanned air, ground, surface and underwater vehicles in innovative oper-

ations in Europe and in the United States of America. These include some world firsts, such as the underwater

rendezvous between the Aries and Isurus AUVs, respectively from the Naval Postgraduate School and Porto

University, which took place in 2006 in Monterey, California, under a cooperation project between the two

institutions.

LSTS has been involved in fostering and growing a world-wide research network in the area of networked

vehicle systems with yearly conferences and workshops, and, more recently, with large scale exercises at sea.

LSTS researchers are well connected (with frequent visitors, seminar exchanges, and tools exchanges) to

research efforts as collaborators (on other projects and developments) at MBARI (USA), Naval Postgradu-

ate School (USA), Naval Undersea Warfare Center (USA), University of Michigan (USA), US Coast Guard

(US), Naval Undersea Research Center (NATO), National Oceanography Center (UK), University of Limer-

ick (IRL), Norwegian University of Science and Technology (NOR), Royal Institute of Technology (SWE),

University of Delft (NL), and Swiss Federal Institute of Technology Zurich (CH). In Portugal the LSTS has a
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strategic cooperation with the Portuguese Navy (LSTS provided technical support to their unmanned under-

water vehicles program, delivered three units of a mine warfare/REA version of the Light Autonomous Un-

derwater Vehicle, and is evolving these vehicles for advanced operations with manned vessels under projects

funded by the Portuguese Ministry of Defense) and Air Force (jointly developing the unmanned air vehicles

program with funding provided by the Portuguese Ministry of Defense), with the Portuguese Task Group for

the Extension of the Continental Shelf (systems and technologies for underwater exploration and mapping

and in operation of the deep sea ROV Luso), and with the Porto Harbor (systems and technologies for harbor

operations). The LSTS has been organizing, in cooperation with the Portuguese Navy, the Rapid Environ-

mental Picture (REP) annual exercise since 2010. In addition, researchers from LSTS also participated in

experiments, organized and hosted by collaborators, and taking place in the Pacific and Atlantic oceans, as

well as in the Mediterranean and Adriatic seas. In the next 5 years LSTS will host tests and demonstrations

of projects funded by the EU, EDA and NATO, thus making the Porto a hub for international collaboration

in this field.

1.4.2 Software tool chain

The LSTS control architecture has an off-board component and an on-board component. These are imple-

mented with the help of the LSTS NEPTUS-IMC-DUNE software tool chain. This is a software framework

for mixed-initiative control (humans in the planning and control loops) of unmanned ocean and air vehi-

cles operating in communications challenged environments with support for Disruptive Tolerant Networking

(DTN) protocols. These unique features of the tool chain build on experience with the coordinated operation

of heterogeneous vehicles. NEPTUS is a distributed command, control, communications and intelligence

framework for operations with networked vehicles, systems, and human operators. NEPTUS supports all the

phases of a mission life cycle: world representation; planning; simulation; and, execution and post-mission

analysis [78]. IMC is a communications protocol that defines a common control message set understood

by all types of LSTS nodes (vehicles, consoles or sensors) in networked environments [69]. This provides

for standard coupling of heterogeneous components in terms of data interchange. DUNE is the system for

vehicle on-board software. It is used to write generic embedded software at the heart of the vehicle, e.g. code

for control, navigation, or to access sensors and actuators. It provides an operating-system and architecture

independent C++ programming environment for writing efficient real-time reactive tasks in modular fashion.
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The tool chain has support for DTN protocols [72]. Currently LSTS researchers are working with the Mon-

terey Bay Research Institute on the integration of the deliberative onboard planning system TREX [82] with

DUNE.

1.4.3 Operational experience

LSTS extensive operational experience in large scale exercises has been providing invaluable lessons on the

deployment of networked vehicle systems. A list of selected exercises follows:

REP14–Atlantic, fifth edition of the Rapid Picture (REP) Atlantic exercise. REP14-Atlantic was a joint

exercise of the Portuguese Navy, the NATO Centre for Maritime Research and Experimentation (CMRE),

and the University of Porto. REP14-Atlantic was a large experiment conducted in the Lisbon Naval Base

and off the coasts of Sesimbra and Sines, in Portugal. It included several various Autonomous Surface Ves-

sels (ASVs), Autonomous Underwater Vehicles (AUVs) and Unmanned Aerial Vehicles (UAVs) equipped

with different sensors and acoustic payloads, which were deployed from Portuguese Navy ships NRP Pe-

gaso, NRP Auriga, submarine NRP Arpão and NATO Research Vessel Alliance. REP14-Atlantic aimed to

test networks of unmanned maritime vehicles in mine countermeasures, maritime security, environmental

knowledge, search and rescue, and maritime law enforcement operational scenarios. The participants in-

cluded the Monterey Bay Research Institute (MBARI-USA), the University of Rome (Italy), the Norwegian

University of Science and Technology (Norway), the Royal Institute of Technology, the Naval Undersea War-

fare Center, and the companies Evologics (Germany) and Oceanscan (Portugal). Through REP14-Atlantic

the participants demonstrated collaborative research to increase interoperability, underwater communications

and disruption/delay tolerant networking (DTN) capabilities, automation and cooperation of not only un-

manned underwater, but also surface and aerial vehicles. In addition some of these vehicles had deliberative

planning capabilities on-board for unprecedented levels of autonomy. Deliberative planning techniques were

used to support coordinated planning and execution control of multiple vehicles.

CANON experiment, Pacific Ocean, organized by the Monterey Bay Aquarium Research Institute (MBARI),

2013. LSTS participated in this exercise with one LAUV and technology for coordination with the Dorado

AUV, the TEX Wave Glider and ships from MBARI for oceanographic data collection (http://www.mbari.org/canon/).

Breaking the surface experiment, Adriatic Sea, 2013. Demonstration of Unmanned Air Vehicle systems

for maritime applications (http://bts.fer.hr/).
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Fourth edition of the Rapid Environmental Picture (REP13) exercise organized in cooperation with the

Portuguese Navy, Portugal, 2013 ((http://rep13.lsts.pt/)). The exercise took place off the coast of Sesim-

bra, Portugal, but continued further south from the Portimão airfield. It involved participants from MBARI

(USA), Evologics (DE), and the Norwegian University of Science and Technology (NOR). Several large and

small propeller-driven ASVs, AUVs with different sensors and acoustic modems were deployed from Ba-

camarte, a ship from the Portuguese Navy. Several PITVANT UAS were used in these experiments, some

being deployed and recovered from civilian airports under monitoring of the Portuguese Air Force, and oth-

ers launched and recovered aboard Bacamarte. The exercise was targeted at applications in Mine Warfare,

Harbour Protection, Expeditionary Hidrography, Search and Rescue, Maritime Law Enforcement, and Rapid

Environmental Assessment.

Demonstration of networked air and ocean vehicles in the maritime incident response Cathach, Ireland,

2013. This was done in the context of the Interreg Netmar project (http://www.shannonresponse.com/).

Third edition of the Rapid Environmental Picture (REP12) exercise organized in cooperation with the

Portuguese Navy, Portugal, 2012. The REP-12 exercise took place off the coast of Sesimbra, Portugal, but

continued further north from the Santa Cruz airfield. It involved participants from MBARI (USA), Centre

for Maritime Research and Experimentation (NATO), Evologics (DE), Technion (IL), Norwegian University

of Science and Technology (NOR) and University of Rome (IT). Several large and small propeller-driven

ASVs, AUVs with different sensors and acoustic modems, as well as the wave-propelled Wave-Glider ASV

(from Liquid Robotics, Inc.) were deployed from Bacamarte, a ship from the Portuguese Navy. Several

PITVANT UAS were used in these experiments, some being deployed and recovered from civilian airports

under monitoring of the Portuguese Air Force, and others launched and recovered aboard Bacamarte.

Breaking the surface experiment, Adriatic Sea, 2012 (http://bts.fer.hr/). Archeology and sea-bottom map-

ping with the SEACON AUV, Murter, Croacia.

Acommsnet 2012 experiment organized by NURC-NATO, Mediterranean Sea, 2012. Disruptive Tolerant

Networking (DTN) experiments with multiple Autonomous Underwater Vehicles, 2012.

C4C - Control for Coordination FP7 project final demonstration (Porto, Portugal), 2011. Demonstration

of the coordinated operation of multiple Autonomous Underwater and Surface Vehicles for plume mapping

and formation control over acoustic modems.
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Deep Divex 2011 NATO exercise, Halifax, Canada, 2011. Invited participation with SEACON AUVs for

mine sweeping in a harbor environment.

Mar Menor Robotics experiment, Mar Menor, Spain, 2011. Demonstration of salinity plume mapping

capabilities with multiple Autonomous Underwater Vehicles.

Second edition of the Rapid Environmental Picture (REP11) exercise organized in cooperation with the

Portuguese Navy, Portugal, 2011. The REP11 exercise took place off the coast of Sesimbra. The REP-11

exercise was focused on the demonstration of the SEACON AUV and of DTN, including the transfer of

sonar files from a SEACON AUV to a small Unmanned Air System (UAS) deployed from a ship from the

Portuguese Navy. The exercise also included deployments of the SEACON AUV from manned submarines

from the Portuguese Navy.

First edition of the Rapid Environmental Picture (REP10) exercise organized in cooperation with the

Portuguese Navy, Portugal, 2010. The participants in the REP-10 AUV experiment included, in addition to

the Portuguese Navy and LSTS, the following: Naval Undersea Warfare Center (Newport, USA), SeeByte

(Edinburgh, United Kingdom), OceanScan MST (Porto, Portugal), OceanServer Technology (Fall River,

Massachusetts) and YSI (Yellow Springs, Ohio). The experiment was targeted at assessing the endurance and

performance of the SEACON AUV (developed by LSTS), evaluating and testing the coordinated operation of

multiple AUVS from the Portuguese Navy (Gavias from Teledyne Gavia), NUWC (Iver2 from OceanServer)

and LSTS (SEACON), extending the communication range of autonomous vehicles with fixed and mobile

gateways, validating remotely sensed data, and testing ship and shore launching and recovery of AUVs.

LUSO ROV deep sea operations, Atlantic Ocean, 2009-2010. This was done in cooperation with the

Portuguese Task Group for the Extension of the Continental Shelf and targeted data and sample collection

from the sea floor.

Acommsnet 2010 experiment organized by NURC-NATO, Mediterranean Sea, 2010. DTN experiments

(2010).

Spain Minex 2010, international exercise organized by the Spanish Navy, Mediterranean Sea, 2010. Mine

sweeping deployments with Gavia AUVs from the PO Navy.

Rendezvous between two AUVs, Aries from the Naval Postgraduate School and Isurus from LSTS, Mon-

terey, Pacific Ocean, 2006. Underwater rendezvous between the two AUVs using acoustic communications.
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1.5 Outline of the thesis

Chapter 2 discussion the computation and control challenges arising in the coordination of multi-vehicle

systems. This is done in the framework of coupled physical and computational dynamics governed by the

laws of physical and computation. Several examples illustrate this point, that seems to be missing in the

literature. The state space and dynamics for these systems are extended to show how these challenges can be

formulated as classical control problems of optimization, invariance, and attainability. Directions for future

research are discussed with special emphasis on the aspects of coupled dynamics and dynamic structure.

Applications to other fields, such as biology, are briefly discussed. [33] is an abridged version of this chapter.

Chapter 3 introduces background in dynamic optimization that will be required in subsequent chapters.

First, a derivation of the Hamilton-Jacobi-Bellman equation for a simplified version of the minimum time op-

timal problem is introduced to provide the background against which more refined derivations are discussed.

This is done with the introduction of a value function for this problem. The derivation is based on assump-

tions of smooth behavior. The problem is that the general minimum time optimal control problem exhibits

non-smooth behavior. This is why the reminder of the chapter is discussed in the framework of non-smooth

analysis techniques described in an appendix. Several concepts of solution of the Hamilton-Jacobi-Equation

are also introduced and briefly compared. This mathematical tool set is not specific to time optimal control

problems. It provides a unifying framework to handle generic optimal control problems. Moreover, invari-

ance and attainability problems can also be handled in this framework. The framework revolves around the

notion of the value function associated to each specific optimization problem. The value function is the solu-

tion, in some appropriate sense, of the Hamilton-Jacobi-Equation. This is why the notion of viscosity solution

of the Hamilton-Jacobi equation is also discussed in this chapter. Finally, the problem of deriving feedback

controllers from the value function is also discussed. This is not a trivial matter because optimal feedback

controllers tend to be discontinuous, another manifestation of non-smooth behavior.

Chapter 4 presents a formulation and a solution approach to the problem of optimal coordination of un-

manned air vehicles for the Suppression of Enemy Air Defenses (SEAD). The problem consists in designing

the attack of the Blue force of unmanned air combat vehicles against Red’s ground force of SAM sites and

radars. The design is structured in a two-level hierarchy of planning and execution. The plan, based on prior

information, determines which targets are to be attacked and groups them into sub-tasks; allocates a UAV
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team to each sub-task; and selects a risk-minimizing path for each team. The planning procedure uses dy-

namic optimization techniques in two ways. First, to find risk-minimizing paths. Second, for optimal target

selection. This is because the risk function for the UAVs depends on the state of the ground force of SAM sites

which, in turn, can be affected by the actions of the Blue force. The planning procedure produces constraints

for the attack of the Blue force in the form of a partial order in which targets should be engaged. Execution

is organized in a hierarchy of real-time controllers, which determine the actual optimal flight paths, weapons

release, and space-time coordination of the actions of a UAV team. The hierarchy embodies a system with

evolving structure because it consists of interacting controllers which may change during operations: UAVs

are assigned to specialized controllers in the hierarchy; assignments are instantiated through command links

to controllers; and, assignments change in a feedback manner for adaptation. A control implementation was

specified in SHIFT, a programming language for dynamic networks of hybrid automata. [34] is an abridged

version of this chapter.

Chapter 5 introduces new optimal path coordination coordination for multiple vehicles and discusses

how to formulate and solve them in the framework of dynamic optimization. An optimal path coordination

for a two-vehicle system is considered to illustrate the approach and to discuss the novelties. The basic

formulation is inspired by the developments presented in Chapter 4. The novelty of these problems arises

in several ways. The cost function and the dynamics include non-trivial dependencies, modeled through

existential quantification over groups of vehicles – this leads to non-Lipschitz behavior and to non-standard

optimal control problems. There are consumable resources, modeled with the help of integral constraints

– the structure of the constraints suggested new strategies for optimal cooperation which outperform the

results obtained with standard formulations with state-constraints. The formulation presented in this chapter

uses the structure of the problem to decouple the overall optimization into simpler coupled problems in

lower-dimensional spaces. The structure of the coupling is encoded in a hybrid automaton. The principle

of optimality is applied to this structure. This leads to coupled dynamic programming problems, which are

solved sequentially to respect the principle of optimality. This is done with the help of numerical methods for

solving the corresponding Hamilton-Jacobi-Bellman equations. The solution is encoded as the composition

of value functions in lower-dimensional spaces. [25] is an abridged version of this chapter.

Chapter 6 discusses how to design a verified multi-vehicle control architecture to satisfy a formal specifi-

cation. The developments are discussed with the help of an example in which a set of vehicles implements an
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optimization algorithm to search for the minimum of a scalar field. The layered control architecture for exe-

cuting multi-vehicle team coordination algorithms is presented along with the formal specifications for team

behavior. The specification consists of a two state model. The multi-vehicle system alternates between these

states termed respectively Communication and Motion. The vehicles exchange messages to select the next

sampling points in the Communication state. The vehicles move to the next sampling points in the Motion

state. The transition from Motion to Communication takes place when all the vehicles reach the designated

waypoints within a designed time interval. The transition from Coordination to Motion takes place when

the vehicles reach a consensus on the next sampling points. The control architecture has three layers: team

control, vehicle supervision and maneuver control. The implementation is proved to satisfy the specification

for the team behavior. This is done in the framework of automata theory. The implementation and the specifi-

cation are proved to be bi-similar. The proof uses assume guaranteed reasoning techniques. The assumptions

are that the generated waypoints are reachable within a given time interval and that communication among

the vehicles is feasible when the waypoints are reached. Reach set computation techniques are used to assist

the planning procedure to ensure that the two assumptions hold. Computer simulations with accurate models

of autonomous underwater vehicles illustrate the overall approach in the coordinated search for the minimum

of a scalar field. The coordinated search is based on the simplex optimization algorithm. [28] is an abridged

version of this chapter.

Chapter 7 presents the conclusions. These are organized in terms of what has been accomplished and

directions for future research. The discussion of what has been accomplished presents a unified view of the

developments. The directions for future research are organized in several lines of work: modeling frame-

works, dynamic optimization, control architectures, and software frameworks. Some of these developments

are already underway at LSTS. The concluding remarks discuss how the generic framework developed in this

work could potentially contribute to new insights in other fields such as biology, ecology, and social sciences.

Appendix A briefly describes the unmanned air and ocean going vehicle systems designed and built at the

Laboratório de Sistemas e Tecnologias Subaquáticas from Porto University.

Appendix B presents background information on non-smooth analysis. The focus is on the nature and

geometry of non-smooth behavior. Two frameworks for non-smooth analysis are discussed. The first one,

proximal analysis, has an intuitive geometric interpretation. The second one, also has a geometric interpre-

tation. The constructs from the two frameworks are also briefly discussed. The two frameworks provide
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the mathematical tool set required to handle non-smooth behavior arising in dynamic optimization problems

discussed in this thesis.

Appendix C describes a generic 6 degrees of freedom model of an autonomous underwater vehicle and

discusses simplifications of the model for a torpedo shaped vehicle. The model is further simplified for planar

motions. The approximation of the vehicle model by a kinematic model of a unicycle is also discussed for

this class of motions.

1.6 Contributions

The main contribution of this dissertation is the development of a model and of a control framework for

networked vehicle systems composed of physical and computational entities with coupled dynamics.

The model encompasses physical and computational dynamics coupled through physical interactions and

communications. The physical entities and link layers establish computational environments within which

computational entities evolve and interact. These provide the physical layers which will embody complex

organizations, such as the ones envisaged for future generations of networked vehicle systems.

A control and computational framework for organizations of networked vehicles systems is proposed

and a systematic design methodology within which properties of the organization can be proved to satisfy

formal requirements is introduced. The framework encompasses a control and computation architecture and

a design methodology. The architecture derives from a few design principles and is implemented with the

help of a few mechanisms. The design methodology introduces a compositional layered approach to control

and computation that is uniform for all vehicles.

A few mechanisms enable the correct composition of physical and computational entities. Correct is

defined in the sense of conforming to organizational principles. The mechanisms include access control to

physical entities, access control to specialized controllers over physical communication channels, switching

control dependencies between controllers, and addressing controllers in charge of organizations. These mech-

anisms are sufficient to enable a vehicle to become part of an organization, thus benefiting from properties

of the organization, while changing the way it presents itself to the external entities, to conform with organi-

zational rules. An organization has properties that are a function of structure, which is controlled to deliver

these properties while it may be controlled to satisfy high level behavior specifications. Organization arises
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from structure, and structure has to conform to organization principles that establish roles for constituent ele-

ments, controller dependencies, and message protocols. In addition, organization has provisions to cope with

operations in communications challenged environments. In these environments communications came and

go. This has implications in control and computation. The system will alternate between states of commu-

nications and of silent motions. Communications allow the development of coordinated plans ensuring that

the vehicles will communicate again after periods of silent motions. Motion controllers will have to ensure

that the vehicles execute these plans to rendezvous for communications after periods of silent motions. This

is what keeps the system alive. This is also an essential property of these systems.

The compositional layered approach allows the use of assume guaranteed reasoning techniques to prove

properties of the system. Lower level properties are studied in the framework of reach set computations. This

allows to check the feasibility of planned motions and provides a framework to derive motion controllers

with guaranteed results. Higher level properties are then proved under the assumptions of guaranteed low

level behavior. This is done in the framework of simulation and bi-simulation relations relative to formal

specifications.

Dynamic optimization plays a crucial role in our developments. First, reachability techniques allow

assumed guaranteed reasoning. Reachability techniques are used for verifying plans and to synthesize con-

trollers with guaranteed results. Second, the true power of dynamic optimization comes into play in problems

with iterated multi-vehicle rendezvous. This is because the structure of these problems allows a structured ap-

plication of the principle of optimality that results in coordinated optimization problems formulated in lower-

dimensional spaces. The structure induces the composition of value functions in these lower-dimensional

spaces, thus avoiding the problem of working in the product of the space states for all vehicles. Caution is re-

quired here. The structure of the problem, which is derived from the associated cost functions, may preclude

the application of the principle of optimality.

Finally, the dynamic optimization framework developed in this work allows the consideration of opti-

mization problems for systems with non-trivial state-space and control spaces.



Chapter 2

Challenges in networked vehicle systems

The computation and control challenges arising in the coordination of multi-vehicle systems are discussed in

the framework of (coupled) physical and computational dynamics. The challenges are formulated as classical

control problems of optimization, invariance and attainability for systems governed by the laws of physics

and computation. Directions for future research are discussed with special emphasis on the aspects of coupled

dynamics and dynamic structure that seem to be missing in the literature.

2.1 Introduction

This chapter is about the computation and control challenges posed by systems exhibiting both (coupled)

physical and computational dynamics and dynamic structure. Section 2.2 discusses the networked vehicle

systems problem domain.

Section 2.3 presents an example to illustrate these two aspects of the behavior of networked vehicle sys-

tems. The example draws from experience in designing, building and deploying networked vehicle systems

and was motivated by the developments from the Control for Coordination FP7 project. Section 2.4 discusses

elements of a control model for these systems. First, we introduce a clear distinction between physical and

computation entities and briefly describe the underlying state and control spaces. Second, we explain the

couplings between the physical and computation dynamics and show how these affect the selection controls.

Section 2.5 shows how behavior specifications can be phased in terms of concepts used in traditional control

specifications when we consider the modeling concepts introduced previously. Finally, in section 2.6 we dis-

cuss the computation and control challenges in this modeling framework. Directions for a research agenda

are discussed with special emphasis on the aspects of coupled dynamics and dynamic structure that seem to

20
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be missing in the literature.

2.2 Networked vehicle systems

The rich and exciting research over the past decade concerning the coordination of multiple vehicles has been

focused on systems with fixed structure [46]. Structure is typically described in terms of geometric forma-

tions, and the properties of formation controllers are studied in the framework of stability and graph theories.

Recent developments have also incorporated new results from the theories of network control systems. How-

ever, the scope of coordination is still limited to relative motions.

Motion coordination is just one aspect of multi-vehicle coordination. This becomes more evident in

networked vehicle systems consisting of heterogeneous ground, air and ocean vehicles interacting over inter-

operated, and possibly intermittent, communication networks [28, 71, 31]. For example, in networked vehicle

systems, information and commands are exchanged among multiple vehicles, sensor nodes and operators,

and the roles, relative positions, and dependencies of these vehicles and systems change during operations.

Moreover, these systems may exhibit properties that are a function of structure, where structure arises from

interactions established over physical, sensing and communication links. Links change over time; the same

happens with interactions established over these links. These are systems with dynamic structure.

The control of systems with dynamic structure poses new challenges to control engineering and computer

science. These challenges entail a shift in the focus of existing methodologies: from prescribing and com-

manding the behavior of isolated systems, or tightly coupled systems, to prescribing and commanding the

behavior of dynamically interacting networked systems – this may be one of the reasons why we are still far

from realizing the potential of these systems.

The fact is that, in spite of developments in the control of distributed systems [104], research in control

engineering has not yet incorporated fundamental concepts such as link, interaction, and dynamic structure.

In contrast, computer scientists were already making strides in this area in the early 90’s, in part because of

the pioneering work of Robin Milner. The following quote from Milner highlights these points [74]:

Dynamic reconfiguration is a common feature of communicating systems. The notion of link, not

as a fixed part of the system but as a datum that we can manipulate, is essential for understanding

such systems. What is the mathematics of linkage? The theories of computation are evolving

from notions like value, evaluation and function to those of link, interaction and process.
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Milner’s questions were partially addressed in the Pi-calculus [75] (a continuation of Milner’s work on

the process calculus CCS (Calculus of Communicating Systems) [73]), a calculus of communicating systems

in which the component agents of a system may be arbitrarily linked and the communication over linked

neighbors may carry information which changes that linkage.

Meanwhile, the advent of ubiquitous mobile computing introduced a new modeling challenge. While

the Pi-calculus deals well with mobile connectivity, it does not handle mobile locality. Ubiquitous systems

need both. This was the motivation behind the development of the theory of Bi-graphical Reactive Systems

(BRS’s) by Milner and co-workers [76]. The theory is based on a graphical model of mobile computation that

emphasizes both locality and connectivity. The theory evolved from process calculi, especially the calculus

of Mobile Ambients (invented by L Cardelli and A Gordon [13] deals with spatial reconfiguration) and the

Pi-calculus. A bi-graph comprises a place graph, representing locations of computational nodes, and a link

graph, representing interconnection of these nodes. Mobile connectivity and locality are expressed with

BRS’s by defining a set of reaction rules. A reaction rule is a pair of bi-graphs, redex and reactum, where the

redex defines a pattern to be matched with a bi-graph modeling the current state of a system. A reaction is

simply the substitution of a redex with a reactum. In this model, systems of autonomous agents interact and

move among each other, or within each other.

A careful examination of these developments in computer science may prove invaluable to control engi-

neering, especially in what concerns the coordination of networked vehicle systems. First, because they draw

our attention to models of mobile connectivity and mobile locality, which are intrinsic to dynamic structure

and coupled dynamics – this is the true essence of cyber-physical systems [4]. Second, because they do not

seem to tackle the control of mobile connectivity and mobile locality, namely how to “guide” systems of

autonomous agents to interact and move among each other, or within each other, according to some specifi-

cation.

In the theory of BRS’s the structure of locations of a system is modeled with a place graph, which is

restricted to have a tree-structure. The assumption is that the topography of a system can be modeled as a

set of domains or objects contained within each other. Connections between objects or domains are mod-

eled by links. A place graph may fail to capture several types of geometric relations occurring in networked

vehicle systems. First, locations may move, change geometry, and intersect. Second, locations may be per-

manently associated with mobile computational nodes (e.g., communications range of a physical device). The
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link graph may fail to capture the intrinsic hierarchical structure of links and interactions among networked

vehicles. This is because communication links, which are location-dependent, enable interactions among

computational nodes; the failure of a communication link may entail the failure of a complex structure of

interactions (which are basically another type of links). The BRS’s models of mobility allow the migration

of computational nodes, a capability that may open a completely new research direction for control engineer-

ing, but fail to capture the fine-grained space-time dynamics of interacting vehicle systems. In addition the

mobility of vehicles may entail the mobility of locations, but this relation does not hold for computational

processes.

Control engineers have approached the design of complex systems in the framework of control archi-

tectures [97], in which a complex design problem is partitioned into a number of more manageable sub-

problems. There are several partitioning techniques, being layering the most used one in real applications

[99]. However, the language of control architectures, with the exception of developments in the framework

of dynamic networks of hybrid automata1, has been missing the semantically rich concepts evoked by mobile

connectivity and locality. On the other hand, research on BRS’s models is missing the principled design

approaches associated with control architectures. The interesting question is then: What is the architectural

organization required to support mobile connectivity and locality in a networked vehicle system tasked to

satisfy some high level control specification?

The architectural organization will have to include mechanisms for context awareness (to adapt the behav-

ior depending on the “context” at hand), for robustness (to sustain computational interactions in the presence

of failures of communication links), for estimation of external behavior (to estimate the evolution of com-

ponents out of communications range), for state and data propagation (to ensure delivery of data and state

updates in the presence of intermittent communications), and for setting up controller structures (to evolve

the architecture).

1Informally, dynamic networks of hybrid automata [36] allow for interacting automata to create and destroy links among themselves,
and for the creation and destruction of automata. Formally, for each hybrid automaton, there are two types of interactions (mediated
by means of communications): 1) the differential inclusions, guards, jump and reset relations are also functions of variables from other
automata, and, 2) exchange of events among automata. At the level of software implementation, the mechanisms by which software
modules interact are called models of computation. The choice of the model of computation (or mix of models) is quite application
dependent [65]. This is particularly difficult for dynamic networks of hybrid automata.
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2.3 Example

One example will help to understand the challenges posed by the organization of future generations of net-

worked vehicle systems – the field is still in its infancy and reliability is still the main concern for the current

generations.

Consider the problem of managing a team of autonomous vehicles operating 24/7 in a remote region.

The operation consists of monitoring a geographically distributed phenomena (e.g., the levels of radiation

at sea). The vehicles operate from a base, which is used for refueling and mission planning. There are

no direct communication links between the base and the remote region. Vehicles are used as data mules

to transport data between the base and the remote region. Short range communications are used for team

coordination in the remote region. Team coordination is done by a team controller, a computational entity

which runs on a designated vehicle, the team leader. The team controller migrates to a new vehicle when the

vehicle where it resides returns to the base for refueling – this is an instance of the coupling between physical

and computational dynamics. There is another controller at the base to control the overall operation. Data

arriving from the remote region is used to update estimates of the status of the remote operations. Based

on these updates, the base controller may generate a new controller for the remote team leader. The new

controller is sent to the team leader by vehicles departing to the region.

2.4 Models

This is an example of coordination problems for systems consisting of entities that evolve, interact and com-

municate in a common environment that can be modified through the actions of these entities. There are

two types of entities in these systems: physical and computational entities. The former are governed by the

laws of physics, the later by the laws of computation. Physical entities may interact among themselves and

with the environment and can be “composed” to form other physical entities. Computational entities interact

through communications. Physical entities may affect computational entities through sensing links. Exam-

ples of physical entities include vehicles, sensors, communication devices, computers, and human operators.

Physical entities have attributes, which may change with time, e.g., consumable resources, and lodge compu-

tational entities. Computational entities may create other computational entities, and may be deleted as well.

Some computational entities may be the capability to migrate between physical entities over communication

channels. Communications may be geographically constrained. Physical entities can be used to transport
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computational entities and information across regions where communications are not available. This is also

used for maintaining knowledge representation and consistency across the system. The “composition” of

computational entities is either local, with respect to the one physical entity where they reside, or distributed,

over communicating physical entities.

In what follows we consider systems of the form System = (PhysicalEntities, Environment, Computa-

tionalEntities, SystemConstraints).

PhysicalEntity = (StaticAttributes, Dynamics, Outputs, Constraints). StaticAttributes is the vector of

the time-invariant attributes such as type, computational and communication capabilities; Dynamics are the

continuous and discrete dynamics which may affect, and be affected, by the environment (this may lead to

non-intended consequences or side-effects through causal pathways); Outputs is the vector of outputs; and

Constraints represent the state and control constraints. The discrete dynamics has set-valued state variables

to model (dynamic) physical and computational interactions with other entities.

Environment models the environment where the elements of PhysicalEntities evolve. It has a controlled

component, to model environmental aspects that depend on the actions of physical entities (e.g., electromag-

netic radiation generated by a set of radars), and an uncontrolled component, to model the aspects of the

environment which do not depend on these actions (e.g., terrain and wind fields).

ComputationalEntity is a generic term for software components that encode controllers and other com-

putations. There are two types of computational entities: atomic and composed. An atomic computational

entity resides on a physical entity; a composed entity may be distributed over a network in strict accordance

to composition rules to ensure that these are well formed. Composition is dynamic in that it can evolve over

time, for example, in a dynamic communication network. Atomic computational entities may be allowed

to migrate between physical entities over a communication channel. Computational entities can be created

and deleted on the fly. Each PhysicalEntity is abstracted by one atomic computational entity to bridge the

physical and computational worlds. Abstractions of physical entities are not allowed to migrate.

SystemConstraints model constraints in the complex state-space of System. In the previous example, the

team controller runs on a team leader. The team leader exists only in the given region and it changes over

time.
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2.5 Specifications

The modeling concepts from the previous section allow the specification of behaviors for a networked vehicle

system in terms of traditional specification patterns from control engineering. We discuss specifications for

a few representative problems to deepen our understanding of the underlying computational and control

challenges.

Invariance. The generic problem of invariance involves a pair (System, S), where S is a set in the state-

space of System. In this problem, the state of the System is required remain in S if the initial state is in S. This

generic formulation allows us to express constraints on the controlled component of the environment, as well

as on physical and computational mobility, physical interactions, communication links, etc. For example, we

may require a controller to “stay” in a given region independently of the physical entity where it resides; or

we may want to have at least one vehicle in a given region.

Attainability. In the problem of attainability we require the state of the System to “attain” a set Γ within

a given time interval τ . As with invariance, this specification allows us to consider complex physical and

computational target sets.

Optimization. The specification of optimization problems involves departure and target sets, state con-

straints, information structures, control spaces, cost functions, and the “mood” of the problem (cooperative,

adversarial, etc.).

As before, departure and target sets and state-constraints are defined in the complex state-space of the

System. This enables us to encode non-standard specifications (e.g., permissions for the migration of compu-

tational entities or for network access).

Full state information may not be accessible in the System. Information structures, which concern who

knows what and what is sent to whom, are affected by the mobility of physical entities in communications

challenged environments. This leads to dynamic information structures, i.e., those depending on the state of

the system.

Control spaces and control constraints can be very complex. Each physical entity may affect other phys-

ical entities and the environment. This may lead to some level of indirectness when it comes to finding

optimal controls. For example, the cost function may depend on the environment, which may be affected by

the motions of physical entity A which, in turn, may be disabled by the actions of physical entity B. We need

to identify causal control pathways, which link actions to their effects, with causal constraints not only based
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on commitments in the past, but potentially in the future. The challenge is that causal control pathways may

be dynamic since future commitments might change with time. In addition, the effects of control actions may

be significantly delayed (e.g., dropping a bomb or migration of a computational entity). Finally, it is up to

the designer to specify the control space for the controllers in a system (e.g., change control authority and

add/remove state-constraints or permissions for establishing links of communication).

The global performance (or cost) of a set of interacting computational entities and supporting physical

entities depends on the initial, terminal, integral and switching costs (incurred when switching between dis-

crete controls). Each of these costs may have terms associated to physical and computational interactions

(e.g., cost may depend on the structure), in addition to terms associated to physical and computational enti-

ties (e.g., the cost of computations). Cost functions may also depend on predicates on the state of the world

(e.g., in military operations we may want to switch from minimum risk to optimal time formulations when the

level of threat drops below some threshold), thus introducing non-Lipchitz dependencies. The performance

evaluation of persistent 24/7 operations also presents new challenges to optimization. This is partially related

to the fact that physical entities enter and leave the system.

A high level interpretation of the behaviors exhibited by the systems under consideration is in order.

Generally speaking these systems evolve through phases. In each phase, a sub-set of the constituent vehicles

may operate on their own, while the remaining vehicles may form clusters where several types of interactions

may take place. Switching between consecutive phases is triggered by events such as the achievement of

partial or global goals, failures, or environmental changes – vehicles can modify and sense the environment,

which can be used for signaling. The switching logic triggers the formation of new clusters, the generation

of the corresponding goals, and distributed goal allocation. The new goals should enable communications at

the end of the phase, so that the process can start again – this is what keeps the system alive. Basically the

system alternates between the computation of goals and the control of itself to reach these goals.

An abstract control interpretation of these behaviors is as follows. In each phase there is a set of concur-

rent, and possibly coupled, invariance, attainability and optimal controllers; phase switching entails changing

controllers and associated interactions. The hypothesis is that control-inspired specifications suffice to specify

the behaviors for a large class of systems, if not for all networked vehicle systems.
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2.6 Control and computation

The problem of designing controllers for physical entities, either operating in isolation or in a system with

fixed structure, is generally well understood. This is not the case with a networked vehicle system, where

loosely coupled physical and computational entities interact in communications challenged environments.

Given a generic specification for the behavior of a system, the design problem consists of deriving a

structure of computational entities which, when “composed” with the system, will satisfy the specification in

some sense to be defined.

This design problem presents new challenges to computation and control: 1) these systems have complex

state and control spaces and coupled physical and computational dynamics; 2) physical and computational

dynamics may depend both on physical and computational interactions through complex pathways of causal-

ity; 3) physical and computational interactions are dynamic, and have constraints on location and linking;

4) networks of physical and computational entities have properties which depend on the structure of these

networks; 5) physical entities may enter and leave the system, while computational entities may be cre-

ated/destroyed on the fly; 6) physical and computational entities are distributed over the underlying physical

and computational spaces; 7) physical entities may have limited autonomy, thus requiring periodic refueling;

8) control actions available to computational entities may include the generation of new controllers (this re-

quires controllers to know how to generate other controllers); and, 9) state may not be directly accessible by

all computational entities. These challenges are not unique to networked vehicle systems. This discussion

may lead to new insights in other fields, such as biology or ecology. Moreover, comparative studies may

lead to new insights for architectural design in networked vehicle systems and, why not, to new ways of

co-designing computational and physical components, vehicles included.



Chapter 3

Dynamic optimization background

Key concepts and results in dynamic optimization are introduced as background for developments in control

and optimization of networked vehicle systems.

3.1 A simple derivation of the Hamilton-Jacobi-Bellman equation

We start with a simplified version of the time optimal problem to reach a target set S for the purpose of

illustrating the main ideas behind the derivation of the Hamilton-Jacobi-Bellman equation for this problem.

For a thorough treatment of this problem see [6], pag. 239.

3.1.1 The problem

Consider the following model of a system whose state x evolves in Rn:

ẋ(t) = f(x, u), u ∈ U ⊂ Rp (3.1.1)

where f satisfies the conditions for existence and uniqueness of the ordinary differential equation and u is

our control.

Consider the equivalent representation of the same system:

ẋ(t) ∈ F (x) ⊂ Rn (3.1.2)

where F (x) := {s : s = f(x, u), u ∈ U}.
Remark 3.1.1 (Local controllability). The condition 0 ∈ Int(F ) is necessary for local controllability.

Assumption 3.1.1. In what follows we assume that the system (3.1.1) is locally controllable.

29
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Consider a bounded and closed set S with non-empty interior.

Let tf denote the first time when the trajectory of the system hits the target set S.

tf = inf{t : x(t) ∈ S} (3.1.3)

Consider the following problem.

Problem 3.1.2. Let x(0) = x0. Find:
inf
u(.)

tf (3.1.4)

where u(.) : R→ Rp is an admissible control function.

Under the stated assumptions for system and for the target set the infimum is attained at a time T ∈ R.

Introduce the value function T : Rn → R as

T (x) = inf
u(.)

tf (3.1.5)

3.1.2 Principle of optimality

Take a trajectory departing from x(0) = x0. Consider a pair (x∗, t) on this trajectory. The principle of

optimality for this problem can be expressed as follows:

T (x0) ≤ t+ T (x∗) (3.1.6)

Equality holds for optimal trajectories. The interpretation is quite simple. If a point is on the optimal

trajectory, it is optimal to stay on the optimal trajectory.

3.1.3 Hamilton Jacobi Bellman equation
Assumption 3.1.3. The value function T is differentiable.

The Hamilton-Jacobi-Bellman equation for this problem can be interpreted as an infinitesimal version of

the principle of optimality. For this purpose divide both terms of equation (3.1.6) by t and take limits when

t → 0. Keep in mind that we are taking the total derivative of T with respect to t. This means that first we

take the derivative with respect to x and multiply it by the derivative of x with respect to time.

inf
u∈U
−∇T (x0) · f(x, u) = 1 (3.1.7)

This is a partial differential equation. The boundary condition is T (x) = 0, x ∈ S.
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3.2 The Hamilton-Jacobi Equation and Viscosity Solutions

This section introduces a more thorough discussion of the Hamilton-Jacobi-Bellman equation and presents

concepts of solution of this equation. The section follows closely the book [39] and the article [15]. The

developments are done in the framework of non-smooth analysis (background is provided in an Appendix).

3.2.1 The optimal control problem

Consider the following optimal control problem OCP:

Minimize l(x(T )) subject to

ẋ(t) ∈ F (x(t)), x(0) = x0 (3.2.1)

Where:

• T > 0, x0 ∈ Rn

• F satisfies the Standing Hypotheses

• The function l : Rn → R is continuous.

Assumption 3.2.1. Throughout this section we will assume that F is locally Lipschitz and autonomous.

Definition 3.2.1 (Value Function V). Consider the problem 3.2.1. The corresponding Value function V is
defined as:

∀τ ≤ T, ∀α ∈ Rn, V (τ, α) := inf{l(x(T )) : x is a trajectory of F on [τ, T ] with x(τ) = α} (3.2.2)

Proposition 3.2.2. Consider the hypotheses of problem 3.2.1. Then:

1. The infimum defining the Value function is attained.

2. Since F is locally Lipschitz then V is continuous on (−∞, T ] × Rn and locally Lipschitz if l is locally
Lipschitz.

Remark 3.2.1. This proposition asserts the existence of solution for problem 3.2.1

Remark 3.2.2. The results of this chapter are extended for the case l ∈F(Rn) in [15]. This extension al-
lows the implicit incorporation of explicit end-point constraints of the form x(T ) ∈ D since, in this case,
l(x(T )) =∞ when x(T) fails to lie in D.
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3.2.2 Verification functions

An extension of an idea in the calculus of variations, introduced by Legendre, leads to sufficient conditions

for optimality in control problems.

Problem 3.2.3. Given a feasible arc x, how can we confirm that x is a solution for the problem 3.2.1?

Definition 3.2.2 (Verification function ϕ). Produce a C1 function ϕ such that:

ϕt(t, x) + 〈ϕx(t, x), v〉 ≥ 0,∀(t, x, v) (3.2.3)

ϕ(T, .) = l(.) (3.2.4)

ϕ(0, x0) = l(x(T )) (3.2.5)

To prove that the existence of ϕ verifies that x is optimal consider another feasible arc x. Then, a.e. on [0,T]:

d

dt
ϕ(t, x(t)) = ϕt(t, x(t)) + 〈ϕx(t, x(t)), ẋ(t)〉 ≥ 0 (3.2.6)

Integrating on [0,T] yields:

ϕ(T, x(T )) = l(x(T )) ≥ ϕ(0, x0) = l(x(T )) (3.2.7)

It also follows that:
ϕ(0, x0) = V (0, x0) (3.2.8)

Definition 3.2.3 (Extended hamiltonian). he : Rn × R× Rn → R:

he : (x, θ, ξ) 7→ θ + h(x, ξ) (3.2.9)

Remark 3.2.3. The Hamilton-Jacobi inequality 3.2.3 was used to deduce that the map t → ϕ(t, x(t)) is
increasing whenever x is a trajectory. In other words, we want to find ϕ such that (ϕ, F ) is strongly increas-
ing. It is simple to extend the results concerning monotonicity when ϕ has t-dependence. Consider t as an
extra variable subject to ṫ = 1 and define Fe(x, t) = F (x) × {1}. Then (ϕ, F ) is strongly increasing iff
he(x, ∂Pϕ(t, x)) ≥ 0,∀(t, x). This proves the following result.

Proposition 3.2.4. Let x be feasible for problem 3.2.1, and suppose there exists a continuous ϕ(t, x) on
[0, T ]× Rn satisfying:

he(x, ∂Pϕ(t, x)) ≥ 0,∀(t, x) ∈ (0, T )× Rn (3.2.10)

ϕ(T, .) = l(.) (3.2.11)

ϕ(0, x0) = l(x(T )) (3.2.12)

Then x solves problem 3.2.1 and ϕ(0, x0) = V (0, x0)

The obvious question is:

Problem 3.2.5. Does a verification function ϕ exists when x is optimal?

In order to answer this question we consider the invariant embedding of the problem 3.2.1 in a family of

problems P (τ, α) parametrized by the initial data (τ, α) ∈ [0, T ]× Rn.
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Remark 3.2.4. ϕ is increasing along all trajectories of F, including those starting at (τ, α). Consider the
optimal trajectory x∗ for P (τ, α). Hence we have:

V (τ, α) = l(x∗(T )) = ϕ(T, x∗(T )) ≥ ϕ(τ, α)

This proves that:
V (τ, α) ≥ ϕ(τ, α),∀(τ, α) ∈ [0, T )× Rn (3.2.13)

This fact raises the question: is V a verification function? The following proposition answers this question
affirmatively.

Proposition 3.2.6. A feasible arc x is optimal iff there exists a continuous verification function for x. The
Value Function V is one such verification function.

Proof. Here we sketch part of the proof.

• V satisfies 3.2.10 since V(t, x(t)) is always increasing when x is a trajectory. (Principle of optimality).

• V is continuous from proposition 3.2.2.

• V satisfies equations 3.2.11, 3.2.12 by definition.

• V satisfies equation 3.2.13 if x is optimal.

Remark 3.2.5. The continuity hypothesis on l is too restrictive since it rules out endpoint constraints. The
following theorem, addresses this question, by producing a continuous verification function that is not (it
cannot be) the Value Function V when the endpoint constraints are active.

Theorem 3.2.7. When problem 3.2.1 is normal (see [15]), a feasible arc x is optimal iff there exists a
Lipschitz continuous verification function ϕ for x.

3.2.3 The proximal Hamilton-Jacobi equation

The following theorem shows that the Value Function V is the unique continuous solution of a suitable

generalization of the Hamilton-Jacobi equation whose general form is:

ϕt +H(t, ϕx) = 0

with boundary condition:

ϕ(T, .) = l(.)

Theorem 3.2.8. There is an unique continuous function ϕ : (−∞, T ]×Rn → R, called a proximal solution
of the Hamilton-Jacobi equation, satisfying:

he(x, ∂Pϕ(t, x)) = 0,∀(t, x) ∈ (−∞, T )× Rn. (3.2.14)

l(x) = ϕ(T, x),∀x ∈ Rn (3.2.15)

This function is the Value Function V.
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Proof. There remains to prove that:

he(x, ∂Pϕ(t, x)) ≤ 0,∀(t, x) ∈ (−∞, T ) (3.2.16)

and the uniqueness statement.
Whenever V (τ, α) is finite, there is an optimal arc x for the problem P (τ, α) and, along this arc, V is

constant. Then, the system (V,F) is weakly decreasing relative to t ∈ (−∞, T ) and this implies 3.2.16.
To prove uniqueness consider another function ϕ satisfying 3.2.14.
We will prove first that (ϕ ≥ V ). Consider any point (τ, α) : τ < T . Then (ϕ, τ) is weakly decreasing

relative to t < T . This implies the existence of a trajectory

x([0, T ]), x(τ) = α : ϕ(t, x(t)) ≤ ϕ(τ, α),∀t ∈ [τ, T )

As t ↑ T we derive (l(x(T )) = ϕ(T, x(T )) ≤ ϕ(τ, α))⇒ V (τ, α) ≤ ϕ(τ, α)
Now we will show that V ≥ ϕ. Consider any point (τ, α) : τ < T . Then, there exists an optimal

trajectory x for P (τ, α). Because (ϕ, F ) is strongly increasing we have:

ϕ(T, x(T )) ≥ ϕ(τ, α)

But ϕ(T, x(T )) = l(x(T )) = V (τ, α).

Corollary 3.2.9. Let ϕ : (−∞, T ]× Rn → R be continuous and satisfy:

1. he(x, ∂Pϕ(t, x)) ≤ 0,∀(t, x) ∈ (−∞, T )× Rn.

2. l(x) ≤ ϕ(T, x),∀x ∈ Rn

Then ϕ ≥ V

Corollary 3.2.10. Let ϕ : (−∞, T ]× Rn → R be continuous and satisfy:

1. he(x, ∂Pϕ(t, x)) ≥ 0,∀(t, x) ∈ (−∞, T )× Rn

2. l(x) ≥ ϕ(T, x),∀x ∈ Rn

Then ϕ ≤ V

Remark 3.2.6. The corollary 3.2.9 is valid without the Lipschitz hypothesis on F, in contrast with the other
one.

3.2.4 Minimax solutions

It is possible to express the extended Hamilton-Jacobi equation in terms of other constructs of nonsmooth

analysis, for example via subderivatives. The next concept of solution was called minimax solution by Sub-

botin.

Proposition 3.2.11. V is the unique continuous function ϕ : (−∞, T ]× Rn → R satisfying:

1. infv∈F (x)Dϕ((t, x); (1, v)) ≤ 0,∀(t, x) ∈ (−∞, T ]× Rn

2. supv∈F (x)Dϕ((t, x); (−1,−v)) ≤ 0,∀(t, x) ∈ (−∞, T ]× Rn

3. ϕ(T, .) = l(.)
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Proof. It suffices to prove:

• Condition 1) of corollary 3.2.9 is equivalent to condition 1) of the proposition.

• Condition 1) of corollary 3.2.10 is equivalent to condition 2) of the proposition.

This can be concluded from the properties of the subderivative, namely lower semicontinuity in v.

3.2.5 Viscosity solutions

The value function is also the unique viscosity solution of the Hamilton-Jacobi boundary value problem. This

solution concept, developed by Crandall and Lions is bilateral like minimax solutions, and additionally it uses

both subdifferentials and supperdifferentials.

Remark 3.2.7. Given the uniqueness of the solution, all solution concepts coincide in the present setting.

Proposition 3.2.12. V is the unique continuous function ϕ : (−∞, T ]× Rn → R satisfying:

1. he(x, ∂Dϕ(t, x)) ≤ 0,∀(t, x) ∈ (−∞, T )× Rn

2. he(x, ∂Dϕ(t, x)) ≥ 0,∀(t, x) ∈ (−∞, T )× Rn

3. ϕ(T, .) = l(.)

3.2.6 Feedback synthesis from semi-solutions
Definition 3.2.4 (Semi-solution). The Hamilton-Jacobi inequality:

he(x, ∂Pϕ(t, x)) ≤ 0,∀(t, x) ∈ (−∞, T )× Rn

with the boundary condition
l(x) ≤ ϕ(T, x),∀x ∈ Rn

defines a semisolution.

Remark 3.2.8. These conditions imply V ≤ ϕ. Thus, for each (τ, α) there is a trajectory x, x(τ) = α such
that l(x(T )) ≤ ϕ(τ, α).

Problem 3.2.13. How to build a semi-solution?

The classical approach

Assume that ϕ is smooth. Then,

1. For each (t,x) select a point v(t, x) ∈ F (x) such that the minimum defining he(x,∇ϕ(t, x)) is atained,

i.e.:

ϕt(t, x) + 〈ϕx(t, x), v〉 = he(x,∇ϕ(t, x))
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2. Then define the trajectory x as:

ẋ(t) = v(t, x(t)), x(τ) = α

3. If all these steps are feasible then

l(x(T )) ≤ ϕ(τ, α)

The proof of the last result is simple:

l(x(T ))− ϕ(τ, α) ≤ ϕ(T, x(T ))− ϕ(τ, α)

=

∫ T

0

d

dt
ϕ(t, x(t))dt

=

∫ T

0

{
ϕt(t, x) + 〈ϕx(t, x), ẋ〉

}
dt

=

∫ T

0

he(x(t),∇ϕ(t, x(t)))dt

Remark 3.2.9. The difficulties of this ‘dynamic programming approach’ are:

• Smoothness of ϕ

• Regularity of v

• Existence of x

Proximal aiming allows to overcome these difficulties for merely lower semicontinuous functions. The sys-
tem monotonicity is proved using proximal methods instead of the integration step.

Theorem 3.2.14. Let F be locally Lipschitz and let ϕ ∈F((−∞, T )× Rn) satisfy:

he(x, ∂Pϕ(t, x)) ≤ 0,∀(t, x) ∈ (−∞, T )× Rn

and
l(x) ≤ lim

t′↑T,x′→x
ϕ(t′, x′),∀x ∈ Rn

Then for given τ, α ∈ (−∞, T ) × Rn, there exists a feedback selection v of F with the property that every
Euler solution x of the initial value problem:

ẋ(t) = v(t, x(t)), x(τ) = α

satisfies l(x(T )) ≤ ϕ(τ, α)



Chapter 4

Optimal UAV coordination in SEAD
missions

We design the attack of the Blue force of unmanned air combat vehicles (UAV), against Red’s ground force

of SAM sites and radars. The design is structured in a two-level hierarchy of planning and execution. The

plan, based on prior information, determines which targets are to be attacked and groups them into sub-

tasks; allocates a UAV team to each sub-task; and selects a risk-minimizing path for each team. Execution is

organized in a hierarchy of real-time controllers, which determine the actual flight path, weapons release, and

space-time coordination of the actions of a UAV team. Plan development uses an algorithm that determines

the sequence in which targets are to be attacked. Execution design is specified in SHIFT, a programming

language for dynamic networks of hybrid automata.

4.1 Problem

The Blue force consists of UAVs with different capabilities (sensors, weapons). There is a Red force of

ground SAMs and radars. We design Blue’s attack against Red. The Red force threatens Blue’s attacking

UAVs. Blue’s task is to destroy primary Red targets. To reduce risk Blue may destroy additional Red targets

defending the primary targets. The technology and use of UAVs are discussed in [17].

Two difficulties must be faced. First, the design space of Blue’s attack is large and heterogeneous: se-

lecting targets and the order in which they are attacked; equipping and assigning UAV teams to these targets;

coordinating the attack so that the order of attack is maintained; determining nominal flight paths; and then

37
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designing real-time feedback strategies for UAV flight and weapons use. We address this difficulty by struc-

turing the design in two layers: an off-line plan, and an online execution control.

The planning procedure first invokes an algorithm that selects the targets and prescribes the order in which

they must be attacked, keeping risk below a given threshold. As a side effect, the algorithm selects risk-

minimizing nominal flight paths. The procedure next groups these targets into sub-tasks, assigns a UAV team

to each, and specifies spatial and temporal coordination points so that the target attack order is maintained.

The execution control is decomposed into a hierarchy of task, sub-task, and sub-team controllers, ve-

hicle supervisors, and elemental maneuver feedback controllers, which determine the actual flight path and

weapons release. These controllers are described as interacting hybrid automata using SHIFT, a program-

ming language for dynamic networks of hybrid automata. The ideas used in execution control are inspired by

[99, 98, 27, 32].

The second difficulty originates in the requirement that the planning procedure and execution control

must allow intervention by experienced human operators. In part this is because essential experience and

military insight of these operators cannot be reflected in mathematical models, so the operators must approve

or modify the plan and the execution. Also, it is impossible to design (say) vehicle and team controllers that

can respond satisfactorily to every possible contingency. In unforeseen situations, these controllers ask the

human operators for direction. Space limitations preclude discussion of how the plan and execution designs

accommodate human intervention.

This chapter is an abridged version of [105]. Section 4.2 presents the planning procedure. Section 4.3

briefly describes the SHIFT language. Section 4.4 presents the distributed control architecture of UAV teams,

and the controllers themselves. Section 4.5 collects some final remarks.

4.2 Planning procedure

The planning procedure organizes Blue’s attack into a plan, comprising a set of sub-tasks, each of which is

a list of targets to be destroyed. The plan must include the primary targets. We formally describe the plan

‘design space’, and performance measures to compare plans.
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4.2.1 Threat

We need some definitions. Target is a generic term for Red force entities of different types such as SAM

launchers and radars. There is a finite set of types, called TargetTypes. A target is characterized by its type

and its (two-dimensional) location (x, y). So, a Red force with N targets is thus described by a set of the

form

Targets = {target1 = (type1, (x1, y1)), · · · , (4.2.1)

targetN = (typeN , (xN , yN ))}.

Prior knowledge of Targets is given by the initial distribution (at time t = 0), Pthreat(0). This probability

distribution is updated during execution when Blue makes observations.

We restrict Pthreat(0) to a special form: The Red force is distributed over areas A1, · · · , Ak. In area Aj

there are Ntj targets of type t ∈ TargetTypes whose locations are independently and uniformly distributed.

The random number of targets Ntj are all independent with distribution Ptj(N). This yields the form

Pthreat(0)(Targets) = (4.2.2)

∏

t

k∏

j=1

Ntj∏

i=1

ptj(type = t, (xi, yi))Ptj(Ntj),

in which t ranges over TargetTypes, and

ptj(type = t, (xi, yi)) =

{
|Aj |−1, (xi, yi) ∈ Aj
0, otherwise

. (4.2.3)

As the distribution (4.2.2)-(4.2.3) is specified by the list of areas A = {A1, · · · , Ak} and the random

vector N = {Ntj ; t ∈ TargetTypes, 1 ≤ j ≤ k}, we may denote it by PA,N .

A target poses a threat over a circular area, centered at the target and with radius that depends on its type

(not all targets present a threat). A UAV in this threat region will be destroyed with a certain probability that

depends on the target type, the attitude and type of the UAV (which determines its radar signature), and the

amount of time that the UAV is in the region. We assume that a numerical value can be assigned to the threat

posed by a target at any location. We define the instantaneous threat function at any point (x, y) as

r(x, y;PA,N ) =
∑k
j=1

∑
t

∑∞
Ntj=0

∑Ntj

n=1

[∫
Aj
ft(|(x, y)− (xn, yn)|)|Aj |−1dxndyn

]
P (Ntj). (4.2.4)
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ft(d) is the instantaneous threat posed by a target of type t to a UAV at a distance d from the target. ft may

be of the form of an indicator function of a circle centered at the target location. So the integral in (4.2.4) is

the expected value of this instantaneous threat posed by a target of type t located at a random point (xn, yn)

that is uniformly distributed over area Aj . The sum over n is the threat posed by Ntj such targets. The sum

over Ntj accounts for the random distribution of Ntj . The sum over t accounts for different types of targets.

Finally the sum over j accounts for all the areas. The argument PA,N in r emphasizes the role of the threat.

For the sake of clarity we have not incorporated the dependence on the UAV type in expression (4.2.4).

4.2.2 Minimum risk paths

We are given a set O of possible UAV origins, perhaps the UAV base locations, from which a UAV may be

dispatched. The risk faced by a UAV flying at speed v ≥ vmin > 0 along a path γ from γ(0) = o ∈ O to a

destination γ(τ) = d, facing threat PA,N is defined as

ρ(γ;PA,N ) =

∫ τ

σ=0

r(γ(σ);PA,N )
dσ

v
, (4.2.5)

in which r is given by (4.2.4). Hence the value function for threat PA,N , with γ(τ) = (x̄, ȳ), is

V ((x̄, ȳ);PA,N ) = min
γ
ρ(γ;PA,N ). (4.2.6)

The value function satisfies the eikonal equation

|∇V (x, y)| = c(x, y), c(x, y) > 0 (4.2.7)

with boundary condition

V (x, y) = 0, (x, y) ∈ O. (4.2.8)

In (4.2.7),

|∇V (x, y)| = [(dV/dx)2 + (dV/dy)2]1/2,

c(x, y) =
r(γ(σ);PA,N )

v
.

The optimal paths γ∗ follow −∇V ,

dγ∗

dσ
(σ) = −∇V (γ(σ)) (4.2.9)

The ‘fast marching’ algorithm [88] efficiently solves the eikonal equation.
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A UAV dispatched to attack a target will fly over a path γ, during which it will incur a certain risk, ρ(γ),

which can be translated into the probability that the UAV will survive the whole flight path

p(γ, PA,N ) = e−kρ((γ;PA,N )) (4.2.10)

where k > 0 is a scaling factor.

We assume that the planner selects (or is given) a maximum risk threshold ρmax and the probability pr(i)

for removing each primary target i.

4.2.3 Plans

A feasible plan is a 4-tuple plan = (TargetList,TaskList,PathList,�), in which

(1) TargetList = {target1, · · · , targetn} is a set of targets, and PathList = {γ1, · · · , γn} are the paths;

(2) Task is a partition of TargetList into sub-tasks, and an assignment of teams of UAVs to sub-tasks, and

(3) � is a precedence relation or partial order on TargetList, so that for all i = 1, · · · , n

ρ(γi) ≤ ρmax. (4.2.11)

The risk ρ(γi) is calculated under the assumption that all targets targetj � targeti have been destroyed.

The risk R associated with a plan is the maximum risk incurred along any path,

R(plan) = max
i
ρ(γi). (4.2.12)

The plan design space is the space of all feasible plans. An optimal plan has minimum risk,

R(plan∗) = min{R(plan) | plan ∈ plan design space}.

The planning procedure consists of three procedures:

1. Target selection and path planning. This procedure is assisted by a software tool called Interactive Task

Planner (ITP). For the deterministic planning problem (the locations of the targets are known) the ITP-planner

interactions are as follows (see pages 34–37 of [105] for details). In Step 1, the planner selects a subset of

the targets as primary, which he wants to attack. The ITP then calculates and displays additional, potential

targets. These ‘protect’ the primary targets, i.e. one or more primary targets are included in the threat range

of the potential targets. The planner next chooses a maximum risk level. In Step 2, the ITP determines the

subset of potential and primary targets that can be attacked along paths starting at the Blue base, whose risk
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is less than the chosen maximum risk level. This subset of targets is called Wave 1. The ITP also determines

the nominal risk-minimizing paths from the Blue base to each of Wave 1 targets. They are ‘nominal’ because

the actual paths taken by the UAV are somewhat different and are determined by the ‘task execution’ module.

We continue in this way. In Step k, the ITP determines the subset Wave k-1 of additional targets that can be

attacked along paths starting at either the Blue base or one of the Wave k-2 target locations, whose risk is less

than the maximum. The ITP determines and displays the nominal risk-minimizing paths for Wave k-1 targets.

The ITP graphically displays ‘minimum risk’ contours of locations that can be reached for each level of total

risk.

Stopping condition The process stops at the smallest k for which one of two conditions holds:

Wavek−1 6= ∅ ∧ Wavek = ∅ (4.2.13)

PrimaryTargets ⊂ ∪ki=1Wavei. (4.2.14)

The result is:

• A set of targets TargetList and a partial order � (describing the waves), and the minimum risk for each

target, based on the assumption that targets in Wave i+ 1 are attacked after those in Wave i have been

destroyed;

• A set of paths PathList of nominal risk-minimizing paths for each target in Wave i + 1, starting at the

Blue base or at any target locations in Wave i;

• A ‘sensitivity’ matrix that gives the reduction in risk for each target in Wave i+1 due to the elimination

of each target in Wave i.

Theorem 4.2.1. If condition (4.2.13) holds, there is no plan that can destroy all primary targets with risk at
most ρmax. If condition (4.2.14) holds, the plan with

TargetList = ∪ki=1Wavei, (4.2.15)
PathList = ∪ki=1PathListi, (4.2.16)

� := Wave1 � · · · � Wavek, (4.2.17)

destroys all primary targets with risk at most ρmax. Moreover, this plan is optimal if R(plan) is the smallest
risk for which (4.2.14) holds.

A Task is a pair Task = {(SubtaskList,�, (TeamList, assign, schedule)} in which:

(1) SubtaskList = {subtask1, . . . , subtaskn} is a set of sub-tasks, each of which is an array of legs,
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subtaski = [legi,1, . . . , legi,in]. Each leg consists of a single target and a ‘nominal’ path to the target. There

is a partial order � on the legs composing a task. The legs composing a sub-task satisfy a total order.

(2) TeamList = {team1, . . . , teamn}, {assign : TeamList→ SubtaskList} and {schedule : TeamList→

DeadlineList} are respectively assignments of teams to sub-tasks, and of teams to deadlines.

2. Task specification. In this procedure the planner generates the Task structure with the help of the ITP.

First, he uses the ‘sensitivity’ matrix and his knowledge of the battlefield to remove and/or adds targets to

TargetList and to update (PathList,�) accordingly (this is the case when he adds targets of opportunity).

This can be done automatically or visually with the help of the ITP. Observe that the targets and paths form

a ‘directed tree’. The idea is to construct sub-tasks that form chains and to generate SubtaskList. The tree

structure results from the waves which present successive targets to a UAV flying to a primary target. This is

why these waves are eliminated in sequence to minimize the risk accrued by an UAV flying over them. This

opens safe corridors to the primary targets while minimizing the risk accrued by a team of UAVs attacking

the primary targets.

Consider, as an example, the task represented in Figure 4.1, with 3 primary targets (P1, P2 and P3) and 5

secondary targets (S1, . . . , S5). It consists of 3 sub-tasks to be executed concurrently. There are precedence

relations on the order of execution of the legs composing the task. For example leg0 of sub-task2 precedes

leg4 of sub-task1.

3. Team composition and tasking. This procedure consists in determining the assignments (assign, schedule)

(see pages 38–46 of [105] for details). The inputs are pr(i), the probability for removing each primary tar-

get, the set of available UAVs and their weapons. First, the minimum number of UAVs minsbi required to

execute each sub-task and leading to the removal of the corresponding primary targets are calculated as fol-

lows: 1) the number of UAVs and weapons required to remove the final target in the sequence is calculated;

2) the calculation proceeds backwards in the sub-task sequence to determine minsbi at the beginning of the

sequence. These calculations are based on the probabilities of surviving the paths and on the effectiveness of

the weaponry. Finally, we determine the assignments (assign, schedule) by solving a linear programming

problem typical of resource allocation and scheduling formulations.

Each plan prescribes a set of constraints for execution. However, it does not prescribe a sequence of

events and/or actions which would lead to poor execution performance in a non-deterministic world. This is

why we need feedback strategies which, based on the available information and the constraints from the plan,
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Figure 4.1: Task specification.

command UAVs to execute actions conforming to these constraints and leading to plan completion, while

seeking to maximize some performance criteria.

4.3 An aside on SHIFT

SHIFT is a language for describing networks of hybrid automata. A SHIFT program begins with a defini-

tion of types (classes) with continuous and discrete behavior. A type includes a data model and a behavior

specification. The data model consists of numerical variables, link variables, a set of discrete states, and a set

of event labels. The variables are grouped into input, state, and output variables. The inputs and outputs of

different components can be interconnected.

type Vehicle {
input (what we feed to it)
output (what we see on the outside)
state (what is internal)
discrete (discrete modes of behavior)
export (event labels seen from the outside)
flow (continuous evolution)
transition (discrete evolution)
setup (actions executed at create time)

}

The behavior is determined as follows. Each discrete state has a set of differential equations and algebraic
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definitions (flow equations) that govern the continuous evolution of numeric variables. The differential equa-

tions may involve outputs of other components accessible through link variables. Thus the set of components

evolves as a hybrid automaton. System evolution alternates between the continuous mode, during which the

evolution is governed by the flow equations, and the discrete mode, when simulation time is stopped and

all possible (discrete) transitions are taken, as determined by guards and/or by event synchronization among

components. During a discrete step components can be created, interconnected, and destroyed. ShHIFT

allows dynamically reconfigurable input/output connections and synchronous composition. The first order

predicate constructs of SHIFT (e.g. existential and universal quantification) provide compact representations

of dynamic synchronous composition.

A simulation starts with an initial set of components that are instantiations of the defined types. Instances

of components have unique names. The time-evolution of the set of components is derived from the behavior

of these components.

4.4 Execution control framework

In this section we present the execution control framework and illustrate it with an attack task when the

locations of the targets are known and the weapons’ effectiveness is 1. The control framework is designed for

more complex tasks (see pages 48–71 of [105] for details).

4.4.1 Execution concepts

The concepts for execution control build on experience in the modular design of distributed control hier-

archies described in [99, 98, 27, 32]. We use the concept of maneuver – a prototype of an action/motion

description for a single vehicle – as the atomic component of all execution concepts. Thus we abstract each

UAV as a provider of maneuvers. A simple protocol governs the interactions between the UAV and an ex-

ternal controller: the external controller sends a maneuver (configuration) command to the UAV; the UAV

either accepts the command and executes the maneuver (changes its configuration), or it does not accept the

command and sends an error message to the controller; the UAV sends a ‘done’ message or an error message

to the controller depending on whether the maneuver terminates successfully or fails. The UAV control is

decomposed into a 2-level hierarchy of UAV supervisor and elemental maneuver feedback controllers (for

details on UAV control see section V of [35]).
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The maneuvers required to execute the attack task are: follow path – path following maneuver; at-

tack target – attack maneuver that maximizes the probability of destruction of the target while minimizing the

accumulated risk; and hold – a holding pattern. The attack maneuver encodes the attack logic, specifically

the control of weapons and risk reduction devices, such as jammers, and path optimization and execution

procedures (this is done in a feedback manner). Other tasks may require other maneuvers such as: bda –

execute battle damage assessment in a given region; map – map a given region; search destroy – search for

targets and attack them; and evade – evade some threat.

Next we summarize the execution strategy for the attack task. Each sub-task is executed by a team of

UAVs. Each team in turn is organized as two sub-teams: attacker and reserve. Initially, the attacker sub-team

is empty; the reserve sub-team starts with the team of vehicles allocated to the sub-task. Execution starts with

the first leg of the sub-task. The reserve vehicles execute a follow path maneuver to the farthest safe point

in this leg. When this point is reached one of the reserve UAVs is transferred to the role of attacker and the

two sub-teams start two concurrent threads of execution until the sub-task terminates successfully or fails.

The attacker UAV leads the execution: it executes the sub-task specification until successful termination, or

until it is destroyed or runs out of bombs – in both cases the UAV is removed from the sub-team attacker
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and another UAV from reserve is tasked to replace it. The reserve sub-team follows the attacker: it moves to

the farthest safe point of the sub-task legs terminated so far by the attacker; when this point is reached they

execute a hold maneuver until this point is moved further as a result of the actions of the attacker.

This execution strategy has two important properties. First, only one UAV at a time is exposed to risk

when attacking a target. This minimizes the total risk incurred by a team. Second, it builds reserve teams

whose UAVs can be reassigned for other purposes if, depending on execution performance, the number of

UAVs minsbi required to execute each sub-task i proves excessive.

4.4.2 Organization and control structures

The execution control framework accommodates different types of tasks of varying complexity. Given a task

specification it automatically creates the initial structure of controllers, including the links or communication

channels connecting them, and the information structures for task execution. It adapts the initial structure to

changes in the world and to the execution requirements. It does this by creating and/or removing links and

controllers while preserving structural and task invariants. Links play an important role in this framework.

We use the SHIFT link concept. In SHIFT a Link variable is basically a pointer to another component. Links

are unidirectional: if A communicates to B it has a link to B; B is required to have a link to A to communicate

with it.

The components, organization, and evolution of the execution control framework are briefly described

next.

Controllers. There is a task controller for each Task, one sub-task controller for each sub-task, one

sub-team controller for each sub-team, and one controller for each UAV (described before).

Specifications. Controllers execute specifications. Specifications are separated from the control code for

re-use and modularity. There is one specification type per type of controller.

Localization. The UAV controllers are non-mobile and reside onboard the UAV. The other controllers

are mobile, i.e., they have a link to a physical location and we can change this location. The location of a

mobile controller is part of its state.

Control structure. It is a ‘tree’-like graph of controllers: the nodes are the controllers and the edges are

the links connecting them (see [35] for details). There are four layers in this ‘tree’, one layer for each type of

controller – task, sub-task, sub-team and UAV respectively. The root node is the task controller. It is linked to

the sub-task controllers. Each sub-task controller is linked to the attacker and reserve sub-team controllers.
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Each sub-team controller is linked to the UAV controllers in the sub-team.

Creation and initialization. The initial control structure is built in successive steps, one per layer, start-

ing at its root. Except for the UAV controllers, which come with the UAVs allocated to the task, all the

other controllers are created in this process. Upon its creation, each controller is initialized and creates its

dependants (with the exception of the sub-team controllers) and links to them. The process starts with the

creation of the task controller. The task specification encodes the information required to create and maintain

this control structure.

Adaptation. The ‘tree’ structure and the 4 layers are an invariant of the execution control framework.

However, this structure may evolve with time. First, we can change the location of a mobile controller. This

is done by changing the link to its location. Second, we can ‘re-create’ mobile controllers to ‘regenerate’

the control structure. This may be the case when the physical location of a controller is destroyed; we create

a new controller and re-establish its state and links. Third, we can add and/or delete mobile controllers

upon initiation/completion of their specifications. This is the case when the attacker sub-team succeeds in

removing the last target in the corresponding sub-task; this event signals the completion of the sub-task;

and the sub-task and the sub-team controllers remove themselves from the control structure. Fourth, we can

change the control dependencies for each UAV controller. To do this we ‘move’ the link to UAV controller

from one sub-team controller to another sub-team controller and/or from one sub-task controller to another

sub-task controller. We also use this last feature to ‘reinforce’ a team with additional UAVs and to transfer

UAVs among reserve sub-teams.

Patterns of coordination. The task, sub-task and sub-team controllers follow the same patterns of co-

ordination. This is because the control structure is organized as a tree. Each controller has in its state a few

coordination variables and links to each of its dependants (controllers). The coordination variables describe

the state of its dependants and the state of execution of the controller specification. The controller receives

state updates from each dependant, updates the coordination variables, and commands its dependants accord-

ingly. This allows for distributed decision making. The task controller coordinates leg dependencies and task

failures. The sub-task controller coordinates the reserve and attacker sub-teams. The sub-team controllers

coordinate the maneuvers of each UAV in the sub-team.

This coordination structure facilitates the addition of controller dependants at each layer. This is done

by extending the coordination variables and the control logic, and by adding links to the new dependants.
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This allows for more complex patterns of interaction and control. For example, the attack task can be easily

extended to accommodate the coordination with Battle Damage Assessment (BDA) sub-teams. We do this

with a few changes to the sub-task controller: extend the coordination variables to include the state of the

BDA sub-team and the state of each target requiring BDA; extend the control logic; and create a BDA sub-

team controller.

Space limitations preclude discussion of how this organization and control structures can be fully utilized

in a complex military scenario.

In the reminder of this section we explain how this organization and control structure is implemented in

SHIFT in the framework of dynamic networks of hybrid automata. For details see pages 48–71 of [105].

4.4.3 SHIFT implementation

Task. The SHIFT component Task encodes the Task data model (cf. section 4.2.3).

Task controller. The left box in figure 4.3 depicts the SHIFT data model for the task controller compo-

nent. The coordination variables are updated by the sub-task controllers st. The fail flag is set to true when

one of the sub-tasks fails – in this implementation the task fails if one of the sub-tasks fails. The set legs done

is updated upon successful completion of a leg in a sub-task.

type sub_task_controller
{

input
subtask p;
task_controller task_c; 

output
set(ucav) reserve;
number accept;    
set(leg) executed:={};

state
set(ucav) attackers;
set(ucav) reserve_hold;
set(vehicle_supervisor) vsa
set(vehicle_supervisor) vsr;
leg current_a_leg;
leg current_r_leg;
symbol attack_stage;
symbol reserve_stage;
symbol dependency_stage;
set(leg) preceeding_legs:={};

...
}

type task_controller
{

input
task t;

state
set(leg) task_legs_done:={};
number fail;

output
set(sub_task_controller) st;

….
}

Figure 4.3: Left is a skeleton of a task controller; right is a sub-task controller.
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Sub-task controller. The right box of figure 4.3 depicts an excerpt of the SHIFT skeleton of the sub-

task controller component. It has three discrete states: execution, initialize, error. The transition structure

(not depicted in this figure) consists mostly of self-loops in the execution state, where normal execution

takes place. The initial state is initialize. There is a transition from initialize to execution which is taken

immediately after the creation of this controller. There are two actions on this transition: the reserve sub-

team is initialized with the set of UAVs allocated to execute the sub-task specification p, and attacker is

initialized with the empty set.

The coordination variables attack stage and reserve stage, which are updated by the sub-team controllers

rc and ac, describe the execution state of the current a leg and current r leg legs for the attacker and reserve

sub-teams respectively (cf. in sub-section 4.4.1 that both sub-teams execute the same sequence of legs with

different execution policies). The states of the attacker sub-team are: attack (attack segment of a leg); path

(safe path segment); and hold (holding pattern at the end of the leg). The states of the reserve sub-team are:

hold end (holding pattern at the end of the leg), hold path (holding pattern at the end of the safe path), path

(executing the safe path of the leg), and path attack (executing the attack path of the leg).

The self-loops in the execution state model the coordination of the attacker and reserve sub-teams. Con-

sider the following sequence of events to describe coordination in this controller. 1) the attacker UAV is

destroyed; 2) the sub-task controller removes the corresponding supervisor from vsa, removes the UAV from

attacker, and updates current a leg to the value of current r leg; 3) if reserve is empty the sub-task fails;

if not the sub-task controller transfer one UAV from reserve to attack; the corresponding supervisor is also

transferred from vsr to vsa – we use predicates on the state of the UAVs in each sub-team to access their

vehicle supervisors. The SHIFT code for the actions described in 1) and 2) is

execution -> execution{vsa:destroyed(one:p)}
do
/* u(p) is the UAV whose supervisor is p */
{
vsa:= vsa - {p}; // remove p from vsa
attacker:= attacker-{u(p)}; // remove u(p) from attacker
current_a_leg:=current_r_leg; // reset current_a_leg
attack_stage:= $path; // reset attack_stage
blue:=blue-{u(p)}; // remove UAV from Blue
}

The transition from execution to itself takes place when there is one vehicle supervisor p in vsa signaling

that the corresponding UAV was destroyed. The corresponding variables are updated in the do statement.
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The SHIFT code for the actions described in 3) is

execution -> execution {} when (exists x in reserve: x = minel y in reserve:(x(p(x))*x(p(x))
+ y(p(x))*y(p(x)) + z(p(x))*z(p(x))) - d)

do
/* vs(x) is the supervisor of UAV x */
{
reserve:= reserve - {x}; // remove x from reserve
vsa:= vsa + {vs(x)}; // add vs(x) to vsa
vsr:= vsr - {vs(x)}; // remove vs(x) from vsr
attacker:= attacker+{x}; // add x to attacker
}

This transition takes place when there is at least one UAV in reserve. In this case x, the UAV that is

closest to the target destination, is transferred to attacker and the corresponding variables updated in the do

statement.

Attacker and reserve controllers. These controllers follow the patterns of organization described above

to implement the control strategies described in sub-section 4.4.1. They have links to their sub-task controller

and to the vehicle supervisors vsa and vsr for the attacker and reserve sub-teams respectively.

The following excerpt of SHIFT code models the case when the task fails and all the supervisors vsr are

commanded to abort the current maneuver under execution.

execution -> execution{vsr:abort(all)} when (fail(task_c)=true)

4.4.4 Simulation example

Figure 4.4 presents a SHIFT specification for the attack task sketched in Figure 4.5.

Figure 4.5 depicts a scenario from the Boeing Open Experimental Platform. The threats are located at the

center of the red circles which indicate their range at a given altitude. The names of the targets are displayed

in small caps. The attack task is composed of two sub-tasks subtask1 and subtask2. subtask1 is composed

of legs 1-5 and subtask2 is composed of legs 6-8. Each leg consists of a target and a path, which may be

empty. There are 4 UAVs of type small combo which are allocated to 2 teams, one per sub-task. The SHIFT

code illustrates how to create a complete simulation. This is done in several steps (transitions of the hybrid

automaton task simulation) to respect the creation dependencies. The task specification tarefa1 is created

before the task controller ctarefa1. The task controller creates the control structure (cf. above) and the

simulation starts. subtask2 is executed by one UAV while the other one stays in reserve. subtask2 is executed



52

type task_simulation
{

output
ucav u1, u2, u3, u4;

leg leg1, leg2, leg3, leg4, leg5, leg6, leg7, leg8;
subtask subtask1, subtask2;
task_controller ctarefa1;
task tarefa1;
set(ucav) team1:={}, team2:={};

state 
number t; // time

flow default {t' =1;};

discrete
i0, i1, i2, i3, i4, normal;

transition
i0 -> i1 {} do // create ucavs with a control structure

{
u1 := create(ucav, p:= small_combo_1);
u2 := create(ucav, p:= small_combo_2);
u3 := create(ucav, p:= small_combo_3);
u4 := create(ucav, p:= small_combo_4);

},
i1 -> i2 {} do      // create all legs

{
leg1:= create(leg, path:= [ [[93517.725, 111320.00], 

[150000.00, 158235.2], 
[151000.00, 158000.00]],
[[93517.725, 111320.00],
[150000.00, 158235.2], 
[151000.00, 158000.00]]],
vehicles:=[u1,u2], p:=medium_sam12);

leg2:= create(leg, p_attack:= [], p:=long_sam5_trk);
leg3:= create(leg, p_attack:= [ [230679.38, 135172.16],

[ 231679.38, 135172.16 ]], p:=medium_sam13);
leg4:= create(leg, p_attack:= [ [246924.42 , 134016.28],

[ 246924.42, 151410.03]], p:=medium_sam15);
leg5:= create(leg, p_attack:= [], p:=long_sam6_trk);
leg6:= create(leg, path:= [ [[93517.725, 111320.00], 

[108000.00 , 240000.00]], 
[[93517.725, 111320.00], 
[108000.00 , 240000.00]]],
vehicles:=[u3,u4], p:=long_sam8_trk);

leg7:= create(leg, p_attack:= [], p:=long_sam7_trk);
leg8:= create(leg, p_attack:= [], p:= medium_sam14);
team1:={u1, u2}; // create teams to execute subtasks
team2:={u3, u4};

},       
i2 -> i3 {} when (t>1) do // creates subtasks and leg dependencies

{
subtask1:= create(subtask, p:=[leg1, leg2, leg3, leg4, leg5], team:= team1);
requires(leg3):={leg6};
subtask2:= create(subtask, p:=[leg6, leg7, leg8], team:= team2);

},
i3 -> i4 {} do {tarefa1:= create(task, s:=[subtask1,subtask2]);}, // creates task
i4 -> normal {} do {ctarefa1:= create(task_controller, t:=tarefa1);}; // creates task controller 

}

Figure 4.4: Shift specification.

by the both UAVs since the first one runs out of bombs. When the task terminates with success the control

structure removes itself from the simulation, and the UAVs are free to engage in other actions.

4.5 Conclusions

We presented a design for task planning and execution of UAV teams. The ‘design space’ is large and

heterogeneous. We structure the space by first decomposing it into off-line planning and online execution

control. A plan determines a sequence of sub-tasks, with precedence constraints, assigns a UAV team to each

sub-task, and produces a nominal risk-minimizing path for each team. Execution control is organized as a
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three level hierarchy of task controller, UAV supervisor, and maneuver controllers.

The controller presented in this chapter is an advance over current practice, in that it specifies in a hybrid

automaton, both logical structure and the selection of continuous control variables. The specification takes

advantage of the object-oriented nature of SHIFT and the abstract constructs that it provides. In particular: 1)

specification of controllers is separated from their instantiation; 2) controllers are hierarchically organized;

3) structure of multi-vehicle task controllers is independent of the number of vehicles (because of the set

construct in SHIFT); 4) user intervention is explicitly made available at all levels of the hierarchy in terms

of a well-defined interface of command and response messages; and 5) controllers can be extended through

specialization (because Shift allows inheritance).



Chapter 5

Optimal path coordination for a
two-vehicle system

An optimal path coordination problem for a two-vehicle system is formulated in the framework of hybrid

systems and solved using dynamic programming techniques. The problem consists of finding the optimal

path for the first vehicle given that the path cost has a discontinuous dependence on the distance to the second

vehicle. The second vehicle is fuel constrained and has to perform a closed path starting at its initial position.

5.1 Introduction

Problems of collaborative multi-vehicle control are posing new challenges to control. In some problems,

cooperation concerns distributing similar vehicles over an area to optimize the coverage rate for surveillance

missions. In other problems, heterogeneous vehicles with complementary capabilities can be used more ad-

vantageously when other forms of cooperation take place. One such example arises when planing operations

of unmanned air vehicles (UAV) in hostile air spaces. The probability of survival of an UAV is directly

proportional to the value of the path integral taken with respect to some risk function [34]; the level of risk

is significantly reduced when the UAV flies under the protection of an UAV carrying a jamming device.

This is an example of a collaborative control problem where vehicles interact to improve individual or group

performance.

The interesting questions are:

1. How is optimal vehicle control related to optimal group control?

2. What is the value of cooperation?

54
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These questions are better understood in the framework of dynamic programming (DP) [9]. DP ap-

proaches the problem of optimizing the behavior of a dynamic system with respect to some cost function

by introducing a value function which gives, at each point of the state space, the optimal cost to go for the

system. When the optimization problem is properly formulated (see [58] for details), the value function sat-

isfies an equation which is derived from the Principle of Optimality which basically states that in an optimal

sequence of decisions or choices, each subsequence must also be optimal.

Here I discuss research on DP for collaborative control problems with the help of a simple two-vehicle

optimal path coordination control problem (see [42] for related work on DP for collaborative control). This

problem is representative of more general optimal coordination problems.

Vehicle v1 has to find the optimal trajectory from some initial location α to some destination γ. The

instantaneous path cost for v1 is reduced by a fixed amount l when the position of this vehicle “coincides”

with the position of another vehicle, v2; this means that the path cost for v1 is a discontinuous function of the

relative positions of the two vehicles. v2 has a limited amount of fuel; it departs from β 6= α and is required

to return to β before it runs out of fuel. The vehicles are allowed to met once and move together up to the

point where v2 has enough fuel to return to β.

The collaborative control problem for v1 and v2 is formulated as an optimal control problem for a hybrid

automaton with three discrete states (the hybrid automaton models the combinatorial aspects of the problem)

and find the structure of the solution using DP techniques. In this formulation, the state of the two-vehicle

system has two components: a memoryless component, given by the continuous state, and a component with

memory, given by the discrete state which describes the history of motions up to the current discrete state.

This is because the system has to “remember” if the vehicles met at a given point, to prevent them from

meeting again (as required). The jump sets are given by the set reachable by v2 for a round trip from β (see

[60] for details on dynamic optimization techniques for reachability analysis).

Surprisingly the problem is not solved in the product space of the state spaces for the the two vehicles.

The problem is solved through the coordination of optimization problems for lower dimensional state spaces.

This property is generalized to multi-vehicle rendezvous problems.

The motivation for this formulation comes, in part, from two problems of motion coordination discussed

in [87] to illustrate the use Ordered Upwind Methods for solving optimal hybrid control problems. The first

problem consists of finding an optimal trajectory on a surface, given that there are discrete transitions between
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a finite number of points on the continuous state-space. This problem can be interpreted as one of motion

coordination between a person and a bus running between two or more bus stops: in some cases it may be

better to take the bus. The directed discrete links change only the position in the continuous state space,

but not the underlying dynamics. The problem is solved with the help of one value function defined on the

continuous state-space. The second problem consists of finding an optimal trajectory for a person walking

on a varied landscape and carrying a pair of inline roller skates. The person has the option to switch between

walking and skating by paying a time penalty. This is modeled with two discrete states and two copies of the

continuous-time state-space. The problem is solved with the help of a value function defined on the hybrid

state-space.

The chapter is organized as follows. Section 5.2 provides background on dynamic optimization for hybrid

systems. Section 5.3 presents the formulation of the path coordination problem in the framework of hybrid

systems. Section 5.4 discusses the use of DP techniques to characterize the solution to the problem. Section

5.5 discusses the optimal strategies. An example is presented in in section 5.6 and the conclusions are drawn

in section 5.7.

5.2 Background

The literature on DP for optimal hybrid control problems is briefly reviewed here.

A full-fledged hybrid system model, which subsumed previous models, was introduced by M. Branicky

in [11]. The model includes autonomous and controlled jump sets and destination sets. Controlled jump sets

model “lazy” transition systems in the sense that the controller can decide to jump or not to jump in these

sets – this is the “lazy” transition semantics in the terminology of computer science. The transition maps

associated to each jump may introduce discontinuities in state and time. The dimension of the continuous-

time state space is allowed to change with the discrete state. Branicky introduces an optimal control problem

over an infinite horizon with three terms discounted over time: running cost, transition cost and impulse cost.

The transition maps and the cost functions are assumed to be bounded, uniformly continuous, and the vector

fields associated to each discrete state are assumed to be bounded and uniformly Lipschitz in the state. The

distances between autonomous and controlled jump sets (and also between autonomous jump and destination

sets) are assumed to be strictly positive to prevent the occurrence of multiple transitions in zero time. The

flow lines are assumed to be transversal to the boundaries of the autonomous and controlled jump sets, and
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the vector field is not allowed to vanish in these boundaries. This is required to prove continuity from the right

of the value function for the optimal control problem. The consideration of DP techniques leads to a system

of Quasi Variational Inequalities (QVI). No further analysis is carried out concerning the solution of the QVI.

In [38], the value function is proved to be the “viscosity” solution to this system of QVI. The transversality

assumptions lead to two modeling difficulties: 1) the state of the system is supposed to “freeze” during the

time jump; however this is not possible at the boundary of the autonomous and controlled jump sets; and 2)

when the state enters a controlled jump set it can only leave the set through a discrete transition, which was

supposed to be optional (cf. [109]).

A set of QVI conditions similar to those presented in [11] is presented in [10]. The viscosity solution to the

Hamilton-Jacobi-Bellman (HJB) is discussed. This is because under their assumptions the value function is

continuous. The problem is that the value function for general hybrid control problems may be discontinuous

(this is mainly due to the forced jumps, controlled jumps and discontinuous jump relations). This problem is

studied in [109]. In this case, the value function is not continuous and the solution of the QVI is interpreted

in the discontinuous viscosity setting.

A simplified version of the hybrid system model introduced by Branicky is presented in [89]. The keys

simplification are: 1) the state is kept continuous at switching times; and 2) the dimension of the continuous-

time state space is kept constant. There is a discrete transition map which defines, at each discrete state,

the discrete states that can be reached in one discrete transition. The assumptions also include transversality

conditions as in [11]. The author introduces a class of optimal control problems with terminal and running

cost functions that depend on the discrete state; there are no switching costs. A set of necessary conditions

in the form of a hybrid maximum principle are introduced. The corresponding value function is shown to

be bounded and continuous. A HJB equation is derived with the help of the principle of optimality. The

minimization in the HJB is taken over the continuous-time control settings and the discrete states. This is

because the switching costs are zero. The HJB equation is used to establish a verification theorem for optimal

control candidates, but there is no discussion on viscosity solutions. The discrete transition map is not taken

into consideration as a constraint in the HJB minimization. This can only happen if all discrete states can be

reached in a finite number of transitions. This important consideration is not stated as an assumption and it is

not discussed in the paper.
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5.3 Problem formulation

5.3.1 The system

Consider planar motion models (evolving in R2) for two vehicles vi, i = 1, 2

ẋi(t) = fi(xi, ui), ui ∈ Ui, t ≥ 0

x1(0) = α, x2(0) = β

where ui are the controls and Ui are closed sets.

Consider v1. The cost of a path joining α and γ is

J1(u1(.), γ) =

∫ tf

0

l(x1, x2) · k1(x1, u1)ds (5.3.1)

where k1(., .) ≥ 0, l : R2 × R2 → [0, 1] is a piecewise constant function (l = c, 0 < c < 1 if x1 = x2 and

l = 1 otherwise) and tf is the first time when x1(tf ) = γ under the control function u1(.). The function l

models the fact that the path cost for v1 is reduced when the positions of v1 and v2 coincide.

v2 is fuel constrained. The model of fuel consumption is captured by an additional state variable c2 ∈ R

(indicating the amount of fuel in the fuel tank)

ċ2(t) = g2(x2, u2) =

{
w2(x2, u2) if c2 > 0

0 otherwise

c2(0) = θ

where w2(., .) ≤ 0.

We introduce a second cost function J2 to model the fuel remaining in v2 when it reaches x at time t

under the control u2(.)

J2(u2(.), x) = c2(t) (5.3.2)

The standing assumptions are:

A1) fi, w2 : R2 × Ui → R2 are uniformly Lipschitz in x and uniformly continuous in the control variable.

This condition ensures existence and uniqueness of solutions for the differential equations.

A2) There exist K1 < ∞ and 1 ≤ ς1 < ∞ such that ‖l(x1, x2) · k1(x1, u1)‖ ≤ K1(1 + ‖(x1, x2)‖)ς1 for

(x1, x2) ∈ R2 × R2, u1 ∈ U1.
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A3) There exist K2 < ∞ and 1 ≤ ς2 < ∞ such that ‖g2(x2, u2)‖ ≤ K2(1 + ‖x‖)ς2 for x ∈ R2, u2 ∈ U2.

This assumption and the previous are related to the existence of solution to the problem.

A4) 0 ∈ int fi(xi, Ui). This means that each vehicle is locally controllable.

A5) f1(x, U1) ⊆ f1(x, U2). This means that v2 is capable of replicating the motions of v1.

5.3.2 The case for coordination

The optimal path planning problem for v1 when operating in isolation is (l = 1) is

Problem 5.3.1. [Uncoordinated] Find
inf
u1(.)

J1(u1(.), γ) (5.3.3)

The path planning problem becomes more interesting when the two vehicles are allowed to coordinate

their motions. Two additional operational constraints are considered:

1. if v2 leaves β, then it must return to β;

2. the vehicles are allowed to meet only once and then move together up to the point where v2 returns to

β (this precludes behaviors where the vehicles move together and separate repeatedly).

In what follows, and to simplify the analysis of the problem, assumption A6 is considered. This assump-

tion means that the problem is symmetric in the terminology of [6].

A6) The fuel optimal paths for v2 are also fuel optimal for the path traveled in the opposite direction.

Let R denote the set of point reachable by v2 for a round trip from β under fuel budget θ. This is the set

of points where the two vehicles can meet at one point. A characterization of R is in order. For this purpose

consider the value function for the problem of minimizing the fuel consumption for vehicle v2

V2(x) = max
u2(.)

J2(u2(.), x)

V2(β) = θ

Proposition 5.3.2. Under the standing assumptions the value function V2 is continuous in x.

The proof is standard and we omit it.



60

Proposition 5.3.3. R is a closed set given by

R = {x : V2(x) ≤ θ

2
} (5.3.4)

Proof. The expression for R follows from the consideration of Assumption A6. The fact that R is closed

follows from the continuity of V2. 2

It may be worthwhile for v1 to deviate from the optimal path for Problem 5.3.1 to join v2 at a point in R,

before reaching γ. The following example illustrates this point.

Figure 5.1: Example of coordinated paths.

Example 5.3.4. Consider Figure 5.1. Let:
ẋi(t) ∈ B0, i = 1, 2 (B0 is the closed unit ball in R2).
α = (0, 0), β = (50, 40), γ = (100, 0).
η = (39.2000, 24.1254), µ = (60.7999, 24.1254).
c2(0) = θ = 12.
k1(x1, u1) = 1,−w2(x2, u2) = 0.2, l(x, x) = 0.1.
R is the circle of radius 30 with center β (the optimal fuel cost of the round trip from β to the boundary of
the circle is 60× 0.2 = 12 = θ). This is because this system satisfies the assumption A6: 1) the cost function
does not depend on the direction of motion; and 2) the system dynamics are reversible. Observe that this is
the set of points where the two vehicles can start to move together.

The fuel optimal paths for v2 are straight lines. The same happens with the optimal paths for v1 (for fixed
values of l). This is because the we have simple dynamics and piecewise constant cost functions. The straight
line joining α and γ is the optimal path for Problem 5.3.1; the optimal cost is 100. The cost of the path
(α, η, µ, γ), where v1 deviates from the original optimal path to benefit from a cost reduction in the segment
(η, µ), is 94.2182. v2 complies with the constraints by taking a loop (triangle) from β, with fuel cost 12.0000
(within the fuel budget).
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The structure of the solution is discussed next. Consider, for the sake of our discussion, that the optimal

coordinated path for v1 is (α, η, µ, γ). Then the two path segments (α, η) and (µ, γ) are optimal with respect

to the uncoordinated cost function. Otherwise we could pick other paths to connect these points with a lower

cost. This is impossible since the path (α, η, µ, γ) is optimal under our assumption. This means that up to the

point η, the path optimization for v1 is independent of what v2 does. The same happens with v2 for the path

segments (β, η) and (µ, β). On the other hand, when the two vehicles meet at point η, the path optimization

for both vehicles is no longer decoupled. Here, we need a third state variable to describe the evolution of the

system. This is because the motions of the vehicles coincide, and because we need to keep track of the fuel

consumption for v2. This means that, from the perspective of v1, all that really matters in what concerns v2

is: 1) the point where the meeting takes place; and 2) the amount of the fuel remaining in the fuel tank of v2.

We observe that the amount of the fuel in v2 at the meeting point should be optimal (otherwise this vehicle

spent more fuel than what was needed to reach that point).

5.3.3 Hybrid model

The formulation of the coordinated optimal path planning problem for vehicle v1 requires the consideration

of a state variable that keeps track of what each vehicle does. We do this with a 3-state hybrid automaton.

The hybrid state space is S =
⋃
v∈{a,b,c}(Sv × v). v1 evolves in Sa = R2 after departing from α. The

positions of the two vehicles coincide in the discrete state b. We need an additional variable to keep track of

the fuel consumption for v2; this is why Sb = R2 × R+
0 . v1 moves in Sc = R2 after taking the transition

from discrete state b to discrete state c (after leaving v2).

There is a controlled vector field fv associated to each discrete state, where fa = fc = f1 and fb =

{f1, g2}. The control constraints are Ua = U1, Ub = U1 × U2 and Uc = U1. In the terminology of [11],

associated to each discrete state v there are autonomous jump sets Av,v′ , controlled jump sets Cv,v′ and jump

destination sets Dv,v′ . The trajectory of the system jumps from Sv to Sv′ upon hitting the autonomous jump

set Av,v′ ; it may or may not leave Sv upon hitting the controlled jump set Cv,v′ and it can leave Sv at any

point in Cv,v′ ; the destination of a jump is Dv,v′ .

In what follows, xi represents the i− th component of x.

The autonomous and controlled jump sets for the system are respectively A =
⋃
v,v′ Av,v′ and C =
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⋃
v,v′ Cv,v′ . The jump set is J = A

⋃
C. These are given by

Ca,b = R

Ab,c = {(x1, x2, x3) : x3 = V2(x1, x2)}

Da,b = {(x1, x2, x3) : x3 ≥ V2(x1, x2)}

Db,c = Sc

with R given by equation 5.3.4. The transition maps are

Ga,b : Ca,b → Da,b, Ga,b(x) = (x, θ − V2(x))

Gb,c : Ab,c → Db,c, Gb,c(x) = (x1, x2)

The interpretation is as follows (see Figure 5.2). v1 starts moving in Sa; if x1(.) enters Ca,b then it may

continue in Sa, or take a controlled jump to Sb. In the case of a controlled jump, the transition map Ga,b

maps the current state of v1 to a state extended to include the optimal amount of fuel remaining in v2 at

the same location after departing from β with an initial amount of fuel θ. In Sb, the positions of the two

vehicles coincide; there is an autonomous jump from Sb to Sc when the trajectory of the system hits Ab,c.

This means that v2 had to leave, since there was just enough fuel to go back to β. The jump relation consists

of eliminating the third component of the state. The transition maps imply that v2 uses fuel optimal strategies

to travel to the meeting point and to reach β after leaving v1. One could ask why is it necessary to include the

discrete state c in the model (instead of having the autonomous jump from discrete state b to discrete state a).

An autonomous transition from b to a could lead to trajectories in the controlled jump set Ca,b = R ⊂ Sa.

But this jump can only be taken once. We need to keep track of the jump. We do this with the discrete state c.

With this transition system we model the fact that the state of the system has two components: a mem-

oryless component given by the continuous state and a component with memory given by the discrete state

which describes the trajectory of the system up to the current location. For example, if the discrete state is

b this means that the two vehicles met at a given point and are moving together; if the discrete state is c this

means that the vehicles moved together until the point where vehicle v2 had to go back to β in an optimal

fashion. This is why we need three discrete states.

In what follows we adopt the notation from [109]. Time is measured continuously with a real variable

t in [0,+∞) and the state variable is (x, v). Trajectories are piecewise continuous in x and are normalized
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Figure 5.2: Structure of the solution.

to be right-continuous. The hybrid control input is I = ({t0, uv(0)(.)}{ti, uv(i)}N1 ), N ∈ {0, 1, 2}, where

ti ≤ ti+1(t0 = 0) gives the sequence of times selected to switch the discrete dynamics. The activation of

hybrid control input can only take place in the set C, or in the boundary of the set A. This spatial dependence

translates to time dependence as follows.

Given (x, v) and u(.), define the hitting times of A and J as

TA(x, v, u(.)) = inf{t ≥ 0 : (x(t), v) ∈ A}

T J(x, v, u(.)) = inf{t ≥ 0 : (x(t), v) ∈ J}

where x(.) is the trajectory departing from (x, v) under the control function u(.).

Definition 5.3.1. Given a hybrid state (x, v) a hybrid control I is called an admissible control with respect
to (x, v) if:

• 0 = t0, ti ≤ ti+1

• T J(x(t+i ), v, u(.)) ≤ ti+1 − ti ≤ TA((t+i ), v, u(.))

This means that between discrete jumps the trajectory may evolve in J . Jumps may take place in C and

must take place in ∂A (the boundary of A).

In our model Da,b ∩ Ab,c 6= ∅ and Da,b is not a closed set. This makes it possible for an instantaneous

jump from discrete state a to c to occur: first as a controlled jump from a to b at the points in ∂R, and then
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as an autonomous jump to c. This problem can be solved by changing these sets to impose a strictly positive

distance between them.

Let I(x, v) denote an admissible control with respect to (x, v) and Λ(x, v) denote the set of all admissible

controls.

Proposition 5.3.5. Given an initial hybrid state (x, v) the hybrid system possesses a unique hybrid execution.

Proof. The proof follows standard arguments from [89]. 2

5.3.4 Optimal control

Now consider the running cost maps kv : Sv × Uv → <+:

ka(x, u) = k1(x, u)

kb(x, u) = σl(x, x)k1((x1, x2), u1)− (1− σ)g2((x1, x2), u2)

kc(x, u) = k1(x, u)

where σ ∈ [0, 1]. An explanation for the definition of kb (and σ) is in order. The positions of the two vehicles

coincide in the discrete state b. However, the minimization of the path cost for v1 may not be compatible with

the minimization of the fuel consumption for v2. The problem is that v2 is fuel constrained. The longer the

fuel lasts, the longer v1 benefits from the path coordination. We model this trade-off with kb(x, u) which is a

convex combination of the two other cost functions.

Consider the coordinated path optimization problem for v1. The cost of a path joining (α, a) and (γ, v) is

J̃1((I(α, a), (γ, v), σ) =

N∑

i=0

∫ ti+1

ti

kv(i)(x(s), uv(i)(s))ds (5.3.5)

where N ≤ 2, tN+1 = tf and x(tf ) = γ.

We introduce the explicit dependence on σ to remind us that the optimal solution depends on this param-

eter.

Problem 5.3.6. [Coordinated] Find

inf
I(α,a)∈Λ(α,a)

J̃1(I(α, a), (γ, v), σ) (5.3.6)
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Let T denote the set of points reachable by v2 in Sb under the fuel constraint θ for a round-trip from β. T

is the set of all (x1, x2, x3) ∈ Sb such that the first two components (x1, x2) are in R and the last component

(x3) satisfies the fuel constraint:

T = {x ∈ Sb : (x1, x2) ∈ R ∧ (x3 ≥ V2(x1, x2))∧

((θ − V2(x1, x2)) ≥ x3)}

Remark 5.3.1. M = {Sb\T, b} is not reachable in S.

5.4 Dynamic programming

In the spirit of DP we embed Problem 5.3.6 in a family of optimization problems where the final position

varies. Introduce the value function

V (x, v, σ) = inf
I(α,a)∈Λ(α,a)

J̃1(I(α, a), (x, v), σ)

V (α, a, σ) = 0

where ∀x ∈ (Sb\T ) : V (x, b, σ) = +∞.

The fact that not all points in Sb are reachable under the constraints imposed on v2 leads to this extended-

valued value function.

In what follows we drop the explicit dependence of V on σ to simplify the notation.

The following theorem, presented without proof, states two important properties of the value function.

Theorem 5.4.1. The value function V (x, v) is bounded and continuous in S\M .

The following theorems can be proved with the help of the results from [109].

Theorem 5.4.2. The value function V (x, v) satisfies the principle of optimality for every v ∈ {a, b, c}.
Theorem 5.4.3. The value function V (x, v) is the viscosity solution of the HJB equation.

Vt(x, v) + inf
u∈U

[Vx(x, v) · fv(x, u)− kv(x, u)] = 0

V (α, a) = 0

5.5 Optimal strategies

The optimal strategy for v1 is derived from the value function V (x, v). This requires some additional com-

putations.
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The position of v1 is given by the continuous state of the hybrid automaton in the discrete states a and c,

and by the first two components of the continuous state in the discrete state b; the third component, x3, is the

fuel remaining in v2. However, the value function V in b depends not only on the position of v1 (x1, x2), but

also on the fuel remaining in v2 (x3). An additional minimization over x3 is required. This is done next with

the help of a new function, Ṽ : R2 → R.

Ṽ (x, a) = V (x, a)

Ṽ (x, b) = min
x3∈[V2(x),θ−V2(x)]

V ((x, x3), b)

Ṽ (x, c) = V (x, c)

Ṽ (x, a) is also the optimal value function for Problem 5.3.1.

Keep in mind that the discrete state keeps the history of the system. So v1 can reach a same position in

the three discrete states. To find the optimal path cost at x ∈ R2 we need to drop the dependence of Ṽ on the

discrete state with another minimization. This is done with the the help of a new function, V (x) : R2 → R.

V (x) = min
v∈{a,b,c}

Ṽ (x, v) (5.5.1)

The optimal discrete state at x is given by

v∗ = argminv∈{a,b,c}Ṽ (x, v) (5.5.2)

Observe that v∗ is not necessarily a singleton. We summarize these observations in the theorem.

Theorem 5.5.1. V (γ) is the optimal value for solving Problem 5.3.6. If v∗ = a then path coordination is not
optimal.

The optimal control is given by u∗ as follows

u∗ = argminu∈U Vt(x, v)+

[Vx(x, v) · fv(x, u)− kv(x, u)] (5.5.3)

Both the dynamics and the cost function do not depend directly on time. This simplifies the coordination

of the optimal paths for the case when path coordination is the optimal solution: the vehicles are required to

meet at the point where the two paths intersect for the first time.

We now study the conditions under which the solutions to Problems 5.3.1 and 5.3.6 differ. These are

aimed at simplifying the process of finding numerical solutions to the coordinated problem.
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Proposition 5.5.2. Let Υ = V (γ, a) and Q = {x ∈ Sa : V (x, a) ≤ Υ}. If Q ∩R = ∅, then the solutions of
Problems 5.3.1 and 5.3.6 coincide.

Proof. The condition Q∩R = ∅ means that γ can be reached with cost budget less than the one required

to reach the set R, where coordination is possible. 2

Proposition 5.5.3. The optimal cost for Problem 5.3.6 is l times the optimal cost for Problem 5.3.1 when
there exists a trajectory x2(.) leaving β passing through α and γ and returning to β such that: 1) x2(.)
satisfies the fuel constraint θ; and 2) the segment of x2(.) joining α and γ coincides with the optimal path for
Problem 5.3.1.

Proof. Consider first that v2 is not fuel constrained. Then, the trajectories of v2 can be made to coincide

with the trajectories of v1 along the path for v1. This means that: 1) there exists a path as the one in the

statement of the proposition; and 2) that v1 benefits from a constant cost reduction along its path. Now

consider the case when v2 is fuel constrained. If there is a path satisfying the conditions of the proposition,

the optimal cost for v1 cannot be further reduced from the optimal level obtained without fuel constraints.2

5.6 Numerical example

Consider Example 5.3.4 again. The computation of the value function becomes easier because of the sim-

plicity of the considered cost function (piecewise constant over the state and input spaces, and time-invariant)

and system dynamics. A numerical algorithm was especially tailored to take in account those specific as-

sumptions. The value function is computed over a equally spaced grid.

The computation of the value function is done in three stages. In the first stage, the system is in the

discrete state a. Since the running cost, k1(x, u) = 1, is independent of the input and vehicle’s position,

the optimal trajectory from the initial position to any position x is a straight line, traveled at unit speed (the

maximum speed). It is trivial to note that V (x, a) = ‖x‖2. Therefore the exact value of V (x, a) is known at

the grid points.

In the second stage, the algorithm considers only the points in T (i.e., the set of all points that can be

reached by v2 while allowing the return to its initial position β within fuel budget). This is the closure of the

circle shown in Fig. 5.1 (see also Eq. 5.3.4). Remember that those whose position laying outside R will have

an infinite cost, due to the fuel constraint of v2. For each point in T , the algorithm computes the cost to every

other point (in R3) that can be reached respecting the fuel constraint, and updates V (x, b) accordingly. The

computation of Ṽ (x, b) is straightforward.
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Another version of this algorithm, which computes directly Ṽ (x, b) performing all computations on a

two dimensional grid (therefore demanding smaller computation time), was also implemented. This version

considers only the points in R: for each point in R, it computes the cost to every other point that can be

reached respecting the fuel constraint, and updates Ṽ (x, b) accordingly. However, this version does not allow

the determination of the optimal trajectory using Eq. 5.5.3.

Finally, in the third stage the algorithm starts from the positions where Ṽ (x, b) is finite, computed on the

previous stage, and propagates the value function. In this final stage, V is computed as defined in Eq. 5.5.1.

The level sets of V are plotted on Fig. 5.3(a) along with the optimal trajectory from α = (0, 0) to

γ = (100, 0). The circle of radius 30 centered at (50, 40) delimits R. Fig. 5.3(b) identifies two distinct

regions of the x-y plane: in white, the final destinations for which the optimal strategy is the uncoordinated

motion (no collaborative operation of v1 with v2); in black, the final destinations for which v1 will benefit

from coordinated motion with v2, i.e., the set of points x such that V (x, b) < V (x, a) and V (x, c) < V (x, a).

(a) Level sets of V and optimal trajectory of v1 for Example
5.3.4.

(b) Destinations in the black region benefit from coordinated
motion.

Figure 5.3: Optimal strategies.

5.7 Conclusions

We have formulated and solved a path coordination problem to illustrate the use of DP techniques in col-

laborative control problems. The problem consists of minimizing the path cost for v1 when this cost is a
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discontinuous function of the relative positions of the two vehicles and v2 is required to return to its start-

ing point. The problem is formulated as an optimal hybrid control problem. The state has a memoryless

component and a component with memory. The autonomous and controlled jump sets are both given by the

set reachable by v2 when departing from β under the given fuel constraints. The optimal strategies for both

vehicles are derived from value function, which depends on the location of v1 and on the discrete state. The

optimal path cost for v1 at a given location is given by two sequential minimizations of the value function for

the optimal hybrid control problem. Transitions in the hybrid automaton take place when collaboration is the

optimal solution. The transition to the second state is taken by v1 under the assumption that it meets v2 and

that v2 followed a fuel-optimal path. This is a non-standard hybrid control problem: the jump sets are given

by reach sets; and the value function for the coordinated problem assumes compatible optimal behavior by

v2 (this is given by a different value function for v2).



Chapter 6

Verified control architecture

A layered control architecture for executing multi-vehicle team coordination algorithms is presented along

with the formal specifications for team behavior. The control architecture has three layers: team control,

vehicle supervision and maneuver control. The implementation is proved to satisfy the specification for the

team behavior. This is done in the framework of automata theory. The implementation and specification

are bi-similar. Computer simulations with accurate models of autonomous underwater vehicles illustrate the

overall approach in the coordinated search for the minimum of a scalar field. The coordinated search is based

on the simplex optimization algorithm.

6.1 Introduction

The last decade has witnessed unprecedented interactions between technological developments in computing,

communications and control which have led to the design and implementation of robotic systems consisting

of networked vehicles and sensors. These developments enable researchers and engineers not only to design

new robotic systems but also to develop visions for systems that could have not been imagined before.

6.1.1 Multi-vehicle operations

Today, there are automotive vehicles in various stages of automation ranging from automated highway sys-

tems [103, 50], to coordinated adaptive cruise control systems [1], to “platooning” of passenger and military

vehicles. Other examples for ground vehicles include border patrol, search and rescue, and games such as

robotic soccer [106, 23] or the RobotFlag [24]. There are numerous applications for autonomous underwater

vehicles, such as oceanographic surveys [95, 108, 56], operations in hazardous environments, inspection of

70
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underwater structures, mine search [48], and the Autonomous Ocean Sampling Network [21, 22], to name

just a few. The Mobile Offshore Base illustrates the problem of coordinating the motions of sea-going ve-

hicles [83, 27]. The application pull for the coordination and control of teams of unmanned air vehicles is

driven mainly by military requirements [17]; some technologies have already been field tested [7, 94, 54]

while others are being developed and tested in simulation [34]. A promising technological push comes from

the inter-operation of multi-vehicle systems and sensor networks [20].

6.1.2 Approach and contributions

In this chapter we present a control architecture for the implementation of coordination strategies by a team

of autonomous vehicles. These strategies are characterized by the alternation between two phases: a commu-

nication phase where the team exchanges messages to assign waypoints for each vehicle; and a motion phase

where the vehicles move to the designated waypoints, where a new communication phase will take place.

The strategy specification is encoded as an automaton.

Several difficulties must be faced in developing a control architecture for the implementation of this

class of coordination strategies. We illustrate these difficulties and discuss our contributions in the context

of the coordinated search for the minimum of a scalar field by a team of autonomous underwater vehicles

with limited communication capabilities. The coordination strategy is inspired by a class of optimization

algorithms with phased operations: each phase starts with the selection of points to sample and terminates

when these points are sampled.

First, there are severe limitations on communications. For example, autonomous underwater vehicles

use acoustic communications which pose significant restrictions on range and bandwidth [92, 57]. This

precludes the use of communications for low-level feedback control. We address this difficulty by restricting

communications to the exchange of a few coordination messages.

The second difficulty is in that the design space of the team search is large and heterogeneous. The design

involves generating sampling points and arrival times to ensure communications at the end of each phase;

assigning vehicles to the sampling points; and designing real-time feedback strategies for each vehicle. We

address this difficulty by structuring the design into two pieces: generation of sampling points and execution

control. We present conditions for the generation of sampling points and arrival times with the required

properties; this is done in the setting of dynamic optimization and reach set computations. We introduce a

layered design for the execution control. This is done in the framework of hybrid automata: there is a team



72

controller, a vehicle supervisor and several maneuver controllers per vehicle. The coordination strategy is

implemented through the interactions of the team controllers during the coordination phase. In this phase,

one team controller, the master controller, receives the samples sent by the other team controllers, calculates

the sampling points and arrival times for the next motion phase and sends them to the other team controllers.

The motion phase is executed independently by each vehicle.

The third difficulty originates in the requirement that the execution control must indeed implement the

search strategy. We addressed this difficulty by layering the execution control and designing each layer

to ensure that their controllers produce guaranteed results under the assumption that the controllers at the

adjacent layers also produce guaranteed results. This is done in a modular fashion. The vehicle supervisor

and the maneuver controllers guarantee that each sampling point is visited within a given tolerance of the

arrival time. Under these assumptions the composition of the team controllers is shown to implement the

specification. This is done using automata-based techniques.

Our contributions concern the design of a modular architecture and the proof that the modules and the in-

teractions within the architecture implement a given specification. This is done in the framework of automata-

theoretic techniques and reach set analysis.

Summarizing, our design touches upon several related problems: finding the minimizer of a scalar field

through the coordinated motions of multiple vehicles; guaranteed maneuver design; waypoint based coordi-

nation schemes, and control architectures. Next, we briefly compare our approach to related work on these

problems.

6.1.3 Related work

The problem of finding the minimum of a scalar field with the coordinated motions of autonomous vehicles

with sampling capabilities has received large attention in the last decade. A significant body of this work con-

cerns the adaptation of optimization algorithms to single- or multi-vehicle search strategies. Search strategies

for single vehicle operations inspired by different optimization algorithms are reported in [12] along with

illustrative examples. Pure gradient-based methods for scenarios where a vehicle platoon searches the min-

imum of general convex and smooth scalar fields are presented in [3]. Lyapunov-based arguments are used

in [3, 41] for the gradient descent of a scalar field. These approaches result in feedback control laws that

require closing the control loop around communicated measurements. We take the view of considering lim-

ited and sporadic communications, which preclude the use of these techniques. This view is exercised in a
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distributed minimum search application. A team of vehicles is tasked to implement an optimization algo-

rithm for this purpose. We formalize a complete control design under communication constraints which is

implementable in a distributed fashion with guaranteed properties. We do this in the framework of dynamic

networks of hybrid automata.

The problem of guaranteed maneuver design with logic switching is a difficult one, and has received

significant attention from researchers in hybrid systems. Techniques from optimal control and game theory

are used in [68] and [96] to design controllers for safety specifications in hybrid systems. Their methodology

consists of three phases. First, they translate safety specifications into restrictions on the set of reachable sets.

Second, they formulate a differential game and derive Hamilton-Jacobi-Bellman equations whose solutions

describe the boundaries of reachable sets. Third, they synthesize the hybrid controller from these equations.

The controller assumes the form of a feedback control law for the continuous and discrete variables, which

guarantees that the hybrid system remains in the safe subset of the reachable set. This formulation is strongly

related to the problem of reach set computation. Several techniques for reachability analysis of dynamic sys-

tems have been proposed. An approach for reach set computation for linear systems based on the Pontryagin

maximum principle of optimal control theory and the separation property is presented in [100]. Dynamic pro-

gramming techniques are used in [60] to describe reach sets and related problems of forward and backward

reachability; extensions to the problem of reach set computation under adversarial behavior are also accom-

modated in this setting. These problems are formulated as optimization problems that are solved through the

Hamilton-Jacobi-Bellman equations. The reach sets are the level sets of the value function solutions to these

equations.

Quite a number of motion coordination problems proposed in the literature are captured by event-based

way-point generation algorithms. They include consensus problems [53, 19, 55], pursuit–evasion games [51,

107], multi-robot tracking problems [70] and multi-vehicle search missions [90, 29, 30].

A vast majority of multi-vehicle systems are organized into hierarchical control architectures. For a com-

prehensive review of the issues concerning coordination and control of multiple vehicles consult [45]. The

fact of the matter is that the control of every large-scale system is organized in a distributed hierarchy [101].

This way, a complex design problem is partitioned into a number of more manageable sub-problems that are

addressed in separate layers. The problem is that different layers may be described within different theories

making it difficult, if not impossible, to do a formal analysis of the control architecture. This is problem of
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one-world semantics [101]: properties of high level abstractions are translated into properties of lower level

behaviors. However, hierarchical controllers are not designed that way. Typically, the design of a large sys-

tem is broken into controllers. The design of each controller is evaluated in a mathematical world in which

alternate controller designs can be compared. The mathematical world for one controller makes implicit as-

sumptions about the behavior of lower-layer controllers. This is multi-world semantics [101]. We take this

approach in our design.

There is a substantial body of work on the formalization of control architectures. Examples include the

use of Petri nets and stochastic hybrid automata [86, 67], hybrid systems [98, 103, 99, 47], and linear temporal

logic [40]. Our work is related to the layering concepts presented in [99]. The ideas used in execution control

are inspired by [99, 98, 27, 32]. Here we formalize the components and interactions and introduce a layered

analysis framework where we use automata theoretic concepts and dynamic optimization techniques in our

proof techniques.

The ideas used in this chapter are inspired by [90, 30], where search missions for underwater autonomous

vehicles (AUVs) have been studied. The algorithm for the generation of sampling points is executed at the

end of each search phase. The algorithm generates both the sampling points and the time intervals for the

corresponding arrival times. In this design, the algorithm runs on a AUV designated as the master. At the

end of the search phase, the AUVs in the team send the observations at the sampling points to the master;

the master runs the algorithm upon the reception of the last observation and sends the assigned sampling

points to the AUVs in the team. Two communication exchanges that take place during each phase. For

these communications to happen the sampling points and the corresponding time intervals must satisfy two

properties: (1) the sampling points are reachable within these time intervals; and (2) the relative distances

among the AUVs during these time intervals satisfy the communication constraints. The execution control

is decomposed into a hierarchy of team controllers, vehicle supervisors, and elemental maneuver feedback

controllers. The controllers are described as interacting distributed hybrid automata [104]. Interactions

occurs through the exchange of messages among the controllers.

6.1.4 Outline

The chapter is organized as follows. In Section 6.2 we introduce the problem formulation. In particular we

highlight the constraints and assumptions under which the control architecture is developed. Moreover we

define the system specification, namely a mathematical description of the overall system behavior, which
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is used in the verification of the architecture. Section 6.3 describes the hierarchical control structure in the

framework of interacting hybrid automata. The main results are reported in Section 6.4 where properties of

the hierarchical control structure are discussed and it is shown that such architecture implements the given

system specification. In Section 6.5 we present simulation results to illustrate the implementation of our

design in a team search mission for a team of underwater vehicles. Finally, the conclusions and future

developments are discussed in Section 6.6.

6.2 Problem formulation

Let us consider a set V = {v1, v2, . . . , vN} of N ≥ 1 vehicles. Each vehicle vi is modeled as a nonlinear

control system

ẋi(t) = fi(xi(t), ui(t)),

where xi(t) ∈ X ⊂ Rn is the state of the vehicle, ui(t) ∈ U ⊂ Rm the control, and fi : X × U → TX the

vector field.

6.2.1 Team coordination via waypoint generation

We assume that the team is coordinated by an event-based controller that generates waypoints, namely a point

w = (w1, . . . , wN ) ∈ W ⊆ XN . The team coordination is defined by the following update map

(w+, t+) = φ(w, t, e),

where e = (e1, . . . , eN ) ∈ ΣN is a vector of events, each of which is defined on an event alphabet Σ,

t = {t1, t2, t3} ∈ T ⊂ R3 is a set of coordination times which are defined in the following section, and +

is used to distinguish the most recent value of a variable. We call φ(.) the team coordination strategy. The

controller for each vehicle takes as inputs w+
i and t+.

6.2.2 Vehicle model

Our approach encompasses general vehicle models, as we will infer from the developments in the following

sections. However, in the reminder of the paper we consider unicycle vehicle models. This is because many

vehicles used in robotics can be precisely or approximately described by a unicycle model together with extra
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kinematic constraints. We then have that each vehicle is described by the following differential equations



ẋ

ẏ

ψ̇


 =




v cosψ

v sinψ

ω


 , (6.2.1)

where v is the linear forward velocity, ψ is the orientation of the vehicle and ω is the angular velocity.

The synchro drive vehicle can be precisely described by the previous kinematic model. In this type of

vehicle, indeed, the linear and angular velocities can be controlled independently and are the same for all

wheels. Differential drive vehicles, where the locomotion system is comprised by two parallel driving wheels

that can be controlled independently, are described by a unicycle model if we impose that v = (v1 + v2)/2

and ω = (v1 − v2)/`, where v1 and v2 are the right and left wheel speeds and ` is the distance between the

driving. Notice the kinematic constraint between angular and linear speed. Tricycle and car-like vehicles

where only the front wheel (or wheels) is (are) actuated, can be modeled by the previous kinematic model. In

this case if α is the angle of the turning wheel with respect to the heading of the vehicle, then v = vs cosα

and ω = vs/d sinα where vs is the linear velocity of the steering wheel and d is the distance between passive

axle and the steering wheel [63, 77, 8, 64]. Also underwater vehicles (and similarly aerial vehicles) that

move on a plane can be very well approximate with the unicycle model. For this type of vehicles the extra

kinematic constraints impose that vmin > 0, that is the vehicle requires a minimum velocity (“stall” velocity)

to maintain controllability, and the angular velocity depends on the linear velocity ω = c v where c is a

constant related to the maximum curvature of the trajectory that the vehicle can follow.

In the following we will also consider the case of external slowly-varying disturbances acting on the

vehicles. This is the case of water streams for underwater vehicles. We then have the following modified

dynamic equations



ẋ

ẏ

ψ̇


 =




v cosψ

v sinψ

ω


 + vd




cosψd

sinψd

0


 .

where vd and ψd is the velocity and the direction, respectively, of the disturbance acting on the vehicle.

6.2.3 System specification

We introduce a formal specification to prescribe the behavior for the multi-vehicle system. This includes

a model of the interactions between communication and control. Models of communication constraints,
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including the ordering of messages, are not considered in some control designs for multi-vehicle systems

proposed in literature (see for example [51, 107, 53, 19, 55]).

We model the specifications for the system in the framework of a transition system.

Definition 6.2.1 (Transition system [80]). A transition system T is a tuple

T = (Q,→, I, O, Init,Final),

where

• Q is the set of states

• I and O is the set of inputs and outputs, respectively

• →⊂ Q× I ×Q×O is the transition relation

• Init ∈ Q is the initial state

• Final ∈ Q is the final state

Team
Coord

Team
Motion

Team
Reconfig

Team
Stop

Waypoints generated

Reached waypoints

Reconfigured

Mission completed

Timeout

Figure 6.1: System specifications for team coordination.

The interpretation is that an input i ∈ I cause the system to move from one state q ∈ Q to another state

q′ ∈ Q producing the output o ∈ O. It is convenient to write q
i/o→ q′ instead of (q, i, q′, o) ∈→. The

graphical representation of T is a directed graph with vertices representing Q and arcs representing
i/o→, an

arc with empty origin representing Init and a vertex with an extra circle representing Final.

The system specification for a coordinated search mission is given by the transition system

TSpec = (QSpec,→, ISpec, ∅,Team Coord,Team Stop)
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shown in Figure 6.1. It has four discrete states: Team Coord, Team Reconfig, Team Motion, Team Stop.

In a nominal mission the system alternates between two states, Team Coord and Team Motion, until the

mission is completed when a termination condition is satisfied. Note that this system specification is fairly

general, and captures a wide class of multi-vehicle control problems.

The system starts in the Team Coord state. A transition to Team Stop takes place if the termination

condition is true. Otherwise, in Team Coord the vehicles exchange their positions and sampled data prior

to the generation of the new waypoints w+ and coordination times t+. The transition to Team Motion takes

place upon the reception ofw+
i . While in Team Motion, each vehicle is controlled to the designated waypoint

within a given coordination time interval. The transition to Team Coord takes place when all the vehicles

reach their designated waypoints. If one vehicle is not able to reach its waypoint within a given coordination

time interval a timeout event is generated and the transition to Team Reconfig is taken. In Team Reconfig

the team executes a reconfiguration operation, which involves a re-allocation of roles. After reconfiguration,

the system goes to Team Coord, where nominal execution is resumed for the currently active vehicles. The

transition to Team Stop takes place when the mission is completed.

In the next section we present our design for the hierarchical control architecture and in Section 6.4 we

show that the design satisfies the specification.

6.3 Hierarchical control structure

6.3.1 Organization and concepts of operation

The vehicles in V have the same control structure. Our design for the vehicle control structure is organized

into two pieces: generation of sampling points and execution control. The execution control, in turn, is

structured into three layers: team control, vehicle supervision and maneuver control (see Figure 6.2). This is

an intuitive structure for program developers and system operators.

The team control architecture is depicted in Figure 6.3 as the composition of the control structures for

each vehicle, where one of the vehicles is configured as the master and the others as slaves. The composition

of the team controllers encodes the team control logic. The composition of the vehicle supervisor and of the

maneuver controllers encodes the motion control logic for each vehicle. The concepts of operation behind

the team control architecture are described now.

We assign roles to vehicles in the team control architecture. This amounts to configuring their control
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Figure 6.2: Hierarchical control structure for each vehicle.

structures differently. The configuration is done at the team controller layer: one team controller is configured

as the master and the others as slaves. Communication exchanges in the team are restricted to interactions

between the team controllers. These take place during the coordination phase. The pattern of interactions

is as follows: the master team controller executes the procedure for the generation of sampling points and

communicates the sampling points together with the coordination times to the other team controllers; upon

arrival at the designated sampling point each team controller sends the a message with the sample to the

master; the process starts again when the master receives the samples from the other team controllers and the

termination condition is not true. In this design there is no need the vehicles to communicate during the time

elapsed between the reception of the next sampling point and the arrival at the sampling point.

From the motion control point of view, each vehicle is abstracted as a provider of prototypical maneuvers:

different maneuvers may be required for different missions; and the same motions may be accomplished by

different maneuvers. There is one maneuver controller for each type of maneuver.

Consider figure 6.2 for a description of the motion control logic for each vehicle. The vehicle supervisor

mediates the interactions between the team controller and the maneuver controllers. This is done for the pur-

pose of modularity; there is a library of maneuvers and of maneuver controllers; and the addition and deletion

of maneuvers to the library does not require changes to the team controller and to the vehicle supervisor. The

vehicle supervisor accepts maneuver commands (or commands to abort the current maneuver) from the team

controller and passes the maneuver parameters to the corresponding maneuver controller for execution, and

signals back to the team controller the completion or failure of the maneuver. The maneuver controller takes

as input a maneuver specification, sends low-level control commands to the actuators in continuous time, and
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Master

Slave 2 Slave 1

Arch

Figure 6.3: Control architecture for a three vehicle system. The architecture is obtained from the composition
of the control structures for the three vehicles. Arrows between hierarchies represent communication links
between vehicles. Arrows inside each hierarchical stack represent signals between different layers.

signals back to the vehicle supervisor the success or failure of the maneuver.

As we go down in the hierarchy there are certain aspects of the design that become more dependent on

the dynamics of the vehicles. Thus, in order to explain how we design maneuvers we consider a specific

coordination mission, namely the search for the minimum of a scalar field by a team of underwater vehicles.

In our design this mission uses two types of maneuvers: goto waypoint and hold. The first maneuver drives

the vehicle from its current position to the a given waypoint wi within a given coordination time interval t.

The second maneuver keeps the vehicle within a neighborhood of a given waypoint.

6.3.2 Waypoint generation

As as discussed in Section 6.2 the way-point generation procedure φ(.) produces the set of sampling points w

(or way-points in a more general context) and the set of coordination times t = {t1, t2, t3}. The coordination

times are defined as follows:

(i) the master vehicle is required to arrive at its designated waypoint before t1 and to stay within a given

range of the waypoint until the end of the communication phase.

(ii) each slave vehicle is required to arrive at its designated waypoint (where it sends the sample to the

master) in the time interval [t1, t2] and to stay within a given range of the waypoint until the end of the

communication phase.
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(iii) the communication phase is required to terminate before t3; each vehicle receives the next waypoint

from the master during the time interval (t2, t3).

This is done to ensure that the vehicles are able to communicate among them during the communication

phase, even in the presence of disturbances.

6.3.3 Team controller

We model each team controller as a transition system. Since the team controller can be in either master or

slave mode, we have two team controller transition systems. They are described below. The master team

controller,

TM = (QM ,→, IM , OM , InitM ,FinalM )

shown in detail in Figure 6.4, consists of the parallel composition of three transition systems. The main

functionality is provided by the upper transition system of Figure 6.4, which has four states Master Coord,

Master Reconfig, Master Motion, Master Stop. The other two transition systems are counters: one stores

the number of active slaves and the other keeps track of the number of received acknowledgments from the

slaves during the coordination phase. The acknowledgment sent by each slave vehicle when it reaches the

designated sampling point also encodes the corresponding sample.

In the state Master Coord, the master waits for the “Acks” (and samples) transmitted by the slaves. The

transition to the state to Master Motion is taken when the ack counter reaches the number of active slaves

and the termination condition is not true; on this transition the master computes the new sets of waypoints and

coordination times, sends them to the slaves and resets the ack counter. The transition from Master Coord

to Master Stop is taken if the termination condition is true when the ack counter reaches the number of

slave vehicles. The transition from Master Coord to Master Reconfig takes place if a Master timeout is

triggered before the ack counter reaches the number of slave vehicles. This happens if some of the slaves

do not reach their assigned waypoints within the prescribed time frame. A team reconfiguration takes place

in Master Reconfig and the number of active slaves is then updated through a state transition in the active

slaves counter given by the middle transition system in Figure 6.4.

The transition from Master Motion to Master Coord is taken when the master reaches its waypoint. On

this transition it commands its vehicle supervisor to execute a hold maneuver.

The slave team controller transition system is shown in Figure 6.5. The team controllers of the N − 1
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Master
Coord

Master
Motion

Master
Reconfig

Master
Stop

Active acked/Goto waypoint

Master at waypoint/ǫ

Master timeout/ǫ

ǫ/Reconfigured

Goal reached/Stop slaves

0 1 2 N-2 N-1

Reconfigured/#V=1Reconfigured/#V=0 Reconfigured/#V=N-2

0 1 2 N-1

Ack/#Ack=1 Ack/#Ack=2Ack/#Ack=2

Goto waypoint/ǫ

Goto waypoint/ǫ
Goto waypoint/ǫ

Figure 6.4: The master team controller is the parallel composition of three transition systems.

slaves are identical and denoted

TS1
= · · · = TSN−1

= (QS ,→, IS , OS , InitS ,FinalS).

The states are Slave Coord, Slave Motion, Slave Stop. The initial state is Slave Coord, where the slave

team controller is waiting for the next waypoint from the master team controller. The transition to Slave Motion

is taken when the waypoint is received. On this transition it commands its vehicle supervisor to execute the

goto waypoint maneuver. In Slave Motion the vehicle moves to the designated waypoint. The transition to

Slave Coord is taken if the vehicle reaches the waypoint before the slave timeout expires; otherwise the slave

team controller goes to Slave Stop. On the transition from Slave Motion to Slave Coord an ack is sent to
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the master team controller (together with the corresponding sample) and the vehicle supervisor is commanded

to execute a hold maneuver. The slave team controller may also go to Slave Stop from Slave Coord. This

transition typically takes place when the master has decided that the goal is reached and therefore forces all

slaves to stop. Space limitations preclude a detailed description of the reconfiguration logic.

Slave
Coord

Slave
Motion

Slave
Stop

Goto waypoint/ǫ

Slave at waypoint/Ack

Stop slaves/ǫ

Slave timeout/ǫ

Figure 6.5: Slave team controller.

6.3.4 Vehicle supervisor

The vehicle supervisor interfaces the team controller with the maneuver controllers. The vehicle supervisor

TV = (QV ,→, IV , OV , InitV ,FinalV )

is shown in Figure 6.6, where

• QV = {Idle,Motion,Error,Stop}

• IV = {goto(wi,t), hold(wi,t), doneGoto(sp),MtimeOut, stop, error(.)}

• OV = {waypoint(sp), startGoto(wi,t), startHold(wi,t), error(code), stop, timeOut}

• InitV = Idle and FinalV = Stop

The input and output events model interactions with the team controller and with the maneuver controller:

the supervisor receives the events goto(.) and stop from the team controller to execute a goto maneuver (with

the specified parameters) and to stop the current maneuver respectively; it receives the events doneGoto(.),

error(.) and MTtimeOut from the current maneuver controller to indicate the termination of the current ma-

neuver, the occurrence of an error, or the occurrence of a time out respectively; it sends the events startGoto(.),

startHold(.) and stop to start executing a goto or a hold maneuver and to stop the current maneuver; and it



84
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Error

Stop

Motion

goto(ωi, t)/startGoto(ωi, t)

stop/stop

ǫ/Error(code)

stop/stop

stopHold/ǫ ∨ MtimeOut/timeOut

doneGoto/waypoint(ωi)

Figure 6.6: Vehicle supervisor.

sends the events waypoint(sp), error(code) and timeOut to the team controller to indicate respectively that the

waypoint was reached, that an error of type code has occurred and that time out has occurred. In the absence

of errors, execution alternates between the states Idle and Motion.

Note that there are no clocks in the vehicle supervisor. The reasons for this are that: (i) both the supervisor

and the maneuver controllers reside on the same vehicle and we can therefore assume reliable communica-

tions between them; and (ii) maneuver timeouts are modeled within the maneuver controllers.

6.3.5 Maneuver controller

The aspects of maneuver design are quite dependent on the dynamics of each vehicle. However, and for the

purpose of modularity, maneuver controllers have to conform to a standard interface for the interactions with

the vehicle supervisor. We describe this interface now.

The structure of each maneuver controller is as follows

TC = (QC ,→, IC , OC , InitC ,FinalC)

where

• QC = {Init,Motion,Error,Stop}

• IC = {start(.), stop}

• OC = {done(.), error(code), stop, timeOut}

• InitC = Init and FinalC = Stop
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In the motion state there is a low-level control law which generates references to actuators in continuous

time. In practice, there may exist states other than Motion to encode the maneuver control logic.

6.4 System properties

In this section we show how the team control architecture implements the specification. This is done in a

modular fashion. First, we show that the high level team coordination implemented through the composition

of the master and slave team controllers is consistent with the specification under the assumptions that: 1)

the generation of waypoints and coordination times produces points reachable both in space and time; and

2) the online execution control ensures that these points are indeed reached. Second, we state a set of condi-

tions which ensures that the waypoint generation procedure produces waypoints and coordination times that

are reachable both in time and space. Third, we discuss how the online execution control ensures that the

waypoints are indeed reached under the assumption that the maneuver controllers produce guaranteed results.

Fourth, we discuss the design of maneuver controllers which produce guaranteed results.

This modularity decouples efficiently the behavior of the team from that of the underlying coordination

algorithm.

6.4.1 Team coordination

In this section we define a quotient transition system T/ ∼ for the system T derived from the composition of

the master and slave team controllers. We show that T/ ∼ is isomorphic to the team coordination specification

TSpec in Section 6.2. Since T is bisimilar to T/ ∼ by construction, we conclude that the closed-loop system

based on the composition of team controllers satisfies the specification.

Recall the definition of simulation and bisimulation for transition systems (from [80]).

Definition 6.4.1 (Simulation and bisimulation). Given two transition systems

T1 = (Q1,→, I1, O1, Init1,Final1)

and
T2 = (Q2,→, I2, O2, Init2,Final2),

we say that T2 simulates T1 with relation R ⊂ Q1 × Q2 if (x, y) ∈ R and x → x′ implies that there exists
y′ ∈ Q2 such that y → y′ and (x′, y′) ∈ R. If T1 simulates T2 and T2 simulates T1, we say that T1 and T2

are bisimilar.

The composition of the master team controller

TM = (QM ,→, IM , OM , InitM ,FinalM )
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with N − 1 identical slave team controllers

TS1
= · · · = TSN−1

= (QS ,→, IS , OS , InitS ,FinalS)

is illustrated in Figure 6.3. Recall that to simplify notation we do not distinguish the transition relations, but

the interpretation in each case should be clear from the context. The overall transition system T = (Q,→

, I, O, Init,Final) is given by the parallel composition

T = TM‖TS1‖ . . . ‖TSN−1
.

The state of T is denoted

q = (qM , qS1
, . . . , qSN−1

, k) ∈ Q = QM ×QN−1
S × {0, . . . , N − 1},

where qM is the state of the main part of the master team controller (upper transition system in Figure 6.4),

qSi
is the state of slave i team controller (Figure 6.5), and k is the number of active slaves (middle transition

system in Figure 6.4). (We disregard the lower transition system in Figure 6.4.)

We introduce the quotient transition system T/ ∼= (Q/ ∼,→, I, O, Init/ ∼,Final/ ∼) with equiva-

lence relation ∼⊂ Q×Q, which partitions the state space of T into four equivalence classesQR, QC , QM , QS ⊂

Q (the indices indicate “Reconfiguration”, “Coordination”, “Motion” and “Stop” to highlight the idea behind

the partition). The equivalence classes are defined as follows:

QR =
{
q = (Master Reconfig, q1, . . . , qN−1, ·) ∈ Q : qi ∈ {Slave Coord,Slave Stop}

}

QC =
{
q = (Master Coord, q1, . . . , qN−1, ·) ∈ Q : qi ∈ {Slave Coord,Slave Stop}

}

QM =
{
q = (Master Motion, ·, . . . , ·) ∈ Q

}

QS =
{
q = (Master Stop,Slave Stop, . . . ,Slave Stop, ·) ∈ Q

}
.

Consider four elements qR ∈ QR, qC ∈ QC , qM ∈ QM and qS ∈ QS . The transition relation for T/ ∼ is

then defined as follows:

• qR → qC provided that Master Reconfig→ Master Coord and Slave Coord→ Slave Stop

• qC → qM provided that Master Coord→ Master Motion and Slave Coord→ Slave Motion

• qC → qS provided that Master Coord→ Master Stop and Slave Coord→ Slave Stop
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• qM → qR provided that Master Motion → Master Reconfig, Slave Motion → Slave Coord and

Slave Motion→ Slave Stop

• qM → qC provided that Master Motion → Master Coord, Slave Motion → Slave Coord and

Slave Motion→ Slave Stop.

The inputs I , outputs O, initial states Init/ ∼ and final states Final/ ∼ of T/ ∼ are easily derived from T .

The following result follows from construction with R being the equivalence relation defined previously.

Lemma 6.4.1. T and T/ ∼ are bisimilar.

We next show that T/ ∼ and TSpec are isomorphic. We recall the following definition.

Definition 6.4.2 (Isomorphic transition systems). Two transition systems

T1 = (Q1,→, I1, O1, Init1,Final1)

and
T2 = (Q2,→, I2, O2, Init2,Final2)

are isomorphic if there is a bijection h : Q1 → Q2 such that for all x, y ∈ Q1 it holds that x→ y if and only
if h(x)→ h(y).

In order to relate T/ ∼ and TSpec, we need to identify the inputs of T/ ∼ with the inputs of TSpec. It can

easily be done by relating each transition of T/ ∼ with a transition of TSpec:

• qR → qC corresponds to Team Reconfig→ Team Coord

• qC → qM corresponds to Team Coord→ Team Motion

• qC → qS corresponds to Team Coord→ Team Stop

• qM → qR corresponds to Team Motion→ Team Reconfig

• qM → qC corresponds to Team Motion→ Team Coord.

A suitable bijective map h : Q/ ∼→ QSpec of Definition 6.4.2 is simply the relabelling:

• h(QR) = Team Reconfig

• h(QC) = Team Coord

• h(QM ) = Team Motion
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• h(QS) = Team Stop.

It then follows that T/ ∼ and TSpec are isomorphic. Two transition systems that are isomorphic are obviously

also bisimilar. Since T and T/ ∼ are bisimilar (Lemma 6.4.1) and thus also T/ ∼ and TSpec are bisimilar, we

have the following main result.

Theorem 6.4.2. T and TSpec are bisimilar.

The transition systems T and TSpec are hence equivalent in the sense of a bisimulation relation. The

implementation of the interconnected team controllers will thus satisfies the system specification.

6.4.2 Waypoint generation and online execution control

We have proved that the composition of the team controllers implements the specification under the assump-

tion that the waypoint generation procedure and the online execution control satisfy a set of properties. We

derive these properties in the framework of dynamic optimization.

The dynamic behavior of each vehicle is characterized by the set of reachable states. Recall some defini-

tions of reach sets.

Definition 6.4.3 (Reach set starting at a given point). Consider a trajectory x(.) of a control system ẋ =
f(x, u), u(t) ∈ U(t) departing from {x0, t0}. The reach set R[τ, t0, x0] of the system at time τ , starting at
position and time (x0, t0) is given by:

R[τ, t0, x0] =
⋃
{x[τ ]|u(s) ∈ U(s), s ∈ (t0, τ ]} (6.4.1)

where x[τ ] is the state of the system at time τ when driven by some measurable control u(.) from (x0, t0).

Definition 6.4.4 (Reach set starting at a given set). The reach set at time τ > t0 starting from set X0 is :

R[τ, t0, X0] =
⋃
{R[τ, t0, x0]|x0 ∈ X0} (6.4.2)

Similarly, we can define reach sets for dynamic systems under disturbances and state constraints (see [60,

62, 61]). The definition of reach set under uncertainty is quite useful to model the behavior of underwater

vehicles under bounded disturbances, such as currents. In what follows we use the definition of reach set

given above. However, nothing prevents us from using the other definitions in our approach.

We need some definitions. Let md, rcom, vcom, Br(x), tc, S and m denote respectively the maximum

distance from wi during the hold maneuver, the maximum communication range, the velocity of propagation

for communications, the closed ball of radius r centered at x, the time when the vehicles in V start a new

motion phase, the set of indices for the slave vehicles and the index for the master vehicle.

Recall that each vehicle enters a hold maneuver after reaching its designated waypoint wi.
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Definition 6.4.5 (Admissible generation of waypoints and coordination times). The generation of waypoints
wi and coordination times t1, t2 and t3 is admissible if the following conditions hold

∀i, j, ‖wi − wj‖ ≤ rcom − 2md (6.4.3)

t3 − t2 ≥
2× rcom

vcom
. (6.4.4)

∃tm ∈ [tc, t
+
1 ] : w+

m ∈ R[tm, tc, Bmd
(wm)]. (6.4.5)

∀i ∈ S ,∃ti ∈ [t+1 , t
+
2 ] : w+

i ∈ R[ti, tc, Bmd
(wi)]. (6.4.6)

Condition (6.4.3) ensures that the waypoints satisfy the communication constraints (which must be valid

for the next waypoints); conditions (6.4.5) and (6.4.6) ensure that the master and the slaves reach the new

waypoints within the prescribed time intervals; and condition (6.4.4) ensures that there is time for the com-

munication round trip between each slave and the master.

A verified waypoint generation procedure is one which is admissible. The first two conditions do not

rely on the dynamic properties of the vehicles. The last two conditions, however, require the calculation of

the reach sets for each vehicle. This is a non-trivial task. Dynamic optimization techniques are used in [60]

for this purpose. The observation is that the reach set is the sub-zero level set of a certain value function.

The value function is obtained from the solution of a Hamilton-Jacobi equation. For linear systems with

ellipsoidal constraints duality techniques are used to construct this solution.

The advantage of using value functions for reach set computations is that this approach also enables us to

derive controllers which guarantee that the waypoints are reached. This is in line with the approach proposed

in [68, 96].

The reach set formulation enables us to derive maneuver controllers for the hold and goto maneuvers

which ensure guaranteed results. In these maneuvers, we are basically concerned with controlling the distance

function from the current position of the vehicle to a given waypoint. In this case, we can use the construction

proposed in [59] to calculate the safe set for a one-dimensional pursuit–evasion differential game which is

easily extended to higher dimensional systems. This construction involves the integration of an ordinary

differential equation, which describes how the distance evolves with time, and does not require the integration

of a Hamilton-Jacobi equation.

6.5 Autonomous underwater vehicles in search mission

In this section we show how to implement a search strategy for a team of autonomous underwater vehicles

(AUV) with our control architecture; this basically involves specializing the waypoint generation procedure
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and the maneuver design for this search strategy. We also illustrate these developments with simulation

results.

The problem consists of finding the minimum of a temperature field with a search strategy based on a

fixed-size version of the simplex optimization algorithm introduced in [93].

The underwater operations pose one additional challenge to the general search problem for a team of

vehicles. The challenge comes from the nature of underwater communications. Typically autonomous un-

derwater vehicles use acoustic communications which are quite constrained in range and in bandwidth. This

is basically due to the problems associated with the propagation of sound underwater.

In what follows we consider a team of autonomous underwater vehicles equipped with acoustic modems

for communication and some sensing device to measure some scalar variable, for example temperature.

The simplex algorithm is particularly suited for this challenging application. It is quite simple, robust, and

very effective in finding the extremum of a scalar field from few samples. This leads to feasible requirements

for underwater communications.

What also makes this method appealing is the fact that it allows reasoning about vehicle motion in discrete

terms: indeed the simplex algorithm imposes a discretization of the configuration space which facilitates the

implementation of the proposed hierarchical structure. For example, the conditions for the generation of

admissible waypoints are trivially satisfied with an appropriate choice of the grid size.

For the purpose of clarity we also restrict our search to motions in the horizontal plane.

6.5.1 Simplex algorithm

The simplex optimization algorithm is a direct search method which behaves much like a gradient descent

method but with no explicit gradient calculation. It is typically applied in situations where the gradient

calculations are quite difficult and the computation power is quite limited. This happens, for example, with

scalar fields corrupted by noise. We are interested in executing a search operation for finding the minimum

of a planar field defined over a convex set Ω ⊂ R2 (see Figure 6.7).

The simplex optimization method starts by evaluating the scalar field at the vertices of a three-sided

simplex, placed at an initial guess position. It then proceeds by creating a new simplex, obtained by reflecting

the vertex associated to the sample with higher field value. The reflection is with respect to the line passing

through the two remaining vertices. The algorithm stops when the newly generated simplex coincides with

the simplex generated two iterations before, namely after two reflections step we need to reflect the starting
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d

Figure 6.7: A triangular grid with aperture d over a scalar field depicted through its level curves (dark dashed
lines). The shaded triangle illustrates the simplex location, which evolves on the grid.

vertex. This procedure is formally described below.

1: z(0) := (z1(0), z2(0), z3(0))
2: k := 0
3: while k < 2 ∨ z(k) 6= (k − 2) do
4: i := arg maxi F (zi(k))
5: z′i := zj + zh − zi with j, h ∈ {1, 2, 3} and j 6= h, j 6= i, h 6= i
6: z′j := zj
7: z′h := zh
8: z(k + 1) := (z′1, z

′
2, z
′
3)

9: k := k + 1
10: end while

Algorithm 1: Simplex algorithm.

Consider a triangular grid G ⊂ Ω with aperture d, as depicted in Figure 6.7. Introduce an arbitrary point

p0 ∈ Ω and a base of vectors given by b1, b2 such that bT1 b1 = bT2 b2 = d2 and bT1 b2 = d2 cosπ/3. The grid

is then the set of points

G = {p ∈ Ω| p = p0 + kb1 + `b2, k, ` ∈ Z} .

A simplex z = (z1, z2, z3) ∈ G3 is defined by three neighboring vertices of G, which belong to a triangle. Let

F : Ω → R the scalar field. The reflection rule updates the simplex in the following way. Suppose, without

loss of generality, that F (z3) ≥ F (zi), i = 1, 2. Given a simplex z = (z1, z2, z3) the next simplex is

z+ = (z1, z2, z3)+ = (z1, z2, z1 + z2 − z3) .

The simplex algorithm is summarized as Algorithm 1.
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We see from the condition on line 3 that the algorithm stops at iteration k̄ when z(k̄) = z(k̄ − 2). Since

the algorithm is deterministic, it follows that a continuation after step k̄ would lead to an oscillation between

the two discrete states z(k̄) and z(k̄ − 1).

The main limitation of the simplex algorithm comes from the fact that there no guarantees that a vicinity

of the minimum has been reached when the algorithm stops. However, it can be used as a first strategy to get

close to the minimum.

6.5.2 Waypoint generation

The waypoint generation procedure is based on a modified version of the simplex algorithm. It runs on the

master vehicle and it is invoked to generate the new waypoints after the reception of the measurements from

all the vehicles in the team.

Let assume N = 3. Let us denote with (w1, w2, w3) the current simplex and with (w1, w2, w3)+ the next

simplex. For simplicity of notation we define the reflecting operator

ξ : G3 → G3 : (w1, w2, w3) 7→ γ(w1, w2, w3) = w3 + w2 − w1 ,

that is γ(w1, w2, w3) takes the first argument and computes its reflection with respect to the second and third

arguments. Thus the simplex algorithm can be then described by the map (w+, t+) = φsimplex(w, t, e) where

w ∈ G3 is a simplex, w+ is computed through the reflecting operator and an event e is related to the fact a

vehicle arrived in a neighborhood of the waypoint.

wwk

wi

Figure 6.8: Assignment of the next waypoints for the three AUVs, by the master team controller, when
F (wi) ≥ F (wj) ≥ F (wk).
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Master

Master

Master

Slave

Slave

Slave

(a) (b) (c)

Figure 6.9: Assignment, by the master team controller, of the next waypoints when only one slave AUV is
present.

We observe that the master can compute two steps of the simplex algorithm without knowing the new sam-

ples. Let us assume, without loss of generality that we start with the simplex (w1, w2, w3) such that F (w1) ≥

F (w2) ≥ F (w3). Applying the simplex algorithm we have (w1, w2, w3)+ = (γ(w1, w2, w3), w2, w3). How-

ever in this situation the master can already compute the next simplex. Indeed two situations could occur. The

case F (γ(w1, w2, w3)) ≥ max(F (w2), F (w3)) implies that (γ(w1, w2, w3), w2, w3) = (w1, w2, w3), and

thus the algorithm stops. Otherwise we compute the reflected waypoint of w2 with respect to γ(w1, w2, w3)

and w3. We have that the transition

Team Coord
Active acked

/
(w1,w2,w3)+

−−−−−−−−−−−−−−−−−→ Team Motion (6.5.1)

is such that

(wi, wj , wk)+ = (wk, γ(wi, wj , wk), γ(wj , wk, γ(wi, wj , wk)))

with F (wi) ≥ F (wj) ≥ F (wk). The situation is represented in Figure 6.8.

The algorithm can be easily modified to incorporate the reconfiguration logic discussed in the previous

section. This happens when one the slave vehicles is not able to reach its designated waypoint. Notice that the

master keeps track of the field values for the previous simplex. This is enough to compute the next simplex.

The waypoint assignment for two vehicles is as shown in Figure 6.9.

6.5.3 Maneuver controller design

We design the maneuver controllers in the framework of hybrid automata. We present the maneuver controller

for the goto maneuver. Due to space limitations we embed a simplified design of the hold maneuver controller
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as a state of this controller, in order to fully illustrate the control logic. The hybrid automaton model of the

goto maneuver controllers is depicted in Figure 6.10. The continuous state space is X ⊆ R4 since we have

the state of the vehicle (x, y, ψ)T and the time t.

Hold

t := 0

Stop vehicle ∧startHold(wi)
/
ǫ

Straight

Turn CW

Turn CCW

startGoto(wi, t̄) ∧ |ψ − ψw| ≤ π
/
ǫ

startGoto(wi, t̄) ∧ |ψ − ψw| > π
/
ǫ

‖(x, y)T − w+‖ < rtol
/
(doneGoto, (x, y)T )

t > t̄
/
MtimeOut

|ψ − ψref | < δ/ǫ

|ψ − ψref | < δ
/
ǫ

t > t̄
/
MtimeOut

t > t̄
/
MtimeOut

Figure 6.10: Hybrid automaton model of the maneuver controller.

The system starts in the Hold state. In this state the controller maintains a constant velocity with a fixed

turn rate so that the vehicle follows a circular trajectory; this is because the vehicle is not capable of hovering

in place. If the vehicle supervisor sends a startGoto(w+
i , t̄) command, then the maneuver controller of

vehicle i needs to steer the vehicle tracking a trajectory of the type shown in Figure 6.11. Depending on

the heading of the vehicle with respect to the final waypoint, the system will transition to state Turn CW or

to state Turn CCW, turning clockwise or counter clockwise, respectively, with maximum angular velocity

Figure 6.11. When the angle of the vehicle ψ is close to the angle ψref the vehicle switches to the Straight

state. The value of ψref is chosen such that in state Straight the controller will make the vehicle follow a

straight line passing through the next waypoint. When the distance between the vehicle and the final waypoint

w+
i is less than a given threshold, rtol, the maneuver controller returns to the Hold state maintaining the

vehicle close to this waypoint. If the vehicle is not able to finish the startGoto(.) maneuver by time t̄ an

error signal is communicated to the vehicle supervisor. In case of success a doneGoto together with the

sample taken at the waypoint are sent to the vehicle supervisor.

This is a very simple, though instructive, example of how to build a maneuver control for this type of
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x

y

‖w+ − w‖
ψw

ψw,w+

ψref

rmin

w

w+

Figure 6.11: Example of a vehicle trajectory linking w to w+.

architecture. Complex control strategies, such as those discussed in [91], could be easily considered in this

framework. The same applies to the techniques proposed in [2] to counteract the action of disturbances, such

as currents.

6.5.4 Simulations results

Computer simulations were performed to illustrate the behavior a team of AUVs operating under the proposed

hierarchical control structure. We considered the simplex based search with three AUVs in a time-varying

planar scalar field (which could represent salinity, temperature, etc.).

Figure 6.12 shows four snapshots of the evolution of the AUVs’ positions in a scalar field. The field is

quadratic with additive white noise and a constant drift of (−0.4, 0) m/s. The approximately ellipsoidal lines

are the level curves of the scalar field. Notice that we have added noise to the measurements, which is the

reason why the level curves are not smooth. The simulation starts with the AUVs at the desired depth and at

the vertices of a predefined initial simplex w = ((100, 50), (122, 62), (100, 75)). Figure 6.12(a) shows the

initial trajectory of the AUVs. The grid implicitly imposed by the simplex algorithm is illustrated in this plot.

The multi-vehicle system completes the search procedure after 135 s.

Figure 6.13 shows another scenario for the evolution of three AUVs towards the extremum of the scalar

field. The initial simplex is w = ((400, 300), (422, 312), (400, 275)). The figure is labeled with the discrete

states of the team controllers (TC), vehicle supervisors (VS) and maneuver controllers (MC) for different

phases of the operation. During the progression, one of the AUVs fails to reach its waypoint (this is the AUV
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(a) AUVs’ trajectories after the first iteration.
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(b) Situation after 70 seconds.
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(c) Situation after 100 seconds.
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(d) Search mission completed after 135 seconds.

Figure 6.12: Simplex coordination algorithm executing a search in a noisy quadratic field with drift.

performing the dotted trajectory in this figure). The other two AUVs reach their corresponding waypoints

and wait there until the timeout occurs. Note the circular trajectories of these two AUVs while waiting. At

timeout, the system is reconfigured and the team, now composed of two vehicles, proceeds with the execution

of the search. The team is able to progress towards the extremum of the field, despite the failure of one of the

vehicles.

6.6 Conclusions

We presented a design of a hierarchical control architecture for coordinated multi-vehicle operations. The

design space is large and heterogeneous. We structure the space by first decomposing it into waypoint gener-

ation and online execution control. The waypoint generation procedure generates the waypoints for the team

to search for the minimum of a scalar field under dynamic and communication constraints and in accordance

to a given optimization algorithm. Execution control is organized as a three level hierarchy of team controller,
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(a) One step of the search algorithm
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(b) The vehicle with the dotted trajectory does not reach the assigned
waypoint

+

Reconfig.
Veh

fail

TC:M
VS:M
MC:S

TC:C
VS:M
MC:H

TC:C
VS:M
MC:H

(c) Reconfiguration and continuation of the search algorithm

Figure 6.13: Trajectories of three AUVs (solid, dotted, dash-dot) moving towards the minimizer of a scalar
field. The stars correspond to the generated waypoints. Note the reconfiguration after a vehicle failure. The
convention for describing the state of the controllers is as: M−Motion;C−Coord;S−Straight;H−Hold.

supervisor, and maneuver controller.

It is shown that the controller implementation is consistent with the system specification on the desired

team behavior. This is done in a modular fashion by layering the execution control and designing each layer to

ensure that the controllers produce guaranteed results under the assumption that the controllers at the adjacent

layers also produce guaranteed results.

Computer simulations illustrate the overall system performance for a multi-vehicle search mission which

is motivated by the classical simplex optimization algorithm. This example illustrates the specialization of

the design to a specific application. Basically this involves specializing the waypoint generation procedure
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according to the coordination strategy and the maneuver controllers according to the specific dynamics of

each vehicle.



Chapter 7

Conclusions

In this work we introduced a modeling framework and a control framework for systems with coupled com-

putational and physical dynamics. These developments are targeted at the deployment of the next generation

of networked vehicle systems in remote and communications-challenged environments. The focus will be

on systems endowed with organizational properties that transcend the capabilities of each constituent sub-

system. In this chapter we first summarize what has been accomplished and discuss future research.

7.1 What has been accomplished

The main contribution of this dissertation is the development of a model and of a control framework for net-

worked vehicle systems composed of physical and computational entities with coupled dynamics. This model

introduces a new perspective on the operation of networked vehicle systems and presents a methodology to

implement complex organizations to control these systems. The model highlights the coupling between com-

putational and physical entities and provides a uniform analysis and design framework. The model is not

specific to networked vehicle systems and may help to shed a new perspective on cyber-physical systems [4].

The developments in this thesis were motivated by real applications and are targeted at a new genera-

tion of networked vehicle systems. A description of what has been accomplished would not be complete

without a reference to the developments and field experiments of the Laboratório de Sistemas e Tecnolo-

gias Subaquáticas of Porto University. Real vehicles and operational deployments provide the ultimate test

of our developments. This is already happening, as described in subsection 1.4.3, and future deployments

are already in preparation. In a recent experiment, which took place during the REP14–Atlantic exercise,

an UAV was able to control, in a feedback manner, a submerged AUV. This was done with the help of an

99
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ASV, a Wave Glider, carrying a Manta gateway to bridge acoustic and wireless communications. The three

unmanned vehicles formed an organization with unprecedented capabilities.

The modeling framework highlights the coupling of computational and physical dynamics and the new

types of control actions, such as the migration of controllers. This is described in extended state-spaces and

control spaces allowing us to express formal specifications in the languages of attainability, invariance, and

optimization.

The control and computational framework for organizations of networked vehicles systems allows a sys-

tematic design methodology within which properties of the organization can be proved to satisfy formal re-

quirements. The framework encompasses a control and computation architecture and a design methodology.

The architecture derives from a few design principles and is implemented with the help of a few mechanisms.

The design methodology introduces a compositional layered approach to control and computation that is

uniform for all vehicles.

The optimization of the behavior of networked vehicle systems is addressed in the framework of iterated

multi-vehicle rendezvous problems with coordination constraints. This is because of intermittent communi-

cations. The structure of multi-vehicle rendezvous problems allows a structured application of the principle

of optimality which results in coordinated optimization problems formulated in lower-dimensional spaces.

Structure induces the composition of value functions in these lower-dimensional spaces, thus avoiding the

problem of working in the product of the space states for all vehicles. The same structure of problem, namely

that of the associated cost functions, may preclude the application of the principle of optimality. This is also

studied in this work.

7.2 Directions for future research

This work opens several directions for future research. Some of them address modeling frameworks, others

concern fundamental developments in control, optimization, and computation, others concern operational

deployments and associated software frameworks, and others relate to applications in other fields. Some of

these developments are already underway at the LSTS.



101

7.2.1 Modeling framework

There are several directions for future research on modeling frameworks for networked vehicle systems. First,

the interplay between physical and logical communication channels, and the consideration of channel capac-

ity. Second, the migration mechanism for computational entities. Third, the composition of organizations of

networked vehicle systems. Fourth, mechanisms for self-aware and self-guided migration of computational

entities.

7.2.2 Dynamic optimization

There are several directions for future research in dynamic optimization. First, the investigation of other col-

laborative control problems in the Dynamic Programming framework. Second, the derivation of conditions

under which the Principle of Optimality holds for cooperative control problems with intermittent commu-

nications. Third, the generalization of the results leading to coordination and control formulations in lower

dimensional spaces; this will be done in the framework of structured principles of optimality and decompos-

ability. Fourth, a comprehensive dynamic optimization formulation to encompass the extended control and

state spaces discussed in this work. Fifth, the development of approximate numerical methods for solving the

Hamilton-Jacobi-Bellman equation. Sixth, the derivation of conditions for the convergence of the controls

derived from the Hamilton-Jacobi-Equation. Seventh, we the investigation of turnpike theory in connection

to problem of the controlled modification of cost functions. Finally, we will also investigate how to remove

the more restrictive assumptions used in our developments.

7.2.3 Control architectures

The techniques used to develop a verified control architecture by design will be extended to accommodate

more complex requirements for a networked vehicle systems. These include persistent operations and control

of organizations.

7.2.4 Software frameworks

The LSTS software tool chain, briefly described in subsection 1.4.2, is a work in progress targeted at the

deployment of our computation and control frameworks. Work is already underway to deploy mobile con-

trollers in our vehicle networks. A prototype of a programming language for distributed control of multiple

autonomous vehicles, called the Networked Vehicles Language (NVL), has already been deployed. A NVL
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program runs on a dynamic network environment, specifying on-the-fly selection of vehicles and their en-

gagement to multi-vehicle controllers. The language defines primitives for vehicle selection, concurrent

controller execution, timed synchronization, and general program control flow. The language assumes the

two phase approach for coordination introduced in Chapter 6.

7.2.5 Other fields

A generic description of the controlled networked vehicle systems under discussion is required. These are sys-

tems where computational and physical entities form complex organizations with the help of a few fundamen-

tal mechanisms. Physical entities lodge computational entities and have access to physical communications

that depend on relative distances to other physical entities. Physical communications allow logical commu-

nication channels. Computational entities are created and destroyed on the fly and are allowed to migrate, as

messages, between physical entities. Computational and physical entities form organizations. Organizations

can be addressed and controlled as a whole. Organizations exist because of communications, access control,

and specialized controllers. Organizations embody functions required to move, to communicate, to coordi-

nate, and to respond to external interactions. This generic description is not specific to networked vehicle

systems. These mechanisms occur in natural systems and in man-made systems/organizations. Of special

interest are cyber-physical systems [4].

This work may contribute to new insights in other fields such as biology, ecology, and social sciences.

We need to select a few case studies from these fields for analysis. This requires a highly inter-disciplinary

approach. Some of the underlying assumptions and modeling simplifications may have to be challenged. In

the process computation, control, and communication mechanisms of value to networked vehicle systems

may be identified.
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Appendix A

LSTS vehicle systems

A brief description of the vehicle systems designed and developed by LSTS follows.

Light Autonomous Underwater Vehicle (LAUV). This is a torpedo shaped vehicle with one propeller and

4 control fins which is available in several configurations. The maximum operating depth is 100m. The

maximum speed is 2 m/s and the maximum distance that can be traveled on a battery charge is over 50km.

The LAUV class vehicles are equipped with GPS/WiFi/GMS/Iridium communications, several types of side-

scan sonars (Yellowfin from Imagenex, Marine Sonics and 2205 from Edgetech), multi-beam sonars (DeltaT

from Imagenex), acoustic modems (Evologics and Micro-modem from Woods Hole), environmental sensors

(CTD, chlorophyll, velocity of sound, backscatter), video cameras, and imaging sonars (Blueview P900)

and profiling sonars (Imagenex) for obstacle avoidance. Two navigation suites are available for the LAUV

class vehicles: 1) Long baseline navigation, which relies on pre-positioned external beacons; and 2) Inertial

navigation, which relies on tactical grade Inertial Measurement Units (Honeywell 1700) and Doppler Velocity

Log (Linkquest), thus making the vehicle independent of external navigation aids. External beacons and/or

acoustic modems (Evologics and Micro-modem) are available for AUV navigation.

Figure A.1: Light Autonomous Underwater Vehicle.
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Swordfish autonomous surface vehicle. This is a 4.5m long catamaran based platform equipped with com-

puters, electric motors and sensor systems mounted on the twin hulls for autonomous operation. The maxi-

mum speed is 4m/s and the endurance is in the order of 6 hours. Swordfish is equipped with GPS/WiFi/GMS/Iridium

communications, AIS, several types of side-scan sonars (Yellowfin from Imagenex, Marine Sonics and 2205

from Edgetech), environmental sensors (CTD, chlorophyll, velocity of sound, backscatter), video cameras,

imaging sonars (Blueview P900), and radar for obstacle avoidance. Navigation is based on a GPS compass

and on an Inertial Measurement Unit (Honeywell 1700).

Figure A.2: Swordfish Autonomous Surface Vehicle.

Remotely operated vehicle Adamastor. This is a modular ROV for underwater inspection and intervention.

It has advanced thrust and power control for operations at sea. Dimensions: 120 x 70 x 90 cm; weight: 90

kg; 5 Seaeye SI-MCT01 Thrusters; max operating depth: 200m; Power: 3Kw. It has a video camera and a

2-degree of freedom robotic arm for interventions. A ROV from Deep Ocean Engineering is also available.

Figure A.3: Adamastor Remotely Operated Vehicle.
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Manta gateways The Manta Gateway is a portable centralized communication hub supporting several

types of wireless and acoustic networks. The system is capable of transparently route data between hetero-

geneous network links, balancing bandwidth and range. Additionally the device is capable of providing in-

formation about the localization of underwater vehicles and narrow band acoustic transponders. The gateway

can be mounted on the buoys. It supports up to three 12V power over Ethernet radios connected at the same

time; provides 10 hours of autonomy (with two radios); and runs open-source GLUED Linux distribution and

SDK.

Figure A.4: Light Autonomous Underwater Vehicle and Manta communications gateway.

Shore side control station. The shore side control stations are based on networks computers with addi-

tional support for communications (WiFi, GSM, acoustic, satellite).

Figure A.5: Command and control interfaces.

X8 mini-UAS. The X8 is fixed wing, battery powered, hand-launched, with a wingspan of 1.8m, maximum

takeoff weight (MTOW) of 3Kg, and 50 minutes endurance.
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Figure A.6: X8 Unmanned Air Vehicle.

Antex -UAS. The Antex is a family of fixed wing, combustion engine UAS with wingspans ranging be-

tween 2.4m and 6m, maximum takeoff weight (MTOW) between 12kg and 150kg, and up to 12hours en-

durance. These vehicles are under development in the framework of the PITVANT project, a 7 year collab-

orative UAS development program undertaken by the Portuguese Air Force Academy and Porto University

with funding from the Portuguese Ministry of Defense.



Appendix B

Non-smooth analysis background

B.1 The first constructs

B.1.1 Dini derivatives

The increasing sophistication of control and optimization methods has been a strong motivation for the devel-

opment of nonsmooth calculus and the latest developments (see for example [84], [16]) in this field exhibit a

great potential for control theory and applications.

Nonsmooth calculus has been in the mind of mathematicians since the last century. The first constructs

of nonsmooth analysis were introduced by Dini in the 19th century. One of this constructs is the lower right

derivative.

Definition B.1.1 (Lower right derivative). Let f be a continuous function f : < → R. The lower right
derivative at a point x, denoted Df(x), is defined as:

Df(x) := lim
t↓0

inf
f(x+ t)− f(x)

t

The extension of this concept to a larger class of functions, briefly sketched in the following subsection,

illustrates one route to nonsmooth calculus.

B.1.2 Subderivatives and D-subgradients
Definition B.1.2 (Subderivative). Given a function f ∈F(Rn) : Rn → R and a vector v ∈ R, the subderiva-
tive of f at x in the direction of v, denoted Df(x;v) is defined as:

Df(x; v) := lim
t↓0
v′→v

inf
f(x+ tv′)− f(x)

t
(B.1.1)

Proposition B.1.1 (Properties of the subderivative). :

1. The function v 7→ Df(x; v) is lower semicontinuous.
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2. If f is Lipschitz of rank K near x, then the function v 7→ Df(x; v) is Lipschitz of rank K on Rn and:

Df(x; v) := lim
t↓0

inf
f(x+ tv)− f(x)

t

Definition B.1.3 (D-subgradient). Let f ∈F(Rn). Then ξ is the directional subgradient or D-subgradient of
f at x provided that x ∈ dom f and:

Df(x; v) ≥ 〈ξ, v〉,∀v ∈ Rn

Definition B.1.4 (D-subdifferential). Let f ∈F(Rn). The set of all D-subgradients ξ is the D-subdifferential,
denoted by ∂Df(x)

Proposition B.1.2 (Properties of the D-subdifferential). :

• ∂Df(x) is closed and convex and reduces to {f ′(x)} if f is Frechet differentiable at x.

• ∂Df(x) is bounded if f is Lipschitz near x.

• ∂Df1(x) + ∂Df2(x) ⊆ ∂D(f1 + f2)(x)

These constructs incorporate some of the main ingredients for developing a nonsmooth calculus:

• Extended notions of limits in the definition of derivatives and defining different types of calculus.

• Set-valued gradients and, as a consequence, a set-valued calculus.

• Geometric interpretation where one can expect some forms of duality.

B.2 Proximal calculus

B.2.1 Introduction

Proximal normals are direction vectors pointing outward from a set, generated by projecting a point to the

set.

Proximal subgradients have a certain local support property to the epigraph of a function. Namely, the

proximal gradient of a lower semicontinuous function f at x ∈ dom f is, within an appropriate scaling factor,

a component of the proximal normal to the epigraph of the function at the point (x, f(x)).

The geometric interpretation of these concepts is intimately related to the properties of:

• The projection of a point on a set.

• The distance function.
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Here, we present the proximal calculus in the Hilbert space setting. First, the main definitions (proximal

normals and proximal subgradients) and some of the proximal calculus rules are introduced. Next, we discuss

an important fact: the proximal subdifferential can be empty at some points. In fact, at each point, the

existence of the proximal subdifferential can be interpreted in terms of a quadratic function that approximates

the original function from below. However, a profound result, the density theorem, asserts the existence

of proximal subdifferentials on a dense set. This result is then used to deduce two minimization principles

asserting that, by adding a certain small perturbation to a bounded from below lower semicontinuous function

defined on a compact set a minimum is always attained. Obviously, this is not always the case for infinite

dimensional systems. The existence of this minimum is interpreted by the inclusion of the zero vector in the

subdifferential of the perturbed function at the minimum. These minimization principles are then contrasted

with the celebrated Ekeland’s theorem, a result of the same nature whose proof relies on an interesting notion

of partial order. The existence of proximal subdifferentials is a recurrent operational difficulty that can also

be addressed in the context of limiting processes, discussed in the last subsection of this section. Devices

obtained through limiting processes solve the existence problem and, moreover, contribute to the enlargement

of the proximal subdifferential in some cases. To conclude, the nonexistence of proximal subdifferential at

some points does not prevent the application of proximal analysis.

B.2.2 Proximal normals

Let X be a real Hilbert space, and let S be a non-empty closed subset of X. In this section the focus is on

closed sets.

Definition B.2.1 (Projection of a point on a set). Consider a point x /∈ S. Suppose that there exists a point s
in S whose distance to x is minimal. Then s is the projection of x onto S. See figure B.2.3 for the geometric
interpretation. The set of all those points is denoted by projS(x):

s ∈ projS(x) ⇐⇒
(
{s} ⊂ S ∩B(x; ‖ x− s ‖)

)
∧ (S ∩B(x; ‖ x− s ‖) = ∅) (B.2.1)

Definition B.2.2 (Proximal normal). A vector ξ ∈ X is a proximal normal to S at s provided there exists
t > 0 so that dS(s + tξ) = t ‖ ξ ‖. The set of all proximal normal vectors to S at s is denoted by NP

S (s).
Moreover:

If s /∈ S,NP
S (s) is undefined.

If s ∈ S : ∀x ∈ X\S, s /∈ projS(x), then NP
S (s) = {0}

Remark B.2.1. In finite dimensions the existence of closest point is ensured since S is closed. In infinite
dimensions existence is more subtle.

Definition B.2.3 (Distance function).

dS : X → < : dS(x) := inf{‖ x− s ‖: s ∈ S}.
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B.2.3 Properties of the proximal normals
Proposition B.2.1. Let S be a non-empty subset of X, and let x ∈ X, s ∈ S. The following are equivalent:

1. s ∈ projS(x);

2. s ∈ projS(s+ t(x− s))∀t ∈ [0, 1];

3. dS(s+ t(x− s)) = t ‖ x− s ‖,∀t ∈ [0, 1];

4. 〈x− s, s′ − s〉 ≤ 1
2 ‖ s′ − s ‖2 ∀s′ ∈ S.

Proposition B.2.2. Let S be a closed subset ofRn. Then, projS(x) 6= ∅ for all x and the set {s ∈ projS(x) :
x ∈ Rn\S} is dense in bdry S.

Proposition B.2.3 (Proximal normal inequality). Consider:

1. A vector ξ ∈ NP
S (s) ⇐⇒ ∃σ = σ(ξ, s) ≥ 0 st:

〈ξ, s′ − s〉 ≤ σ ‖ s′ − s ‖2 ∀s′ ∈ S. (B.2.2)

2. ∀δ > 0 : ξ ∈ NP
S (s) ⇐⇒ ∃σ = σ(ξ, s) ≥ 0 :

〈ξ, s′ − s〉 ≤ σ ‖ s′ − s ‖2 ∀s′ ∈ S ∩B(s; δ) (B.2.3)

Remark B.2.2. From the previous proposition it is easy to conclude that NP
S (s) is convex. However, it may

be neither open nor closed.

Remark B.2.3. The properties of proximal normals are illustrated in figure B.2.3.

• s2, s3, s4 ∈ projS(x2)

• The existence of an infinite number of balls tangential to s4 with centers lying in the line x2 − s4

ensures the existence of the proximal normal at point s4.

• The same reason explains the inexistence of a proximal normal at point s1.

• Proximal normals at point s5 define a multi-directional cone.

B.2.4 Constrained optimization

The concept of proximal normal generalizes two classical definitions. Consider a closed subset S ⊂ Rn that

admits a representation of the form:

S = {x ∈ Rn : hi(x) = 0, i = 1, 2, ..., k}, where hi : Rn → R is C1 (B.2.4)

Proposition B.2.4. Let s ∈ S, where S is given by the previous expression, and assume that the set of vectors
{∇hi(s)}(i = 1, 2, ...) is linearly independent. Then:

• NP
S (s) ⊆ span{∇hi(s)}(i = 1, 2, ..., k).
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Figure B.1: Proximal normals and projections

• If, in addition, each hi is C2, then equality holds in the previous expression.

Proposition B.2.5. Let S be closed and convex. Then:

• ξ ∈ NP
S iff 〈ξ, s′ − s〉 ≤ 0,∀s′ ∈ S

• If X is finite dimensional and s ∈ bdry(S), then NP
S (s) 6= {0}.

B.2.5 Proximal sub-gradients
Definition B.2.4 (Proximal subgradient). Consider θ : Rn → (−∞,∞] ∈F . A vector ξ ∈ Rn is a proximal
subgradient of θ at x provided (ξ,−1) ∈ NP

epiθ(x, θ(x)). Note that epi θ is a closed subset of Rn+1.

Definition B.2.5 (Proximal subdifferential). The set (that can be empty) of all proximal subgradients of θ(.)
at x is denoted by ∂P θ(x). If x /∈ domθ, then ∂P θ(x) = ∅ by definition.

Next we provide an operational definition of the proximal sub-gradient:

Theorem B.2.6. [Proximal subgradient inequality] Let f ∈F . Then ξ ∈ ∂P f(x) ⇐⇒
∃σ, η : f(y) ≥ f(x) + 〈ξ, y − x〉 − σ ‖ y − x ‖2,∀y ∈ B(x; η) (B.2.5)

Remark B.2.4 (Geometric interpretation). The proximal subgradient inequality asserts the existence of a
parabola p(y) = f(x) + 〈ξ, y − x〉 − σ ‖ y − x ‖2,∀y ∈ B(x; η) which “locally fits” under epi f at (x, f(x)).
Remark B.2.5 (Properties of proximal subdifferentials). These are illustrated in figure B.2.3:

• At point x1 the proximal subdifferential is a single vector.

• At point x2 the proximal subdifferential is a closed cone.

• At point x3 the proximal subdifferential is an unbounded set. To see this, note that the subgradient can
be depicted as the set resulting from the projection, into the x domain, of vectors lying in the normal
cone and such that the z component is -1. Obviously, the projections of vectors approaching the dashed
horizontal line tend to infinity.
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Figure B.2: Proximal sub-gradients

The following corollary establishes relations with Gateaux and Frechet differentials:

Corollary B.2.7. Let f ∈F and U ∈ X be open.

1. If f is Gateaux differentiable at x ∈ U then:

∂P f(x) ⊆ {f ′G(x)}, where f ′G(x)designates the Gateaux derivative (B.2.6)

2. If f ∈ C2(U), then:
∂P f(x) = {f ′(x)},∀x ∈ U (B.2.7)

3. If f is convex, then:
f(y) ≥ f(x) + 〈ξ, y − x〉,∀y ∈ X (B.2.8)

Corollary B.2.8. Suppose f ∈F .

1. If f has a local minimum at x, then 0 ∈ ∂P f(x).

2. Conversely, if f is convex and 0 ∈ ∂P f(x), then x is a global minimum of f.

Remark B.2.6. The proximal subgradient provides a “one-sided” characterization of a lower semi-continuous
function. The corresponding notion for upper semi-continuous functions is the proximal supperdifferential
∂P f(x)

Definition B.2.6 (Superdifferential). Let f be upper semicontinuous. Then ∂P (x) denotes the superdifferen-
tial of f at x:

∂P (x) := −∂P (−f)(x) (B.2.9)

Remark B.2.7. It is legitimate to ask about the additional information provided by the supperdiferential. The
following proposition answers part of the question.

Proposition B.2.9. Let U ⊂ X be open, x ∈ X, f : U → R be continuous and both ∂P (f)(x) and ∂P (x)
be nonempty. If f is Frechet differentiable at x, then ∂P (f)(x) = ∂P (x) = {f ′(x)}
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B.2.6 The density theorem

This section is entirely dedicated to the density theorem, an important result stating that the set dom(∂P f ) of

points in dom f at which at least one proximal subgradient exists is dense in dom f. This result has important

operational applications.

Theorem B.2.10 (Density Theorem). Suppose f ∈F . Let x0 ∈ dom f, and let ε > 0 be given. Then there is
a point y ∈ x0 + εB:

1. ∂P f(y) 6= ∅

2. f(x0)− ε ≤ f(y) ≤ f(x0).

In particular, dom(∂P f ) is dense in dom f.

Remark B.2.8. The proof for the finite dimensional X is quite simple. For the infinite dimensional the proof
technique is based on an interesting inductive procedure that generates an infinite sequence of sets satisfying
relative set inclusions. The completeness of the underlying space ensures the existence of the minimizer that
is generated by the intersection of all sets in the sequence.

B.2.7 Minimization principles

For infinite dimensions a lower semicontinuous function defined on a closed bounded set (with respect to

the strong topology) may not attain a minimum. In certain situations, an arbitrary small perturbation of the

function will attain a minimum.

The Stegall and Borwein-Preiss minimization principles, presented next, can be derived as a consequence

of the proximal analysis of inf-convolutions. Inf-convolutions are used to generate small perturbations to a

function. The proof of both principles is a direct application of theorem B.2.11.

Definition B.2.7 (Inf-convolution). The inf-convolution of a function two functions f,g is the function h
defined as:

h(x) := inf
y∈X

[f(y) + g(x− y)] (B.2.10)

Remark B.2.9. A special case of inf-convolutions is the function fα := infy∈Rn [f(y) + 1
2α2 ‖ y− x ‖2] that

is known, in classical convex analysis, as the ‘Iosida-Moreau regularization’ of the (convex) function f.

Definition B.2.8 (Minimizing sequence). {xi} is a minimizing sequence for an infimum of the type infx∈S g(x)
provided that all points xi ∈ S and satisfy limi→∞ g(xi) = infx∈S g(x)

Theorem B.2.11. Suppose that f ∈F is bounded below by some constant c, and fα is the inf-convolution of
the function f. Then fα is bounded below by c, and is Lipschitz on each bounded subset of X (and in particular
is finite valued). Furthermore, suppose x ∈ X is such that ∂P fα(x) 6= ∅. Then, there exists a point y ∈ X
satisfying the following:

1. If {yi} ⊂ X is a minimizing sequence for the infimum in B.2.10, then limi→∞yi = y

2. The infimum in B.2.10 is attained uniquely at y.
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3. The Frechet derivative f ′α(x) exists and equals 2α(x − y). The proximal subgradient ∂P fα(x) is the
singleton {2α(x− y)}.

4. 2α(x− y) ∈ ∂P f(y).

Theorem B.2.12 (Stegall’s minimization principle). Let f ∈F and suppose that f is bounded below on the
bounded closed set S ∈ X , with S ∩ dom f 6= ∅. Then, there exists a dense set of points x in X having the
property that the function y 7→ f(y)− 〈x, y〉 attains an unique minimum over S.

Theorem B.2.13 (Borwein and Preiss minimization principle). Let f ∈F be bounded below, and let ε > 0.
Suppose that x0 is a point satisfying

f(x0) < inf
x∈X

f(x) + ε

Then:
∀λ,∃y, z : ‖z − x0‖ < λ, ‖y − z‖ < λ, f(y) ≤ f(x0)

and having the property that the function:

x 7→ f(x) +
ε

λ2
‖x− z‖2

has an unique minimum at x=y.

Remark B.2.10. The conclusion of this theorem is strongly dependent on the given point x0.

Remark B.2.11. Another important result along these lines is Ekeland’s theorem (see [14]).

Theorem B.2.14. Let X be a complete metric space with associated metric ∆ and let F ∈F be bounded
below. If u is a point in X satisfying:

F (u) ≤ inf F + ε (B.2.11)

for some ε > 0, then, for every λ > 0 there exists a point v in X such that:

1. F (v) ≤ F (u)

2. ∆(u, v) ≤ λ

3. For all w 6= v in X, one has F (w) + ε
λ∆(w, v) > F (v).

Remark B.2.12. The proof of this theorem is an interesting application of the following definition of partial
order. To some extend, the technique resembles the one used to prove the density theorem B.2.10.

Definition B.2.9. For any α > 0 define a partial ordering ≤α on X ×R by (see figure B.2.7):

(v1, r1) ≤α (v2, r2) ⇐⇒ r2 − r1 + α∆(v1, v2) ≤ 0 (B.2.12)

Proposition B.2.15 (Properties of the partial order). :

• This relation is reflexive, antisymmetric and transitive.

• ∀(v1, r1) ∈ X ×R, the set :
{(v, r) : (v1, r1) ≤α (v, r)}

is closed.

Lemma B.2.16. Let S be a closed subset of X × R such that, for some scalar m, every element (v,r) of S
satisfies r ≥ m. Then, for every (v1, r1) in S, there exists an element (v, r) satisfying (v1, r1) ≤α (v, r)
which is maximal in S for the ordering ≤α.
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Figure B.3: Proof of Ekeland’s theorem

Proof. The intuition for the proof is easily captured by picture B.2.7 . The idea is to construct a sequence
{(vn, rn)} in S by induction, starting with (v1, r1), where:

Sn := {(v, r) ∈ S : (vn, rn) ≤α (v, r)}

mn := inf{r : (v, r) ∈ Sn for some v}
Clearly mn ≥ m. Define (vn+1, rn+1) to be a point of Sn such that:

rn − rn+1 ≥
1

2
(rn −mn)

The sets Sn are closed and nested. A limiting argument yields the result.

To prove Ekeland’s theorem just take S := epif and apply the lemma with α = ε
λ

B.2.8 The distance function

The properties of the distance function are now examined in the context of proximal analysis. For the cor-

responding analysis in terms of generalized gradients see [14]. The following theorems are the geometric

analogues of the minimization principles discussed in the previous subsection.

Consider a nonempty closed set S.

Theorem B.2.17. Suppose x /∈ S and ξ ∈ ∂P dS(x). Then there exists a point s ∈ S so that the following
holds:

1. Every minimizing sequence {si} ⊂ S of infs∈S ‖s− x‖ converges to s.

2. The set of closest points projS(x) in S to x is the singleton {s}.

3. The Frechet derivative d
′

S(x) exists, and {ξ} = ∂P dS(x) =
{

x−s
‖x−s‖

}

4. ξ ∈ NP
S (s)

Remark B.2.13. The proof of this theorem consists of an elegant application of inf-convolutions and theorem
B.2.11. The result follows from the consideration of the definitions of:
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• Proximal subgradient for the distance function dS .

• The quadratic inf-convolution of the function

IS(x) : d2
S(y) = inf

z∈X
{IS(z) + ‖z − y‖2}

Remark B.2.14. The uniqueness of the projection and of the subgradient has a very interesting geometric
interpretation in terms of the properties of the multi-function projS .

Suppose a given point x /∈ S has two projections s1, s2 in S. Consider the epigraph of the distance
function. Then, there are two directions of decrease for the distance function. The decrease along these lines
is linear. These, can be interpreted as directions for the corresponding subgradients (if any). In the space
where the epigraph lives this means that the point (x, dS(x)) is the vertex of a polygon. This prevents the
existence of quadratic approximations to the epigraph at this point.

Corollary B.2.18. Suppose S ⊂ X is closed.

• There is a dense set of points in X\S which admits unique closest points in S.

• The set of points s ∈ bdryS for which NP
S (s) 6= {0} is dense in bdry S.

Remark B.2.15. The next proposition has important applications in solving constrained optimization prob-
lems of the form:

min
s∈S

f(s) (B.2.13)

where, f ∈F and S is a closed set S.
The exact penalization technique, described next, transforms this problem into a unconstrained one.

Proposition B.2.19. Suppose S is a closed subset of X and f is Lipschitz of rank K on an open set U that
contains S. Assume that s ∈ S solves B.2.13. Then the function x 7→ f(x) + KdS(x) attains its minimum
over U at x=s. Conversely, if K ′ > K and x 7→ f(x) + KdS(x) attains a minimum over U at x=s, then s
belongs to S and solves B.2.13.

Remark B.2.16. The last proposition provides a link between the geometric and the functional interpretations.

Proposition B.2.20. Suppose S is closed and s ∈ S. Then

NP
S (s) = {tξ : t ≥ 0, ξ ∈ ∂P dS(s)} (B.2.14)

B.2.9 Lipschitz functions

The Lipschitz property can be characterized in proximal terms.

Theorem B.2.21. Let U ⊂ X be open and convex, and let f ∈F(U). Then, f is Lipschitz on U of rank
K ≥ 0 ⇐⇒

‖ξ‖ ≤ K, ∀ξ ∈ ∂P f(x),∀x ∈ U (B.2.15)

Corollary B.2.22. Let U ⊂ X be open and convex, and let f ∈F(U). Then f is constant in U ⇐⇒

∂P f(x) ⊂ {0},∀x ∈ U (B.2.16)
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B.2.10 Limiting calculus

The following concepts are used when the associated proximal normals or proximal subgradients are empty

or some enlargement is required.

Definition B.2.10. The limiting subdifferential ∂Lf(x) is defined as:

∂Lf(x) := {w-limξi : ξi ∈ ∂P f(xi), xi
f→ x} (B.2.17)

where w-lim signifies the set of all vectors ξ that can be expressed as the weak limit of some sequence
{ξi}, ξi ∈ ∂P f(xi) and xi → x, f(xi)→ f(x)

Definition B.2.11. The limiting normal cone to S at x ∈ S is given by:

NL
S (x) := {w-limξi : ξi ∈ NP

S (xi), xi
S→ x} (B.2.18)

where xi
S→ x signifies that xi → x and xi ∈ S, ∀i

B.2.11 Relations to subderivatives and Dsubgradients

It is worth investigating relations between subderivative and proximal calculus. These relations can be very

useful since results obtained in one field can be used in the other. The main result is due to Subbotin.

Theorem B.2.23 (Subbotin). Let f ∈F(Rn), x ∈ dom f, and let E be a nonempty compact convex subset of
Rn. Suppose that for some scalar η we have:

Df(x; e) > η,∀e ∈ E

Then, for any ε > 0, there exist z ∈ x+ εB and ξ ∈ ∂P f(z) such that:

|f(z)− f(x)| < ε; 〈ξ, e〉 > η,∀e ∈ E

The following result implies that ∂Df(x) is nonempty on a dense set of dom f.

Proposition B.2.24. ∂P f(x) ⊂ ∂Df(x).

One can now expect some approximation results.

Proposition B.2.25. Let ξ ∈ ∂Df(x). Then for any ε > 0 there exists a z ∈ x + εB and η ∈ ∂P f(x) such
that:

|f(x)− f(z)| < ε and ‖ξ − η‖ < ε

Proposition B.2.26. Let f ∈F(Rn) and x ∈ dom f. Then

∂Lf(x) := {lim i→∞ξi : ξi ∈ ∂Df(xi), xi
f→ x}
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B.3 Generalized calculus

B.3.1 Introduction

The generalized calculus (see for example [14]) extends classical results to a class of nonsmooth functions.

Here, it will be developed for an arbitrary real Banach space X. First we present the basic results for

the class of locally Lipschitz functions. Then, the generalized gradient is characterized in terms of classical

gradients when X = Rn. The underlying geometric interpretation is further extended by exploring the

elements of the theory of generalized calculus that induce a complete duality between tangency and normality,

and functions and sets. The starting point for duality is the generalized gradient of the distance function that

leads to one definition of tangent cone to a set, Clarke’s tangent cone, and then, by polarity, to the definition

of the normal cone. This definition of tangency is then contrasted to the one associated with the Boulingand’s

or contingent cone. The polar of the contingent cone can be empty. Clarke’s tangent cone is a subset of the

former and is always nonempty. The sets for which the two notions of tangency coincide are termed regular.

We can either choose tangency or the generalized gradient of the distance function as the starting point for

duality. This is due to the fact that, in general, it is not known how to make normality the starting point unless

the Banach space has additional properties, such as the Hilbert space. Finally, the generalized gradient is

related to the proximal analysis constructs when X is a Hilbert space.

B.3.2 Definition and properties

Here, we develop the generalized calculus for the family of locally Lipschitz functions.

Definition B.3.1 (Generalized Directional Derivative). Let f : X → R be Lipschitz of rank K near x ∈ X .
The generalized directional derivative of f in the direction v, denoted f0(x; v), is defined as:

fo(x; v) := lim
y→x,t↓0

sup
f(y + tv)− f(y)

t

where t is a positive scalar.

Proposition B.3.1 (Properties of the generalized directional derivative). Let f be Lipschitz of rank K near x.
Then:

1. The function v → fo(x; v) is finite, positively homogeneous, and subadditive on X and satisfies:

|fo(x; v)| ≤ K‖v‖

2. fo(x; v) is upper semicontinuous as a function of (x,v) and, as a function of v alone, is Lipschitz of
rank K on X.
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3. fo(x;−v) = (−f)o(x; v)

Remark B.3.1. The definition involves an upper limit only and does not presuppose the existence of any limit.

Remark B.3.2. This notion of derivative is more robust than the traditional one since the base point of the
quotient is also involved in the limiting process.

Remark B.3.3. The Hahn-Banach theorem (see [85]), can be invoked to assert the existence of at least one
linear functional ξ : X → R that it is majorized by the generalized directional derivative (a positively
homogeneous and subadditive functional on X), such that ∀v ∈ X, fo(x; v) ≥ ξ(v). It follows that ξ is
bounded and therefore belongs to the dual space X∗ of continuous linear functionals on X.

Definition B.3.2 (Support function of a closed convex set). Consider a nonempty closed subset Σ ⊂ X∗,
where X∗ is the dual space of continuous linear functionals on X. Its support function HΣ : X → (−∞,∞]
is defined as follows:

HΣ(v) := sup{〈ξ, v〉 : ξ ∈ Σ},
Where we denote the value of the linear functional ξ at v by 〈ξ, v〉

Proposition B.3.2 (Properties of the support function). :

1. Let Σ be a nonempty subset of X∗. Then HΣ is positively homogeneous, subadditive, and lower
semicontinuous.

2. If Σ is convex and w∗− closed, then a point ξ ∈ X∗ belongs to Σ iff HΣ(v) ≥ 〈ξ, v〉,∀v ∈ X .

3. More generally, if Σ and Λ are two non-empty, convex, and w∗− closed subsets of X∗, then Λ ⊂ Σ iff
HΣ ≤ HΛ,∀v ∈ X .

4. If p : X → R is positively homogeneous, subadditive and bounded on the unit ball, then there is an
uniquely defined nonempty, convex and w∗− compact subset Σ ⊂ X∗ such that p = HΣ

Definition B.3.3 (Generalized Gradient). The generalized gradient of the function f at x, denoted ∂f(x), is
the nonempty w∗− compact subset of X∗ whose support function is fo(x; .)

Proposition B.3.3 (Properties of the generalized gradient). Let f be Lipschitz of rank K near x. Then:

1. ∂f(x) is a nonempty, convex, weak∗ − compact subset of X∗, and ‖ξ‖∗ ≤ K,∀ξ ∈ ∂f(x)

2. ∀v ∈ X : fo(x; v) = max{〈ξ, v〉 : ξ ∈ ∂f(x)}

3. ξ ∈ ∂f(x) ⇐⇒ fo(x; v) ≥ 〈ξ, v〉,∀v ∈ X

4. If {xi}and{ξ} are sequences in X and X∗ such that ξi ∈ ∂f(xi) for each i, and if xi converges to x
and ξ is a weak∗ cluster point of the sequence {ξi}, then we have ξ ∈ ∂f(x)

5. If X is finite dimensional, then ∂f is upper semicontinuous at x.

6. ∂f(x) is independent of the particular norm on X.

Example B.3.4. Let f(x) = max{0, x}. Then:

• fo(0; v) = max{0, v}.

• ∂f(0) = [0, 1].
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B.3.3 Generalized calculus

We will assume that all the given functions are Lipschitz near the point of interest.

Proposition B.3.5. For any scalar λ, ∂(λf)(x) = λ∂f(x)

Remark B.3.4. As one can infer from the properties of the support function of a convex set, proving an
inclusion between convex sets is equivalent to proving an inequality between the corresponding support
functions. Moreover, the support function of a sum of sets is the sum of the support functions. Then it is easy
to prove the following result:

(f + g)o(x; v) ≤ fo(x; v) + go(x; v) ⇐⇒ ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x)

The following proposition is an extension of this result.

Proposition B.3.6 (Sum Rule). Let fi(i = 1, 2, ..., n), be Lipschitz near x, and let λi, (i = 1, ..., n) be
scalars. Then, f :=

∑n
i=1 λifi is Lipschitz near x and we have:

∂(

n∑

i=1

λifi)(x) ⊂
n∑

i=1

λi∂fi)(x)

Theorem B.3.7 (Lebourg’s Mean Value Theorem). Let x and y belong to X, and suppose that f is Lipschitz
on an open set containing the line segment [x,y]. Then, there exists a point u in (x,y) such that:

f(y)− f(x) ∈ 〈∂f(u), y − x〉

Theorem B.3.8 (Chain Rule). Let F : X → Rn be Lipschitz near x, and let g : Rn → R be Lipschitz near
F(x). Then the function f(x′) := g(F (x′)) is Lipschitz near x and we have:

∂f(x) ⊂ co∗{∂〈γ, F (.)〉(x) : γ ∈ ∂g(F (x))},

where co∗ signifies the w∗ − closed convex hull.

Proposition B.3.9 (Generalized derivatives and classical derivatives). Let f be Lipschitz near x. Then:

1. If f admits a Gateaux derivative f ′G(x) at x, then f ′G(x) ∈ ∂f(x).

2. If f is continuously differentiable at x, then ∂f(x) = {f ′(x)}.

For the class of smooth functions the above results assume the form of equalities. One may ask what is

the class of nonsmooth functions, if any, that also gives rise to equalities, even when nonsingleton sets are

involved. The following results address this question.

Proposition B.3.10 (Generalized derivatives of convex functions). Let f be convex on U and Lipschitz near
x ∈ U . Then the directional derivatives f ′(x; v) exist, and we have f ′(x; v) = f0(x; v). A vector ξ belongs
to ∂f(x) iff:

f(y)− f(x) ≥ 〈ξ, y − x〉,∀y ∈ U
Definition B.3.4 (Regular function). A function f is regular at x provided that f is Lipschitz near x and admits
directional derivatives f ′(x; v) for all v, with

f ′(x; v) = f0(x; v)
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Remark B.3.5. Regularity sharpens some of the previous calculus rules,as expected:

• Equality holds in the Sum Rule, proposition B.3.6.

• f + g inherits regularity from f and g.

• Equality holds in the chain rule, proposition B.3.8, when g is regular and each γ ∈ ∂g(F (x)) has
nonnegative components.

B.3.4 The gradient formula in finite dimensions
Theorem B.3.11 (Rademacher). If a function f : Rn → R is Lipschitz on an open set U, then it is differen-
tiable almost everywhere on U.

The following theorem asserts that, in Rn, the generalized gradient ∂f(x) of a function f, at a point x,

can be generated by the values of ∇f(x′) at nearby points x′, at which f ′(x′) exists. Furthermore, ∂f(x) is

blind to sets of measure zero, in the sense that in this process we can ignore sets of measure zero. As usual in

Hilbert space we identify ∂f(x) with a subset of Rn.

Theorem B.3.12 (Generalized Gradient Formula). Let x ∈ Rn, and let f : Rn → R be Lipschitz near
x. Let Ω be any subset of zero measure in Rn, and let Ωf be the set of points in Rn at which f fails to be
differentiable. Then:

∂f(x) := co{lim∇f(xi) : xi → x, xi, /∈ Ω, xi /∈ Ωf}

The following figure provides the corresponding geometric interpretation.

epi f

Figure B.4: Generalized gradients for a function f when X = Rn

Proposition B.3.13.
fo(x; v) := lim

y→x
sup{∇f(y).v : y /∈ Ω ∪ Ωf}

The expression for the derivative of the distance function dS(.) (definition B.2.3) to a closed set S in Rn

is similar to the corresponding one for the proximal subgradient. This property will be used later.

Proposition B.3.14 (Derivative of the distance function). Let d′S(x) exist and be different from 0. Then
x /∈ S, projS(x) is a singleton {s}, and

∇dS(x) =
(x− s)
‖x− s‖
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B.3.5 Clarke’s tangent and normal cones

In this section generalized calculus is applied in order to define geometric constructs for a nonempty closed

subset S of X. These are based on the properties of the distance function dS(x), a globally Lipschitz function

that completely characterizes a closed set S. We use the generalized directional derivative of dS(x) to define

the tangent cone TCS (x) to a set S at a point x. The definition of normal cone follows from the consideration

of polarity.

Definition B.3.5 (Tangent direction to a set S). A direction v tangent to the set S at x ∈ S is defined as:

doS(x; v) ≤ 0

Definition B.3.6 (Tangent cone to S at x). The tangent cone to S at x, denoted TCS (x) and also called Clarke’s
tangent cone, is the set:

TCS (x) := {v ∈ X : do(x; v) ≤ 0}

Proposition B.3.15 (Properties of the tangent cone). :

• 0 ∈ TCS (x).

• TCS (x) is a closed and convex cone.

The following proposition shows that tangency does not depend on the choice of equivalent norms for X

as does the distance function.

Proposition B.3.16 (Clarke’s characterization of tangency). An element v of X is tangent to S at x iff, for
every sequence xi in S converging to x and sequence ti in (0,∞) decreasing to 0, there exists a sequence vi
in X converging to v such that xi + tivi ∈ S for all i.

Proof. The proof of the first implication is constructive and provides an important geometrical insight.
Suppose that v ∈ TS(x) and the sequences xi → x (with xi ∈ S, ti ↓ 0 are given. Then, we need to

produce a sequence vi → v. Since, by definition of v, doS(x; v) = 0, we have:

lim
i→∞

dS(xi + tiv)− d(xi)

ti
= lim
i→∞

dS(xi + tiv)

ti
= 0

Let si ∈ S satisfy:

‖xi + tiv − si‖ ≤ dS(xi + tiv) +
ti
i

Set vi = si−xi

ti
.

Then ‖v − vi‖ → 0 and xi + tivi = si as required.
The other implication is easy to prove.

Remark B.3.6. The following figure provides a graphical interpretation of this characterization of tangency,
that may seem a bit surprising at first. Consider the closed set S, the point x at the boundary and the vector
v. v does not qualify for tangent vector. To see this consider a sequence of points xi in the boundary of S, as
shown in the picture. Then, the construction used in the proof for generating a sequence of vi → v provides
a sequence of vectors that does not converge to v. In fact these vectors can be parallel to the boundary of S at
each of the points in the sequence xi.
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The analysis of doS(x; v) provides another perspective of the same fact. Consider again the vector v and
the points xi. Then:

doS(x; v) = sup
y→x,t↓0

dS(y + tv)− d(y)

t
≥ sup
xi→x,t↓0

dS(xi + tv)− d(xi)

t
=

sup
xi→x,t↓0

dS(xi + tv)

t

But this last limit can be made constant, and strictly greater than zero, by an appropriate choice of xi, ti.
The fact that doS(x; v) is given by a lim sup is essential for the result.

Ts (x)C

Ts (x)
B

x xi
x(i-1)

v

vt(i-1)

Figure B.5: Clarke and Boulingand tangent cones

One may be tempted to establish relations to the notions of tangent spaces and normal spaces for differ-

entiable manifolds. The following definition provides the enabling mechanism.

Definition B.3.7 (Polar cone). Consider a cone T with apex at the origin. The polar of T denoted TP , is
defined as follows:

TP := {ξ ∈ X∗ : 〈ξ, v〉 ≤ 0,∀v ∈ T}

Definition B.3.8 (Normal cone). The normal cone, also called Clarke’s normal cone, to a set S at x, denoted
NS(x), is the following set:

NS(x) := TCS (x)P := {ξ ∈ X∗ : 〈ξ, v〉 ≤ 0,∀v ∈ TCS (x)}

Remark B.3.7. The convexity of the tangent cone ensures the nonemptiness of the normal cone.

Proposition B.3.17 (Properties of the normal cone). :

• NS(x) is a w∗− closed convex cone.

• NS(x) = cl∗{∪λ≥0λ∂dS(x)}.

• TS(x) is the polar of NS(x).

As one could expect, there is a special representation for the normal and tangent cones when the set S is

convex.
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Proposition B.3.18. Let S be convex. Then:

• TS(x) = cl{λ(s− x) : λ ≥ 0, s ∈ S}

• NS(x) = {ξ ∈ X∗ : 〈ξ, x′ − x〉 ≤ 0,∀x′ ∈ S}.

The duality function-sets is established in the following theorem.

Theorem B.3.19 (Duality). Let f be Lipschitz near x. Then:

• Tepif (x, f(x)) = epif0(x; .)

• ξ ∈ ∂f(x) ⇐⇒ (ξ,−1) ∈ Nepif (x, f(x)).

B.3.6 Boulingand tangent cone and regular sets
Definition B.3.9 (Boulingand or contingent cone to a closed set S). It is denoted as TBS (x), and it is defined
as:

TBS (x) := { lim
i→∞

xi − x
ti

:
S

xi → x, ti ↓ 0}

where,
S

xi → x means that xi ∈ S, ∀i = 1, 2, .. and limi→∞ xi = x.
An equivalent definition is:

TBS (x) := {v : ∀ε > 0,∃t ∈ (0, ε), w ∈ v + εB : x+ tw ∈ S}

Remark B.3.8. Some of the properties of the Boulingand’s cone are exhibited in figure B.3.5:

1. The strict inclusion relation: TCS (x) ⊂ TBS (x).

2. The polar cone of TBS (x) is an empty set.

Hence, in this case, and contrary to Clarke’s cone, the Boulingand’s cone does not provide normal directions
to the set S at point x.

Proposition B.3.20 (Properties of the Boulingand tangent cone). :

1. v ∈ TBS (x) ⇐⇒ limt↓0 inf(dS(x+tv)
t ) = 0

2. TCS (x) ⊂ TBS (x)

3. If X is a Hilbert space then: TBS (x) ⊂ (NC
S (x))P

Remark B.3.9 (Relations to the D-tangent cone TPS (x)). Note that:

lim
t↓0

inf(
dS(x+ tv)

t
) = DdS(x; v)

This is easy to conclude from the application of proposition B.1.1 to the Lipschitz function dS(x). In fact, if,
in the definition of Clarke’s cone we use the subderivative of the distance function we get the Boulingand’s
cone. Now, it becomes clear the role of liminf and limsup in the corresponding constructs.

Definition B.3.10 (Regular set). A set S is regular provided that

∀x ∈ S, TBS (x) = TCS (x)
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Which sets are regular and what is the relation to regular functions?

Proposition B.3.21. A convex set is regular at each of its points.

Proposition B.3.22. Let f be Lipschitz near x. Then f is regular at x iff epi f is regular at (x,f(x)).

Set regularity provides more ”exact” estimates in the previous formulas for tangent and normal cones.

Remark B.3.10. Clarke’s tangent cone plays an important role in defining the class of normal directions to a
closed set S. In this sense it is more useful than the Boulingand’s tangent cone. This concept of normality has
many relevant applications:

• Provides a test for determining if the flow of a vector field in the boundary of a closed set, is such that
the boundary will be crossed.

• Can be used for defining extensions of the Hahn-Banach theorem for some classes of nonconvex sets.

B.3.7 Relationship to proximal analysis

Now suppose that X is a Hilbert space, with ‖x‖ = 〈x, x, 〉 1
2 for an inner product, Then, ∂f(x) and NS(x)

are generated by the weak limits of their proximal counterparts and identified with subsets of X.

Theorem B.3.23. Let X be a Hilbert space.

• If f is Lipschitz near x, then:

∂f(x) = co{w-limi→∞ξi : ξi ∈ ∂P f(xi), xi → x}

• If S is a closed subset of X containing x, then:

NC
S (x) = co{w limi→∞ξi : ξi ∈ NP f(xi), xi → x}

Remark B.3.11. The theorem asserts that in a Hilbert space we have NC
S (x) = coNL

S (x) and when f is
Lipschitz near x ∂f(x) = co∂Lf(x).

Remark B.3.12. This theorem validates the use of some results from the previous chapter in the Hilbert space
setting.

Proposition B.3.24. Let S be a subset of Rn given as follows:

S := {x ∈ Rn : fj(x) = 0, j = 1, 2, ..., k},

where each fj : R→ R is locally Lipschitz and admits one-sided directional derivatives f ′j(x; v) for each v.
Then:

TBS (x) ⊂ {v ∈ Rn : f ′j(x; v) = 0, j = 1, ..., k}
If, in addition, each fi is C1 near x and the vectors {f ′j(x)kj=1} are linearly independent, then:

{v : 〈f ′j(x), v〉 = 0, j = 1, ..., k} ⊂ TCS (x)

In this case, equality holds in both estimates, and the set is regular at S.
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B.3.8 Relationship to subderivatives
Proposition B.3.25. Let f ∈F(Rn) and x ∈ dom f. Then, if f is Lipschitz near x, then:

∂Df(x) ⊂ ∂Lf(x) ⊂ ∂Cf(x)

with equality iff f is regular at x.

Remark B.3.13. From the above proposition it is easy to conclude that it is not true in general thatDf(x; v) =
sup{〈ξ, v〉 : ξ ∈ ∂P f(x)}. This is due to the fact that ∂Df(x) ⊂ ∂Cf(x). The observation that Df(x;v) is
not subadditive, thus preventing the application of the Hahn-Banach theorem, is another way of concluding
this.

Proposition B.3.26. Let S be a closed nonempty subset of Rn. Then:

ND
S (x) ⊂ NL

S (x) ⊂ NC
S (x)

Equality holds if S is regular at x.

B.3.9 Tangents and interiors

Since Clarke’s tangent cone is nonempty, the meaning of being minimal, in the sense of having an empty

interior, at some point x leads to an interesting local characterization of sets. In fact, if intTCS (x) is nonempty,

then it is possible to locally fit a small cone inside the set.

Remark B.3.14 (Relations to local attainability of a set). This geometric property of a set will provide nec-
essary conditions for local attainability of the set by some trajectories of a controlled differential inclusion.
This intuition will be further developed by the following results.

Definition B.3.11 (Wedged set). A closed nonempty set S of Rn is termed wedged at x if:

intTCS (x) 6= ∅

Theorem B.3.27. A vector v ∈ Rn belongs to intTCS (x) iff:

∃ε > 0 : y ∈ x+ εB,w ∈ v + εB, t ∈ [0, ε)⇒ dS(y + tw) ≤ dS(y)

From the graphical interpretation of figure B.3.5 it is clear that the tangent cone will become smaller

and smaller when the outer angle at x tends to 2π. The underlying geometric interpretation provides a local

characterization of the set S at the point s. Next, equivalent characterizations are provided by using other

geometric constructs.

Definition B.3.12 (Wedge). A set W (v; ε) ⊂ <n is a wedge of axis v and radius ε if:

W (v; ε) := {tw : t ∈ [0, ε), w ∈ v + εB}

Proposition B.3.28 (Properties of wedged sets). :
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1. S is wedged at x iff there exists a wedge W (v; ε) such that:

y +W (v; ε) ⊂ S,∀y ∈ S ∩B(x; ε)

2. If S is wedged at x, then intS 6= ∅ and x ∈ cl(int(S)). If S is wedged at each of its points, then
S = cl(intS).

3. If v ∈ intTCS (x), then v ∈ TCS (x′) for all x′ near x.

4. If TCS (x) = Rn then x ∈ intS.

Proposition B.3.29. If a set S is wedged at x, then TCS (.) is lower semicontinuous at x.

Proposition B.3.30. TCS (.) is lower semicontinuous at x iff NC
S (.) is graph-closed at x.

Definition B.3.13 (Pointed cone). A cone K ∈ Rn is called pointed if it contains no two nonzero elements
whose sum is zero.

Proposition B.3.31. A convex cone K in Rn has nonempty interior iff its polar Ko is pointed.

The following corollary summarizes some of the previous results.

Corollary B.3.32. If NC
S (x) is pointed, then NC

S (x) is graph-closed at x, TCS (.) is lower semicontinuous at
x, and S is wedged at x.

B.3.10 The general relation between TC
S and TB

S

The following theorem asserts that a vector v lying in TCS (x) also lies in TBS (x′) for x′ near x.

Theorem B.3.33.
v ∈ TCS (x) ⇐⇒ lim

x′
S→x

sup d(v, TBS (x′)) = 0

This theorem provides a subtle link to regularity if we consider an alternative definition of lower semi-

continuity.

Proposition B.3.34. Consider a multifunction F : X → X . Let ∆ := dom F. Then F is lower semicontinu-
ous at x ∈ ∆ iff:

∀v ∈ F (x), lim
∆

x′ 7→x

sup d(v, F (x)) = 0

Now the proof of the following corollary is trivial.

Corollary B.3.35. S is regular at x iff TBS (.) is lower semicontinuous at x.



Appendix C

Underwater vehicle model

This section discusses how to approximate a nonlinear model of underwater vehicles by a kinematic model

of a unicycle. This is done for a torpedo-shaped vehicle and under some simplifying assumptions.

Autonomous underwater vehicles (AUV’s) are best described as nonlinear systems (see [43] for details).

Two coordinate frames are considered: body-fixed and earth-fixed (see Figure below).

Figure C.1: Body-fixed and earth-fixed coordinate frames.

In what follows, the notation from the Society of Naval Architects and Marine Engineers (SNAME)

[66] is used. The motions in the body-fixed frame are described by 6 velocity components [u, v, w, p, q, r]

respectively, surge, sway, heave, roll, pitch, and yaw, relative to a constant velocity coordinate frame moving

with the ocean current. Define ν = [νT1 , ν
T
2 ] with ν1 = [u, v, w]T ν2 = [p, q, r]T . The corresponding

forces and moments in the body-fixed frame are τ = [τT1 , τ
T
2 ]; τ1 = [X,Y, Z]T τ2 = [k,M,N ]T . The

six components of position and attitude in the earth-fixed frame are η = (η1, η2) = [x, y, z, φ, θ, ψ]. The

earth-fixed reference frame can be considered inertial for the AUV.

129
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Definition Force/Moment linear/angular speed
Motion
x-direction surge X u
y-direction sway Y v
z-direction heave Z w
Rotation about
x-axis roll K p
y-axis pitch M q
z-axis yaw N r

Table C.1: Forces, moments and velocities in body-fixed coordinates

Definition Position/Euler angle
Motion
x-direction x
y-direction y
z-direction z
Rotation about
x-axis φ
y-axis θ
z-axis ψ

Table C.2: Forces and velocities in earth-fixed coordinates

The velocities in both reference frames are related through the Euler angles transformation

η̇ = J(η2)ν (C.0.1)

In the body-fixed frame the nonlinear equations of motion are:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ (C.0.2)

η̇ = J(η2)ν (C.0.3)

where M is the inertia and added mass matrix of the vehicle, C(ν) is the Coriolis and centripetal matrix,

D(ν) is the damping matrix, g(η2) is the vector of the restoring forces and moments, and τ is the vector of

the body-fixed forces from the actuators.

We consider the model of a torpedo-shaped vehicle of the LAUV class (see Figure A.1). This AUV is not

fully actuated. There is a propeller for actuation in the longitudinal direction (surge, in the naval terminology)

and fins for lateral and vertical actuation. The effect of the fins depends on the longitudinal velocity of the

vehicle (for zero speed they do not provide actuation).
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The mechanical configuration of the AUV leads to a simpler dynamic model. The body-fixed forces from

the actuators τ depends only on 3 parameters: propeller velocity n (0 < n ≤ nmax), horizontal fin inclination

δs (−δsmax ≤ δs ≤ δsmax) and vertical fin inclination δr (−δrmax ≤ δr ≤ δrmax). The dynamics of

the thruster motor and fin servos are generally much faster than the remaining dynamics therefore, for the

purposes of this work, they can be excluded from the model.

System identification for autonomous underwater vehicles is quite difficult and expensive for two reasons:

the large number of model parameters (matrix coefficients) and the complexity of the experimental setup for

system’s identification. In our developments we use a set of coefficients based on the results from [79] and

on our field experiments.

We are concerned with operations on the horizontal plane. This restricts the motions of the AUV to planar

motions at constant depth. We assume the existence of controllers that stabilize vehicle’s depth and pitch,

i.e., w converges to a number close to zero (which in practice is not equal to zero due to the required pitch

to compensate for vehicle’s buoyancy) and q converges to zero. The roll rate p converges to zero due to

the restoring moment of the vehicle and the roll angle φ converges to a value which depends on the thruster

speed. In general, the pitch and roll angles can be made very small by design of the physical configuration.

Under these assumptions, and also because of the shape of the AUV, the approximated nonlinear model

becomes [43]:



ẋ

ẏ

ψ̇

u̇

v̇

ṙ




=




u cos(ψ)− v sin(ψ)

u sin(ψ) + v cos(ψ)

r

fu(v, τ)

fv(v, τ)

fr(v, τ)




(C.0.4)



132

with

fu(v, τ) =(m−Xu̇)−1(Xuuu|u|+Xvrvr +

Xrrr
2 +Xp(n))

fv(v, τ) =(m− Yv̇)−1(Yvvv|v|+ Yuvuv +

(Yur −m)ur + Yrrr|r|+ Yuudru|u|δr)

fr(v, τ) =(Izz −Nṙ)−1(Nvvv|v|+Nuvuv +

Nurur +Nrrr|r|+Nuudru|u|δr)

For the purpose of motion planning, this model can be further simplified. Physical experiments and

simulations with the non-linear model show that, with constant actuation, the steady state radius of curvature

is constant and practically independent of the surge velocity. The curvature is mainly determined by the

angular displacement of the rudder fin (which would be modeled by c in the kinematic model). In practice,

if the vehicle sets constant angular actuation (e.g. a fixed angular position for the rudder of the AUV), the

motion of the vehicle will after a very short transient period converge to circle. In practice, a constant angular

actuation (e.g. a fixed angular position for the rudder of the AUV) will result in a trajectory that will converge,

after a very short transient period, to a circle. Moreover, the ratio v
u will be approximately constant. By a

simple trigonometric transformation the first three equations of system C.0.4 become




ẋ

ẏ

ψ̇


 =




√
u2 + v2(cos(ψ) + arctan( vu ))
√
u2 + v2(sin(ψ) + arctan( vu ))

r


 (C.0.5)

which as v goes to zero, or with an adequate change of variables, become those of the unicycle model. From

the last equation of system C.0.4, and taking in account the constant ratio between u and v it is possible to

verify that, in steady state, r is directly proportional to u and directly related to δr.

A slow varying water current with velocity vd < vmax and direction θd can be considered as an additive

disturbance on the vehicle velocity: the motion of the vehicle will be made with relation to the moving column

of water, as stated previously.

These are the reasons why the kinematic model of an unicycle, presented in Section 6.2 of Chapter 6 can

be considered an acceptable approximation for trajectory planning purposes. Marine and aerial vehicles do
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not posses the sideslip constraint, i.e., they move sideways (sway velocity on the AUV model). However, this

motion is encompassed by the considered radius of curvature. If operation at constant speed is considered,

the main difference is the fact that angular speed is allowed to vary instantaneously on the kinematic model

while that is not possible on the physical system (and neither on the nonlinear model). Therefore unions

between segments and arcs would not be perfectly tracked by a real vehicle. The modeling error can be

minimized by considering a larger radius of curvature but the imperfection will still be noticeable for small

angular displacements. Moreover, the main objective is that the vehicles reach the destination at the desired

time. This goal can be achieved with minimal deviations from the ideal trajectory if some planning slack is

allowed (e.g., considering v′max = vmax − δ).

In Chapter 6 we use v for the longitudinal velocity (replacing u in the SNAME notation) and ω for the

angular velocity (assuming planar motion this replaces r in the SNAME notation).
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