110 research outputs found

    Integrative Systems Approaches Towards Brain Pharmacology and Polypharmacology

    Get PDF
    Polypharmacology is considered as the future of drug discovery and emerges as the next paradigm of drug discovery. The traditional drug design is primarily based on a “one target-one drug” paradigm. In polypharmacology, drug molecules always interact with multiple targets, and therefore it imposes new challenges in developing and designing new and effective drugs that are less toxic by eliminating the unexpected drug-target interactions. Although still in its infancy, the use of polypharmacology ideas appears to already have a remarkable impact on modern drug development. The current thesis is a detailed study on various pharmacology approaches at systems level to understand polypharmacology in complex brain and neurodegnerative disorders. The research work in this thesis focuses on the design and construction of a dedicated knowledge base for human brain pharmacology. This pharmacology knowledge base, referred to as the Human Brain Pharmacome (HBP) is a unique and comprehensive resource that aggregates data and knowledge around current drug treatments that are available for major brain and neurodegenerative disorders. The HBP knowledge base provides data at a single place for building models and supporting hypotheses. The HBP also incorporates new data obtained from similarity computations over drugs and proteins structures, which was analyzed from various aspects including network pharmacology and application of in-silico computational methods for the discovery of novel multi-target drug candidates. Computational tools and machine learning models were developed to characterize protein targets for their polypharmacological profiles and to distinguish indications specific or target specific drugs from other drugs. Systems pharmacology approaches towards drug property predictions provided a highly enriched compound library that was virtually screened against an array of network pharmacology based derived protein targets by combined docking and molecular dynamics simulation workflows. The developed approaches in this work resulted in the identification of novel multi-target drug candidates that are backed up by existing experimental knowledge, and propose repositioning of existing drugs, that are undergoing further experimental validations

    On the integration of in silico drug design methods for drug repurposing

    Get PDF
    Drug repurposing has become an important branch of drug discovery. Several computational approaches that help to uncover new repurposing opportunities and aid the discovery process have been put forward, or adapted from previous applications. A number of successful examples are now available. Overall, future developments will greatly benefit from integration of different methods, approaches and disciplines. Steps forward in this direction are expected to help to clarify, and therefore to rationally predict, new drug-target, target-disease, and ultimately drug-disease associations

    Target profiling of PARP inhibitors and necroptosis inhibitors using photoaffinity labelling

    Get PDF
    Target profiling of a small molecule therapeutic is essential to fully understand how that compound works in the clinic. Photoaffinity labelling (PAL) has become a widely utilised strategy for in-cell target identification campaigns for reversible, small molecule drugs. After an overview of target profiling and PAL, this Thesis discusses the application of PAL to two classes of molecules with incomplete target profiles. The Thesis focusses initially on the generation of the first photo-activatable probe for inhibitors of the PARP family of enzymes, PARPYnD, based on a novel anti-cancer PARP1/2/6 inhibitor AZ0108 with unexplained off-target toxicity. The design, synthesis and validation of the probe is discussed, along with the application of PARPYnD to PAL studies. Herein, simultaneous live-cell target engagement of PARP1/2 is shown for the first time by a photo-activatable probe, and this labelling is used to quantify live-cell engagement of these PARPs by known PARP inhibitors in competitive PAL experiments. For AZ0108 and clinical PARP inhibitor olaparib, novel off-targets are identified, demonstrating the power of PAL to capture weaker, secondary binders. Finally, PARPYnD fails to label PARP6 in live cells, but is able to label recombinant PARP6, highlighting a biomolecular disparity that raises questions about the proposed mechanism of action of AZ0108. PAL is then applied to a novel series of inhibitors of necroptosis, an inflammatory form of cell death, with an unknown mechanism of action. Design and synthesis of cell-active photo-activatable probe 7PQYnD1 is presented, along with the development of a bespoke live-cell necroptosis assay to evaluate necroptosis inhibitors in-house. 7PQYnD1 is then applied to the PAL workflow and five bona fide target proteins are identified through proteomics. Preliminary functional analysis of these hits is then undertaken to begin to identify the target interaction(s) responsible for the anti-necroptosis phenotype of these compounds.Open Acces

    Large–scale data–driven network analysis of human–plasmodium falciparum interactome: extracting essential targets and processes for malaria drug discovery

    Get PDF
    Background: Plasmodium falciparum malaria is an infectious disease considered to have great impact on public health due to its associated high mortality rates especially in sub Saharan Africa. Falciparum drugresistant strains, notably, to chloroquine and sulfadoxine-pyrimethamine in Africa is traced mainly to Southeast Asia where artemisinin resistance rate is increasing. Although careful surveillance to monitor the emergence and spread of artemisinin-resistant parasite strains in Africa is on-going, research into new drugs, particularly, for African populations, is critical since there is no replaceable drug for artemisinin combination therapies (ACTs) yet. Objective: The overall objective of this study is to identify potential protein targets through host–pathogen protein–protein functional interaction network analysis to understand the underlying mechanisms of drug failure and identify those essential targets that can play their role in predicting potential drug candidates specific to the African populations through a protein-based approach of both host and Plasmodium falciparum genomic analysis. Methods: We leveraged malaria-specific genome wide association study summary statistics data obtained from Gambia, Kenya and Malawi populations, Plasmodium falciparum selective pressure variants and functional datasets (protein sequences, interologs, host-pathogen intra-organism and host-pathogen inter-organism protein-protein interactions (PPIs)) from various sources (STRING, Reactome, HPID, Uniprot, IntAct and literature) to construct overlapping functional network for both host and pathogen. Developed algorithms and a large-scale data-driven computational framework were used in this study to analyze the datasets and the constructed networks to identify densely connected subnetworks or hubs essential for network stability and integrity. The host-pathogen network was analyzed to elucidate the influence of parasite candidate key proteins within the network and predict possible resistant pathways due to host-pathogen candidate key protein interactions. We performed biological and pathway enrichment analysis on critical proteins identified to elucidate their functions. In order to leverage disease-target-drug relationships to identify potential repurposable already approved drug candidates that could be used to treat malaria, pharmaceutical datasets from drug bank were explored using semantic similarity approach based of target–associated biological processes Results: About 600,000 significant SNPs (p-value< 0.05) from the summary statistics data were mapped to their associated genes, and we identified 79 human-associated malaria genes. The assembled parasite network comprised of 8 clusters containing 799 functional interactions between 155 reviewed proteins of which 5 clusters contained 43 key proteins (selective variants) and 2 clusters contained 2 candidate key proteins(key proteins characterized by high centrality measure), C6KTB7 and C6KTD2. The human network comprised of 32 clusters containing 4,133,136 interactions between 20,329 unique reviewed proteins of which 7 clusters contained 760 key proteins and 2 clusters contained 6 significant human malaria-associated candidate key proteins or genes P22301 (IL10), P05362 (ICAM1), P01375 (TNF), P30480 (HLA-B), P16284 (PECAM1), O00206 (TLR4). The generated host-pathogen network comprised of 31,512 functional interactions between 8,023 host and pathogen proteins. We also explored the association of pfk13 gene within the host-pathogen. We observed that pfk13 cluster with host kelch–like proteins and other regulatory genes but no direct association with our identified host candidate key malaria targets. We implemented semantic similarity based approach complemented by Kappa and Jaccard statistical measure to identify 115 malaria–similar diseases and 26 potential repurposable drug hits that can be 3 appropriated experimentally for malaria treatment. Conclusion: In this study, we reviewed existing antimalarial drugs and resistance–associated variants contributing to the diminished sensitivity of antimalarials, especially chloroquine, sulfadoxine-pyrimethamine and artemisinin combination therapy within the African population. We also described various computational techniques implemented in predicting drug targets and leads in drug research. In our data analysis, we showed that possible mechanisms of resistance to artemisinin in Africa may arise from the combinatorial effects of many resistant genes to chloroquine and sulfadoxine–pyrimethamine. We investigated the role of pfk13 within the host–pathogen network. We predicted key targets that have been proposed to be essential for malaria drug and vaccine development through structural and functional analysis of host and pathogen function networks. Based on our analysis, we propose these targets as essential co-targets for combinatorial malaria drug discovery

    Advances and Challenges in Computational Target Prediction

    Get PDF
    Target deconvolution is a vital initial step in preclinical drug development to determine research focus and strategy. In this respect, computational target prediction is used to identify the most probable targets of an orphan ligand or the most similar targets to a protein under investigation. Applications range from the fundamental analysis of the mode-of-action over polypharmacology or adverse effect predictions to drug repositioning. Here, we provide a review on published ligand- and target-based as well as hybrid approaches for computational target prediction, together with current limitations and future directions.Medicinal Chemistr

    Systems biology approaches to a rational drug discovery paradigm

    Full text link
    The published manuscript is available at EurekaSelect via http://www.eurekaselect.com/openurl/content.php?genre=article&doi=10.2174/1568026615666150826114524.Prathipati P., Mizuguchi K.. Systems biology approaches to a rational drug discovery paradigm. Current Topics in Medicinal Chemistry, 16, 9, 1009. https://doi.org/10.2174/1568026615666150826114524

    Structural Cheminformatics for Kinase-Centric Drug Design

    Get PDF
    Drug development is a long, expensive, and iterative process with a high failure rate, while patients wait impatiently for treatment. Kinases are one of the main drug targets studied for the last decades to combat cancer, the second leading cause of death worldwide. These efforts resulted in a plethora of structural, chemical, and pharmacological kinase data, which are collected in the KLIFS database. In this thesis, we apply ideas from structural cheminformatics to the rich KLIFS dataset, aiming to provide computational tools that speed up the complex drug discovery process. We focus on methods for target prediction and fragment-based drug design that study characteristics of kinase binding sites (also called pockets). First, we introduce the concept of computational target prediction, which is vital in the early stages of drug discovery. This approach identifies biological entities such as proteins that may (i) modulate a disease of interest (targets or on-targets) or (ii) cause unwanted side effects due to their similarity to on-targets (off-targets). We focus on the research field of binding site comparison, which lacked a freely available and efficient tool to determine similarities between the highly conserved kinase pockets. We fill this gap with the novel method KiSSim, which encodes and compares spatial and physicochemical pocket properties for all kinases (kinome) that are structurally resolved. We study kinase similarities in the form of kinome-wide phylogenetic trees and detect expected and unexpected off-targets. To allow multiple perspectives on kinase similarity, we propose an automated and production-ready pipeline; user-defined kinases can be inspected complementarily based on their pocket sequence and structure (KiSSim), pocket-ligand interactions, and ligand profiles. Second, we introduce the concept of fragment-based drug design, which is useful to identify and optimize active and promising molecules (hits and leads). This approach identifies low-molecular-weight molecules (fragments) that bind weakly to a target and are then grown into larger high-affinity drug-like molecules. With the novel method KinFragLib, we provide a fragment dataset for kinases (fragment library) by viewing kinase inhibitors as combinations of fragments. Kinases have a highly conserved pocket with well-defined regions (subpockets); based on the subpockets that they occupy, we fragment kinase inhibitors in experimentally resolved protein-ligand complexes. The resulting dataset is used to generate novel kinase-focused molecules that are recombinations of the previously fragmented kinase inhibitors while considering their subpockets. The KinFragLib and KiSSim methods are published as freely available Python tools. Third, we advocate for open and reproducible research that applies FAIR principles ---data and software shall be findable, accessible, interoperable, and reusable--- and software best practices. In this context, we present the TeachOpenCADD platform that contains pipelines for computer-aided drug design. We use open source software and data to demonstrate ligand-based applications from cheminformatics and structure-based applications from structural bioinformatics. To emphasize the importance of FAIR data, we dedicate several topics to accessing life science databases such as ChEMBL, PubChem, PDB, and KLIFS. These pipelines are not only useful to novices in the field to gain domain-specific skills but can also serve as a starting point to study research questions. Furthermore, we show an example of how to build a stand-alone tool that formalizes reoccurring project-overarching tasks: OpenCADD-KLIFS offers a clean and user-friendly Python API to interact with the KLIFS database and fetch different kinase data types. This tool has been used in this thesis and beyond to support kinase-focused projects. We believe that the FAIR-based methods, tools, and pipelines presented in this thesis (i) are valuable additions to the toolbox for kinase research, (ii) provide relevant material for scientists who seek to learn, teach, or answer questions in the realm of computer-aided drug design, and (iii) contribute to making drug discovery more efficient, reproducible, and reusable

    Machine Learning Applications for Drug Repurposing

    Full text link
    The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected until a very late stage of the drug discovery, where the discovery of drug-induced side effects and potential drug resistance can decrease the value of the drug and even completely invalidate the use of the drug. Thus, a new paradigm in drug discovery is needed. Structural systems pharmacology is a new paradigm in drug discovery that the drug activities are studied by data-driven large-scale models with considerations of the structures and drugs. Structural systems pharmacology will model, on a genome scale, the energetic and dynamic modifications of protein targets by drug molecules as well as the subsequent collective effects of drug-target interactions on the phenotypic drug responses. To date, however, few experimental and computational methods can determine genome-wide protein-ligand interaction networks and the clinical outcomes mediated by them. As a result, the majority of proteins have not been charted for their small molecular ligands; we have a limited understanding of drug actions. To address the challenge, this dissertation seeks to develop and experimentally validate innovative computational methods to infer genome-wide protein-ligand interactions and multi-scale drug-phenotype associations, including drug-induced side effects. The hypothesis is that the integration of data-driven bioinformatics tools with structure-and-mechanism-based molecular modeling methods will lead to an optimal tool for accurately predicting drug actions and drug associated phenotypic responses, such as side effects. This dissertation starts by reviewing the current status of computational drug discovery for complex diseases in Chapter 1. In Chapter 2, we present REMAP, a one-class collaborative filtering method to predict off-target interactions from protein-ligand interaction network. In our later work, REMAP was integrated with structural genomics and statistical machine learning methods to design a dual-indication polypharmacological anticancer therapy. In Chapter 3, we extend REMAP, the core method in Chapter 2, into a multi-ranked collaborative filtering algorithm, WINTF, and present relevant mathematical justifications. Chapter 4 is an application of WINTF to repurpose an FDA-approved drug diazoxide as a potential treatment for triple negative breast cancer, a deadly subtype of breast cancer. In Chapter 5, we present a multilayer extension of REMAP, applied to predict drug-induced side effects and the associated biological pathways. In Chapter 6, we close this dissertation by presenting a deep learning application to learn biochemical features from protein sequence representation using a natural language processing method
    corecore