263 research outputs found

    Dexel-Based Simulation of Directed Energy Deposition Additive Manufacturing

    Get PDF
    Additive manufacturing is typically a flexible alternative to conventional manufacturing processes. However, manufacturing costs increase due to the effort required to experimentally determine optimum process parameters for customized products or small batches. Therefore, simulation models are needed in order to reduce the amount of effort necessary for experimental testing. For this purpose, a novel technological simulation method for directed energy deposition additive manufacturing is presented here. The Dexel-based simulation allows modeling of additive manufacturing of varying geometric shapes by considering multi-axis machine tool kinematics and local process conditions. The simulation approach can be combined with the simulation of subtractive processes, which enables integrated digital process chains

    A novel numerical framework for simulation of multiscale spatio-temporally non-linear systems in additive manufacturing processes.

    Get PDF
    New computationally efficient numerical techniques have been formulated for multi-scale analysis in order to bridge mesoscopic and macroscopic scales of thermal and mechanical responses of a material. These numerical techniques will reduce computational efforts required to simulate metal based Additive Manufacturing (AM) processes. Considering the availability of physics based constitutive models for response at mesoscopic scales, these techniques will help in the evaluation of the thermal response and mechanical properties during layer-by-layer processing in AM. Two classes of numerical techniques have been explored. The first class of numerical techniques has been developed for evaluating the periodic spatiotemporal thermal response involving multiple time and spatial scales at the continuum level. The second class of numerical techniques is targeted at modeling multi-scale multi-energy dissipative phenomena during the solid state Ultrasonic Consolidation process. This includes bridging the mesoscopic response of a crystal plasticity finite element framework at inter- and intragranular scales and a point at the macroscopic scale. This response has been used to develop an energy dissipative constitutive model for a multi-surface interface at the macroscopic scale. An adaptive dynamic meshing strategy as a part of first class of numerical techniques has been developed which reduces computational cost by efficient node element renumbering and assembly of stiffness matrices. This strategy has been able to reduce the computational cost for solving thermal simulation of Selective Laser Melting process by ~100 times. This method is not limited to SLM processes and can be extended to any other fusion based additive manufacturing process and more generally to any moving energy source finite element problem. Novel FEM based beam theories have been formulated which are more general in nature compared to traditional beam theories for solid deformation. These theories have been the first to simulate thermal problems similar to a solid beam analysis approach. These are more general in nature and are capable of simulating general cross-section beams with an ability to match results for complete three dimensional analysis. In addition to this, a traditional Cholesky decomposition algorithm has been modified to reduce the computational cost of solving simultaneous equations involved in FEM simulations. Solid state processes have been simulated with crystal plasticity based nonlinear finite element algorithms. This algorithm has been further sped up by introduction of an interfacial contact constitutive model formulation. This framework has been supported by a novel methodology to solve contact problems without additional computational overhead to incorporate constraint equations averting the usage of penalty springs

    ADVANCED LATTICE AND POROUS STRUCTURES FOR AM PRODUCT OPTIMIZATION

    Get PDF
    The present work aims at favoring development of strategies useful for innovative high-performance mechanical components design. One of the most promising but not yet adequately explored strategies to achieve this goal are lattice / porous structures to be used as structural or filler materials to increase performance in terms of stiffness to weight ratio and enhanced vibration damping. To fill this knowledge gap, static and dynamic behavior of SLM-manufactured lattice structures made in AlSi10Mg aluminum alloy and 316L austenitic stainless steel have been thoroughly investigated; in particular, the study allowed to observe the effect of lattice\u2019s unit cell geometry and overall size variation on its mechanical properties, focusing on damping performances. Acquired knowledge allowed to develop a versatile methodology that can be applied to assess the mechanical properties of different kinds of lattice / porous structures, facilitating FE models calibration, creation of homogenization methods and mathematical models useful for lattices static and dynamic behavior rapid estimation. The development of an innovative tool for in-process measurement of cutting forces that develop in milling, drilling and grinding, integrating specially designed lattice structures, represents a practical case study useful to assess the feasibility of exploiting lattice structures to enhance mechanical components performances. Transversal expertise gained with respect to the SLM process, design and optimization of mechanical components and lattice structures, allowed to develop and validate an innovative methodology for rapid production of small-sized lattice structures (Patent Pending). An appropriate experimental campaign allowed to identify optimized process parameters, suitable for the production of lattices using the proposed methodology. The proposed method enhances the overall manufacturing process efficiency; moreover, since it allows substantial savings in terms of time and costs it has both scientific and industrial relevance

    Additive Manufacturing (AM) of Metallic Alloys

    Get PDF
    The introduction of metal AM processes in such industrial sectors as the aerospace, automotive, defense, jewelry, medical and tool-making fields, has led to a significant reduction in waste material and in the lead times of the components, innovative designs with higher strength, lower weight, and fewer potential failure points from joining features. This Special Issue on “Additive Manufacturing (AM) of Metallic Alloys” contains a mixture of review articles and original contributions on some problems that limit the wider uptake and exploitation of metals in AM

    Meeting high precision requirements of additively manufactured components through hybrid manufacturing

    Get PDF
    A hybrid approach combining the laser powder bed fusion (LPBF) process and post-processing operations through 5-axis milling was employed to manufacture a Ti6Al4V aerospace component. From the design step, the requirements and needs in all the stages of the Hybrid Additive Manufacturing process were taken into account. A numerical simulation of distortions promoted by residual stresses during the additive process was employed to consider material allowance. The status of the as-built and post-processed component was analysed through scanning and CMM inspection and roughness measurements. The 3D scanned model of the as-built LPBF-ed component was used to understand the distortion behaviour of the component and compared to the numerical simulation. Finally, 5-axis milling operations were conducted in some critical surfaces in order to improve surface quality and dimensional accuracy of the as-built com- ponent. The inspection of the as-built and post-processed component showed the improvement achieved through the proposed hybrid approach. The work aims to provide the baselines needed to enable the metal Hybrid Additive Manufacturing of components with complex geometries where mandatory precision is required by integrating high accuracy machining operations as post-processing technique

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully

    X-ray computed tomography for additive manufacturing: a review

    Get PDF
    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM

    Annual report / IFW, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Get PDF

    Thermo-mechanical modeling for selective laser melting

    Get PDF
    Selective Laser Melting (SLM) is an Additive Manufacturing (AM) process where a powder bed is locally melted with a laser. Layer by layer, complex three dimensional geometries including overhangs can be produced. Up to date, the material and process development of SLM mainly relies on experimental studies that are time intensive and costly. Simulation tools offer the potential to gain a deeper understanding of the process - structure - property interaction. This can help to find optimal process parameters for individualized components and the processing of innovative powder materials. In this work, a rigorous thermo-mechanical framework for the finite deformation phase change problem is formulated. Beside the phase change, an additional peculiarity of the SLM process is the fusion of powder particles. Regarding the numerical solution, meshfree methods seem to be especially suited because the treatment of particle fusion is intrinsic to the formulation. The complex moving boundaries between liquid melt and solid metal can be resolved without additional numerical effort. The recently introduced Optimal Transportation Meshfree Method (OTM) has been chosen since it was promoted as a versatile tool for both fluid and solid mechanics. Special focus lays on the modeling of laser-matter interaction. The laser beam can be divided into moving discrete energy portions (rays) that are traced in space and time. In order to compute the reflection and absorption, usually a triangulation of the free surface is conducted. Within meshfree methods, this is a very expensive operation. To avoid the need for surface triangulation, a computationally efficient algorithm is presented which can easily be combined with meshfree methods. Both melt pool dynamics and residual stress formation are studied with the developed numerical framework. The influence of laser heating and cooling conditions on melting and consolidation is investigated. Although the numerical results are promising, it was found that the OTM exhibits some limitations. Therefore, the accuracy of the method is critically discussed

    New Trends in 3D Printing

    Get PDF
    A quarter century period of the 3D printing technology development affords ground for speaking about new realities or the formation of a new technological system of digital manufacture and partnership. The up-to-date 3D printing is at the top of its own overrated expectations. So the development of scalable, high-speed methods of the material 3D printing aimed to increase the productivity and operating volume of the 3D printing machines requires new original decisions. It is necessary to study the 3D printing applicability for manufacturing of the materials with multilevel hierarchical functionality on nano-, micro- and meso-scales that can find applications for medical, aerospace and/or automotive industries. Some of the above-mentioned problems and new trends are considered in this book
    • …
    corecore