487 research outputs found

    Embedding object-oriented design in system engineering

    Get PDF
    The Unified Modeling Language (UML) is a collection of techniques intended to document design decisions about software. This contrasts with systems engineering approaches such as for exampleStatemate and the Yourdon Systems Method (YSM), in which the design of an entire system consisting of software and hardware can be documented. The difference between the system- and the software level is reflected in differences between execution semantics as well as in methodology. In this paper, I show how the UML can be used as a system-level design technique. I give a conceptual framework for engineering design that accommodates the system- as well as the software level and show how techniques from the UML and YSM can be classified within this framework, and how this allows a coherent use of these techniques in a system engineering approach. These ideas are illustrated by a case study in which software for a compact dynamic bus station is designed. Finally, I discuss the consequences of this approach for a semantics of UML constructs that would be appropriate for system-level design

    A hybrid framework for the specification of automated material handling systems

    Get PDF
    This paper presents a hybrid framework that specifies and characterizes the capabilities of generic components in an automated material handling system (AMHS). The framework also provides rules and mechanism for binding these capabilities together so as to facilitate the process of task planning for AMHSs. As a hybrid framework, the formal mathematics of Communicating Sequential Process (CSP) is tightly integrated to the Unified Modeling Language (UML) to provide three important entities, namely, the object structure diagram, object communication diagram and CSP-based statechart to extend the capability of a UML model in specifying the key properties of AMHSs including synchronization, parallelism and communication. The results will bring us a step closer to the generation of a fully automated task-planning executive for AMHSs.published_or_final_versio

    Towards the Correctness of Software Behavior in UML: A Model Checking Approach Based on Slicing

    Get PDF
    Embedded systems are systems which have ongoing interactions with their environments, accepting requests and producing responses. Such systems are increasingly used in applications where failure is unacceptable: traffic control systems, avionics, automobiles, etc. Correct and highly dependable construction of such systems is particularly important and challenging. A very promising and increasingly attractive method for achieving this goal is using the approach of formal verification. A formal verification method consists of three major components: a model for describing the behavior of the system, a specification language to embody correctness requirements, and an analysis method to verify the behavior against the correctness requirements. This Ph.D. addresses the correctness of the behavioral design of embedded systems, using model checking as the verification technology. More precisely, we present an UML-based verification method that checks whether the conditions on the evolution of the embedded system are met by the model. Unfortunately, model checking is limited to medium size systems because of its high space requirements. To overcome this problem, this Ph.D. suggests the integration of the slicing (reduction) technique

    Synthesis of behavioral models from scenarios

    No full text

    A formal execution semantics and rigorous analytical approach for communicating UML statechart diagrams

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A state/event-based model-checking approach for the analysis of abstract system properties.

    Get PDF
    AbstractWe present the UMC framework for the formal analysis of concurrent systems specified by collections of UML state machines. The formal model of a system is given by a doubly labelled transition system, and the logic used to specify its properties is the state-based and event-based logic UCTL. UMC is an on-the-fly analysis framework which allows the user to interactively explore a UML model, to visualize abstract behavioural slices of it and to perform local model checking of UCTL formulae. An automotive scenario from the service-oriented computing (SOC) domain is used as case study to illustrate our approach

    UML as a system level design methodology with application to software radio

    Get PDF
    Master'sMASTER OF SCIENC
    corecore