
Title A hybrid framework for the specification of automated material
handling systems

Author(s) Lau, HYK; Zhao, Y

Citation 2004 5Th Asian Control Conference, 2004, v. 2, p. 843-849

Issued Date 2004

URL http://hdl.handle.net/10722/46555

Rights Creative Commons: Attribution 3.0 Hong Kong License

2004 5th Asian Control Conference

A hybrid framework for the specification of automated material
handling systems

Henry Y.K. Lau* and Ying Zhaot

Department of Industrial and Manufacturing Systems Engineering
The University of Hong Kong

Pokfulam Road, Hong Kong, PRC.

*e-mail: hyklau@hkucc.hku.hk
te-mail: zhao-ying@hkusua.hkuhk

Abstract

This paper presents a hybrid fiamework that specifies and
characterizes the capabilities of generic components in an
automated material handling system (A M H S) . The
fiamework also provides rules and mechanism for binding
these capabilities together so as to facilitate the process of
task planning for AMHSs. As a hybrid framework, the
formal mathematics of Communicating Sequential Process
(CSP) is tightly integrated to the Unified Modeling
Language (LIML) to provide three important entities,
namely, the object structure diagram, object communication
diagram and CSP-based statechart to extend the capability
of a UML model in specifjmg the key properties of
AMHSs including synchronization, parallelism and
communication. The results will bring us a step closer to the
generation of a hlly automated task-planning executive for
AMHSS.

1 Introduction

An ultimate automated material handling system should
compose of cooperating machines that communicate with
one another to achieve a task autonomously. Such an
automated material handling system (A M H S) is able to
accept instructions, generate a feasible schedule, plan
actions, and then executes the tasks using the functionality
offered by the equipments such as conveyors, autonomous
guided vehicles (AGVs) and shuttles. The essential
knowledge that an A M H S control system requires includes
the characteristics, constraints and capabilities of its
components so that appropriate co-operation schedule can
be determined, In this respect, a complete A M H S control
system must be able to describe the characteristics of each
A M H S components, and to capture key properties including
synchronization, parallelism and communication during
task planning. To develop such an AMHS control system,
an appropriate specification and modeling fiamework is
essential.

Object-oriented modeling techniques [l, 21, such as the
Unified Modeling Language (UML), describe system in
terms of self-contained entities associated with both the

structural and the behavioral characteristics. They have
been widely used in system design and analysis due to their
characteristics including expressive modeling power,
extensibility, reusability, and implementation independence,
etc. While the advantages of using an object-oriented
approach to describe and model a system are numerous,
current object-oriented models have limitations in capturing
the concurrent and dynamic semantics of automated
systems. In particular, most object-oriented techniques do
not have a formal means to precisely capture the key
properties including synchronization, parallelism and
communication during the specification and analysis of
A M H S s . Communicating Sequential Process (CSP) 13, 41,
on the other hand, is a formal method for describing
concurrent systems with components interacting with one
another. It has a well-defined behavioral semantics for
describing synchronism and paraIlelism of concurrent
systems. To combine the capacities offered by these two
techniques in the system development process, a hybrid
fiamework that integrates CSP and UML for characterizing
the capabilities of generic material handling equipments, as
well as providing rules and mechanism for binding these
capabilities so as to facilitate the process of task planning
and control system design is presented in this paper.

The paper is structured as follows: a brief description of the
semantics and notations of CSP is given in the next section
that is followed by the presentation of the proposed hybrid
framework. Detailed discussion of the components of the
framework is then followed and an application of the
framework in specifylng a typical material handing system
is demonstrated through a case study.

2 Communicating Sequential Process (CSP)

The mathematics of CSP was introduced by Hoare [3] as’a
formal algebra for specifylng concurrent systems, It defines
a set of operators and axioms for describing discrete event
processes, concurrency, non-determinism, and
communication. A specification in CSP consists of n’ll
communicating processes; this is normally represented
using the parallel composition operator (10, which is
associative: P=(P1 /IP211.I1 Pn]. The parallel operators

043

seen so far (11) has the property that all partners allowed to
make a particular communication must synchronize for the
event to occur. The opposite is true of parallel composition
by interleaving, Written as PIIIQ. Here, the processes run
completely independently to each other.

h CSP, processes. communicate synchronously by sending
and receiving messages through channels: the sending and
receiving actions (or events) are specified using the input (?)
and output (!) notations. Specifically, P ? x describes the
action of receiving a value of x on a channel P, whereas, P !
x represents the action of sending a value of x through a
channel P. Synchronization is accomplished by using the
same channel for input and output actions in the two
communicating processes. In addition, choice operators for
selecting processes are defined for representing: (a) an
external choices (D) where the selection is made by the
environment, and (b) an internal choice (n) where such
selection is made by the process itself. Specifically, there
are two special CSP processes, namely, STOP and SKIP,
which represent deadlock and successhl termination of
process execution respectively that are particularly
important to the proposed fiamework that is introduced in
this paper. Full descriptions of CSP notations and axioms
can be referred in [3].

A number of studies of using CSP for system specification
and verification have been carried out [5-71. These include
studies of the elevator control system [8], traffic control
systems [SI, and the computer network protocols [IO].
Some attempts have been made to integrate the formalism
of CSP and timed-CSP into object-oriented models for the
design of real-time systems [I 11, and the specification of
concurrent systems whose components have well-defined
and modular behaviors [12]. These studies have established
the practicality of CSP, both on its own and as an integrated
method with an object-oriented model.

3 A hybrid framework for task planning

Tasks within an AMHS often involve multiple actions that
are performed by interacting machines. These actions may
involve transportation, storage, retrieval, sorting, packaging,
checking of materials. One of the very important activities
an AMHS control system performs is task planning in
which two major issues are considered: formal
decomposition of these tasks into sub-tasks and the
allocation of these tasks to appropriate machine modules. .
An alternative perspective to task planning in an A M H S is
to consider the capability of each individual AMHS
components, groups of components, and the entire system
in handling specific tasks. By mapping the desired task
specification with the capabilities of AMHS components
that compose the overall system, possible task plans can be
generated

As such the evaluation of the capabilities of AMHS is one
of the key facets in the context of the proposed framework.
In fact, the evaluation of the capabilities of AMHS
components depends largely on the ability to characterize a a

formally the properties of individual AMHS components.
The proposed fiarnework for capability modeling and task
specification in the context of automatically plan tasks is
illustrated in Figure 1. The fiamework consists of four main
components with reference to the particular AMHS and the
required material handling tasks. The task plans for the
particular AMHS are being the outputs.

The central part of this fiarnework is the hybrid formal
object-oriented model, which has the ability to specify
formally the essential behaviors and properties of the
AMHS components and their interactions. Another
important component is the capability model, which defines
the semantics for specifying the capabilities of A M H S and
provides rules for combing these component specifications
based on the formal modeling approach of CSP. A
repository of capability also forms part of the &"work
that is constructed by mapping the generic capability
models to formal task primitives. This repository acts as a
library that is used by the computer-aided tools for task
planning. The computer-aided tools are also developed for
building and evaluating of the capabilities of the M S .

1

Figure 1: The capability modeling and task
specification framework in the context of task

automated planning

3.1 Formal hybrid object-oriented model

The proposed hybrid model is based on the notations of
UML for object description, with the introduction of the
concurrent process model of CSP for specifying the
relationship between each object. Such integration extends
the object model with the ability to specify the concurrency
and communication aspects of concurrent processes. The
formal hybrid object-oriented model consists of three main
components, namely, the object structure diagram, the
object communication diagram and the CSP-based
statechart.

3.1.1 Object structure diagram: The
conventional role of UML object diagram provides a
structural architecture for objects and models the static
associations between them. Based on the object diagram,
CSP notations are introduced to formally .describe the
external dynamics of active objects in terms of external
communication and parallelism. Such a representation is
called the object structure diagram.

Specifically, the association in UML that is used to connect
two objects together is modeled as an interface between two
processes, precisely notated with appropriate CSP notations.
Using the CSP notations for parallel composition (1 1 and ill),
the object structure diagram describes not only the static but
also the dynamic relationships between objects formally
through the parallel (11) and the interleave relationships (111).
The association label is used to describe the set of external
communicating events that occw at the interfaces of both
processes. According to the formalism of CSP, both of
these processes have control over the occurrence of these
events. Figure 2 shows an example of object structure
diagram. In this hagram, the processes of the AGV and
Storage are operating in parallel and controlling the events
of loadqart and storexood.

Figure 2: An object structure diagram

3.1.2 Object communication diagram: In
order to capture hemal communication, which is a main
phenomenon of concurrent systems whose components
interact with each other via information passing, an object
communication diagram is developed.
m n -

Figure 3: Object communication diagram

CSP provides a formal means for describing and reasoning
about complex internal communication patterns, as it
encapsulates the fmdamenta1 principles of communication
in a simple and elegant manner. CSP exclusively uses
channels to realize internal communication between
processes. Channels are one-way, un-buffered, and filly
synchronized artifacts for information exchange.
Consequentially, the association in a UML object diagram
is modeled as a CSP channel that serves as an interface
between two processes, annotated with the name of the
channel. The arrows between a channel and objects
correspond to the flow of information. In Figure 3, ch
represents the communication channel that enables signals
to flow between the AGV and Assembly Line, and the
annotations of these arrows specify the signals and
messages. In this example, the AGV sends a signal of
assemble to the Assembly Line and the Assembly Line sends
the signal ofgo-un to the AGY.

3.1.3 CSP-based statecharts: To precisely
capture the dynamic behaviors of objects, a CSP-based
statechart is developed by extending the notations of the
UML statechart.

CSP choice operators (,n) are incorporated to the UML
statecharts to formalize the two types of choices namely,
external choice and internal choice, that is, a choice made
by the environment and by the process itself respectively.
There are more than one outgoing transitions with a state
involving a choice, and every transition out of this state
involves a branch of activity. This notion is illustrated by
Figures 4a and 4b. At state P, if event a occurs, the system
transits to the state P I , otherwise, the system transits to
state of P2. A start state signifies the creation of an object
that marks the beginning of the object lifetime, whereas an
end state signifies the termination of the object lifetime,
which may takes two different types: either successful or
unsuccessfbl termination that corresponding to a deadlock
'or liveness condition. The processes of SKIP and STOP are
also 'added to the termination states to clear define these
termination conditions. These are illustrated in Figure 4c. In
addition, the CSP internal communicating events, such as
e?v, and e!v are added to the state transition to provide a
precise specification for the specific events that cause the
state transition (Figure 4d).

Figure 4: CSP-bawd statecharts

3.2 Capability models for task planning
In addition to the diagrammatic representation of the hybrid
fiamework the semantics and notations for specifylng the
capabilities of an A M H S is given in this section.
Definition 1 -An Event

An Event is a discrete, observable and quantifiable entity
that occurred instantaneously in time. There are two types
of events, internal event and external event. The former
cannot trigger the explicit state transition, while the state
transition triggered by the later can be observed &om
outside the system.

Definition 2 - The Capability Set

The actions, that an object is capable of performing, are
defined as the capability set. In general, the capability sei of
an object is composed of a set of finite or infinite discrete
events, which happen sequentially or concurrently.

Definition 3 - A Capability Model

-

845

Under the hybrid fiamework, capability model is composed
of a set of capability sets based on either external choice (U
) or internal choice QI), which is formally described by:

A 0 / m 0 / n ...
Where A, B are capabiiiry sets

When events are triggered, an object changes its states;
therefore a CSP-based statechart specifies the dynamics of
individual object and these triggered events are mapped to
the capabilities of the particular object. To illustrate the
constructions of capability models, taking reference from
Figure 4, the components shown have the following
capability models:

a: {U] 0 {b]; 6: {U] ll {b]; d: {e?v/e!v).

Definition 4 - Combining Capability Models

Given the capability models of individual object, the
capability of the overall system can be obtained by combing
its component object diagrams based on the following rules,
which are derived from the formal modeling approach of
CSP.

Rule 1:

if P=pIIIF!& or P=P].111P2
the capabiiio model of PI: A, n/n A, om ...
the cupabiliw model ofP2: B, Om B , UIPZ. _ _

then the capability model ofP:
A, U A J J B , U B , u...

where A , , A, , B, , B, are capubility sets

The capability model of the whole system should contain
only those events through which the system interacts with
its environment. The internal events take no parts at the
system interface and are abstracted fiom the system
specification with ihe CSP hiding rule:

Rule 2:
if P=Q\B

rhe capability model of Q: A,
and B E A ,

then the capability model of P:

v

A - B
After hiding the internal events according to the Rule 2, the
capability model of the entire system becomes the system
level capability model. Subsequently, the system capability
model is mapped and associated with the task level
primitives that define the set of atomic actions that an
object 'is capable of performing.

The computer-aided CSP tools, namely the FDR2 and
ProBE C13-141 are then deployed to expedite the process of
building capability models, generating the traces, and
assisting the formal proof-of -correctness.

3.3 Formal AMHS task primitive repository
Through enumerating the generic components of typical
M S s , a set of generic capability models for these
components are generated. A typical capability description
of some combinations of major A M H S components consist
of a set of task primitives organized in parallel or in some
ordered sequences. These capability models form a database
of capabilities building blocks for tasWsubtask specification
and can be used to facilitate the process of task planning.

To illustrate this point, a complex warehousing task may
compose of many sub-tasks, and each sub-task containing a
sequence of task primitives. By matching these sequences
of task primitives with the capability description of a
combination of generic MHS components, an AMHS can
be built to achieve the specific complex task. As a result,
the sequence of actions of performing such complex task
can be determined, which provide useful information for
subsequent task scheduling. Accordingly, the process of
task planning for an AMHS is illustrated in Figure 5.

task I

.
capability of

individual obiects I action planning
I

Figure 5: The task planning process

4 Case study

In this section, we demonstrate how the fiamework is
applied to the specification of a typical automated material
handling system.

, Track

StatlonX

Station Y

I
Assembly

Station L
Figure 6: The schematic of the cross-docking

warehouse system
Figure 6 shows a cross-docking warehousing system that is
supported by a track-based transportation system with seven
rail-guided AGVs. A typical delivery task or work order
involves the coltection of a part from the Storage Station X

846

and moving the part to Assembly Line X by passing
though the transfer gate (Gate I) . Once an AGV has
reached the Assembly Line X, it orders its assigned goods.
The Assembly Station then assembles the goods using
appropriate tools. The assembled goods is reloaded onto
the AGV fiom the Assembly Line Y and then brought to the
Storage Station Y to be stored.

4.1 Object structure and communication diagrams
The organization and behavior of this cross-docking
warehousing system can be succinctly specified using
appropriate object structure and object communication
diagrams under the proposed fkmework. These two formal
diagrams are constructed by identifying the participating
processes, interactions and communications between the
components of the warehousing system.

In this system, the active objects identified include AGVs,
Gates, Assembly Lines, and Storages Siatiolss. In particular,
the AGVs are the main components within the system that
communicate with other components to Mfill work orders.
The object structure and the object communication
diagrams for this system are given by Figures 7 and 8.
According to Figure 7, each AGV is operating in an
interleaving manner with other AGYs whereas the AGVs
and other subsystems are operating in a parallel manner
with the synchronized communications. For example, the
AGY and the Gate are operating in parallel with the
synchronized external communication event enter. TWO
specific Assembly Line objects, namely Assembly Line X
and Assembly Line Y are being derived 60m the generic
Assembly Line object. In particular, Assembly tine X is €or
unloading parts whereas Assembly Line Y is for delivering
assembled goods. In the object communication diagram
(Figure 8) there are four object types, namely, the Gate,
AGV, Storage Station and Assembh Line with
communication channels: ch0 ... ch3. The Storage Station is
a generic object that represents both types of storage
stations €or obtaining parts and storiig of assembled goods.
Therefore, a Sroruge Srarion can receive load and sfore
signals. The channels connecting a process with the border
of the diagram model the communication with the
environment. For example, the A GV communicates with the
environment through the channel chO, and receives the task
information from the environment.

im

Storaae

switch asemble go-on

A G .

I

Figure 8: The object communication diagram of the
warehousing system

4.2 CSP-based statec hart models
For each active object identified by the object structure
diagram, a corresponding CSP-based statechart that model
its dynamic behaviors is developed. Figure 9 shows the
CSP-based statecharts for these objects. The events
identified in the behaviors of these objects are described in
detail in Appendix A.

The AGV statechart (Figure 9a) that outlines the behavior of
the AGV has two top-level states. Initially, it is in the
waiting state where it is waiting to accept instructions via
chO ? tusk. When an event or an instruction is received, it
switches to the active state. The active state is a complex
state that defines the behavior of the AGV. Under normal
operation, an AGY performs six sequential operations,
namely, load parts, enter the Gate, unloadparts, enter the
Gate, loud goods, and sfore goods. Under these operations,
the AGV receives the go-on signal &om the Storages
Station (chl ? go-on), and Assembly Lines {ch3 ? go-on)
to continue its actions, and also sends the signals of
assemble and order to the Assembly Lines (ch3 ! assemble,
cb3 ! order) to instruct the Assembly Line and order the
wanted goods. When an AGV successfulIy finishes a task, it
then enters the SKIP state.

In the case of the Assembly Line statechart (Figure 9b), it
contains an extemal choice, as this statechart models the
behaviors of both rypes of assembly lines. When it receives
a signal of assemble, it then executes the assembly function,
and when it receives the order signal, it executes the
ddivev function. Similarly, the CSP-based statechm’ of
Storuge Station (Figure 9c) also contains an external choice,
as it models the behaviors of both types of storage stations,
which execute the load part and store goods functions
respectively. The behaviors of gate are showed in the Figure
9d, when it receives a switch signal, it splits to allow the
AGYto enter andwhen anAGYhas entered, it thenjoins.

Figure 7: The object structure diagram of the
warehousing system

847

{chi ? ioad, loadgart, eh1 ! go-on)
storexoods,

chl ! go-on,';

{chl ? switch, split, enter, join)

{chi ? store,

Capability model of the Gate:

According to the object diagram of objects, the whole
system can be described as System=AGV I] Assembly Line 11
Storage Station (1 Gate in CSP. Based on the Rule 1 and
RuIe 2, the capability model of the whole system can be
built:

{go-load, loadgart, g o j a t e , enter, spli t, join,
go-assemble, unloadqart, assemble, go-deliver,
luad_poods, gosfore, storexoods).

Furthermore, by hiding the event of go-load, goxute.
enter, split, join, go-ussembk, unloadqart, godeliver,
loadxoods, go-store, a more abstract capability model is
resulted:

{loadgart, assemble, s to reoods)

These models have been checked by FDR2 and confirmed
that there are no pathological problems of deadlock. In
addition, the derived capability model that consisting of a
set of formal task primitives can be added to the capability
repository for subsequent task planning. Characterizing the
capabilities of the whole system and its components, the
required action plans for specific tasks can be generated
with the help of the computer-aided tools. Such plan defines
the responsibilities of all AMHS components and their
interactions concemed fkom which the overall task can be
achieved, which will be the backbone of the control
scheme.

"-?x Cbl km

split

spliting

cntcr

pining

(c 1 (d 1

Figure 9: CSP-based statecharts for the AGV,
Assembly Line, Storage Station and Gate object

4.3 Capability models
According to the CSP-based statecharts of the objects that
specify the dynamics of the warehousing system, the
capability models of each of these objects are then
developed:

{chO ? task, go-load ,chi!load, loadgart, eh1 ?
go-on, gozate , eh2 ! switch, enter, go-assemble, ch3 !
ussemble, unfoadjart, eh3 ? go-on, gu-deliver, ch3 !
order, load-goods, go-store, ,chl !store, storexoods); .
fch3 ? assemble, unloadgart, eh3 ! go-on, assemble,'

Capability model of the AGE

Capability model of the Assembly Line:

fch3 ? order , l odsoads , eh3 ! go-on);

Capability model of the Storage Station:

5 Conclusion

In this paper, we have proposed a hybrid framework for
task planning of AMHS. Being the central part of this
framework, a formal hybrid object-oriented model for
specifying the characteristics and behaviors of AMRS has
been developed by integrating the notations and semantics
of UML and CSP. This integration enables the model to
precisely capture the key properties of AMHS, and also
enables the model to reason about the pathological
problems of deadlock and liveness with the help of CSP
model checkers such as FDR2, Meanwhile, the integration
of the graphical language of UML with CSP provides a
graphical interface to work with CSP that streamlines the
specification processes. Based on the hybrid object-oriented
model, we have formally- described the capabilities of
individual components as well as groups of components to
build up a database (the repository) so as to facilitate the
subsequent generation of action plans. These results will
bring us a step closer to the generation of a fully automated
task-planning executive for the autonomous control of
material handling systems. Moreover, by adopting the
capability modeling approach to task planning, dynamic

848

operating conditions can be accommodated, which is
extremely important for achieving intelligent, robust and
efticient operation for future material handling systems.

Event

ch3?assemble
ch3?order

unloadqart
ch3 !ga-on
load_goods
assemble

6 Acknowledgement

The work described in this paper was supported by the
Research Grant Council of the Hong Kong Special
Administrative Region, PRC under the CERG Project No.
HKU7079/02E.

Description

Receive assemble instruction from AGV
Receive order instruction from AGV

Load part from AGV
Send the continue message to AGV

Unload goods to AGV
Assemble goods

Inf. Software Technology, 1996, Roc. Vo1.38, N0.2, pp.

[121 Smith, G., A semantic integration of Object-Z and CSP
for the specification of concurrent q s t e m , FME'97:
tndustrial Benefit of Formal Methods, Springer-Verlag,
2997.

89 - 102.

Appendix A

Table 1: Events of AGV
Event I Description

Event

chl?load
[IO] Sun, Y . and Yang, H., Communication mechanism

independent protocol spec;fication based on CSP; a

References

Description
Receive the signal of load

from AGV

Booch, G, Object-Oriented Analysis and Design with
Applications, the Benjam"ings Publishing
Company, Inc., California, 1994.

Holt, J, UML for systems engineering-watching the
wheels. The institution of electrical engineers.

Hoare, C. A. R, Communicating Sequential Processes,
Prentice Hall International, UK, 1985.

Roscoe, A. W., The theory and Practice o f
Concurrency, Prentice Hall International, UK, 2000. .

Winter.K, Model checking railway interlocking
systems, the 24th Austria1 conference on Computer
science, 2002, Roc. Vol4, No. I , pp.-303--3 10.

Engets. G, Kuster. J.M. , and Heckel. R. et al, A
meihodology for specifiing and analyzing consistency
of object-oriented behuvioral models, the 8'h European
software engineering conference held jointly with gth
ACM SIGSOFT international symposium on
foundations of software engineering, 2002, Proc. Vol

Robbins. J.E., Medvidovic. N., Redmiles. D.F., and et
al, Integrating architecture description languages ,with
a standard design method, the 2dh internaltional
conference on Software engineering, 1998, .Roc. pp.

Tsujigado, M., Application of CSP to the specrfcation
description, analysis and sofiare design of elevator
control systems and the implementation in Ada, the
ZEEE E C O N 21st international Conference on
Industrial EIectronics, Control, and Instrumentation,

Lau,Y. K H. and Daniel, R W., A CSP model for
distributed control sojware design, Technical report
1789/89, Oxford University Department of
Engineering Science, 1989.

26, NO. 5, pp. -186-195.

-209--218.

1995, ROC. V012, pp. -1555 --1560.

-
pp. -303--3 10. ch 1 !&_on

storexoods

chO?task

go-load
chl !load
ch 1 !store
loadqart

ch I ?go-on

ch2!switch
go-gate

Enter
go-assemble
ch3!assemble

ch3!order.
unloadgart

ch3?go_on

Send the continue message to AGV
Load goods from AGV

Receive the task instruction &om environment
through the channel of chO

Move io Storage Station X for loading part
Send the signal of load to Storage Station X
Send the signal of store to Storage Station Y

Load part from Storage Station X
Receive the continue message from the Storage

Station X or Y
Send switch message to the Transfer Gate

Move to the Transfer gate
Enter the Transfer Gate

Move to the Assembly Line X
Send assemble instruction to the Assembly Line X

Send order instruction to the Assembly Line Y
Unload part to the Assembly Line X

Receive the continue message from the Assembly
Line X or Y

. .

AGV moves to the Assembly Line Y for loading
assembled goods go-deliver I

load_goods
go-store

store goods

Load goods from the Assembly Line Y
Move to the Storage Station Y for storing goods

Unload the goods to the Storage Station Y to store

Table 3: Events of Gate
Event

ch2?swi tch
Enter AGV Enter
split

Receive switch instruction from AGV

Table 4: Events of Storage Station

case sturrjv, the Z2nd EUROMCRO conference on
Hardware and Soffware Design Strategies, 1996, hoc.

chl?store
loadpart

Receive the signal of store from AGV
Unload part to AGV

849
CSP during object oriented design of real-time systems

