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Abstract

The major problem of the official UML semantics is it lacks the precise definition which

is required for performing a formal analysis and reasoning on statechart diagrams.

This thesis first examines a rigorous approach for the formalization of the execution

semantics of communicating UML statechart diagrams in the π-calculus. An integrated

approach which is based on the formalized execution semantics is then proposed for

the equivalence checking and model checking of statechart diagrams.

Our formalization transforms a subset of UML statechart diagrams as distinct from

statecharts into the π-calculus as a number of processes which communicate via a

channel-passing interaction paradigm. Checking equivalence of any two statechart di-

agrams is transformed to a problem of verifying whether the corresponding π-calculus

process expressions are equivalent. An equivalence-checking environment which consists

of three software tools is described and demonstrated. The environment allows a user to

draw statechart diagrams with Poseidon for UML, translate them into π-calculus rep-

resentations with SC2PiCal and check whether the statechart diagrams are equivalent

using the MWB.

Likewise, we put forward a model-checking environment. To verify the correctness

of a finite state system represented as multiple interacting statechart diagrams, we

specify the design in statechart diagrams using Poseidon for UML, formalize them in

the π-calculus, transform the π-calculus expressions into equivalent NuSMV code using

PiCal2NuSMV and verify the system automatically using the NuSMV model checker.

Our work illustrates how an integrated approach can provide a more thorough

analysis of statechart diagrams. The main contributions of this thesis are:

(i) a formal definition of the execution semantics of statechart diagrams;

(ii) an integration of different formal methods and tools for analyzing statechart dia-

grams; and
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4 Abstract

(iii) a practical application of the proposed approach for verifying the correctness of

SET/A protocol.
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Chapter 1

Introduction

The Unified Modeling Language (UML) [14, 93, 82, 83] has become the de facto stan-

dard for the development of object-oriented systems in industry. UML includes a set

of nine diagram types which model different views of a system. UML statechart dia-

grams [14, 93, 82, 83], which are a variant of Harel’s statecharts [42], are a diagrammatic

notation for visualizing and expressing the dynamic aspects of a system. They depict

how an object responds to various events throughout its lifetime.

UML statechart diagrams are characterized by their graphical syntax and execu-

tion semantics. The graphical syntax defines precisely how a statechart diagram is

constructed from the notational elements of UML statechart diagrams, whereas the

execution semantics specifies the mechanism for processing an event and firing a tran-

sition.

Though UML statechart diagrams have a well-defined graphical syntax, their exe-

cution semantics is only described in [82, 83] in informal English. A precise definition

of the execution semantics is a prerequisite for performing a formal analysis on UML

statechart diagrams.

There have been a number of studies on the execution semantics of UML statechart

diagrams. Latella et al. [61, 60, 38, 39] have shown how UML statechart diagrams

are formalized in extended hierarchical automata (EHA) by unfolding the hierarchical

structure of a composite state. Lilius and Paltor [62] have presented a formalization

of UML statechart diagrams in PROMELA [48]. Reggio et al. [98] have explored

how UML statechart diagrams are translated into Common Algebraic Specification

Language (CASL). In addition, Reggio et al. have pointed out that the formalization

17
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of UML statechart diagrams is important as it reveals ambiguities, inconsistencies and

incompleteness of the OMG Unified Modeling Language Specification [82].

While much research has been devoted to the formalization of UML statechart di-

agrams, little research has been done on the integration of different formal methods

and software tools for the analysis of UML statechart diagrams. To provide a thor-

ough analysis of UML statechart diagrams, an alternative approach which formalizes

UML statechart diagrams in the π-calculus [77, 74] is presented in this thesis. The

π-calculus is a channel-passing process algebra which was developed by Milner, Parrow

and Walker [77, 74]. It is a formalism for specifying concurrent systems. We adopt the

π-calculus for the formalization of the execution semantics of UML statechart diagrams

as (i) it provides a compositional approach for modelling the hierarchical structure of a

statechart diagram as parallel composition; and (ii) it allows the encoding of the firing

priority scheme of statechart diagrams as channel passing between concurrent processes.

Our formalization focuses on the major graphical constructs of UML statechart dia-

grams which consist of various types of transitions and states. These include interlevel

transitions, conflicting transitions, non-composite states (basic states), non-concurrent

composite states and concurrent composite states.

Although our work shares some similarities with previous studies [61, 60, 38, 39,

62, 98], there are also significant differences. In contrast to the formalization of [61, 60,

38, 39], our approach preserves the hierarchical structure of UML statechart diagrams

through the use of parallel composition. The preservation of hierarchical structure

reduces the complexity of formalization and retains the levels of abstraction. [62] for-

malizes the run-to-completion step [82, 83] separately as an algorithm. On the contrary,

ours is represented directly in the π-calculus and only a single formalism is needed in

our formalization. Unlike the work of [98] which focuses on the use of formalization for

identifying ambiguities, inconsistencies and incompleteness of the UML documentation,

we emphasize the formal analysis of UML statechart diagrams.

The contribution of our work is not only that a systematic approach for the defi-

nition of execution semantics is advocated. More importantly, it throws light on how

equivalence checking and model checking [30] of UML statechart diagrams can be car-

ried out. Practical applications of our work include the determination of substitutabil-

ity of UML statechart diagrams, detection of inconsistency between UML statechart

diagrams and verification of the correctness of a system against its specifications.

Proving two statechart diagrams are equivalent is important as it allows us to
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distinguish between statechart diagrams and determine when one statechart diagram

can substitute for another one. Equivalence checking is a complex process as the number

of transitions grows exponentially as the number of states increases.

Similarly, the integration of UML statechart diagrams with model checking is use-

ful as it provides a rigorous approach for verifying the correctness of a model in the

design stage. Unlike testing, which is used for finding errors in an implementation, our

approach enables the verification of a model against its specifications before the model

is implemented.

To automate the equivalence checking and model checking of UML statechart dia-

grams, an integrated environment based on the formalized execution semantics has been

implemented. The integrated environment comprises two translators which provide

linkages between UML statechart diagrams and the π-calculus as well as the π-calculus

and the NuSMV model checker.

1.1 Achievements

Prior to the submission of thesis, some parts of the thesis have been published as a

number of papers:

1. Lam, V.S.W. and Padget, J. Formalization of UML Statechart Diagrams in the

π-Calculus. In Proceedings of 2001 Australian Software Engineering Conference,

pages 213–223. IEEE Computer Society, 2001.

2. Lam, V.S.W. and Padget, J. On Execution Semantics of UML Statechart Dia-

grams Using the π-Calculus. In Proceedings of the International Conference on

Software Engineering Research and Practice, pages 877–882. CSREA Press, 2003.

3. Lam, V.S.W. and Padget, J. Analyzing Equivalences of UML Statechart Diagrams

by Structural Congruence and Open Bisimulations. In Proceedings of 2003 IEEE

Symposium on Human Centric Computing Languages and Environments, pages

137–144. IEEE Computer Society, 2003.

4. Lam, V.S.W. and Padget, J. Symbolic Model Checking of UML Statechart Dia-

grams with an Integrated Approach. In Proceedings of Eleventh IEEE Interna-

tional Conference and Workshop on the Engineering of Computer-Based Systems,

pages 337–346. IEEE Computer Society, 2004.

5. Lam, V.S.W. and Padget, J. Formal Specification and Verification of the SET/A

Protocol with an Integrated Approach. In Proceedings of 2004 IEEE International
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Conference on E-Commerce Technology, pages 229–235. IEEE Computer Society,

2004.

6. Lam, V.S.W. and Padget, J. Analyzing Execution Semantics of Statecharts Vari-

ants. In Proceedings of 8th World Multi-Conference on Systemics, Cybernetics

and Informatics, volume 1, pages 474–478. IIIS, 2004.

Accepted paper which is based on the remaining parts of the thesis is given below:

1. Lam, V.S.W. and Padget, J. An Integrated Environment for Communicating

UML Statechart Diagrams. To appear in Proceedings of 3rd ACS/IEEE Interna-

tional Conference on Computer Systems and Applications.

Submitted paper which is based on the content of the thesis is listed as follows:

1. Lam, V.S.W. and Padget, J. Automated Equivalence Checking of UML Statechart

Diagrams Using the MWB. Submitted for publication.

Other publications which were written during the PhD study period include:

1. Lam, V.S.W. Book review on Communicating and Mobile Systems: the π-Calculus.

ACM Software Engineering Notes, 25(1): 121, 2000.

2. Lam, V.S.W. and Padget, J. Consistency Checking of Statechart Diagrams of

a Class Hierarchy. To appear in Proceedings of 19th European Conference on

Object-Oriented Programming.

3. Lam, V.S.W. and Padget, J. Consistency Checking of Statechart Diagrams and

Sequence Diagrams Using the π-Calculus. To appear in Proceedings of Integrated

Formal Methods 2005.

1.2 Structure of the Thesis

Chapter 2 recalls the syntax and execution semantics of UML statechart diagrams

which are based on the official UML documentation. A comparison of UML statechart

diagrams with Harel’s statecharts is provided. The limitations and weaknesses of the

original execution semantics and previous formalizations are examined in great detail.

An overview of the π-calculus is given in Chapter 3. A structured approach for the

formalization of communicating UML statechart diagrams is presented. The correctness

of the formalization is proved. Examples are given for illustrating how various graphical

constructs of statechart diagrams are encoded in the π-calculus.

A practical application of the formalization is shown in Chapter 4. It illustrates

how the equivalence of two statechart diagrams is formally verified by translating them
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into the π-calculus. The work described in this chapter is the first part of an integrated

approach which unifies equivalence checking and model checking for the analysis of

statechart diagrams.

A rigorous approach for verifying the design of a system represented as a number

of interacting statechart diagrams against its specifications is discussed in Chapter 5.

This chapter constitutes the second part of the integrated approach.

The integrated approach is analyzed and evaluated in Chapters 6 and 7 by using

a case study approach. Applications of the integrated approach for the analysis of

an agent-based payment protocol and a statechart diagram consisting of a concurrent

composite state are illustrated in Chapter 6.

Chapter 7 details the design and implementation of an integrated environment

which supports the integrated approach. It contains discussion about the development

of two translators, SC2PiCal and PiCal2NuSMV, in which they integrate Poseidon for

UML, MWB and NuSMV as an integrated environment for the equivalence checking

and model checking of statechart diagrams.

Chapter 8 concludes the thesis. It highlights the contributions of the thesis and

sketches lines of future research.

Appendix A is a quick reference to the commands for the integrated environ-

ment. Appendix B details the implementation of the two translators SC2PiCal and

PiCal2NuSMV.
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Chapter 2

Background

Statecharts are a graphical notation which was developed by Harel [42] for visualiz-

ing and specifying the dynamic behaviour of a system. The statechart formalism ex-

tends the conventional state transition diagrams by incorporating the notions of nested

states, orthogonality and broadcast communication mechanism. The statechart dia-

grams which are part of UML are a variant of Harel’s statecharts, but UML statechart

diagrams differ from Harel’s statecharts in both syntax and execution semantics.

In this chapter, we aim at providing a thorough introduction to statechart formal-

ism. We review the syntax and execution semantics of two major statechart variants:

UML statechart diagrams and Harel’s statecharts. In particular, the differences in syn-

tax and execution semantics between UML statechart diagrams and Harel’s statecharts

are highlighted. Examples are given to illustrate how a single diagram is interpreted

in different ways using the two execution semantics. Technical issues which are due

to the imprecise definition of UML execution semantics are explored. A comparison

of our work with previous formalizations of UML execution semantics is provided. An

alternative formalization approach and two applications of the formalization on the

formal analysis and reasoning of UML statechart diagrams are proposed. In addition,

justification for our proposed approach is given in detail.

Material from this chapter has been published as [56].

2.1 Syntax

This section summarizes and compares the graphical syntax of Harel’s statecharts and

UML statechart diagrams. For a more detailed description of the graphical syntax, the

23
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reader is referred to [14, 93, 82, 83, 42, 44, 35, 89, 43]. In particular, [82, 83, 44] provide

a more extensive and complete treatment of the subject than the others.

2.1.1 Syntax of Harel’s Statecharts and UML Statechart Diagrams

A statechart or statechart diagram comprises two basic entities: state and transition.

A state is denoted as a rounded rectangle, while a transition is denoted as an arrow

labelled with three optional parts: event, guard-condition and action.

In statecharts or statechart diagrams there are three types of states: non-composite

states, non-concurrent composite states and concurrent composite states. A non-

composite state is a basic state that does not have any substates. A non-concurrent

composite state is a state only one of whose substates is active at any point of exe-

cution. In a concurrent composite state more than one of its substates, which are

in different orthogonal regions separated by dashed lines, are active at the same time

at any point of execution.

Each statechart or statechart diagram has a root state (top state) which contains

all other states of the statechart or statechart diagram. The root state is a non-

concurrent composite state in which it is not enclosed within any other state. In

contrast to other non-concurrent composite states, it does not have any incoming or

outgoing transitions.

An initial pseudostate is denoted as a small filled circle with an outgoing tran-

sition to the default state of a non-concurrent composite state. Each non-concurrent

composite state has only one initial pseudostate which represents the start state for the

composite state.

A transition connects a source state to a target state. A guard-condition, which

is a Boolean condition, is evaluated whenever the specified event on the transition

occurs. An action is an atomic computation that is executed when the transition is

fired. Typical examples of an action include the invocation of an operation and the

sending of an event to an object in which the behaviour is modelled using a statechart

diagram. A transition is fired whenever the specified event is present and the guard-

condition holds. The action of the transition, if any, is carried out and the target

state is entered. Transitions which are in different orthogonal regions of a concurrent

composite state may fire simultaneously.

An interlevel transition is a transition which crosses the border of a composite
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state. It originates from or terminates on the border of a substate of the composite

state. Entering or exiting a substate causes the enclosing state i.e. the composite state

to be entered or exited as well.

A fork expresses a splitting of control into processes which are running in parallel,

whereas a join expresses a synchronization of control for processes which are running

in parallel. Unlike a fork which has one incoming transition and at least two outgoing

transitions, a join has at least two incoming transitions and only one outgoing transi-

tion. In UML statechart diagrams, a fork pseudostate and a join pseudostate are both

denoted as a short thick bar as shown in Figure 2.1, whereas in Harel’s statecharts a

fork and a join are represented as Figure 2.2.

Fork Join

Figure 2.1: Fork and join of UML statechart diagrams

Fork Join

Figure 2.2: Fork and join of Harel’s statecharts

Figure 2.3 shows an example of an UML statechart diagram. The root state S0

is an outermost state which contains all other states of the statechart diagram. The

statechart diagram consists of nine non-composite (basic) states S1, S3, V1, V2, W1, W3,

W4, T1 and T2. The transition t1 is fired when the event E1 occurs and the guard-

condition Cond1 holds. The source state S1 is exited, the action Action1 is executed

and multiple target states S2, V1 and W1 are entered.

The concurrent composite state S2 consists of two orthogonal regions (concurrent

substates) S21 and S22 in which the active substates are V1 and W1, respectively. Upon

the occurrence of event E3, the transition t3 is fired, the action Action3 is executed and

the non-concurrent composite state W2 and its default state T1 are entered. Unlike the
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S 0

S 1

S 21 V 1 V 2

W 1
W 3

W 4T 1 T 2

S 3

S 2

S 22 W 2

t9:  E9/Act ion9

t1:  E1[Cond 1]/Act ion1

t2:  E2[Cond 2]

t3:  E3/Act ion3
t4:  E4

t5:  E5 t7:  E7

t6:  E6/send o.E10

t8:  E8

Figure 2.3: Example of an UML statechart diagram

state S2, the state W2 has only one active substate T1. If both V2 and W4 are active,

the two flows of control in the concurrent substates S21 and S22 merge into one flow of

control upon receipt of the event E8.

On receipt of event E5, the transition t5 is fired. Both the composite state W2 and

its active substate T1 or T2 are exited and target state W3 is entered. The transition

t6 from the source state T2 to the target state W4 is an interlevel transition in which

the composite state W2 is also exited whenever the event E6 occurs. The send action

then sends an event E10 to an object o. Unlike the transition t5 which is fired when

either substates T1 or T2 is active, the transition t6 is fired only when the substate T2

is active.

As Figure 2.4 shows, there is no difference with Figure 2.3, except the notational

distinctions between fork and join and the absence of send action in transition t6. Unlike

UML statechart diagrams, Harel’s statecharts do not support send actions. Instead

of sending an event to a particular object, the action of transition t6 in Figure 2.4

broadcasts the event E10. Each (Harel) statechart is then required to process the event

E10 even though the event is targeted at another statechart.

2.1.2 Syntactical Differences

Besides the syntactical differences in forks, joins and send actions, statechart diagrams

extend Harel’s statecharts with parameterized events, internal transitions and deferred

events (Table 2.1). In statechart diagrams an event is not only a signal, but it may
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S 0

S 1

S 21 V 1 V 2

W 1
W 3

W 4T 1 T 2

S 3

S 2

S 22 W 2

t9:  E9/Act ion9

t1:  E1[Cond 1]/Act ion1

t2:  E2[Cond 2]

t3:  E3/Act ion3
t4:  E4

t5:  E5 t7:  E7

t6:  E6/E10

t8:  E8

Figure 2.4: Example of a statechart

have arguments in which they are used in the corresponding guard-condition, action and

entry action. An internal transition is a transition which executes an action in response

to an event without exiting the currently active state. Each state in a statechart

diagram may associate with a list of deferred events where responses to them are to

be postponed. The deferred events, unlike non-deferred events, do not trigger any

transitions. The retention terminates as soon as the statechart diagram enters a state

which no longer defers these events.

On the one hand, UML statechart diagrams enrich Harel’s statecharts by intro-

ducing a number of new features. On the other hand, they also simplify the syntax

of Harel’s statecharts by removing features, namely (i) the trigger part of a transition

of UML statechart diagrams contains only a single event rather than conjunctions of

events; and (ii) negated events which model non-occurrence of events are not supported

in statechart diagrams.

2.2 Execution Semantics

In this section, we recall the execution semantics of Harel’s statecharts and UML state-

chart diagrams. The adopted execution semantics of UML statechart diagrams is based

on the informal UML semantics given in [82, 83].
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UML Statechart Harel’s Statecharts

Diagrams

Forks/joins Yes Yes

(with a short (without a

thick bar) short thick

bar)

Send actions Yes No

Parameterized events Yes No

Internal transitions Yes No

Deferred events Yes No

Conjunctions of events No Yes

Negated events No Yes

Table 2.1: Comparison of syntax

2.2.1 Execution Semantics of Harel’s Statecharts

Harel’s statecharts, that are based on STATEMATE semantics [44], adopt a two-level

step semantics. A statechart responds to some external events offered by the environ-

ment by computing a maximal set of non-conflicting transitions which can be taken

in a micro step. The newly generated events, which cannot be sensed in the current

micro step, become the input to the next micro step. This chain reaction continues

until all internally generated events are processed and the sequence of micro steps forms

a macro step. The system moves from one configuration, which is a stable state, to

another configuration in a macro step.

The interaction of a statechart with its environment assumes a discrete time model.

Depending on the number of steps which are executed in one unit of time, the time

model is further classified into synchronous or asynchronous. In the synchronous time

model, a statechart interacts with the environment and executes one micro step in

one unit of time. On the other hand, in the asynchronous time model a statechart

communicates with the environment and executes several micro steps (a macro step)

in one unit of time.

In the synchronous time model the execution of a macro step requires non-zero

time, whereas in the asynchronous time model the execution of a macro step requires
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zero time. No matter whether the micro steps of a macro step are executed at the same

instant or not, the duration of an event is limited to one micro step. It does not exist

in subsequent micro steps.

2.2.2 Execution Semantics of UML Statechart Diagrams

Each UML statechart diagram is regarded as an abstract machine which has three major

components: an event queue, an event dispatcher and an event processor. Events which

are offered by the environment are added to the end of the event queue. The event

dispatcher chooses, dequeues and provides one event at a time to the event processor.

Each event is then executed as a run-to-completion step which ensures that the next

event is not dispatched until the processing of the current event is completed. A

dispatched event which does not match the trigger events of any transitions in the

statechart diagram is discarded i.e. implicitly consumed.

Two transitions are in conflict if they exit the same source state or the source state

of one transition is directly or transitively contained in the source state of the other

transition. Conflicting transitions are resolved using a lower-first firing priority scheme.

A transition originating from a lower-level source state has priority over a conflicting

transition in which the source state is higher in the state hierarchy.

A state configuration of a statechart diagram is the maximal set of states which

are active at the same time. In a non-concurrent composite state only one of its direct

substate is active at the same time, whereas in a concurrent composite state all of

its direct substates (orthogonal regions) are active at the same time. When a run-to-

completion step is performed, the state configuration changes from one to another.

2.3 Execution Semantics Differences

Besides the syntactical differences, there are also substantial differences in the exe-

cution semantics between Harel’s statecharts (HSCs) and UML statechart diagrams

(UMLSCDs). The differences in the execution semantics are enumerated as follows:

1. UMLSCDs adopt a one-level step semantics (Table 2.2). Each event is executed as

a run-to-completion step. Newly generated events in a run-to-completion step are

added to the corresponding event queues of the target objects. In contrast, HSCs

adopt a two-level step semantics. Newly generated events of a micro step become
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UML Statechart Harel’s Statecharts

Diagrams (HSCs)

(UMLSCDs)

One/two level step semantics one level, two levels,

run-to-completion step macro and micro steps

Perfect synchrony hypothesis No Yes (asynchronous model)

No (synchronous model)

Local consistency N/A Yes

Global consistency N/A No

Causality Yes Yes

Transition refinement N/A Yes (asynchronous model)

No (synchronous model)

Firing priority scheme Yes (inner-first) Yes (outer-first)

Firing priority determination relative position scope of the transition

mechanism of the source state

No. of events processed at a One One or more

time

Distinguishing internal and No Yes

external events

Zero-time semantics Yes/No Yes (asynchronous model)

No (synchronous model)

Execution of in sequential order in parallel

semicolon-separated actions

Duration of events zero or more one micro step

run-to-completion steps

Table 2.2: Comparison of execution semantics
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the input to the next micro step. A macro step, which consists of a sequence of

micro steps, terminates when all internally generated events are processed.

2. The perfect synchrony hypothesis proposed in [10] assumes that an input event

and an output event of a reaction occur at the same time. The atomicity of the

reaction is guaranteed. The reaction respects the zero-time semantics and time

advances only in between the reactions. In practice, this means that a system

is working much faster than its environment. It always processes the generated

output event before the occurrence of the next input event. Any changes in

a micro step are sensed in the same macro step. In the asynchronous model of

STATEMATE, the perfect synchrony hypothesis is assumed. In contrast, changes

which are caused by a transition can only be sensed in the next run-to-completion

step in UMLSCDs.

3. A contradiction between the trigger part and action part of a transition occurs if

the trigger part contains a negated event and the action part contains the same

event in a non-negated form. In local consistency [112] the negated event in the

trigger part depends only on events generated in previous micro step of the cur-

rent macro step, but in global consistency [88] it depends on events generated

in both previous and future micro steps of the current macro step. Local con-

sistency allows the transition to fire, while global consistency prohibits this. As

negated events are not supported in UMLSCDs (see Section 2.1.2), both local

and global consistencies are not considered in UML semantics (Table 2.2). In

contrast, STATEMATE has adopted local consistency (Table 2.2) and it respects

causality [112]. Causality distinguishes a cause (the trigger part) of a transition

from its effect (the action part). It ensures that a cause does not depend on

events generated by its effect.

4. The substitution of a single transition by a sequence of transitions is known as

transition refinement [112]. The asynchronous model of STATEMATE takes zero

time to execute both the transition and its refinement, whereas the synchronous

model takes non-zero time to execute the refinement. Since there is a difference

between the execution times of the transition and its refinement, the synchronous

model does not respect transition refinement. Unlike HSCs, UMLSCDs are not

based on micro and macro steps. The question of transition refinement does not

exist.

5. Both UMLSCDs and HSCs resolve the conflict between two enabled transitions
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by a firing priority scheme [112]. In UMLSCDs an inner-first priority scheme

is adopted, whereas in HSCs an outer-first priority scheme is adopted. Unlike

the priority of a transition in UMLSCDs which depends on the relative position

of the source state in the state hierarchy, the priority in HSCs is based on the

scope of the transition. The scope of a transition [112, 44] is the lowest common

non-concurrent composite state of the source and target of the transition. The

priority of HSCs is determined by both the source and target states.

6. In UMLSCDs one event is dispatched and processed at a time. On the contrary,

in HSCs a set of events generated in a micro step is available as input to the next

micro step in which they are processed at a time.

7. Due to the perfect synchrony hypothesis, the asynchronous model of STATEM-

ATE has to distinguish an internal event from an external event. All internally

events generated in micro steps must be processed before an external event is

sensed. In the semantics of UMLSCDs, there is no need to distinguish between

internal and external events.

8. The asynchronous model of STATEMATE takes zero time to execute a macro

step. Time advances in states rather than in transitions. In contrast, UMLSCDs

allow a non-zero time semantics and the execution of an action may take time.

9. Both HSCs and UMLSCDs allow the action part of a transition to define a se-

quence of semicolon-separated actions. In STATEMATE the actions of a tran-

sition are executed in parallel, whereas in UMLSCDs the actions of a transition

are executed in sequential order. According to [44], the result of updating a

common variable by a sequence of actions which are running in parallel is non-

deterministic.

10. In UMLSCDs, an event exists in an event queue as long as it is not dispatched

by an event dispatcher. The duration of an event depends on the length of the

queue and lasts for zero or more run-to-completion steps. In HSCs, an event is

only available to the next micro step. The duration of an event is limited to one

micro step.

2.4 Different Interpretations of a Single Diagram

This section exemplifies how a single diagram, which conforms to the graphical syntax

of both UML statechart diagrams and Harel’s statecharts, is interpreted differently



2.4. DIFFERENT INTERPRETATIONS OF A SINGLE DIAGRAM 33

using the execution semantics of UML statechart diagrams and Harel’s statecharts. An

example is given in Figure 2.5.

S 0

S 1

S 4
S 6

S 2

S 3S 5
S 7

t1:E1

t2:E1

t3:E2
t4:E3

Figure 2.5: Example 1 of different interpretations

Consider the two transitions with labels t1 and t2, both depending on E1. The

source states for t1 and t2 are S1 and S4. State S4 is lower in the state hierarchy and t2

is fired according to the execution semantics of UML statechart diagrams. In contrast,

transitions t1 and t2 have the same scope S0 according to the STATEMATE semantics

and non-determinism arises.

Figure 2.6 provides another example. A sequence of actions, which generates events

E2 and E3, is executed when t1 is fired. UML semantics states that E2 and E3 are

generated in sequential order and only t2 in T0 is fired, whereas STATEMATE states

that E2 and E3 are generated simultaneously and either t2 or t3 is fired.

t1:  E1/E2;E3S 1 S 2
T 1

T 2

T 3

t2:  E2

t3:  E3

S 0 T 0

S T 0

Figure 2.6: Example 2 of different interpretations

Example 3(b) is derived from 3(a) by adding a composite state T1 and drawing a

transition t6 from T1 to T2. However, neither UML semantics nor STATEMATE se-

mantics considers 3(a) and 3(b) as equal. Transition t5 is fired when event E1 occurs by

adopting the UML semantics, while transition t6 is fired by adopting the STATEMATE

semantics. The non-deterministic behaviour of S1 is preserved only if the execution se-

mantics does not adopt any firing priority scheme such as the one proposed in [45].



34 CHAPTER 2. BACKGROUND

S 1 S 2

S 3

V 1 V 2

T 2

T 1

S 0

t3:  E1

t1:  E1

t2:  E1

t4:  E2 t7:  E2

t6:  E1

t5:  E1

T 0

(a) (b)

Figure 2.7: Example 3 of different interpretations

Likewise, in Example 4 confusion arises when both events E1 and E2 occur at the

same time. In a run-to-completion step, only one event is dispatched and processed at

a time. Depending on whether event E1 or E2 is processed first, either state S4 or S5

is entered.

Unlike UML semantics, in STATEMATE semantics both events E1 and E2 are

available as a set for processing at the same step. Either transition t1 is fired and state

S2 is entered or transition t2 is fired and state S3 is entered.

S 1

S 2

S 3

S 4

S 5

t1:  E1

t2:  E2

t3:  E2

t4:  E1

S 0

Figure 2.8: Example 4 of different interpretations

2.5 Motivation

After reviewing the execution semantics of UML statechart diagrams and comparing

it to the execution semantics of Harel’s statecharts, we explain the motivation for

studying the formalization of the execution semantics of UML statechart diagrams in

this section.
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2.5.1 The Importance of a Precise Execution Semantics

The use of informal English for specifying the execution semantics poses a number

of problems such as imprecision and incompleteness to the UML documentation. An

example of imprecision and incompleteness in the UML documentation is it does not

specify precisely and explicitly how statechart diagrams communicate between one an-

other. The original execution semantics focuses on a single statechart diagram instead

of multiple communicating statechart diagrams.

To overcome this limitation, we propose the use of a communication mechanism

which is by means of a send action [93] for communicating between statechart diagrams.

Figure 2.9 shows a send action in which an event E2 is sent to an object obj1 (unicast

communication) upon receiving the event E1. The sending of an event E2 to a set of

objects (multicast communication) is illustrated in Figure 2.10. Similarly, Figure 2.11

shows a send action in which an event E2 is broadcast (broadcast communication) to

all objects.

E 1/send
obj1.E2S 1 S 2

Figure 2.9: Unicast

E 1/send
{obj1,...,objn}.E2

S 1 S 2

Figure 2.10: Multicast

In our extended execution semantics, we assume that the event queue of each stat-

echart diagram has a unique identifier or address, the transmission of events is reliable

and no event is lost. Statechart diagrams interact by sending events to the event queues

of other statechart diagrams. The sending of an event E2 to an object obj1 is regarded

as sending the event E2 to the event queue of object obj1. Likewise, the broadcast of
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E 1/send E 2
S 1 S 2

Figure 2.11: Broadcast

an event E2 to all objects is regarded as sending the event E2 to the event queues of

all objects.

2.5.2 Formal Analysis and Reasoning

Though UML statechart diagrams provide a rich set of notational elements for express-

ing the behaviour of a system in response to events, the correctness of a system can only

be verified using various informal techniques. The lack of a precise execution semantics

not only makes it difficult to perform a formal analysis and reasoning on the design of

a system, but also hinders the progress of verification tools development.

A well-defined execution semantics is a prerequisite for the integration of UML

statechart diagrams with various formal methods and software tools. Through the

development of an integrated approach, the equivalences of UML statechart diagrams

can be formally proved by checking whether they exhibit the same behaviour in response

to various events and the correctness of a system can be formally verified with respect to

its specifications. In addition, the formal execution semantics also provides a theoretical

foundation for the construction of software tools which support and automate the formal

analysis and reasoning.

2.5.3 Review of Previous Formalizations

The major technical issue of the formalization of UML statechart diagrams is to find

a suitable formalism for the representation of interlevel transitions. An interlevel tran-

sition is a transition which crosses the border of a composite state and it originates

from or terminates on the border of a substate of the composite state (Section 2.1). An

interlevel transition is like an unstructured goto statement which violates the compo-

sitionality semantics.

Latella et al. [61, 60, 38] use extended hierarchical automata (EHA) for the formal-
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ization. They unfold interlevel transitions by raising lower-level transitions to higher-

level transitions. Similarly, Varró [109] represents statechart diagrams as EHA and

defines the operational semantics of EHA using model transition systems.

In our formalization, we introduce a compositional approach for the construction

of state hierarchy using the π-calculus. We represent a composite state and its ac-

tive substates as a number of processes which are running in parallel. An execution

of an interlevel transition originating from an active substate is regarded as a self-

termination [69] of the π-calculus process representing the active substate. Before the

occurrence of the self-termination, the process representing the active substate sends

a signal to the process representing the composite state. The composite state is then

exited and the target state of the interlevel transition is entered. The π-calculus has

an advantage over EHA as it can model state hierarchy as parallel composition and

interlevel transition directly, whereas EHA requires an extra table for keeping the true

origins of interlevel transitions and other related information such as events, actions,

etc.

2.6 Our Approach

A new approach for the formalization of the execution semantics of UML statechart

diagrams using the π-calculus is proposed in this thesis. The encoding of UML stat-

echart diagrams in the π-calculus facilitates a formal analysis and reasoning on UML

statechart diagrams which includes equivalence checking using Mobility Workbench

(MWB) [110, 111] and model checking using NuSMV [23]. In our approach, the design

of a system is first documented using a number of communicating statechart diagrams,

then translated into π-calculus and finally analyzed using MWB and NuSMV. The

reasons for combining these threads as an integrated approach are:

1. The UML has now become a de facto standard for the development of object-

oriented systems in industry.

2. As the π-calculus plays an important role in concurrent computing [75] and is

a well-established formal notation, we have adopted it as a mathematical nota-

tion for defining precisely the informal UML statechart diagrams semantics given

in [82, 83].

3. An interlevel transition which is like an unstructured goto statement can be easily

represented using the π-calculus without unfolding the hierarchical structure of
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UML statechart diagrams.

4. We have adopted the π-calculus instead of Calculus of Communicating Systems

(CCS) [73] or value-passing CCS [73] as:

(i) CCS does not support parameterized agents, parameterized input actions

and parameterized output actions. Due to the lack of parameter passing,

a specification becomes more complex when compared with value-passing

CCS and the π-calculus. A typical 2-buffer example inputting two values

based on [34] is represented in CCS as follows:

Buffer1
def
= input1.c1.Buffer1 + input2.c2.Buffer1

Buffer2
def
= c1.output1.Buffer2 + c2.output2.Buffer2

System
def
= (Buffer1|Buffer2) \ {c1, c2}

The corresponding more concise and general π-calculus representation which

is capable of inputting n values is given below:

Buffer(i, o)
def
= i(x).o〈x〉.Buffer(i, o)

System(input, output)
def
= (νc)(Buffer(input, c)|Buffer(c, output))

(ii) Though value-passing CCS, like the π-calculus, is capable of passing pa-

rameters, automated tools which include Edinburgh Concurrency Work-

bench [107] and Concurrency Workbench of the New Century [31] do not

support the analysis of value-passing CCS specifications directly. As a value-

passing CCS specification is translated into a CCS specification using a front

end tool such as vp [22] before performing the analysis, the size of the spec-

ification or the size of the state space actually remains unchanged when

compared with the use of CCS specification. The translation also causes

the analysis to become more difficult as it requires to relate the CCS speci-

fication back to the original value-passing CCS specification.

5. The π-calculus representations provide the flexibility of analyzing statechart di-

agrams either directly in the π-calculus using MWB or indirectly by translating

them into the input language of the NuSMV model checker.

6. Using the π-calculus as an intermediate representation ensures that different im-

plementations of a statechart diagram in various tools are consistent with each

other since they are based on the same mathematical model.
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7. The π-calculus formalization has advantage over previous formalizations as it pro-

vides structural congruence and various types of well-defined behavioural equiv-

alences which form a basis for defining precisely when statechart diagrams are

equivalent.

8. The formalization of statechart diagrams is a complex process which is based

on their syntax and informally defined execution semantics. The adoption of

a 3-tiered architecture using the π-calculus as an intermediate representation

reduces the effort by formalizing only once rather than multiple times for different

formal methods and software tools. The complexity of the implementation of the

intermediate representation in other formal methods and software tools is less as

the transformation is mainly syntax-directed.

9. We have chosen the MWB instead of the Open Bisimulation Checker (OBC)

Workbench [37, 36] as (i) the MWB supports both monadic and polyadic π-

calculi; and (ii) the development of the OBC Workbench has stopped, while the

development of the MWB continues.

10. When compared with Symbolic Model Verifier (SMV) [71], NuSMV addresses

the state explosion problem in a more efficient way by supporting both binary-

decision diagram based (BDD-based [19]) and propositional satisfiability based

(SAT-based [11]) model checking.

11. We do not translate a statechart diagram directly into the input language of

NuSMV as it is just a programming language rather than a mathematical notation

and is not suitable for defining the execution semantics of statechart diagrams.

2.7 Summary and Related Work

In this chapter, we have examined the syntax and execution semantics of UML state-

chart diagrams and compared them with Harel’s statecharts. Examples have been given

for illustrating how a single diagram can have very different meanings based on the two

execution semantics. The importance of a precise execution semantics definition has

been discussed. Issues in previous formalizations and an overview of our approach have

been presented.

In [112], the syntax and execution semantics of more than 20 classical statechart

variants have been compared. The major limitation of this study is that it is now

outdated. Neither the STATEMATE semantics [44] of Harel’s statecharts nor UML
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semantics of UML statechart diagrams is included in the comparison. In this chapter,

we extend [112] by comparing UML statechart diagrams using UML semantics with

Harel’s statecharts using STATEMATE semantics. Part of our comparison framework

is based on [112]. The framework is constructed by (i) extracting comparison criteria

that are related to UML statechart diagrams and Harel’s statecharts from [112]; and

(ii) adding new comparison criteria that are based on concepts used only in UML state-

chart diagrams and Harel’s statecharts. New comparison criteria include parameterized

events, internal transitions, deferred events, one/two level step semantics and number

of events processed at a time.



Chapter 3

A Formal Execution Semantics

for Communicating UML

Statechart Diagrams

Numerous research studies have proposed formalisms for modelling concurrent compu-

tation. Algebraic formalisms are often referred to as process calculi or process alge-

bras [9]. Depending on whether the interconnection structures of the processes are static

or dynamic, process calculi are further classified into non-mobile process calculi and mo-

bile process calculi. Typical examples for non-mobile process calculi are Communicating

Sequential Processes (CSP) [47] and Calculus of Communicating Systems (CCS) [73],

whereas typical example for mobile process calculi is the π-calculus [77, 74, 76, 87].

In the π-calculus, the concepts of values, variables and channels are integrated as

names. The π-calculus extends CCS through the support of name passing. Milner, Par-

row and Walker published a landmark paper which describes the monadic π-calculus [77]

in 1992. Milner developed the idea a little further by publishing another landmark pa-

per which describes the polyadic π-calculus [74] in 1993. The monadic π-calculus allows

the passing of a single name over the channel, while the polyadic π-calculus allows the

passing of multiple names over the channel. Sangiorgi [101] has extended previous work

by introducing higher-order π-calculus. In higher-order π-calculus, processes may be

passed over channels.

This chapter presents a precise execution semantics for communicating UML state-

chart diagrams. As pointed out in Sections 2.5 and 2.6, we have adopted the π-calculus

41
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as a mathematical notation for execution semantics definition since (i) an interlevel

transition which is like an unstructured goto statement can easily be represented in the

π-calculus without unfolding the hierarchical structure of UML statechart diagrams

as proposed in [61, 60, 38, 39]; and (ii) the π-calculus has structural congruence and

various types of well-defined behavioural equivalences which form the basis for defining

precisely when statechart diagrams are equivalent.

Unlike previous studies [61, 60, 38, 62], the formalized execution semantics in this

chapter is for multiple interacting statechart diagrams rather than a single statechart

diagram. It focuses on the communication between statechart diagrams through their

event queues.

The remainder of this chapter is organized as follows. The syntax and semantics

of the π-calculus are described in Section 3.1. Section 3.2 discusses a formal execution

semantics for communicating statechart diagrams which is defined using the π-calculus.

The correctness of the formalization is proved in Section 3.3. Examples that illustrate

how various graphical constructs of UML statechart diagrams are encoded in the π-

calculus are presented in Section 3.4. A comparison with related work is given in

Section 3.5. Section 3.7 summarizes the chapter.

The content of Sections 3.1, 3.2, 3.3 and 3.5 is based on [55, 51]. An earlier version

of Section 3.4 has been presented in [53].

3.1 The π-Calculus

The π-calculus is a process algebra for specifying concurrent systems in which the

processes communicate over channels. As many variants of the π-calculus have been

proposed, we briefly review the syntax and semantics of the π-calculus used throughout

the thesis. The reader is referred to [76, 87] for details.

We let A be a set of processes ranged over by P,Q,R,Pi, Qi, Ri for i = 1, . . . , n, N

be a set of channels (names) ranged over by x, y, xi, yi for i = 1, . . . , n and = be a set of

process identifiers. A tuple of channels x1, x2, . . . , xn is abbreviated to ~x. The syntax

and semantics of π-calculus process expressions are defined as follows:

x(~y).P : is an input prefix which receives channels along channel x and continues as

process P with y1, y2, . . . , yn replaced by the received channels. The input prefix

x().P is abbreviated as x.P .
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x〈~y〉.P : is an output prefix which sends channels y1, y2, . . . , yn along channel x and

continues as process P . The output prefix x〈〉.P is abbreviated as x.P .

P |Q : represents concurrent processes P and Q are executing in parallel. Πn
i=1Pi

abbreviates P1|P2| . . . |Pn.

P +Q : represents a non-deterministic choice which either process P or Q proceeds.

Σn
i=1Pi abbreviates P1 + P2 + . . . + Pn.

(ν~x)P : is a restriction which creates new channels x1, x2, . . . , xn used for communi-

cation in process P .

[x = y]P : is a matching construct which proceeds as process P if channels x and y

are identical; otherwise, behaves like a null process.

τ.P : is an unobservable prefix which performs an internal action τ and continues as

process P .

A(x1, x2, . . . , xn)
def
= P : denotes a process identifier A which takes n parameters and

behaves like process P. Process P may contain occurrences of A.

0 : is a null process which cannot perform any actions.

The input prefix x(~y).P and restriction (ν~x)P bind ~y and ~x in P , respectively.

Unlike the input prefix, the channels ~y in the output prefix x〈~y〉.P are free. The

bound names and free names of P are defined as bn(P ) and fn(P ). The expression

fn(P ) ∪ fn(Q) is abbreviated as fn(P,Q).

Consider for example a client-server model in which a client communicates with a

server asynchronously through a reliable transmission medium. Figure 3.1 shows the

interactions among the client, medium and server. In the diagram, c, m and s denote the

client, merchant and server channels, respectively. The medium first receives a request

from the client along channel m and sends the received request to the server along

channel s. It then inputs a response from the server along channel m and outputs the

received response along channel c. A request reqi gets a response respni for 1 ≤ i ≤ n.

The behaviour of the client is encoded in the π-calculus as:

Client(c, s,m,−→req)
def
=

Σn
i=1m〈reqi, c, s〉.c(respn, source).Client(c, s,m,

−→req)
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Client

Server Med ium

c

m

s
2: req i

3: respn i

1: req i

4: respn i

Figure 3.1: Asynchronous client-server model

We model the client as a non-deterministic choice which sends one of the requests

reqi for 1 ≤ i ≤ n to the transmission medium along channel m. The client then waits

for a response on channel c and behaves as itself.

The transmission medium which resends any received message without message loss

is given by:

Medium(m)
def
=

m(msg, source, dest).dest〈msg, source〉.Medium(m)

The medium receives a message, a source address and a destination address along

channel m, sends the received message and source address to the destination address

and waits for another message to deliver.

Likewise, we define the behaviour of the server recursively by:

Server(s,m,−→req,−−−→respn)
def
=

s(req, source).(

Σn
i=1[req = reqi]m〈respni, s, source〉.Server(s,m,

−→req,−−−→respn))

The server waits on channel s for a service request, determines what the request is,

returns the corresponding response to the client through the transmission medium and

continues to serve another service request.

A full specification of the asynchronous communication between the client and the

server through a reliable transmission medium is defined by a parallel composition of

the client, medium and server as follows:

CS Model(c, s,m,−→req,−−−→respn)
def
=

Client(c, s,m,−→req)|Medium(m)|Server(s,m,−→req,−−−→respn)
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3.2 The Formalization

In this section, we examine how a subset of statechart diagrams and an execution

semantics of interacting statechart diagrams are formalized in the π-calculus [55, 51].

Notational elements including time events, deferred events and history pseudostates

are not considered in our formalization. We do not consider these notational elements

as (i) they play a less important role when compared with other notational elements

like event, state, guard condition, etc.; and (ii) the adoption of this approach provides

a clearer presentation for the formalization.

3.2.1 Formalization of Notational Elements

The strategy of the formalization is to define an appropriate π-calculus representa-

tion for each notational element of UML statechart diagrams. Based on the defined

mapping, the transformation of notational elements is then repeated until a complete

π-calculus specification for a statechart diagram is obtained. As an illustration of the

idea, we consider a simple UML statechart diagram as shown in Figure 3.2.

1

1 2

Figure 3.2: Example of a simple UML statechart diagram

We represent the event E1 as a channel e1 (Rule 1 of Table 3.1) in the π-calculus.

The states S1 and S2 are mapped to process identifiers S1(step, eventS , ~e) and S2(step,

eventS , ~e) (Rule 2 of Table 3.1) such that ~e abbreviates e1, . . . , en. The π-calculus

specification of state S1 is then defined as:

S1(step, eventS , ~e)
def
=

eventS(x).([x = e1]step.S2(step, eventS , ~e) +

Σi6=1[x = ei]step.S1(step, eventS , ~e))

The output action step models the run-to-completion step defined in the official

UML semantics.
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Rule Statechart Diagram π-Calculus

1 event channel

2 state process identifier

3 guard condition output action

4 action output action

5 non-concurrent composite state concurrent processes

6 concurrent composite state concurrent processes

7 event queue process

8 dispatcher process

9 root state process

Table 3.1: Translation rules

As shown in Table 3.1, we represent guard-condition and action as output action. A

guard-condition modelled as an output action accepts either a single channel or a pair

of channels. If a single channel is received, the Boolean value is sent on the received

channel. If a pair of channels are received, a signal is sent on one of the channels for

indicating which Boolean value is stored in the guard-condition. An action represented

as an output action corresponds to the invocation of an operation or the sending of

an event to an event queue. Likewise, event queue, dispatcher and root state are

translated into process. The formalized translation rules are provided in the remainder

of this section.

We define SC as a set of statechart diagrams ranged over by F,G,H,Fi,Gi,Hi for

i = 1, . . . , n, ST as a set of states ranged over by S,T,V,W,Si,Ti,Vi,Wi for i = 0, . . . , n,

E as a set of events ranged over by E1, . . . , En and T R as a set of transitions ranged

over by t1, . . . , tn. In addition, an infinite set of natural numbers N and infinite set of

positive integers Z+ are assumed.

The translation of statechart diagrams into the π-calculus is based on the execution

semantics discussed in Chapter 2 and the set of rules depicted in Table 3.1. The

translation rules in Table 3.1 are formally defined as follows:

Rule 1 The function φevent : E → N maps each event in a statechart diagram to a

channel in the π-calculus.

Let STRoot ⊆ ST be a set of root states, STNCS ⊆ ST be a set of non-composite states,
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STNCCS ⊆ ST be a set of non-concurrent composite states and STCCS ⊆ ST be a set

of concurrent composite states.

Rule 2 The function φstate : ST → = returns a unique process identifier for each

state. Given a transition which is triggered by an event E1 ∈ E connecting S1 ∈ STNCS

to S2 ∈ STNCS then the process identifier S1(step, eventS , ~e) ∈ = representing state S1

is defined as

eventS(x).

([x = e1]step.S2(step, eventS , ~e) +

Σi6=1[x = ei]step.S1(step, eventS , ~e))

where ~e stands for e1, . . . , en and ∀a ∈ ~e.φ−1
event(a) ∈ E , φstate(S1) = S1(step, eventS , ~e),

φstate(S2) = S2(step, eventS , ~e).

Rule 1 specifies that an event is modelled as a channel in the π-calculus. The inverse

of φevent denoted by φ−1
event is a function from N to E . Rule 2 stipulates that a state is

encoded in the π-calculus as a process. The process is regarded as an event processor of

the statechart diagram which handles each dispatched event according to the UML step

semantics. It determines what the event is by using a number of matching constructs.

Both φevent and φstate are bijective functions.

We defineAin = {x(~y)|x, ~y ∈ N} to be a set of input actions andAout = {x〈~y〉|x, ~y ∈

N} to be a set of output actions.

Definition 1 The function arity: (Ain ∪ Aout) → N returns the number of channels

which an input or output action takes as parameters.

Rule 3 A mapping between guard-conditions and output actions is defined as φguard :

GCond→ {α|α ∈ Aout ∧ arity(α) ∈ {1, 2}} where GCond is a set of guard-conditions.

Given a transition which consists of a guard-condition g connecting S1 ∈ STNCS to

S2 ∈ STNCS then the guard-condition is represented as g〈x〉 or g〈true false〉 and its

Boolean value is tested by either

(νx)g〈x〉.x(y).

([y = true]step.S2(step, eventS , ~e, g, true, false) +

[y = false]step.S1(step, eventS , ~e, g, true, false))
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or

(νtrue false)g〈true false〉.

(true.step.S2(step, eventS , ~e, g) +

false.step.S1(step, eventS , ~e, g))

where φ−1
guard(g〈x〉), φ

−1
guard(g〈true false〉) ∈ GCond and

φstate(S1) =

{
S1(step, eventS , ~e, g, true, false) if α = g〈x〉

S1(step, eventS , ~e, g) if α = g〈true false〉

φstate(S2) =

{
S2(step, eventS , ~e, g, true, false) if α = g〈x〉

S2(step, eventS , ~e, g) if α = g〈true false〉

arity(α) =

{
1 if α = g〈x〉

2 if α = g〈true false〉

Rule 4 Each action representing the invocation of an operation or the sending of a

signal to an object is related to an output action in the π-calculus by φaction :Act→ Aout

where Act is a set of actions.

Rules 3 and 4 say that the guard-condition and action of a transition are both rep-

resented as an output action and defined as bijective functions. Rule 3 gives two

alternatives on how a guard-condition and its evaluation are formalized. One encoding

uses two matching constructs to distinguish between the two truth values, whereas the

other encoding uses two input actions to determine what the truth value is. The two

corresponding alternatives for indicating the Boolean value true is stored in a guard-

condition g are defined as:

True(g, true, false)
def
=

g(x).x〈true〉.T rue(g, true, false)

and

True(g)
def
=

g(true false).true.T rue(g)

Similarly, the two corresponding alternatives for denoting the Boolean value false is

stored in the guard-condition are obtained by replacing True by False, x〈true〉 by

x〈false〉 and true by false, respectively.
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Rule 5 A non-concurrent composite state S1 and its active direct substate V1 are de-

noted as φstate(S1)|φstate(V1). Given a transition which is triggered by an event E1

connecting a non-concurrent composite state S1 to a non-composite state S2 where

φstate(S1) = S1(step, eventS , ~e, eventV , pos, neg) and φstate(V1) = V1(eventV , ~e, pos,

neg), φevent(E1) = e1, φstate(S2) = S2(step, eventS , ~e, pos, neg) then the process iden-

tifiers S1(step, eventS , ~e, eventV , pos, neg) and V1(eventV , ~e, pos, neg) are defined by:

S1(step, eventS , ~e, eventV , pos, neg)
def
=

eventS(x).(νack)eventV 〈x ack〉.ack(y).

([y = pos]step.S2(step, eventS , ~e, pos, neg) +

[y = neg]step.S1(step, eventS , ~e, eventV , pos, neg))

V1(eventV , ~e, pos, neg)
def
=

eventV (x ack).

([x = e1]ack〈pos〉+

Σi6=1[x = ei]ack〈neg〉.V1(eventV , ~e, pos, neg))

Rule 6 A concurrent composite state S1 and its active substates V1, V2 which are lo-

cated in 2 different orthogonal regions are denoted as φstate(S1)|φstate(V1)|φstate(V2).

Given a transition which is triggered by an event E1 connecting a concurrent compos-

ite state S1 to a non-composite state S2 where φstate(S1) = S1(step, eventS , ~e, eventV1
,

eventV2
, pos, neg, contV1

, contV2
, endV1

, endV2
), φstate(Vi) = Vi(eventVi

, ~e, pos, neg, contVi
,

endVi
) for i = 1, 2, φevent(E1) = e1, φstate(S2) = S2(step, eventS , ~e, pos, neg) then the

process identifiers S1(step, eventS , ~e, eventV1
, eventV2

, pos, neg, contV1
, contV2

, endV1
, endV2

)

and Vi(eventVi
, ~e, pos, neg, contVi

, endVi
) for i = 1, 2 are defined by:

S1(step, eventS , ~e, eventV1
, eventV2

, pos, neg, contV1
, contV2

, endV1
, endV2

)
def
=

eventS(x).(νack1 ack2)eventV1
〈x ack1〉.eventV2

〈x ack2〉.ack1(y1).ack2(y2).

([y1 = pos][y2 = pos]endV1
.endV2

.

step.S2(step, eventS , ~e, pos, neg) +

[y1 = pos][y2 = neg]contV1
.contV2

.

step.S1(step, eventS , ~e, eventV1
, eventV2

, pos, neg, contV1
, contV2

, endV1
, endV2

) +
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[y1 = neg][y2 = pos]contV1
.contV2

.

step.S1(step, eventS , ~e, eventV1
, eventV2

, pos, neg, contV1
, contV2

, endV1
, endV2

) +

[y1 = neg][y2 = neg]contV1
.contV2

.

step.S1(step, eventS , ~e, eventV1
, eventV2

, pos, neg, contV1
, contV2

, endV1
, endV2

))

Vi(eventVi
, ~e, pos, neg, contVi

, endVi
)

def
=

eventVi
(x acki).

([x = e1]acki〈pos〉.

(endVi
+

contVi
.Vi(eventVi

, ~e, pos, neg, contVi
, endVi

)) +

Σi6=1[x = ei]acki〈neg〉.contVi
.

Vi(eventVi
, ~e, pos, neg, contVi

, endVi
))

Rules 5 and 6 specify that a composite state and its active substates are denoted as

processes which are running in parallel. A non-concurrent composite state is regarded

as a special case of a concurrent composite state in which there is only one orthogonal

region. The composite state broadcasts any received events to its substates. As the

substates process the received event before the composite state, the lowest-first firing

priority of UML semantics is preserved in our translation.

Rule 7 Given a statechart diagram F ∈ SC, the event queue is represented in the

π-calculus as:

QueueF0 (ins, del, empty)
def
=

ins(x1).Queue
F
1 (ins, del, empty, x1) +

empty(t f).t.QueueF0 (ins, del, empty)

QueueFn (ins, del, empty, x1, . . . , xn)
def
=

ins(xn+1).Queue
F
n+1(ins, del, empty, x1, . . . , xn, xn+1) +

del(r).r〈x1〉.Queue
F
n−1(ins, del, empty, x2, . . . , xn) +

empty(t f).f .QueueFn (ins, del, empty, x1, . . . , xn)

where n ≥ 1.
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Rule 8 For a statechart diagram F ∈ SC, the encoding of the dispatcher is given by:

DispatchF (t, f, r, del, empty, execute, complete)
def
=

empty〈t f〉.

(t.DispatchF (t, f, r, del, empty, execute, complete) +

f.del〈r〉.r(event).execute〈event〉.complete.

DispatchF (t, f, r, del, empty, execute, complete))

Rule 9 Given a statechart diagram F ∈ SC, we denote its root state S0 in the π-

calculus as:

S0(execute, step, complete, eventS )
def
=

execute(x).eventS〈x〉.step.

complete.S0(execute, step, complete, eventS )

In [82, 83], it is not described how the event queue is implemented. In our formalization,

we model the event queue as a FIFO queue (Rule 7) which consists of three channels

ins, del and empty. The channel empty provides a way for determining whether the

queue is empty or not. If the queue is not empty, the dispatcher (Rule 8) deletes

an event from the front of the queue, sends it along channel execute and waits for

a completion signal from the root state (Rule 9). Unlike an ordinary non-concurrent

composite state, a root state is a top-level state that (i) does not have any superstates;

(ii) cannot have any outgoing transitions; (iii) always remains active; and (iv) never

evolves to any other states.

3.2.2 Formalization of Execution Semantics

We now present the formalization of execution semantics in the π-calculus. A formal

treatment of concepts including enabled transition, implicit consumption, conflicting

transitions, precedence, firing priority scheme, run-to-completion step, etc. is given in

this subsection.

Definition 2 The function substates: ST → 2ST returns the direct substates that are

directly contained in a composite state.

Definition 3 The function States: SC → 2ST defined by States(F )={S|S is a state

of statechart diagram F} returns the set of states of a statechart diagram F ∈ SC.
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Definition 4 (State Configuration) A state configuration of a UML statechart di-

agram F ∈ SC is a set ConfigF ⊆ States(F) which satisfies the conditions that:

(i) ∃1s ∈ ConfigF .s ∈ STRoot;

(ii) ∀s ∈ ConfigF .s ∈ STNCCS ⇒ (∃1v ∈ substates(s).v ∈ ConfigF ); and

(iii) ∀s ∈ ConfigF .s ∈ STCCS ⇒ (substates(s) ⊆ ConfigF ).

The symbol ∃1 is read as ‘there exists exactly one’. Clause (i) states that each

state configuration has only one root state. Clause (ii) specifies that exactly one direct

substate of a non-concurrent composite state is contained in the state configuration,

while clause (iii) means that all direct substates of a concurrent composite state are

contained in the state configuration.

Let A1(
−→x1) →

∗ A2(
−→x2) stands for A1(

−→x1)
α1→ P1

α2→ . . .
αn→ Pn

αn+1
→ A2(

−→x2) where

A1(
−→x1), A2(

−→x2) ∈ =, P1, . . . , Pn ∈ A and
∧n+1

i=1 αi ∈ (Ain ∪ Aout ∪ τ).

Definition 5 The function children: = → 2= returns all children for a process identi-

fier A(~x) ∈ = where φ−1
state(A(~x)) ∈ ST and substates(φ−1

state(A(~x))) =
⋃

B(~x)∈children(A(~x))

{φ−1
state(B(~x))}.

A child of a process identifier corresponds to a direct substate of a composite state.

In the above definition substates(φ−1
state(A(~x))) (see Definition 2) returns the direct

substates for the state φ−1
state(A(~x)) in which it is also denoted as

⋃
B(~x)∈children(A(~x))

{φ−1
state(B(~x))}.

Definition 6 The function descendants, defined below, returns all process identifiers

which have a common ancestor process identifier A(~x) ∈ =.

descendants(A(~x)) =





∅ if children(A(~x))

= ∅
⋃

B(~x)∈children(A(~x)) otherwise

{B(~x)}∪

descendants(B(~x))

Lemma 1 (Event Processor Configuration) A configuration of the event proces-

sor is a set ConfigEP ⊆ {A(~x)}∪descendants(A(~x)) where A(~x) ∈ = and φ−1
state(A(~x)) ∈

STRoot such that:

(i) ∃1B(~x) ∈ ConfigEP . φ−1
state(B(~x)) ∈ STRoot;
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(ii) ∀B(~x) ∈ ConfigEP . φ−1
state(B(~x)) ∈ STNCCS ⇒ (∃1C(~x) ∈ children(B(~x)).C(~x)

∈ ConfigEP ); and

(iii) ∀B(~x) ∈ ConfigEP . φ−1
state(B(~x)) ∈ STCCS ⇒ (children(B(~x)) ⊆ ConfigEP ).

Proof. Follows directly from Rule 2 and Definitions 4,5 and 6.

An event processor configuration and a state configuration correspond to each other

by a one-to-one mapping. The following definition specifies when a transition is enabled

based on the π-calculus. The process S1(step, eventS , ~e, gc1) may proceed unchanged

as itself according to the notion of implicit consumption.

Definition 7 (Enabled Transition) A transition of a statechart diagram F ∈ SC

consisting of an event E1 ∈ E and a guard-condition g1 ∈ GCond connecting S1 ∈

STNCS to S2 ∈ STNCS is defined as:

S1(step, eventS , ~e, gc1)
def
=

eventS(x).([x = e1](νt f)gc1〈t f〉.

(t.step.S2(step, eventS , ~e, gc1) +

f.step.S1(step, eventS , ~e, gc1)) +

Σi6=1[x = ei]step.S1(step, eventS , ~e, gc1))

where φstate(S1) = S1(step, eventS , ~e, gc1) and φevent(E1) = e1, φguard(g1) = gc1〈t f〉,

φstate(S2) = S2(step, eventS , ~e, gc1). The transition is enabled if (i) S1(step, eventS ,~e,

gc1) ∈ Config
EP ; (ii) x and e1 are the same channel such that [x = e1] is true and

other matching constructs [x = ei] for i 6= 1 are false; and (iii) a signal is received

along t whenever channels t and f are sent along channel gc1.

Definition 8 (Implicit Consumption) An event which causes no transition to en-

able is implicitly consumed and is implemented by the Σi6=1[x = ei]step.S1(step, eventS ,

~e, gc1) expression (see Definition 7).

Definition 9 (Conflicting Transitions) Two enabled transitions t1,t2 ∈ T R are in

conflict, written t1 ‡ t2, if one of the following conditions is satisfied:

(i) They are outgoing transitions of the same source state represented by the same

process identifier A(~x) ∈ =.

(ii) They are outgoing transitions of two source states A(~x), B(~x) ∈ = such that

(A(~x) ∈ descendants(B(~x))) ∨(B(~x) ∈ descendants(A(~x))).
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Definition 10 (Precedence) For any two process identifiers A(~x), B(~x) ∈ = which

represent the source states of two transitions t1, t2 ∈ T R where φ−1
state(A(~x)), φ−1

state(B(~x)) ∈

ST , A(~x) precedes B(~x), written B(~x) ≺ A(~x), iff A(~x) ∈ descendants(B(~x)). Other-

wise, there is no precedence relation between A(~x) and B(~x).

Definition 11 (Firing Priority Scheme) The conflict between two enabled transi-

tions is resolved by a firing priority scheme:

(i) The two enabled transitions which are outgoing transitions of the same source

state represented by the same process identifier A(~x) ∈ = are encoded in the π-

calculus as a non-deterministic choice. They have the same firing priority and

either one of them is fired.

(ii) For A(~x) ∈ descendants(B(~x)) where A(~x), B(~x) ∈ =, B(~x) ≺ A(~x) and the

transition originating from A(~x) has a higher firing priority than the transition

originating from B(~x). A(~x) prohibits the enabled transition which origins from

B(~x) from firing by sending a negative acknowledgement along the channel ack

(see Rule 5). A similar argument applies to the case B(~x) ∈ descendants(A(~x))

where A(~x), B(~x) ∈ =.

Two enabled transitions are in conflict (Definition 9) if they exit the same source

state or one source state is a descendant of another one. The firing priority of a tran-

sition depends on the relative position of the source state in the state hierarchy as

specified in Definition 10. A lower-level source state has priority over those higher-

level ones and an inner-first firing priority scheme (Definition 11) is adopted. In the

π-calculus, this is implemented either as a non-deterministic choice or a negative ac-

knowledgement neg which is sent by the lower-level source state to the higher-level

source state (Rules 5 and 6).

Definition 12 (Run-to-Completion Step) A run-to-completion step of a UML stat-

echart diagram is defined in the π-calculus as

S0(execute, step, complete, eventS )|Πn
i=1Ai(

−→xi )→
∗

S0(execute, step, complete, eventS )|Πn
i=1A

′

i(
−→xi )

such that:

(i) S0(execute, step, complete, eventS ) is the root state of the statechart diagram;

(ii)
∧n

i=1(Ai(
−→xi ) ∈ =) ∧

∧n
i=1(A

′

i(
−→xi) ∈ =);



3.2. THE FORMALIZATION 55

(iii) A
′

i(
−→xi) = Ai(

−→xi) when there is no state change;

(iv) both {φ−1
state(S0(execute, step, complete, eventS )), φ−1

state(A1(
−→x1)), . . . , φ

−1
state(An(−→xn))}

and {φ−1
state(S0(execute,step, complete, eventS )), φ−1

state(A
′

1(
−→x1)), . . . , φ

−1
state(A

′

n(−→xn))}

are state configurations;

(v) both {S0(execute, step, complete, eventS )}∪
⋃n

i=1{Ai(
−→xi )} and {S0(execute, step,

complete, eventS)} ∪
⋃n

i=1{A
′

i(
−→xi)} are event processor configurations;

(vi) either no two enabled transitions t1 and t2 of Πn
i=1Ai(

−→xi) are in conflict i.e. ¬(t1‡

t2) or the conflict is resolved by the firing priority scheme;

(vii) ¬∃B(~x), B
′

(~x) ∈ =.(B(~x) /∈ {S0(execute, step, complete, eventS)} ∪
⋃n

i=1{Ai(
−→xi)}

∧ B
′

(~x) /∈ {S0(execute, step, complete, eventS )} ∪
⋃n

i=1{A
′

i(
−→xi)} ∧ B(~x) →∗

B
′

(~x) ∧ {S0(execute, step, complete,eventS)} ∪
⋃n

i=1{Ai(
−→xi)} ∪ {B(~x)} and

{S0(execute, step, complete,eventS)} ∪
⋃n

i=1{A
′

i(
−→xi)} ∪ {B

′

(~x)} are event pro-

cessor configurations); and

(viii) ¬∃B(~x), B
′

(~x) ∈ =, t1 ∈ T R. (t1 is an enabled transition of B(~x) ∧ B(~x) ∈
⋃n

i=1{Ai(
−→xi)} ∧ B(~x)→∗ B

′

(~x) ∧ B
′

(~x) /∈
⋃n

i=1{A
′

i(
−→xi)} ∧ (¬∃t2 ∈ T R.t2 is an

enabled transition ∧ t1 ‡ t2 ∧ t2 has a higher firing priority)).

A run-to-completion step in statechart diagrams is defined as a sequence of reductions

which transform a set of process identifiers representing the current state configuration

into another set of process identifiers representing the next state configuration through

the operational semantics of the π-calculus. Indeed, each reduction is inferred from

the transition rules of the operational semantics of the π-calculus using a deductive

approach based on structural operational semantics (SOS). Conditions (iv) and (v)

state that a run-to-completion step reduces a state configuration and an event pro-

cessor configuration to another state configuration and event processor configuration.

Condition (vii) says that a maximal set of states are active at the same time before and

after a run-to-completion step. Condition (viii) specifies that an enabled transition is

guaranteed to fire and reduce to B
′

(~x) if it is not in conflict with an enabled transi-

tion with a higher firing priority. A maximal set of enabled transitions are fired in a

run-to-completion step.

In the remainder of this section, we extend the original execution semantics of

statechart diagrams to one which supports multiple interacting statechart diagrams.

This makes a step toward developing a sound mechanism for analyzing a distributed

system modelled by communicating statechart diagrams.
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Definition 13 (System Configuration) Given a system with a set of m ∈ Z+ stat-

echart diagrams {Fi|1 ≤ i ≤ m} ⊆ SC, the system configuration SConfig is represented

as:

Πm
i=1((Π

ni

j=1A
Fi

j (~x))|QueueFi

ki
(insi, deli, emptyi, x1, . . . , xki

)|

SFi

0 (executei, stepi, completei, eventSi
)|

DispatchFi(ti, fi, ri, deli, emptyi, executei, completei))

where ni represents the number of states (processes) in a state configuration (event

processor configuration) of Fi and ki denotes the length of the corresponding event

queue for Fi.

Unlike an event processor configuration which determines the state for a single

statechart diagram, a system configuration determines the state for a system which

consists of multiple statechart diagrams.

For an object obj1, we denote its associated statechart diagram as F1 ∈ SC. The cor-

responding event queue is denoted in the π-calculus as QueueF1
n (ins1, del1, empty1, x1,

. . . , xn) for n ≥ 0 according to Rule 7. An event E1 ∈ E is added to the event queue

QueueF1
n (ins1, del1, empty1, x1, . . . , xn) by sending a channel e1 along the channel ins1

where φ−1
event(e1) = E1.

Definition 14 (Send Action) For a source state S1 ∈ ST and a target state S2 ∈ ST

which are connected by a transition t ∈ T R consisting of an event trigger E1 ∈ E and

a send action act1 ∈ Act for sending an event E2 ∈ E to an object obj1, a set of objects

{obj1, · · · , objm} or all n objects in the system are defined as:

S1(step,

eventS , ~e,
−→
ins)

def
=





eventS(x). if act1 =

([x = e1]ins1〈e2〉.step.S2(step, eventS , ~e,
−→
ins)+ send obj1.E2

Σi6=1[x = ei]step.S1(step, eventS , ~e,
−→
ins))

eventS(x). if act1 =

([x = e1]ins1〈e2〉. · · · .insm〈e2〉. send {obj1,

step.S2(step, eventS , ~e,
−→
ins)+ · · · , objm}.E2

Σi6=1[x = ei]step.S1(step, eventS , ~e,
−→
ins))

eventS(x). if act1 =

([x = e1]ins1〈e2〉. · · · .insn〈e2〉. send E2

step.S2(step, eventS , ~e,
−→
ins)+

Σi6=1[x = ei]step.S1(step, eventS , ~e,
−→
ins))
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where m,n ∈ Z+ and n > m, φstate(Si) = Si(step, eventS , ~e,
−→
ins) for i = 1, 2, φevent(Ei) =

ei for i = 1, 2, φaction(act1) = ins1〈e2〉. · · · .insk〈e2〉 for k ∈ {1,m, n}.

The send action [93] specifies that the communication between statechart diagrams

are classified into (i) a unicast communication in which a statechart diagram sends an

event to the event queue of another statechart diagram; (ii) a multicast communication

in which a statechart diagram sends an event to the event queues of a group of statechart

diagrams; and (iii) a broadcast communication in which a statechart diagram sends an

event to the event queues of all statechart diagrams.

Definition 15 (Environment) The environment of a system Sys1 is an abstract rep-

resentation of a set of systems which interact with Sys1 through (i) a unicast commu-

nication in which an event is sent to the event queue of only one statechart diagram in

Sys1; (ii) a multicast communication in which an event is sent to the event queues of

a group of statechart diagrams in Sys1; and (iii) a broadcast communication in which

an event is sent to the event queues of all statechart diagrams in Sys1.

Definition 16 (Transition Relation of a System) The transition relation ∆sys ⊆⋃
i{SConfigi} ×

⋃
i{SConfigi} for i ∈ Z+ of a system Sys1 is a set of ordered pairs

representing a change from one system configuration to another system configuration

which is due to (i) an interaction between the system and the environment (Defini-

tion 15); and (ii) an execution of a run-to-completion step of a statechart diagram in

the system (Definition 12).

Next, we generalize Rules 5 and 6 as a new rule and use it in the next section to

reason about the correctness of our formalization. The following rule extends these two

preceding rules by considering a composite state of more than two hierarchical levels.

Rule 10 If S ∈ ST is a composite state of n hierarchical levels, then each active state

at level k-1 and its m active direct substates at level k, 1 ≤ k ≤ n and m ∈ Z+, are

represented in the π-calculus as:
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Sk−1(step, eventSk−1
, ~e, eventSk1

, . . . , eventSkm
, c̃h)

def
=

eventSk−1
(x).(ν

−→
ack)eventSk1

〈x ack1〉. · · · .

eventSkm
〈x ackm〉.ack1(y1). · · · .ackm(ym).

Scont
k−1 (step, eventSk−1

, ~e, eventsk1
, . . . , eventskm

, c̃h, ~y)

Ski(eventSki
, ~e, s̃ubch)

def
=

eventSki
(x acki).

([x = e1]acki〈value〉.S
cont
ki (eventSk

, ~e, s̃ubch, value) + · · ·+

[x = en]acki〈value〉.S
cont
ki (eventSk

, ~e, s̃ubch, value))

where 1 ≤ i ≤ m and value ∈ {pos, neg}, c̃h and s̃ubch are abbreviations such that

c̃h =





pos, neg if Sk−1 ∈ STNCCS

pos, neg,
−−→
cont,

−−→
end if Sk−1 ∈ STCCS

s̃ubch =





pos, neg if Sk−1 ∈ STNCCS

pos, neg, contki, endki if Sk−1 ∈ STCCS

Scont
k−1 (step, eventSk−1

, ~e, eventsk1
, . . . , eventskm

, c̃h, ~y)
def
=





([y1 = pos]step.S
′

k−1(step, eventSk−1
, if Sk−1 ∈ STNCCS

~e, eventsk1
, . . . , eventskm

, c̃h)+

[y1 = neg]step.Sk−1(step, eventSk−1
,

~e, eventsk1
, . . . , eventskm

, c̃h))

([y1 = pos][y2 = pos] . . . [ym = pos] if Sk−1 ∈ STCCS

endk1.endk2. · · · .endkm.

step.S
′

k−1(step, eventSk−1
,

~e, eventsk1
, . . . , eventskm

, c̃h)+

Σ2m−1
i=1 [y1 = V1][y2 = V2] . . . [ym = Vm]

contk1.contk2. · · · .contkm.

step.Sk−1(step, eventSk−1
,

~e, eventsk1
, . . . , eventskm

, c̃h))



3.3. CORRECTNESS OF THE FORMALIZATION 59

where S
′

k−1(step, eventSk−1
, ~e, eventsk1

, . . . , eventskm
, c̃h) represents a target state and Vi ∈

{pos, neg} for i = 1, . . . ,m, no two sequences of matching constructs [y1 = V1][y2 =

V2] . . . [ym = Vm] are identical,
⋃m

i=1{Vi} 6= {pos}.

Scont
ki (eventSk

, ~e, s̃ubch, value)
def
=





0 if value = pos ∧ Sk−1 ∈ STNCCS

Ski(eventSki
, ~e, s̃ubch) if value = neg ∧ Sk−1 ∈ STNCCS

(endki+ if value = pos ∧ Sk−1 ∈ STCCS

contki.Ski(eventSki
, ~e, s̃ubch))

contki.Ski(eventSki
, ~e, s̃ubch) if value = neg ∧ Sk−1 ∈ STCCS

3.3 Correctness of the Formalization

Our formalization is a faithful translation as there is a semantic correspondence be-

tween a transition in UML statechart diagrams and reductions in the π-calculus. It

covers the essential concepts in the execution semantics of UML statechart diagrams.

These include run-to-completion step, firing priority scheme, conflicting transitions,

state configuration, and so forth. In addition, our translation also preserves the be-

havioural properties of statechart diagrams which include a lower-first priority scheme

and a maximal set of enabled transitions are fired in a run-to-completion step. Follow-

ing the approach of [60, 39, 66], we prove the correctness of the formalization as shown

below:

Definition 17 The translation of statechart diagrams into the π-calculus is defined by

the function φ : SC → 2= which represents a group of translation functions as specified

by Rules 1–10.

Theorem 1 Given a transition t1 ∈ T R comprising E1 ∈ E , g1 ∈ GCond and act1 ∈

Act connecting S1 ∈ ST to S2 ∈ ST where act1 is defined as send obj1.E2. The

firing of t1 which exits S1 and enters S2 semantically corresponds to a sequence tπ1 of

n reductions, written t1 ∼tr t
π
1 , in the π-calculus where n ∈ Z+.

Proof sketch. Two cases are considered.
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Case 1. S1, S2 ∈ STNCS. The behaviour of S1 is encoded in the π-calculus as:

S1(step, eventS , ~e, g1, ins1)
def
=

eventS(x).([x = e1](νt f)g1〈t f〉.

(t.ins1〈e2〉.step.S2(step, eventS , ~e, g1, ins1) +

f.step.S1(step, eventS , ~e, g1, ins1)) +

Σi6=1[x = ei]step.S1(step, eventS , ~e, g1, ins1))

where φstate(S1) = S1(step, eventS , ~e, g1, ins1) and φevent(E1) = e1, φguard(g1) = g1〈t f〉,

φaction(send obj1.E2) = ins1〈e2〉, φstate(S2) = S2(step, eventS , ~e, g1, ins1), ~e stands for

e1, . . . , en such that ∀a ∈ ~e.φ−1
event(a) ∈ E. Thus, the firing of the transition t1 repre-

sented as S1
E1[g1]/send obj1.E2

−→ S2 is related to a sequence tπ1 denoted as S1(step, eventS , ~e,

g1, ins1)
eventS(x)
−→

[x=e1]g1〈t f〉
−→

t
−→

ins1〈e2〉
−→

step
−→ S2(step, eventS , ~e, g1, ins1) and

there is a correspondence between t1 and tπ1 . Conversely, suppose S1(step, eventS , ~e, g1,

ins1)
eventS(x)
−→

[x=e1]g1〈t f〉
−→

t
−→

ins1〈e2〉
−→

step
−→ S2(step, eventS , ~e, g1, ins1). Then,

S1
E1[g1]/send obj1.E2

−→ S2 and the semantic correspondence holds.

Case 2. S1, S2 ∈ STNCS ∪ STNCCS ∪ STCCS ∧ ¬(S1 ∈ STNCS ∧ S2 ∈ STNCS). If S1 ∈

STNCCS ∧S2, V1 ∈ STNCS∧V1 ∈ substates(S1), the firing of the transition corresponds

to two sequences of reductions S1(step, eventS , ~e, g1, ins1, eventV , pos, neg)
eventS(x)
−→

eventV 〈x ack〉
−→

ack(y)
−→

[y=pos]step
−→ S2(step, eventS , ~e, g1, ins1, pos, neg) and V1(eventV ,

~e, g1, ins1, pos, neg)
eventV (x ack)
−→

[x=e1]g1〈t f〉
−→

t
−→

ins1〈e2〉
−→

ack〈pos〉
−→ 0. These two

sequences of reductions imply S1(step, eventS , ~e, g1, ins1, eventV , pos, neg)| V1(eventV ,

~e, g1, ins1, pos, neg)
eventS(x)
−→

τ
−→

[x=e1]g1〈t f〉
−→

t
−→

ins1〈e2〉
−→

τ
−→

[ack=pos]step
−→

S2(step, eventS , ~e, g1, ins1, pos, neg) as eventV 〈x ack〉, eventV (x ack), ack〈pos〉 and

ack(y) are unobservable actions. Thus, the semantic correspondence holds. Since the

converse holds true by an analogous argument and similar arguments hold for other

cases where S1, S2 ∈ STNCS ∪ STNCCS ∪ STCCS ∧ ¬(S1 ∈ STNCS ∧ S2 ∈ STNCS), this

completes the proof of the statement.

Theorem 2 Given F ∈ SC, there is a semantic correspondence between F and φ(F )

which is written as F ∼sc φ(F ).

Proof sketch. Let F has n transitions and t1 be an arbitrary transition of F . Then

t1 ∼tr t
π
1 such that tπ1 is a corresponding sequence of reductions of t1 associated with
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φ(F ). Since t1 was an arbitrary transition of F , it follows that
∧n

i=1(ti ∼tr t
π
i ) holds.

Thus, we can conclude that F ∼sc φ(F ).

Lemma 2 For any number of hierarchical levels n of a composite state, the lower-first

firing priority scheme holds.

Proof. We consider two cases.

Case 1. n=0 (A basic state at lowest level). Let m be the number of enabled transi-

tions (Definition 7). Consider the case where m=1. Then the lower-first firing priority

scheme (Definition 11) holds as there are no conflicting transitions according to Defini-

tion 9. Consider the case where m ≥ 2 (Definition 11(i)). We proceed by contradiction.

Suppose p transitions with the same firing priority for 2 ≤ p ≤ m are fired. But this

contradicts the fact that only one process can proceed in a non-deterministic choice of

the π-calculus (Section 3.1). Thus, the lower-first firing priority scheme (Definition

11(i)) holds.

Case 2. n ≥ 1 (Definition 11(ii)). The proof is by induction on the number of hierar-

chical levels n for n ≥ 1.

Base case: n=1. The composite state broadcasts any received events to all its active

direct substates and the substates always process the received events before the composite

state by returning a positive or negative acknowledgement according to the definition of

Rule 10. Thus, the statement is true for n=1.

Induction step: Assume that every active direct substate at level n-1 processes the

received event before their ancestors. By the definition of Rule 10, a composite state at

level n-1 broadcasts any received event to its all active direct substates at level n and the

substates process the received event before the composite state. Since all composite states

which are located at a level less than level n-1 still have not processed the received event,

by induction hypothesis, this completes the induction and the proof of the statement.

Theorem 3 For any UML statechart diagram, the lower-first firing priority scheme

holds.

Proof. Since each statechart diagram based on Rule 9 has one root state which is a
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composite state and it contains all other states, it follows directly from Lemma 2 that

our formalization satisfies the statement.

Lemma 3 For any number of hierarchical levels n of a composite state, a maximal set

of enabled transitions which are not in conflict are fired in a run-to-completion step.

Proof. In this proof we consider the structure of a composite state as an inverted tree

as shown in Figure 3.3.

Case 1. n=0. Let m be the number of enabled transitions. Consider the case where

m=1. Then a maximal set of enabled transitions are fired since there is only one en-

abled transition and it is fired.

Consider the case where m ≥ 2. Suppose there are p enabled transitions for 2 ≤ p ≤ m

which are in conflict are fired. But this contradicts the fact that only one process can

proceed in a non-deterministic choice of the π-calculus (Section 3.1). Thus, a maximal

set of enabled transitions are fired as there are m enabled transitions in conflict and

only one of them is fired.

Case 2. n ≥ 1. The proof is by induction on the number of hierarchical levels n for n

≥ 1.

Base case: n=1. All active states at level 0 send either a positive or negative acknowl-

edgement to their composite states at level 1 according to Rule 10. Since all transitions

of the composite states upon receipt of positive acknowledgements (i.e. not in conflict

with enabled transitions at level 0) are fired, a maximal number of enabled transitions

are fired at level 1.

Induction step: Assume that a maximal number of enabled transitions are fired at all

levels less than or equal to n-1. Since one of the enabled transitions of the composite

state at level n is fired upon receipt of positive acknowledgements from all active state

at level n-1, the maximal number of enabled transitions are fired at level n. As a

maximal number of enabled transitions are fired at any levels less than or equal to n-1,

by induction hypothesis, this completes the induction and the proof of the statement.

Theorem 4 For any UML statechart diagram, a maximal set of enabled transitions
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level
0

1

n-1

n
composi te

state

.

.

.

...

...

Figure 3.3: Structure of a composite state

which are not in conflict are fired in a run-to-completion step.

Proof. Analogous to Theorem 3.

3.4 Examples

A systematic approach for the translation of UML statechart diagrams into the π-

calculus is presented in Section 3.2. This section, following the proposed translation

rules, demonstrates how various graphical constructs of statechart diagrams are rep-

resented in the π-calculus. The illustrations cover the major graphical constructs

including simple transitions, conflicting transitions, entry actions, exit actions, non-

concurrent composite states, interlevel transitions and concurrent composite states.

3.4.1 Simple Transitions

A simple transition (Figure 3.4) relates the source state S1 and target state S2. It is

fired when the event E1 occurs and the guard-condition guard1 holds. The active state

of the statechart diagram is changed from S1 to S2 and the action Action1 is executed.

In the π-calculus, the event E1 is mapped to a channel e1 (Rule 1). The state S1 is

modelled as a process identifier S1(step, eventS , guard1, action1, ~e) which is defined as

the following pattern:

eventS(x).([x = e1] . . .+ Σi6=1[x = ei] . . .)

according to Rule 2. The expression Σi6=1[x = ei] signifies the implicit consump-

tion (Definition 8). The guard-condition guard1 is represented as an output action
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E 1[guard1]
/Act ion1S 1 S 2

Figure 3.4: A simple transition

guard1〈t f〉 and tested by a non-deterministic choice:

(t. · · · + f. · · · )

based on Rule 3 to determine its Boolean value. The execution of the action Action1

which models the invocation of an operation is encoded as an output action action1〈finish〉

(Rule 4). The completion of the action Action1, which is a signal generated by the ac-

tion process (operation), is denoted as an input action finish. Combining the output

action action1〈finish〉, input action finish and declaration of channel finish, the

execution of the action Action1 is expressed as:

(νfinish)action1〈finish〉.f inish

The end of a run-to-completion step is specified as an output action step which

interacts with the root state (Rule 9) through the channel step. Putting these π-

calculus expressions together gives the following π-calculus specification of the simple

transition:

S1(step, eventS , guard1, action1, ~e)
def
=

eventS(x).([x = e1](νt f)guard1〈t f〉.

(t.(νfinish)action1〈finish〉.f inish.step.

S2(step, eventS , guard1, action1, ~e) +

f.step.S1(step, eventS , guard1, action1, ~e)) +

Σi6=1[x = ei]step.S1(step, eventS , guard1, action1, ~e))

The process S1 takes a parameter list which consists of four channels step, eventS ,

guard1, action1 and a sequence of channels ~e. It inputs an event along eventS and
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compares the received event with channel e1. If event E1 represented by channel e1 is

received, it creates a pair of channels t and f and sends them along channel guard1.

It then blocks until a reply is received along the channel t or f . If a signal is received

along t, which means that the guard-condition holds and the transition is enabled

(Definition 7), it creates a new channel finish and sends the newly created channel

finish along channel action1. When a signal is received along the channel finish,

which indicates that the action is completed, it sends a signal to the root state along

channel step representing the end of a run-to-completion step and evolves to the process

S2. If a signal is received along f , which means the guard-condition is false, the process

S1 sends a signal along step and continues as itself. Similarly, the process S1 continues

unchanged upon receipt of any event other than E1.

As events, guard-conditions and actions are optional, Figure 3.5 shows some of the

other possible patterns for a simple transition. The corresponding π-calculus represen-

tations are analogous to the one of Figure 3.4.

[guard1 ]

[guard1 ] /Act ion1

E 1

E 1 /Act ion1

E 1 [guard1 ]

Figure 3.5: Other patterns of a simple transition

3.4.2 Conflicting Transitions

Transitions are in conflict if they exit from the same state (Definition 9(i)). Figure 3.6

shows n deterministic conflicting transitions, written t1 ‡ . . . ‡ tn (Definition 9), as the

transitions are triggered by different events and guard conditions.

In the π-calculus, deterministic conflicting transitions are modelled as a guarded
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t1
: E1

[guard1
]/Action1

S 1

T 1

T n

tn: E
n[guard

n]/Action
n

Figure 3.6: Deterministic conflicting transitions

choice (derived from Rule 2). Figure 3.6 is encoded in the π-calculus as:

S1(step, eventS ,
−−−→
guard,

−−−−→
action,~e)

def
=

eventS(x).

(Σn
i=1[x = ei](νti fi)guardi〈ti fi〉.

(ti.(νfinish)actioni〈finish〉.f inish.step.

Ti(step, eventS ,
−−−→
guard,

−−−−→
action,~e) +

fi.step.S1(step, eventS ,
−−−→
guard,

−−−−→
action,~e)) +

Σi/∈{1,...,n}[x = ei]step.S1(step, eventS ,
−−−→
guard,

−−−−→
action,~e))

Depending on which matching construct [x = ei] for 1 ≤ i ≤ n evaluates true, one of

the alternatives is executed.

3.4.3 Entry and Exit Actions

An entry action is executed when a state is entered, whereas an exit action is executed

when a state is exited. On receipt of the event E1 (Figure 3.7), the action Action1 is

executed and state S2 is entered. Similarly, the action Action2 is executed and state

S2 is exited upon receipt of the event E2.

Alternatively, the behaviour of the entry and exit actions in Figure 3.7 can be

modelled by two simple transitions as shown in Figure 3.8.

Since the two statechart diagrams in Figures 3.7 and 3.8 are equivalent, the entry

and exit actions in Figure 3.7, like the simple transition in Figure 3.4, are represented
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S 1

S 3

entry/Act ion1
exit/Action2

E 1
S2

E 2

Figure 3.7: Entry and exit actions

S 1

S 3

S 2

E 1/Act ion1

E 2/Act ion2

Figure 3.8: Equivalent representations for the entry and exit actions

in the π-calculus as:

S1(step, eventS , action1, action2, ~e)
def
=

eventS(x).

([x = e1](νfinish)action1〈finish〉.f inish.step.

S2(step, eventS , action1, action2, ~e) +

Σi6=1[x = ei]step.S1(step, eventS , action1, action2, ~e))

S2(step, eventS , action1, action2, ~e)
def
=

eventS(x).

([x = e2](νfinish)action2〈finish〉.f inish.step.

S3(step, eventS , action1, action2, ~e) +

Σi6=2[x = ei]step.S2(step, eventS , action1, action2, ~e))

The execution of an action of a transition as well as an entry or exit action means

that multiple actions can be executed in serial. Our formalization can support this as
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a sequence of actions in a UML statechart diagram is mapped to a sequence of actions

in the π-calculus.

3.4.4 Non-concurrent Composite States

A non-concurrent composite state is a state which contains only one orthogonal region

with one or more direct substates. Figure 3.9 shows a non-composite state S2 which

contains n direct substates V1, V2, . . . , Vn.

S 1 V 1 ...

S 2

V 2 V n

S 3

E 1 E 2 E 3

E n+1

E n

Figure 3.9: Entering and exiting a non-concurrent composite state

The transitions from the state S1 to the substate V1 and from the substate Vn

to state S3 are interlevel transitions. They cross the boundary of the non-concurrent

composite state S2. One of them terminates on the substate V1, while the other one

originates from the substate Vn. The π-calculus specification of state S1 is defined as:

S1(step, eventS , ~e, pos, neg)
def
=

eventS(x).([x = e1]step.

(νeventV )(S2(step, eventS , ~e, eventV , pos, neg)|

V1(eventV , ~e, pos, neg)) +

Σi6=1[x = ei]step.S1(step, eventS , ~e, pos, neg))

When process S1 receives e1, it continues as two concurrent processes S2 and V1 as

stated in Rule 5.

The non-concurrent composite state S2 and its active direct substate Vj for 1 ≤ j ≤
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n are represented in the π-calculus as follows:

S2(step, eventS , ~e, eventV , pos, neg)
def
=

eventS(x).

(νack)eventV 〈x ack〉.ack(y).

([y = pos]step.S3(step, eventS , ~e, pos, neg) +

[y = neg]step.S2(step, eventS , ~e, eventV , pos, neg))

Vj(eventV , ~e, pos, neg)
def
=





eventV (x ack). if 1 ≤ j ≤

([x = ej+1]ack〈neg〉.Vj+1(eventV , ~e, pos, neg)+ n− 1

Σi6=j+1[x = ei]ack〈neg〉.Vj(eventV , ~e, pos, neg))

eventV (x ack). if j = n

([x = ej+1]ack〈pos〉+

Σi6=j+1[x = ei]ack〈neg〉.Vj(eventV , ~e, pos, neg))

On receiving the channel e2 (event E2), the process S2 passes a tuple which consists

of the received channel and an acknowledgement channel ack to the process Vj for 1 ≤

j ≤ n (active direct substate) along eventV . The receipt of a positive acknowledgement

pos means that the event does not trigger any transitions at lower-level states and the

process S2 continues as S3. In contrast, the receipt of a negative acknowledgement neg

means that the event triggers a transition at lower-level states and no further transition

can be fired by the same event at higher-level states. The process S2 proceeds as itself

and is now ready to receive another event.

The process Vj for 1 ≤ j ≤ n − 1 sends out a negative acknowledgement neg and

evolves to Vj+1 upon receiving an event Ej+1 for 1 ≤ j ≤ n−1. The process Vn responds

to the event En+1 by generating a positive acknowledgement pos and terminating itself.

The substate Vj for 1 ≤ j ≤ n precedes the non-concurrent composite state S2 and is

written as S2 ≺ Vj (Definition 10). A lower-first firing priority scheme (Definition 11)

is adopted in the π-calculus specifications.

A transition which connects a non-concurrent composite state to a non-composite

state (basic state) is semantically equivalent to a number of interlevel transitions which

link each of the substates of the non-concurrent composite state to the non-composite
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state. A statechart diagram illustrating an exit directly from a non-concurrent com-

posite S2 is shown in Figure 3.10.

S 1 V 1 ...

S 2

V 2 V n

S 3

E 1 E 2 E 3 E n

E n+1

Figure 3.10: Exiting directly from a non-concurrent composite state

The encoding of Figure 3.10 in the π-calculus is similar to the one for Figure 3.9. The

main difference is in the representation of the process Vj. As process Vj for 1 ≤ j ≤ n

is now capable of responding to the event En+1 by sending out a positive acknowl-

edgement pos and terminating itself, the definition of process Vj for 1 ≤ j ≤ n − 1 is

replaced by the following π-calculus specification:

Vj(eventV , ~e, pos, neg)
def
=





eventV (x ack). if 1 ≤ j ≤

([x = en+1]ack〈pos〉+ n− 1

[x = ej+1]ack〈neg〉.Vj+1(eventV , ~e, pos, neg)+

Σi/∈{n+1,j+1}[x = ei]ack〈neg〉.Vj(eventV , ~e, pos, neg))

. . .

3.4.5 Concurrent Composite States

Unlike a non-concurrent composite state, a concurrent composite state consists of mul-

tiple orthogonal regions (substates) as illustrated in Figure 3.11. The orthogonal re-

gions, which are separated by dotted lines, contain substates in which only one of them

is active at a time.

On receipt of the event E1, the state S1 is exited and the states S2, T1, T2, V1 and

W1 are entered. In contrast, the state S3 is entered upon receiving the event En+1 if

the current active states are S2, T1, T2, Vn and Wn.
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S 1

...

S 2

...

V 1

E 1

V 2

W 2

V n

W n

S 3

E 2 E 3

E 3W 1

E n+1

E 2

E n

E n

T 1

T 2

Figure 3.11: Entering and exiting a concurrent composite state

The concurrent composite state S2 and its active direct substates T1 and T2 are

encoded in the π-calculus as three concurrent processes. By Rule 5, the non-concurrent

composite state T1 (T2) and its active direct substate V1 (W1) are expressed in the

π-calculus as two concurrent processes. The behaviour of state S1 which evolves to

S2, T1, T2, V1 and W1 is then specified as:

S1(step, eventS , ~e, pos, neg)
def
=

eventS(x).

([x = e1]step.

(νeventT1
eventT2

eventV eventW contT1
endT1

contT2
endT2

contV endV contW endW )

(S2(step, eventS , ~e, eventT1
, eventT2

, pos, neg,

contT1
, endT1

, contT2
, endT2

, contV , endV , contW , endW )|

T1(eventT1
, ~e, eventV , contT1

, endT1
)|

T2(eventT2
, ~e, eventW , contT2

, endT2
)|

V1(eventV , ~e, pos, neg, contV , endV )|

W1(eventW , ~e, pos, neg, contW , endW )) +

Σi6=1[x = ei]step.S1(step, eventS , ~e, pos, neg))

In contrast to the process S2 discussed in previous subsection (state S2 in Fig-

ure 3.9), a pair of channels contk and endk for k ∈ {T1, T2, V,W} is defined for each

process (state) T1, T2, V1,W1. The process S2 takes these pairs of channels as parame-
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ters and the specification of S2 is given by:

S2(step, eventS , ~e, eventT1
, eventT2

, pos, neg,

contT1
, endT1

, contT2
, endT2

, contV , endV , contW , endW )
def
=

eventS(x).

(νackT1
ackT2

)eventT1
〈x ackT1

〉.eventT2
〈x ackT2

〉.

ackT1
(y).ackT2

(z).

([y = pos][z = pos]

endV .endW .endT1
.endT2

.

step.S3(step, eventS , ~e, pos, neg) +

[y = neg][z = neg]

contV .contW .contT1
.contT2

.

step.S2(step, eventS , ~e, eventT1
, eventT2

, pos, neg, contT1
, endT1

,

contT2
, endT2

, contV , endV , contW , endW ) +

[y = pos][z = neg]

contV .contW .contT1
.contT2

.

step.S2(step, eventS , ~e, eventT1
, eventT2

, pos, neg, contT1
, endT1

,

contT2
, endT2

, contV , endV , contW , endW ) +

[y = neg][z = pos]

contV .contW .contT1
.contT2

.

step.S2(step, eventS , ~e, eventT1
, eventT2

, pos, neg, contT1
, endT1

,

contT2
, endT2

, contV , endV , contW , endW ))

The process S2 broadcasts any received event to its direct substates along channels

eventT1
and eventT2

. If a positive acknowledgement is received from each of its direct

substates, the process S2 sends a termination signal along channels endV , endW , endT1

and endT2
to all its active substates. Otherwise, a continuation signal is sent along

channels contV , contW , contT1
and contT2

to all its active substates. Upon receipt of a

signal along contk for k ∈ {T1, T2, V,W}, the processes T1, T2, Vj and Wj for 1 ≤ j ≤ n

continue as themselves. On the contrary, the processes T1, T2, Vj and Wj for 1 ≤ j ≤ n

terminate themselves on receiving a signal along endk for k ∈ {T1, T2, V,W}. The
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definitions of processes T1 and T2 are given as follows:

T1(eventT1
, ~e, eventV , contT1

, endT1
)

def
=

eventT1
(x ackT1

).(νackV )eventV 〈x ackV 〉.ackV (y).ackT1
〈y〉.

(endT1
+

contT1
.T1(eventT1

, ~e, eventV , contT1
, endT1

))

T2(eventT2
, ~e, eventW , contT2

, endT2
)

def
=

eventT2
(x ackT2

).(νackW )eventW 〈x ackW 〉.ackW (y).ackT2
〈y〉.

(endT2
+

contT2
.T2(eventT2

, ~e, eventW , contT2
, endT2

))

The process T1 (T2) sends any received event to its active direct substate along

channel eventV (eventW ), waits for an acknowledgement, outputs it along ackT1
(ackT2

)

to the process S2 and blocks until a reply is received along endT1
(endT2

) or contT1

(contT2
). The direct substates Vj and Wj for 1 ≤ j ≤ n are specified by:

Vj(eventV , ~e, pos, neg, contV , endV )
def
=





eventV (x ackV ). if 1 ≤ j ≤

([x = ej+1]ackV 〈neg〉.contV . n− 1

Vj+1(eventV , ~e, pos, neg, contV , endV )+

Σi6=j+1[x = ei]ackV 〈neg〉.contV .

Vj(eventV , ~e, pos, neg, contV , endV ))

eventV (x ackV ).([x = ej+1]ackV 〈pos〉. if j = n

(endV +

contV .Vj(eventV , ~e, pos, neg, contV , endV ))+

Σi6=j+1[x = ei]ackV 〈neg〉.contV .

Vj(eventV , ~e, pos, neg, contV , endV ))
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Wj(eventW , ~e, pos, neg, contW , endW )
def
=





eventW (x ackW ). if 1 ≤ j ≤

([x = ej+1]ackW 〈neg〉.contW . n− 1

Wj+1(eventW , ~e, pos, neg, contW , endW )+

Σi6=j+1[x = ei]ackW 〈neg〉.contW .

Wj(eventW , ~e, pos, neg, contW , endW ))

eventW (x ackW ).([x = ej+1]ackW 〈pos〉. if j = n

(endW +

contW .Wj(eventW , ~e, pos, neg, contW , endW ))+

Σi6=j+1[x = ei]ackW 〈neg〉.contW .

Wj(eventW , ~e, pos, neg, contW , endW ))

A negative acknowledgement is returned by process Vj (Wj) if an event Ej+1 for

1 ≤ j ≤ n−1 is received. Upon receiving an event En+1, the process Vn (Wn) sends out

a positive acknowledgement pos and waits for a decision that either terminates itself

or proceeds as itself.

Since processes T1 and T2 are only responsible for relaying any received event, an

alternative approach as defined by Rule 6 which optimizes the π-calculus representa-

tions by eliminating both of them such that any received event is sent directly from S2

to Vj and Wj for 1 ≤ j ≤ n along eventV and eventW is shown below:

S1(step, eventS , ~e, pos, neg)
def
=

eventS(x).

([x = e1]step.

(νeventV eventW contV endV contW endW )

(S2(step, eventS , ~e, eventV , eventW , pos, neg, contV , endV , contW , endW )|

V1(eventV , ~e, pos, neg, contV , endV )|

W1(eventW , ~e, pos, neg, contW , endW )) +

Σi6=1[x = ei]step.S1(step, eventS , ~e, pos, neg))
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S2(step, eventS , ~e, eventV , eventW , pos, neg, contV , endV , contW , endW )
def
=

eventS(x).

(νackV ackW )eventV 〈x ackV 〉.eventW 〈x ackW 〉.

ackV (y).ackW (z).

([y = pos][z = pos]endV .endW .

step.S3(step, eventS , ~e, pos, neg) +

[y = neg][z = neg]contV .contW .

step.S2(step, eventS , ~e, eventV , eventW , pos, neg, contV , endV , contW , endW ) +

[y = pos][z = neg]contV .contW .

step.S2(step, eventS , ~e, eventV , eventW , pos, neg, contV , endV , contW , endW ) +

[y = neg][z = pos]contV .contW .

step.S2(step, eventS , ~e, eventV , eventW , pos, neg, contV , endV , contW ,

endW ))

The processes T1 and T2 as well as their corresponding channels eventT1
, eventT2

,

contT1
, endT1

, contT2
and endT2

are no longer needed in the new definitions of the

processes S1 and S2. The process S2 sends a received event along eventV and eventW

instead of eventT1
and eventT2

. The representations of Vj and Wj for 1 ≤ j ≤ n remain

unchanged.

3.5 Related Work

There have been a number of studies such as [44, 112, 88, 67, 104, 72] on the execution

semantics of statecharts [42, 43]. In contrast to a statechart, each UML statechart

diagram is associated with an abstract machine which has three major components: an

event queue, an event dispatcher and an event processor. The execution semantics of

statechart diagrams is based on the run-to-completion step rather than the micro and

macro steps of classical statecharts. In statechart diagrams only one event is available

at the beginning of each step, whereas in statecharts a set of events are available at

the beginning of each step. Due to the somewhat different semantics of statecharts, we

limit our comparison to some representative works of UML statechart diagrams which

include Latella et al. [61, 60, 38, 39], Lilius and Paltor [62] and Reggio [98]. We do
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not consider other works such as von der Beeck [113] which has not specified explicitly

what semantics is adopted for the formalization.

Our formalization uses parallel composition for representing the state hierarchy and

channel passing for modelling the firing priority scheme. An interlevel transition ter-

minating on a substate of a composite state is encoded as a split into two or more

concurrent processes, while an interlevel transition originating from a substate of a

composite state is modelled as a self-termination of the process which denotes the sub-

state. Unlike the π-calculus which can directly represent interlevel transitions, Latella

et al. unfold interlevel transitions by raising lower-level transitions to higher-level tran-

sitions, add labels to the new transitions and define these labels as a table. In contrast

to our approach, their encoding of interlevel transitions is more complex.

Lilius and Paltor formalize the run-to-completion step separately as an algorithm,

whereas ours is represented directly in the π-calculus and only a single formalism is

needed in our formalization.

In [61, 60, 38, 62] the execution semantics is only for a single statechart diagram. In

contrast, our proposed execution semantics deals with both a single statechart diagram

and multiple interacting statechart diagrams.

The multicharts semantics in [39] is quite different from our proposed execution

semantics. Firstly, in our model statechart diagrams and the environment interact in

three different types of communication. Secondly, we consider an event queue as one

of the components of an abstract machine rather than as part of the environment.

In contrast to the work of Reggio et al. which focuses on the use of the formalization

for identifying ambiguities and incompleteness of the UML documentation [82, 83],

we emphasize the application of the formalization. In particular, this study is on

equivalence checking and model checking.

Other closely related study includes the work of Ray et al. [96]. Ray et al. encode

hierarchical state machines (HSMs) as hierarchical process algebra (HPA) which is

an extension of a sublanguage of CCS. The sublanguage, unlike CCS, does not include

parallel composition, restriction and relabelling. In order to model interlevel transitions,

Ray et al. extend the sublanguage by introducing the concepts of embedding, entry

points and exit points. An interlevel transition is then regarded as comprising several

parts which combine together through the entry and exit points. The extension of this

approach to statecharts requires the integration of HPA with another process algebra

called Statecharts Process Language (SPL) defined in [66]. In contrast to the approach
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of Ray et al. which requires the introduction of new operators specially designed for

modelling the interlevel transitions, our encoding is simple, clear and clean as it only

makes use of the existing operators of the π-calculus. In addition, the π-calculus, unlike

HPA, is a well-established process algebra which facilitates the integration with other

formal methods and tools.

3.6 Extensibility of the Approach

Though our formalization is only limited to a subset of UML statechart diagrams,

extensions for covering history pseudostates, state references and deferred events are

possible. A shallow pseudostate, which keeps track of the most recently active substate

of a composite state, is encoded as a process for storing the last active substate. Like-

wise, a deep history pseudostate is modelled as a number of concurrent processes based

on the number of levels of a composite state. By storing a current active state through

the use of a process, the modelling of a state reference is also made possible.

The representation of deferred events requires two queues which are identical to

the one defined by Rule 7. One of the queues is for keeping a list of deferrable events

for a state. The list of deferrable events is updated whenever a state is entered. If an

event does not trigger any transitions and is a member of the deferrable events, it is

inserted into another queue which stores a list of deferred events. A deferred event is

only deleted from the deferred event queue and added back to the event queue as if

the event has not been dispatched when the deferred event can fire a transition. As

pointed out in [62], the introduction of the deferred event queue prevents a deferred

event which does not trigger any transitions to be infinitely dispatched from the event

queue.

3.7 Summary

A formal definition of the execution semantics is a prerequisite for developing equivalence-

checking and model-checking tools for statechart diagrams In this chapter, we have

formalized the execution semantics of statechart diagrams in the π-calculus. An exten-

sion to UML semantics for communicating statechart diagrams has been proposed. The

research problems identified in Section 2.5, concerning the imprecision and incomplete-

ness of the UML documentation as well as the representation of interlevel transitions,
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have been addressed. The formalization presented in this chapter forms a basis for the

equivalence checking and model checking of statechart diagrams which are discussed in

the next two chapters.



Chapter 4

Equivalences of Statechart

Diagrams

In the π-calculus, to determine whether two processes are able to imitate the be-

haviour of each other, the concepts of structural congruence and bisimulation have

been proposed. Depending on when name instantiation of an input prefix is performed,

bisimulation can be further classified into early bisimulation, late bisimulation, open

bisimulation, etc.

Providing a formal method to prove that two statechart diagrams are equivalent

is important in the sense that it allows us to distinguish between statechart diagrams

and determine when one statechart diagram can substitute for another one. In this

chapter, we study how equivalences of statechart diagrams are formally proved using

the π-calculus.

The equivalences of statechart diagrams are classified into three different types:

isomorphism, strong behavioural equivalence and weak behavioural equivalence. Iso-

morphism treats two statechart diagrams as equivalent if they have the same structure,

whereas strong and weak behavioural equivalences consider two statechart diagrams

as equivalent if they have the same (observable) behaviour. Strong behavioural equiv-

alence equates statechart diagrams with a similar structure and the same behaviour.

In contrast, weak behavioural equivalence equates statechart diagrams which have a

different structure but exhibit the same behaviour.

The rest of this chapter is structured as follows. Section 4.1 is a review of nota-

tion used throughout this chapter. In Sections 4.2–4.4, various types of equivalences

79
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of statechart diagrams based on structural congruence and open bisimulations are in-

troduced. Examples are provided to illustrate how equivalences of statechart diagrams

are formally verified. Section 4.5 explores how to specify event channels are distinct

using the notion of distinction. A comparison with related work and a summary are

given in Sections 4.6 and 4.7.

An earlier version of this chapter first appeared as a conference paper [54] in the

proceedings of HCC 2003 and then included in [51].

4.1 Notation

The standard notation for expressing operational semantics in the π-calculus is a la-

belled transition. Here we review the syntax and semantics of labelled transitions [111,

87] which are used in the definitions of bisimulations. An infinite set of matching

constructs (defined in Section 3.1) ranged over by N1, . . . ,Nm, . . . ,Nn is defined. We

use L,M,N to denote finite match sequences which comprise zero or more matching

constructs. Conventions related to labelled transitions are now summarized as follows:

P
α
−→ P ′ : the execution of action α and process P becomes P ′.

P =⇒ P ′ : process P becomes P ′ after zero or more internal actions.

P
α

=⇒ P ′ : is equivalent to P =⇒
α
−→=⇒ P ′.

P
bα

=⇒ P ′ :





P
α

=⇒ P ′ if α 6= τ

P =⇒ P ′ if α = τ

P
M,α
; P ′ : if the match sequence M is true, action α is executed and process P becomes

P ′.

P
M,α
;; P ′ :





P
N1,τ
; . . .

Nm,τ
;

L,α
;

Nm+1,τ
; . . .

Nn,τ
; P ′ if α 6= τ

where m, n ≥ 0 and

value of M = (∧n
i=1Ni) ∧ L

P
N1,τ
; . . .

Nn,τ
; P ′ if α = τ

where n ≥ 0 and

value of M = ∧n
i=1Ni
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4.2 Isomorphism

In the following, we recall the definition of structural congruence which is defined

in [77, 74, 76, 87]. A type of equivalence of statechart diagrams named isomorphism

is then introduced. An example is given to illustrate how statechart diagrams which

are categorized as isomorphic can be formally verified by first translating them into the

π-calculus.

Definition 18 Two processes P and Q are structurally congruent, written P ≡ Q, if

they satisfy the following axioms:

(i) P and Q are alpha convertible.

(ii) P and Q can be converted to each other by reordering of terms in a summation.

(iii) P and Q are parallel compositions which can be converted to each other by re-

ordering of terms based on laws of commutativity and associativity.

(iv) P and Q can be converted to each other by scope extrusion law i.e. we regard

R1|(νx)R2 equals (νx)(R1|R2) if x is different from any free name (channel) in

R1.

(v) P and Q can be converted to each other by reordering the sequence of channel

declarations i.e. we regard (νx y)R equals (νy x)R.

Clause (i) states that processes P and Q differ only in the choice of bound names

(channels). Clause (iv) extends the scope of channel x to processes R1 and R2.

Definition 19 (Isomorphism) Two statechart diagrams F and G are isomorphic,

written F ∼= G, if and only if there is a bijection f : States(F ) → States(G) which

is independent of the spatial representations of F and G such that each transition of

F with source state S1 and target state S2 is mapped to a transition of G with source

state T1 and target state T2 where S1, S2 ∈ States(F ) and T1, T2 ∈ States(G), T1 =

f(S1), T2 = f(S2), both transitions are labelled with the same event, guard-condition

and action.

Theorem 5 Given F,G ∈ SC, F ∼= G↔ φ(F ) ≡ φ(G).

Proof sketch.(→) Suppose F ∼= G. Since F ∼= G,S1 corresponds to T1, S2 corresponds

to T2, the transition of F which connects source state S1 and target state S2 is mapped

to the transition of G which connects source state T1 and target state T2 where S1, S2 ∈

States(F ) and T1, T2 ∈ States(G), both transitions are labelled with the same event,
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guard-condition and action. But S2 and T2 were arbitrary target states of transitions of

S1 and T1, respectively. Therefore, the process definitions of φstate(S1) and φstate(T1)

are identical (having same structure) with only differences in the names of the process

identifiers and the ordering of terms. Thus, if F ∼= G then φ(F ) ≡ φ(G).

(←) Suppose φ(F ) ≡ φ(G). Suppose F ∼= G is false. Since φ(F ) ≡ φ(G), φ(F ) can

be transformed to φ(G) by reordering of terms or renaming process identifiers. Then

F ∼= G as F can be transformed to G through the same transformation by changing the

spatial representation or renaming states. But this contradicts the fact that F ∼= G is

false. Thus, if φ(F ) ≡ φ(G) then F ∼= G.

The spatial representations (geometry) of statechart diagrams and choice of state

names are unimportant when considering the equivalence of statechart diagrams. Two

statechart diagrams are isomorphic if they have the same structure in terms of the

π-calculus.

We adopt this approach as the π-calculus, unlike other syntactic representations,

has defined precisely when the structures of two π-calculus expressions are the same

using structural congruence (Definition 18). Given two statechart diagrams expressed

in the π-calculus, we can simply apply the axioms in Definition 18 for determining

whether they are isomorphic.

Theorem 6 The relation ∼= is an equivalence.

Proof. Reflexivity and symmetry are obvious. For transitivity, let F,G and H be arbi-

trary statechart diagrams. Suppose F ∼= G and G ∼= H. Since F ∼= G and G ∼= H, it

follows that φ(F ) ≡ φ(G) and φ(G) ≡ φ(H). As ≡ is transitive, we get φ(F ) ≡ φ(H)

and we can conclude that F ∼= H. Thus, ∼= is transitive.

Figure 4.1 shows two statechart diagrams which are exactly the same with the

exception of different spatial representations and change of state names. F1 and G1

can be transformed into each other by rotating 180◦ along the axis i.e. mirroring and

renaming of states. To prove that the two statechart diagrams are isomorphic, we first

translate them into the π-calculus and then prove that the π-calculus expressions are

structurally congruent.

As event queue, event dispatcher and root state are represented in the same way

for all statechart diagrams, there is no need to consider them during the equivalence

checking process.
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Figure 4.1: Example 1

The three states in statechart diagram F1 are encoded in the π-calculus as three

processes S1, S2 and S3. Similarly, the events in F1 are denoted in the π-calculus as

four channels named e1, e2, e3 and e4. A signal is sent along channel step to the root

state defined in Rule 9 for indicating the end of a step. The π-calculus specifications

of S1, S2 and S3 are defined as:

S1(step, eventS , ~e)
def
=

eventS(x).([x = e1]step.S2(step, eventS , ~e) +

[x = e3]step.S3(step, eventS , ~e) +

Σi/∈{1,3}[x = ei]step.S1(step, eventS , ~e))

S2(step, eventS , ~e)
def
=

eventS(x).([x = e2]step.S3(step, eventS , ~e) +

Σi6=2[x = ei]step.S2(step, eventS , ~e))

S3(step, eventS , ~e)
def
=

eventS(x).([x = e4]step.S1(step, eventS , ~e) +

Σi6=4[x = ei]step.S3(step, eventS , ~e))

Applying the same translation approach to G1, the π-calculus expressions of G1 are

the same as F1 with the exception that the ordering of terms in summations is different

and S1, S2, S3 and eventS are substituted by T1, T2, T3 and eventT , respectively.

Proposition 1 φ(F1) ≡ φ(G1)
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Proof. φ(F1) ≡ φ(G1) as they can be converted to each other by renaming the process

identifiers and reordering of terms in summations.

Proposition 2 F1
∼= G1

Proof. By Proposition 1 and Theorem 5.

4.3 Strong Behavioural Equivalence

This section starts by presenting the name substitution function [77, 74, 87] and strong

open bisimulation [110, 87, 102, 92]. Then a second type of equivalence of statechart

diagrams called strong behavioural equivalence is defined.

Definition 20 The name substitution function σ : N → N , written {~x/~y}, replaces

each yi by xi where i ∈ Z+.

Definition 21 (Strong Open Bisimulation [87]) A symmetric binary relation R

on processes is a strong open bisimulation if (P,Q) ∈ R implies ∀σ whenever Pσ
α
−→ P ′

where bn(α) ∩ fn(Pσ,Qσ) = ∅ then, ∃Q′ : Qσ
α
−→ Q′ ∧ (P ′, Q′) ∈ R. P is strongly

open bisimilar to Q, written P
.
∼o Q, if they are related by a strong open bisimulation.

Two processes P and Q are strongly open bisimilar if they can simulate the be-

haviour of each other under all substitutions.

Next, we define a number of definitions which we will make use of in the definition

of strong behavioural equivalence.

Let S1
t1⇁ S2

t2⇁ . . .
tn−1

⇁ Sn represents a trace which comprises a sequence of states

and transitions where S1, S2, . . . , Sn ∈ ST and t1, t2, . . . , tn−1 ∈ T R. We also let Θ be

a set of traces.

Definition 22 Suppose tr1 = S1,1
t1,1
⇁ S1,2

t1,2
⇁ . . .

t1,n−1

⇁ S1,n and tr2 = S2,1
t2,1
⇁ S2,2

t2,2
⇁

. . .
t2,n−1

⇁ S2,n. The two traces tr1 and tr2 are identical, written tr1 =TR tr2, iff
∧n

i=1(S1,i = S2,i) ∧
∧n−1

i=1 (t1,i = t2,i) holds.

S1,i = S2,i returns true if S1,i and S2,i represent the same state, whereas t1,i = t2,i

returns true if t1,i and t2,i denote the same transition.

Likewise, we let S1
E1⇀ S2

E2⇀ . . .
En−1

⇀ Sn signifies a computation which consists of

a sequence of states and events where S1, S2, . . . , Sn ∈ ST and E1, E2, . . . , En−1 ∈ E .

The set of computations is denoted by Ψ.
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Definition 23 Given ψ1 = S1,1
E1,1
⇀ S1,2

E1,2
⇀ . . .

E1,n−1

⇀ S1,n with a corresponding trace

tr1 = S1,1
t1,1
⇁ S1,2

t1,2
⇁ . . .

t1,n−1

⇁ S1,n and ψ2 = S2,1
E2,1
⇀ S2,2

E2,2
⇀ . . .

E2,n−1

⇀ S2,n with

a corresponding trace tr2 = S2,1
t2,1
⇁ S2,2

t2,2
⇁ . . .

t2,n−1

⇁ S2,n. The two computations are

identical, written ψ1 =c ψ2, iff
∧n

i=1(S1,i = S2,i) ∧
∧n−1

i=1 (E1,i = E2,i) holds.

Definition 24 (Redundancy) For any statechart diagram F which has traces tr1, tr2 ∈

Θ and corresponding computations ψ1, ψ2 ∈ Ψ. If ¬(tr1 =TR tr2) ∧ ψ1 =c ψ2, then F

has a number of redundant states and transitions.

Definition 25 (Strong Behavioural Equivalence) Given two statechart diagrams

F,G ∈ SC and G has a number of redundant states and transitions, F and G are

strongly behavioural equivalent, written F ' G, if and only if the firing of every tran-

sition of F (G) which consists of an event, a guard-condition and an action is matched

by the firing of a transition of G(F ) with the same event, guard-condition and action.

Theorem 7 Given F,G ∈ SC, F ' G↔ φ(F )
.
∼o φ(G).

Proof sketch. (→) Let S1, S2 ∈ States(F ), S1, S2 ∈ States(G). Suppose F ' G, a

transition t1 connects S1 to S2 in both F and G and a redundant transition t2 with

the same trigger and action as t1 connects S1 to a redundant state S2 in G. Since

F ' G, F and G have the same behaviour. Then the behaviour of processes defined by

φstate(S1) of F and φstate(S1) of G is not discriminated by strong open bisimulation as

they are both evolved to φstate(S2) through two identical sequences of reductions. Thus,

if F ' G then φ(F )
.
∼o φ(G).

(←) Analogous to (←) of Theorem 5.

Theorem 8 The relation ' is an equivalence.

Proof. Analogous to Theorem 6.

Theorem 9 Let F and G be any statechart diagrams. If F ∼= G then F ' G.

Proof. Suppose F ∼= G. Since F ∼= G, it follows that φ(F ) ≡ φ(G). Therefore,

φ(F )
.
∼o φ(G). Thus, if F ∼= G then F ' G.

Theorem 9 states that isomorphism is stronger than strong behavioural equivalence.

Consider the statechart diagrams F2 and G2 in Figure 4.2. Suppose that traces tr1 and
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tr2 and their corresponding computations ψ1 and ψ2 are defined as follows:

tr1 = T1
t1⇁ T2

t2⇁ T1

tr2 = T1
t3⇁ T2

t4⇁ T1

ψ1 = T1
E1⇀ T2

E2⇀ T1

ψ2 = T1
E1⇀ T2

E2⇀ T1

The traces tr1 and tr2 are not identical as transition t1 is different from transition t3.

A similar argument also holds for transitions t2 and t4. In contrast, the computations

ψ1 and ψ2 are identical according to Definition 23. Hence, we do not discriminate the

statechart diagram F2 and G2 as G2 is the same as F2 except that it has a redundant

state T2 and two redundant transitions labelled t3 and t4. The statechart diagrams F2

and G2 have a similar structure and exhibit the same behaviour. The upper and lower

portions of statechart diagram G2 are just mirror images of each other.

S 1 S 2 T 1

T 2

E 1

t1:E1

F 2 G 2

T 2
t3:E1

t2:E2

t4:E2

mirror plane

E 2

Figure 4.2: Example 2

We translate F2 and G2 into the π-calculus, construct the transition graphs for

the π-calculus expressions and proceed to prove that they are strongly behavioural

equivalent.

Figure 4.3 shows the transition graphs for statechart diagrams F2 and G2. The

arrow denotes action, while the dotted arrow denotes name instantiation. To improve

visual clarity, we exclude the output action step of the π-calculus expressions from the

diagrams.

Proposition 3 φ(F2)
.
∼o φ(G2)

Proof sketch. Consider the transitions of S1 and T1, S1
eventS(x)

; is simulated by

T1
eventT (x)

; (Figure 4.3).Likewise,
[x=e1],eventS(x)

; ,
[x=ei]
; S1,

[x=e2]
; S1 and

[x=ei]
; S2



4.4. WEAK BEHAVIOURAL EQUIVALENCE 87

are matched by
[x=e1],eventT (x)

; ,
[x=ei]
; T1,

[x=e2]
; T1 and

[x=ei]
; T2, respectively. Similar

arguments hold true in the opposite direction. Thus, φ(F2)
.
∼o φ(G2).

S 2

S 1
1≠∧iei

2≠∧iei

1e

T 2

T 1

2e

)(xeventS

)(xeventS 1≠∧iei

2≠∧ iei

1e

2e

1e

)(xeventT

)(xeventT

Figure 4.3: Transition graphs for Example 2

Proposition 4 F2 ' G2

Proof. By Proposition 3 and Theorem 7.

4.4 Weak Behavioural Equivalence

The notion of weak open bisimulation [110, 87, 102, 92] is used to define the third

type of equivalence of statechart diagrams named weak behavioural equivalence. We

classify statechart diagrams which are related by clustering and serialization as weakly

behavioural equivalent. These statechart diagrams have different structure but exhibit

the same behaviour.

Definition 26 (Weak Open Bisimulation [87]) A symmetric binary relation R on

processes is a weak open bisimulation if (P,Q) ∈ R implies ∀σ whenever Pσ
α
−→ P ′

where bn(α) ∩ fn(Pσ,Qσ) = ∅ then, ∃Q′ : Qσ
α̂

=⇒ Q′ ∧(P ′, Q′) ∈ R. P is weakly open

bisimilar to Q, written P
.
≈o Q, if they are related by a weak open bisimulation.

Unlike strong open bisimulation, weak open bisimulation does not differentiate be-

tween two π-calculus processes which differ from each other in sequences of internal

actions which are unobservable.

Definition 27 (Clustering) For any statechart diagram F which consists of states

S1, S2, . . . , Sn. If there exists a transition t ∈ T R from each of the states S1, S2, . . . , Sn−1
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to Sn, S1, S2, . . . , Sn−1 can be clustered by a composite state S′. A single transition

t can be drawn from the edge of S′ to Sn instead of having multiple transitions which

originate from individual states S1, S2, . . . , Sn−1.

Clustering transforms a flat statechart diagram into a hierarchical statechart dia-

grams. It reduces the number of transitions and improves visual clarity.

Definition 28 (Serialization) Suppose F is a statechart diagram. If F consists of

orthogonal regions V0,W0, . . . where substates(V0) = {V1, V2, . . .} and substates(W0) =

{W1,W2, . . .}, an equivalent statechart diagram F ′ can be constructed with states

substates(V0) × substates(W0) × . . . which are cartesian products of the substates of

the orthogonal regions. Statechart diagram F ′ is a serialized version of the statechart

diagram F .

Definition 29 (Weak Behavioural Equivalence) Given two statechart diagrams F,

G ∈ SC and they are related by clustering or serialization, F and G are weakly be-

havioural equivalent, written F ≈ G, if and only if the firing of every transition of

F (G) which consists of an event, a guard-condition and an action is matched by the

firing of a transition of G(F ) with the same event, guard-condition and action.

Theorem 10 Given F,G ∈ SC, F ≈ G↔ φ(F )
.
≈o φ(G).

Proof sketch. (→) Let F be a flat statechart diagram and G be the corresponding

hierarchical statechart diagram. Suppose F ≈ G and they are related by clustering or

serialization. Since F ≈ G, F and G have the same behaviour. A transition which

connects two non-composite states in F corresponds to a sequence of reductions without

unobservable actions in φ(F ) as shown in Case 1 of Theorem 1. A transition which

involves a composite state in G relates to a sequence of reductions with unobservable

actions in φ(G) as shown in Case 2 of Theorem 1. Therefore, this coincides with the

definition of weak open bisimulation as the observable actions of the two sequences of

reductions are equivalent. Thus, if F ≈ G then φ(F )
.
≈o φ(G).

(←) Analogous to (←) of Theorem 5.

Theorem 11 The relation ≈ is an equivalence.

Proof. Analogous to Theorem 6.

Theorem 12 Let F and G be any statechart diagrams. If F ' G then F ≈ G.

Proof. Analogous to Theorem 9.
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Theorem 12 states that strong behavioural equivalence is finer than weak be-

havioural equivalence. Any statechart diagrams which are strongly behavioural equiv-

alent are by implication also weakly behavioural equivalent.

Corollary 1 Let F and G be any statechart diagrams. If F ∼= G then F ≈ G.

Proof. By Theorems 9 and 12.

Corollary 2 ≈ ⊆ ' ⊆ ∼=

Proof. Follows directly from Theorems 9 and 12.

Corollary 2 stipulates the inclusion relationships among the three proposed equiv-

alences.

Since events E1 and E2 are distinct, statechart diagram G3 (Figure 4.4) is just

another way of representing F3. It clusters states V1 and V2 by a composite state T1.

State S1 corresponds to states T1 and V1, state S2 corresponds to states T1 and V2 and

state S3 corresponds to state T2.

S 1 S 2

E 1

F 3 G 3

E 2

S 3

E 2
E 3

V 1 V 2

E 1

E 2

T 2

E 3

T 1

Figure 4.4: Example 3

Figure 4.5 shows the transition graphs for statechart diagrams F3 and G3. In

Figure 4.5, the =⇒ arrow stands for one or more internal actions.

Proposition 5 φ(F3)
.
≈o φ(G3)

Proof sketch. Assume event channels e1, e2 and e3 are distinct. Consider the transitions

of S1 and T1|V1, S1
eventS(x)

; is simulated by T1|V1
eventT (x)

;; . Following the same argu-

ment,
[x=e1]
; S2,

[x=e2]
; S3 and

[x=ei]
; S1 are matched by

[x1=e1][x2=neg],τ
; T1|V2,

[x1=e2][x2=pos],τ
;

T2 and
[x1=ei][x2=neg],τ

; T1|V1. Likewise, S2
eventS(x)

; , S3
eventS(x)

; ,
[x=e2]
; S3,

[x=ei]
; S2,

[x=e3]
;

S1 and
[x=ei]
; S3 are matched by T1|V2

eventT (x)
;; , T2

eventT (x)
; ,

[x1=e2][x2=pos],τ
; T2,

[x1=ei][x2=neg],τ
;

T1|V2,
[x=e3]
; T1|V1 and

[x=ei]
; T2. The converse holds true by similar arguments. Thus,

φ(F3)
.
≈o φ(G3).
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S 1

S 3S 2

}2,1{∉
∧

i

ei

2≠
∧

i

ei

)(xeventS

)(xeventS )(xeventS

1e 2e

2e

3≠
∧

i

ei

3e T 1|V1

}2,1{∉
∧

i

ei

2≠
∧

i

ei

)(xeventT

1e 2e

2e
3≠

∧
i

ei

3e

T 1|V2
T 2

pos

)(xeventT

)(xeventT

neg neg

neg

pos

Figure 4.5: Transition graphs for Example 3

Proposition 6 F3 ≈ G3

Proof. Proposition 5 and Theorem 10.

Differences in execution semantics may affect the equivalences of statechart dia-

grams as discussed in Section 2.4. If STATEMATE semantics [44] is used instead of

UML semantics, F3 is not equivalent to G3 upon the occurrence of events E1 and E2. In

UML semantics only one event is processed at a time, while in STATEMATE semantics

a set of events is processed at a time. Non-determinism arises in F3, whereas only the

transition triggered by E2 is fired in G3 as STATEMATE has adopted an outer-first

firing priority scheme.

Figure 4.6 shows another example of clustering which is based on [43]. The states

V1, V2 and V3 are clustered by a composite state S1. The self-transition of S1 means

that each of its substates V1, V2 and V3 has non-deterministic conflicting transitions.

After the receipt of event E1, the substate either proceeds as itself or evolves to one of

the other two substates. The unfolded version of the statechart diagram (right hand

diagram) simply exhibits the same behaviour in an explicit way. State T1 corresponds

to S1 and V1, state T2 corresponds to S1 and V2 and state T3 corresponds to S1 and V3.

Figure 4.7 depicts two models of parallelism. Statechart diagram F4 uses an ex-

plicit parallelism model. Unlike statechart diagram F4, statechart diagram G4 uses an

implicit parallelism model which is based on interleaving semantics. As defined in Def-

inition 28, the states of G4 are cartesian products of those substates in the orthogonal

regions of F4. States V1 and W1 are related to state T2, states V2 and W1 are related

to state T3, states V1 and W2 are related to state T4 and states V2 and W2 are related

to state T5. Statechart diagram G4 is a serialized version of the statechart diagram F4
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Figure 4.6: Example 4

if E1 and E2 are distinct.

V 1 V 2

W 1 W 2

F 4

S 2
T 3

T 4

T 2 T 5

G 4

E 1

E 2

E 1

E 2

E 2

E 1

V 0

W 0

T 1

E 3

S 1

E 3

Figure 4.7: Example 5

Proposition 7 φ(F4)
.
≈o φ(G4)

Proof. Analogous to Proposition 5.

Proposition 8 F4 ≈ G4

Proof. By Proposition 7 and Theorem 10.

A more complex example derived from [42] illustrating the two models of parallelism

is shown in Figures 4.8 and 4.9. State T1 corresponds to S1, V1 and W1, state T2 corre-

sponds to S1, V1 and W2, state T3 corresponds to S1, V1 and W3, state T4 corresponds

to S1, V2 and W2, state T5 corresponds to S1, V2 and W3, state T6 corresponds to S1, V2

and W1.



92 CHAPTER 4. EQUIVALENCES OF STATECHART DIAGRAMS

V
1

V
2

W
1

W
2

W
3

S
1

E
1

E
2

E
4

E
3

E
1

Figure 4.8: Example 6
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Figure 4.9: Example 6 (serialized version)

4.5 The Notion of Distinction

The strong open bisimulation and weak open bisimulation discussed in previous sections

have two limitations. First, there is no way to specify formally that the event channels

are distinct. In both Examples 3 and 5, the condition for the two pairs of statechart

diagrams to be equivalent is that events E1 and E2 must not be equal. In general,

different events should always be referred to by different event names and all event

names should be distinct. In the π-calculus, this means that we need a way to represent

when channels are distinct such that they are not substituted by the same channel.

Second, all other channels other than the event channels which are parameters of a

process definition should also be regarded as distinct since they represent completely

different concepts according to the translation rules.

In this section, we overcome these limitations by introducing new open bisimulation

definitions which are based on the previous ones. To specify that a pair of channels

(names) is distinct, the notion of distinction [102] is defined as follows:
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Definition 30 (Distinction [110, 111, 87, 102, 103]) A distinction D={(x, y)|x, y ∈

N ∧ (y, x) ∈ D ∧ x 6= y} is a finite symmetric and irreflexive binary relations on chan-

nels (names). A name substitution σ respects a distinction D if for all (x, y) ∈ D it

holds that σ(x) 6= σ(y).

Literally, this says a distinction is a set which contains pairs of distinct channels

and no two channels which are required to be distinct are replaced by the same channel

under a name substitution.

Definition 31 (Distinction-Indexed Set [110, 111, 87, 102, 103]) A distinction-

indexed set R = {RD|D ∈ Distinct} is a set of binary relations RD on processes where

Distinct is a set of distinctions.

In distinction-indexed set, each binary relation RD ∈ R is indexed by a unique

distinction D ∈ Distinct.

Definition 32 (Strong Open Bisimulation [110, 111, 87, 102, 103]) A distinction-

indexed set R is a strong open bisimulation if ∀σ which respect a distinction D ∈

Distinct, (P, Q) ∈ RD and Pσ
α
−→ P ′ where bn(α) ∩ fn(Pσ,Qσ) = ∅ implies that

(i) When α = xνy then ∃Q′ : Qσ
xνy
−→ Q′ ∧ (P ′, Q′) ∈ RD′ for D′ = Dσ ∪ ({y} ×

fn(Pσ,Qσ)) ∪ (fn(Pσ,Qσ) × {y}); and (ii) When α 6= xνy then ∃Q′ : Qσ
α
−→

Q′ ∧ (P ′, Q′) ∈ RDσ. P is strongly open D-bisimilar to Q, written P
.
∼D

o Q, if there is

a distinction-indexed set R such that (P,Q) ∈ RD.

Clause (i) states that if α is a bound output action i.e. xνy, the channel y is

distinct from any free names of processes Pσ and Qσ. Clause (ii) specifies that if α is

not a bound output action, the substituted channels are also required to be distinct.

The strong open bisimulation defined earlier is actually equal to the Clause (ii) of the

new definition when the distinction D is an empty set i.e. P
.
∼o Q and P

.
∼∅

o Q are

equivalent. The new weak open bisimulation is also defined in a similar manner using

the notion of distinction.

4.6 Related Work

A similar study has been performed by Maggiolo-Schettini, Peron and Tini [68]. Stat-

echarts are translated into labelled transition systems (LTS) using a variant of Pnueli
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and Shalev semantics. Various types of equivalences are defined and their congruence

properties are discussed. In [85], Park et al. have translated statecharts into Algebra

of Communicating Shared Resources (ACSR) using STATEMATE semantics. Equiva-

lence of statecharts is verified by illustrating that a bisimulation relationship does exist

between them.

Our work is significantly different from their works as (i) we are studying UML

statechart diagrams instead of Harel’s statecharts; (ii) we have adopted UML seman-

tics; (iii) we have developed a translator which is presented in Chapter 7 rather than

performing the transformation only by hand; and (iv) both [68] and [85] fail to prove

the equivalence of two statecharts when transitions cross borders of states (see Example

3) and we overcome this limitation using the π-calculus.

4.7 Summary

We have defined three types of equivalences: isomorphism, strong behavioural equiv-

alence and weak behavioural equivalence. We have adopted open bisimulation rather

than early and late bisimulations as strong open bisimulation is a congruence. It

preserves all π-calculus operators. Two π-calculus processes representing statechart

diagrams are congruent with respect to the π-calculus operators if they are strongly

open bisimilar. As an example, the π-calculus representations of F2 and G2 (example

2) are congruent. In addition, the name instantiation of open bisimulation has adopted

a call-by-need approach which also greatly reduces the number of substitutions and

provides an efficient way for tool development.

An automated equivalence-checking environment for checking strong and weak be-

havioural equivalences of statechart diagrams which are based on our theoretical work

in this chapter is a topic to be considered in Chapter 7.



Chapter 5

Symbolic Model Checking of

Statechart Diagrams

Temporal logic [6, 49] is a formalism which specifies how the truth of a formula changes

dynamically as time proceeds. In temporal logic there are two models of time. One

is linear in which there is a single future time at any given point of time. The other

is branching and at any given point of time there are multiple future times. The

expressiveness of linear and branching temporal logics is different. There are some

properties which can only be specified in branching temporal logic but not in linear

temporal logic and vice versa. A detailed discussion which includes examples and proofs

is given in [49, 28].

Computation Tree Logic (CTL) [49, 29, 30] is a branching temporal logic which

was developed by Clarke and Emerson. It extends propositional logic by incorporating

path quantifiers and temporal operators.

Symbolic model checking [30] is a formal verification technique which is based on

ordered-binary decision diagrams (OBDDs) [20]. The correctness of a finite-state transi-

tion system is determined by checking whether the system satisfies specifications which

are expressed as a number of properties in CTL. Symbolic Model Verifier (SMV) [71]

is a symbolic model checker which automates the verification process. It returns a

counterexample whenever the property being checked does not hold.

NuSMV [23] reimplements the SMV model checker. It extends and improves SMV

in a number of areas [26, 27, 25] as summarized in the following three paragraphs.

First, new functionalities are added to NuSMV. SAT-based (propositional satisfia-

95
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bility based) model checking [12] which is based on Reduced Boolean Circuit (RBC)

representations supplements BDD-based (binary decision diagram based) model check-

ing which is based on BDD representations. In contrast to SMV which supports only

BDD-based model checking, NuSMV supports both BDD-based and SAT-based model

checking. SAT-based model checking has advantages over BDD-based model checking

as it uses much less space and does not encounter the state explosion problem. Another

major enhancement is the interaction between the software tool and user. SMV runs in

batch mode only. NuSMV, unlike SMV, operates in both batch and interactive modes.

Second, the performance of NuSMV is improved when compared with SMV. It

addresses the state explosion problem in a more effective way. The detailed results of

the performance tests appear in [27].

Third, NuSMV adopts the open source model [84] in which the source code is freely

available and extensible. In NuSMV there is still further development on the software

by various parties, whereas in SMV the development has actually stopped.

Following this line of research, this chapter puts forward a new approach by com-

bining three threads, UML statechart diagrams, the π-calculus and the NuSMV model

checker, as an approach to the specification, analysis and reasoning about finite state

systems. The rest of the chapter is structured as follows. Sections 5.1 and 5.2 pro-

vide an overview of CTL and the NuSMV model checker. Section 5.3 examines the

encoding of the UML statecharts based π-calculus in the NuSMV language. The corre-

spondence between UML statecharts based π-calculus and NuSMV language is shown

in Section 5.4. Section 5.5 describes prior work in the area. Section 5.6 concludes the

chapter.

This chapter with the exception of Section 5.1 is an extended version of the material

presented in [58].

5.1 Computation Tree Logic

In CTL, the traditional propositional logic is extended by incorporating path quan-

tifiers and temporal operators. We let AP be a set of atomic propositions and let

p, p1, p2, . . . , pn range over AP.

Definition 33 (CTL Formulas [49]) The syntax of CTL formulas is defined in Backus

Naur form by:

ψ ::= p | ¬ψ | ψ∧ψ | ψ∨ψ | ψ ⇒ ψ |AXψ |AGψ |AFψ | A[ψUψ] | EXψ |EGψ | EFψ | E[ψUψ].
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A and E are path quantifiers, while X,G,F and U are temporal operators. A

means “for all paths” and E means “for some paths”. X,G, F and U stand for “next”,

“globally”, “future” and “until”, respectively.

AXψ: means ψ is true in next state for all paths.

AGψ: means ψ is true in every future state for all paths.

AFψ: means ψ is true in some future state for all paths.

A[ψ1Uψ2]: means ψ1 is true until ψ2 is true in some future state for all paths.

EXψ: means ψ is true in next state for some paths.

EGψ: means ψ is true in every future state for some paths.

EFψ: means ψ is true in some future state for some paths.

E[ψ1Uψ2]: means ψ1 is true until ψ2 is true in some future state for some paths.

The desired properties of a system are classified into two main types: safety and

liveness [59]. In general, a safety property expresses that a bad thing never occurs and

a liveness property expresses that a good thing will ultimately occur. For instance, a

safety property that specifies ψ1 and ψ2 will never occur simultaneously is written in

CTL as:

AG¬(ψ1 ∧ ψ2)

A liveness property that specifies that if ψ1 holds then ψ2 will eventually occur is

written in CTL as:

AG(ψ1 ⇒ AFψ2)

5.2 The NuSMV Model Checker

NuSMV is a model checker for verifying the model of a finite state system against

its specifications expressed in temporal logic. A NuSMV program specifies both the

model and the system specification. It starts with a top-level module called Main with

no parameters. The module Main basically comprises three sections: VAR, ASSIGN

and SPEC.
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NuSMV variables are declared under the VAR section. Each variable declaration

statement is associated with either a Boolean, a bounded integer subrange, an enumer-

ated data type, a user defined module or a bounded array of one of these four data

types.

The ASSIGN declarations specify the initial values of NuSMV variables and the

transition relation between the current and next values of NuSMV variables. The

transition relation is presented as a number of next statements. Each option of the

next statement comprises two parts: a precondition and an expression which defines

next possible values of a NuSMV variable. Now consider the program fragment in

Figure 5.1.

ASSIGN

init(state) := 0;

next(state) :=

case

!state : 1;

state : 0;

esac;

Figure 5.1: Program fragment

The above program fragment specifies that the initial value of the variable state is

0. Depending on the current value of the variable state, the next value is either 0 or 1.

The system specification is expressed as a CTL formula which starts with the key-

word SPEC. The NuSMV model checker determines whether the model satisfies the

system specification. If not, a counterexample is given to illustrate why the specification

is not satisfied.

Since the error trace of the counterexample contains all the variables defined in a

NuSMV program as well as their corresponding values, it can be related back to the

original UML statechart diagrams by focusing on a few key variables which keep track

of the current active state and substates, validity of a guard-condition, occurrence of

an event and execution of an action.

5.3 Implementation of the π-Calculus in NuSMV

The π-calculus is an action-based formalism in which the behaviour is defined by la-

belled transition systems (LTSs), whereas a NuSMV program is based on a state-based
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formalism in which the behaviour is defined by Kripke structures. The implementation

of UML statecharts based π-calculus expressions in the NuSMV input language is gen-

eralized to a problem of defining a mapping between a UML statecharts based labelled

transition system and a Kripke structure. In contrast to the mapping of [33] which

is only for non-parameterized actions, our mapping is for both non-parameterized and

parameterized actions.

5.3.1 A Mapping between UML Statecharts Based LTSs and Kripke

Structures

This subsection first gives the definitions of a UML statecharts based LTS and a Kripke

structure. Then a mapping between them is formally defined.

Definition 34 (UML Statecharts Based Labelled Transition System) A UML

statecharts based labelled transition system (LTS) is a 5-tupleMπ = (Σπ, Iπ, Aπ, Cπ,∆π)

where

- Σπ is a set of states;

- Iπ ⊆ Σπ is the set of initial states;

- Aπ is a set of actions such that Aπ = Ain ∪ Aout ∪ {τ};

- Cπ is a set of conditions ranged over by N1, . . . ,Nn; and

- ∆π ⊆ Σπ × Aπ × Cπ × Σπ is a transition relation between a current state and its

successor states in which a transition is labelled with an action and a condition.

Unlike other definitions of an LTS [76] in which an input or output action does not

have any parameters, our definition supports parameterized actions. In addition, we

also extend the transition relation to include conditions for representing the matching

constructs of the π-calculus.

Definition 35 (Kripke Structure) A Kripke structure over a set of atomic propo-

sitions AP is a 4-tuple MK = (ΣK , IK ,∆K ,LK) where

- ΣK is a finite set of states;

- IK ⊆ ΣK is the set of initial states;

- ∆K ⊆ ΣK × ΣK is a transition relation which relates each state with its successor

states; and

- LK : ΣK → 2AP is a function which returns the set of atomic propositions which

holds in a state.
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Comparing the definitions of a UML statecharts based LTS and a Kripke structure,

it is clear that the transition relation of a UML statecharts based LTS differs from the

transition relation of a Kripke structure. In a UML statecharts based LTS, the action

and condition of a transition are specified in an explicit way. In a Kripke structure, these

are incorporated into either the source state of the transition as a Boolean expression

or the target state of the transition as assignment statement(s). The mapping between

UML statecharts based LTSs and Kripke structures is formally described as follows:

Definition 36 (UML Statecharts based LTS to Kripke Structure Mapping)

Given a UML statecharts based LTS Mπ = (Σπ, Iπ,Aπ, Cπ,∆π), the corresponding

Kripke structure is defined as MK = (ΣK , IK ,∆K ,LK) satisfying the conditions:

(i)

∀S1, S2, event(x), [x = e].S1, S2 ∈ Σπ

∧ event(x) ∈ Aπ

∧ [x = e] ∈ Cπ

∧ (S1, event(x), [x = e], S2) ∈ ∆π

⇒ S1 ∪ {event = e}, S2 ∈ ΣK

∧ (S1 ∪ {event = e}, S2) ∈ ∆K

(ii)

∀S1, S2, event(x ack), [x = e].S1, S2 ∈ Σπ

∧ event(x ack) ∈ Aπ

∧ [x = e] ∈ Cπ

∧ (S1, event(x ack), [x = e], S2) ∈ ∆π

⇒ S1 ∪ {event = e}, S2 ∈ ΣK

∧ (S1 ∪ {event = e}, S2) ∈ ∆K



5.3. IMPLEMENTATION OF THE π-CALCULUS IN NUSMV 101

(iii)

∀S1, S2, T1, T2, ack(x), [x = pos], ack〈pos〉.S1, S2, T1, T2 ∈ Σπ

∧ T1 ∈ substates(S1)

∧ T2 ∈ substates(S2)

∧ ack(x), ack〈pos〉 ∈ Aπ

∧ [x = pos] ∈ Cπ

∧ (T1, ack〈pos〉,−, T2) ∈ ∆π

∧ (S1, ack(x), [x = pos], S2) ∈ ∆π

⇒ T1, T2 ∪ {ack = pos}, S1 ∪ {ack = pos}, S2 ∈ ΣK

∧ (T1, T2 ∪ {ack = pos}), (S1 ∪ {ack = pos}, S2) ∈ ∆K

(iv)

∀S1, S2, ins〈e〉.S1, S2 ∈ Σπ

∧ ins〈e〉 ∈ Aπ

∧ (S1, ins〈e〉,−, S2) ∈ ∆π

⇒ S1 ∪ {!ins}, S2 ∪ {ins = 1, buff = e} ∈ ΣK

∧ (S1 ∪ {!ins}, S2 ∪ {ins = 1, buff = e}) ∈ ∆K

(v)

∀S1, S2, step.S1, S2 ∈ Σπ

∧ step ∈ Aπ

∧ (S1, step,−, S2) ∈ ∆π

⇒ S1 ∪ {!step}, S2 ∪ {step = 1} ∈ ΣK

∧ (S1 ∪ {!step}, S2 ∪ {step = 1}) ∈ ∆K

where “–” denotes a transition relation with no condition and buff is a variable.

Conditions (i) and (ii) define that a UML statecharts based LTS is transformed

into a Kripke structure by mapping each transition labelled with an input action and

a matching construct to a transition which contains a corresponding Boolean expres-

sion in the current state. An input action and a matching construct are modelled as
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a Boolean expression for indicating the input action is performed and the matching

construct holds.

Condition (iii) specifies that a transition labelled with an output action and a

transition labelled with an input action and a matching construct are mapped to two

transitions. The former one contains a corresponding assignment in the next state,

while the latter one contains a corresponding Boolean expression in the current state.

The effect of an output action ack〈pos〉 is modelled by assigning a variable which

represents the channel ack to a new value which represents the channel pos.

Condition (iv) states that a parameterized output action is transformed into a

negated Boolean expression in the current state and two assignments in the next state.

The negated Boolean expression is a precondition to ensure that the parameterized

output action is performed only if it has not yet carried out. The first assignment sets

the value of the Boolean variable to 1 (true) for representing the output action has

performed, while the second assignment stores the parameter in the scalar variable.

Condition (v) stipulates that a non-parameterized output action is translated into

a negated Boolean expression in the current state and an assignment statement in the

next state. The assignment statement assigns the value 1 (true) to the Boolean variable.

Unlike Condition (iv), there is not a second assignment as the output action does not

have a parameter.

5.3.2 Encoding the UML Statecharts Based π-Calculus in NuSMV

The implementation of the UML statecharts based π-calculus in the NuSMV input

language is defined formally as a set of rules which are based on the UML statecharts

based LTS to Kripke structure mapping. In the following listings, italic font is used for

π-calculus expressions and typewriter font is used for NuSMV code. In addition, an

underline denotes the part of a π-calculus expression considered during a translation.

Rule 1 A statechart diagram F ∈ SC, in which each of its state is modelled by a

process identifier in the π-calculus, is implemented in NuSMV as a module:

MODULE F

Rule 1 states that a group of process identifiers which models the behaviour of a

statechart diagram is declared under a module.
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Rule 2 Process identifiers Ai(
−→xi) ∈ = for i = 1, . . . , n representing direct substates of

the root state of a statechart diagram are encoded in the NuSMV input language as a

scalar variable state in which Ai for i = 1, . . . , n are its symbolic values.

VAR

state: {A_1, A_2, ..., A_n};

Rule 3 A null process 0 in the π-calculus is mapped to a symbolic value nil in NuSMV.

Rule 4 Process identifiers Ai(
−→xi) ∈ = for i = 1, . . . , n representing direct substates

of all non-concurrent composite states of the root state of a statechart diagram are

modelled in the NuSMV input language as a scalar variable substate in which Ai for

i = 1, . . . , n and nil are its symbolic values.

VAR

substate: {A_1, A_2, ..., A_n, nil};

Rule 5 A channel e ∈ N representing an event E ∈ E in a statechart diagram is

modelled as a symbolic value.

Rules 2 and 4 specify that process identifiers are modelled in the NuSMV input

language as scalar variables and symbolic values under the VAR section. The transla-

tion of an ordinary non-composite state is distinguished from a root state as the root

state does not have any superstates and cannot have any outgoing transitions (Rule 9

of Chapter 3). A null process and an event channel are both translated into symbolic

values as defined by Rules 3 and 5.

Rule 6 An input action event(x) ∈ Ain and a matching construct [x = e1] which model

the receipt of an event E1 ∈ E are specified as a Boolean expression event buff = e1.

A(~x)
def
= event(x).([x = e1]step.B(~x) + Σi6=1[x = ei]step.A(~x))

next(state) :=

case

state=A & event_buff=e_1 : B;

esac;
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Rule 6 is derived from Condition(i) of Definition 36. The scalar variable event buff

stores the dispatched event which is chosen from the event queue of the statechart

diagram. We use event buff instead of event to improve readability of the generated

code by emphasizing that the event is stored in a buffer represented as a variable in

NuSMV.

Rule 7 An output action step ∈ Aout which models the step semantics is transformed

into a Boolean variable step and a condition !step. The value 1 (true) signifies the

end of a run-to-completion step, while the value 0 (false) means that a processing of an

event is in progress.

A(~x)
def
= event(x).([x = e1]step.B(~x) + Σi6=1[x = ei]step.A(~x))

next(step) :=

case

state=A & event_buff=e_1 & !step : 1;

event_buff!=empty & step : 0;

esac;

The value of step is assigned to 0 whenever an event is waiting for executing and no

processing of event is in progress.

Rule 8 Given a process identifier A(~x) ∈ = defining a process which evolves to it-

self (i.e. an implicit consumption of an event) is mapped to the default cases of next

statements for variables other than the Boolean variable step.

A(~x)
def
= event(x).([x = e1]step.B(~x) + Σi6=1[x = ei]step.A(~x))

next(var) :=

case

1 : var;

esac;

where var represents any variables other than step.

As an example, if var stands for state, the NuSMV code is represented as:

next(state) :=

case

1 : state;

esac;
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Rule 9 For the Boolean variable step, the implicit consumption is implemented as:

next(step) :=

case

state=next(state) & !step : 1;

esac;

Rule 7 is derived from Condition (v) of the UML statecharts based LTS to Kripke

structure mapping. The default cases of the next statements in Rule 8 define that the

values of the variables remain unchanged. The condition state = next(state) in Rule 9

checks whether the process evolves to itself. If so, the new value of step is set to 1 to

indicate the end of a run-to-completion step.

Rule 10 An output action insF 〈e2〉 ∈ Aout, which denotes the insertion of an event

represented as e2 to the event queue of a statechart diagram F ∈ SC (i.e. a send action),

is expressed in the NuSMV language as a Boolean variable ins F and a scalar variable

F q buff. The scalar variable F q buff takes on e 2 as one of its possible symbolic values.

A(~x)
def
=

event(x).([x = e1]insF 〈e2〉.step.B(~x) +

Σi6=1[x = ei]step.A(~x))

next(ins_F) :=

case

state=A & event_buff=e_1 & !ins_F & !step : 1;

esac;

next(F_q_buff) :=

case

state=A & event_buff=e_1 & !ins_F & !step : e_2;

esac;

next(state) :=

case

state=A & event_buff=e_1 & !ins_F & !step : B;

esac;

next(step) :=
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case

state=A & event_buff=e_1 & !ins_F & !step : 1;

state=A & event_buff=e_1 & ins_F & !step : step;

esac;

The definition of Rule 10 is based on Condition (iv) of the UML statecharts based LTS

to Kripke structure mapping. The insertion of e2 to the event queue of F is regarded

as setting the values of ins F and F q buff to 1 (true) and e2, respectively.
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Figure 5.2: An interlevel transition

Rule 11 Given S1(step, event,~e, eventsubstate1, pos, neg), S2(step, event,~e, eventsubstate2,

pos, neg), T1(eventsubstate1, ~e, pos, neg), T2(eventsubstate2, ~e, pos, neg) ∈ =, φ−1
state(S1(step,

event,~e, eventsubstate1, pos, neg)), φ
−1
state(S2(step, event,~e, eventsubstate2, pos, neg)), φ

−1
state(T1(

eventsubstate1, ~e, pos, neg)), φ
−1
state(T2(eventsubstate2, ~e, pos, neg)) ∈ ST , T1 ∈ substates(S1),

T2 ∈ substates(S2) and an interlevel transition exits T1 and enters T2 directly when an

event E1 occurs (Figure 5.2). The transformation is defined by:

(i) The input action eventsubstate1(x1 ack) ∈ Ain and the matching construct [x1 =

e1] of T1(eventsubstate1, ~e, pos, neg) are translated into event buff = e 1 according

to Condition (ii) of Definition 36.

(ii) The channel ack is encoded in NuSMV as a scalar variable ack which takes sym-

bolic values pos, neg and undefine. The implementation of implicit consumption

for the variable ack is defined by Rule 9. The condition !substate = nil is added

to the option of the case statement so that no negative acknowledgement is sent

out when there is not any active substate (i.e. the value of the substate equals

nil).

(iii) The output action ack〈pos〉 ∈ Aout of T1(eventsubstate1, ~e, pos, neg), input action

ack(x2) ∈ Ain and matching construct [x2 = pos] of S1(step, event,~e, eventsubstate1,

pos, neg), by Condition (iii) of Definition 36, are implemented as conditions

state = S 1 and ack = pos in the case statements of variables state, step and
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substate and an option in the case statement of variable ack which its value is

set to pos.

(iv) The condition !superstate enable is added to all options of case statements which

model behaviour of substates, whereas the condition superstate enable is added to

all options of case statements which model behaviour of non-concurrent composite

states.

S1(step, event, ~e, eventsubstate1, pos, neg)
def
=

event(x1).(νack)eventsubstate1〈x1 ack〉.ack(x2).

([x2 = pos]step.(νeventsubstate2)

(S2(step, event, ~e, eventsubstate2, pos, neg)|T2(eventsubstate2, ~e, pos, neg)) +

[x2 = neg]step.S1(step, event, ~e, eventsubstate1, pos, neg))

T1(eventsubstate1, ~e, pos, neg)
def
=

eventsubstate1(x1 ack).([x1 = e1]ack〈pos〉.0 +

Σi6=1[x1 = ei]ack〈neg〉.T1(eventsubstate1, ~e, pos, neg))

next(state) :=

case

state=S_1 & ack=pos & !step & superstate_enable : S_2;

1 : state;

esac;

next(step) :=

case

state=S_1 & ack=pos & !step & superstate_enable : 1;

event_buff!=empty & step : 0;

1 : step;

esac;

next(substate) :=

case

state=S_1 & ack=pos & !step & superstate_enable : T_2;

substate=T_1 & event_buff=e_1 & !superstate_enable: nil;

1 : substate;

esac;



108 CHAPTER 5. SYMBOLIC MODEL CHECKING

next(ack) :=

case

substate=T_1 & event_buff=e_1 & !superstate_enable : pos;

substate=next(substate) & !step & !superstate_enable

& !substate=nil : neg;

1 : undefine;

esac;

init(superstate_enable) := 0;

next(superstate_enable) :=

case

(next(ack)=pos | next(ack)=neg) & !step : 1;

1 : 0;

esac;

The output actions ack〈pos〉 (positive acknowledgement) and ack〈neg〉 (negative ac-

knowledgement) in process definition of T1(eventsubstate1, ~e, pos, neg) and Boolean vari-

able superstate enable model the lower-first firing priority scheme. The default case

sets the value of ack to undefine for representing that neither pos nor neg is returned

when there is no substate. In addition, the value of ack also remains undefined as long

as the substate is waiting for the receipt of an event.
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Figure 5.3: A fork

Rule 12 Given φstate(S1) = S1(step, eventS , ~e, ãck), φstate(S2) = S2(step, eventS , ~e,

eventsubstate1, eventsubstate2, ãck, s̃yn), φstate(V1) = V1 (eventsubstate1, ~e, ãck, contsubstate1,

endsubstate1) and φstate(W1) = W1(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2) where

ãck = pos, neg and s̃yn = contsubstate1, endsubstate1, contsubstate2, endsubstate2. A split of
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control (the portion of Figure 5.3 which is drawn using solid lines and includes S1, S2, V1

and W1) is transformed into the NuSMV language using the same approach as Rule 11

with the exception of:

(i) The condition ack = pos is deleted from the case statements of state, step, substate1

and substate2 as S1 is a non-composite state.

(ii) The condition superstate enable or !superstate enable is removed from the case

statements of state, step, substate1 and substate2 and the condition cont substate1,

cont substate2, !cont substate1 or !cont substate2 is added to the case statements

of substate1, substate2, ack substate1 and ack substate2, respectively, as the in-

teraction between the composite state S2 and its active substates V1 and W1 is

based on the continuation signals contsubstate1 and contsubstate2. The conditions

!cont substate1 in the case statement of ack substate1 and !cont substate2 in the

case statement of ack substate2 ensure that the negative acknowledgement is sent

before the continuation signal is generated.

(iii) The signals contsubstate1, endsubstate1, contsubstate2 and endsubstate2 are encoded in

NuSMV as Boolean variables. The π-calculus statements acksubstate1(x2).acksubstate2(x3)

and [x2 = pos][x3 = pos]endsubstate1 are modelled as conditions ack substate1=pos

& ack substate2=pos and the setting of end substate1 to 1.

(iv) The case statement of superstate enable is modified since there are more than one

active substates.

S1(step, eventS , ~e, ãck)
def
=

eventS(x).

([x = e1]step.

(νeventsubstate1 eventsubstate2 contsubstate1 endsubstate1

contsubstate2 endsubstate2)

(S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn)|

V1(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1)|

W1(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2)) +

Σi6=1[x = ei]step.S1(step, eventS , ~e, ãck))
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S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn)
def
=

eventS(x1).

(νacksubstate1 acksubstate2)eventsubstate1〈x1 acksubstate1〉.

eventsubstate2〈x1 acksubstate2〉.acksubstate1(x2).acksubstate2(x3).

([x2 = pos][x3 = pos]endsubstate1.endsubstate2.

step.S3(step, eventS , ~e, ãck) +

[x2 = neg][x3 = neg]contsubstate1.contsubstate2.

step.S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn) +

[x2 = pos][x3 = neg]contsubstate1.contsubstate2.

step.S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn) +

[x2 = neg][x3 = pos]contsubstate1.contsubstate2.

step.S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn))

V1(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1)
def
=

eventsubstate1(x acksubstate1).

([x = e2]acksubstate1〈neg〉.contsubstate1.

V2(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1) +

Σi6=2[x = ei]acksubstate1〈neg〉.contsubstate1.

V1(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1))

W1(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2)
def
=

eventsubstate2(x acksubstate2).

([x = e2]acksubstate2〈neg〉.contsubstate2.

W2(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2) +

Σi6=2[x = ei]acksubstate2〈neg〉.contsubstate2.

W1(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2))

next(state) :=

case

state = S_1 & event_buff = e_1 & !step : S_2;

state = S_2 & end_substate1 & end_substate2 & !step : S_3;
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state = S_2 & cont_substate1 & cont_substate2 & !step : S_2;

1 : state;

esac;

next(step) :=

case

state = S_1 & event_buff = e_1 & !step : 1;

state = S_2 & end_substate1 & end_substate2 & !step : 1;

state = S_2 & cont_substate1 & cont_substate2 & !step : 1;

event_buff != empty & step : 0;

1 : step;

esac;

next(substate1) :=

case

state = S_1 & event_buff = e_1 & !step : V_1;

substate1 = V_1 & event_buff = e_2 & cont_substate1 : V_2;

1 : substate1;

esac;

next(substate2) :=

case

state = S_1 & event_buff = e_1 & !step : W_1;

substate2 = W_1 & event_buff = e_2 & cont_substate2 : W_2;

1 : substate2;

esac;

next(ack_substate1) :=

case

substate1 = V_1 & event_buff = e_2 & !cont_substate1 &

!superstate_enable : neg;

substate1 = next(substate1) & !step &

!superstate_enable & !substate1 = nil : neg;

1 : undefine;

esac;

next(ack_substate2) :=

case

substate2 = W_1 & event_buff = e_2 & !cont_substate2 &

!superstate_enable : neg;

substate2 = next(substate2) & !step &

!superstate_enable & !substate2 = nil : neg;

1 : undefine;
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esac;

init(cont_substate1) := 0;

next(cont_substate1) :=

case

state = S_2 & ack_substate1 = neg & ack_substate2 = neg

& !step & superstate_enable : 1;

state = S_2 & ack_substate1 = pos & ack_substate2 = neg

& !step & superstate_enable : 1;

state = S_2 & ack_substate1 = neg & ack_substate2 = pos

& !step & superstate_enable : 1;

state = S_2 & cont_substate1 & cont_substate2 & !step : 0;

1 : cont_substate1;

esac;

init(cont_substate2) := 0;

next(cont_substate2) :=

case

state = S_2 & ack_substate1 = neg & ack_substate2 = neg

& !step & superstate_enable : 1;

state = S_2 & ack_substate1 = pos & ack_substate2 = neg

& !step & superstate_enable : 1;

state = S_2 & ack_substate1 = neg & ack_substate2 = pos

& !step & superstate_enable : 1;

state = S_2 & cont_substate1 & cont_substate2 & !step : 0;

1 : cont_substate2;

esac;

init(end_substate1) := 0;

next(end_substate1) :=

case

state = S_2 & ack_substate1 = pos & ack_substate2 = pos

& !step & superstate_enable : 1;

state = S_2 & end_substate1 & end_substate2 & !step : 0;

1 : end_substate1;

esac;

init(end_substate2) := 0;

next(end_substate2) :=

case

state = S_2 & ack_substate1 = pos & ack_substate2 = pos

& !step & superstate_enable : 1;
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state = S_2 & end_substate1 & end_substate2 & !step : 0;

1 : end_substate2;

esac;

init(superstate_enable) := 0;

next(superstate_enable) :=

case

(next(ack_substate1) = pos |

next(ack_substate1) = neg) &

(next(ack_substate2) = pos |

next(ack_substate2) = neg) & !step : 1;

1 : 0;

esac;
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Figure 5.4: A join

Rule 13 Given φstate(S2) = S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn),

φstate(V2) = V2(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1), φstate(W2) = W2(

eventsubstate2, ~e, ãck,contsubstate2, endsubstate2) and φstate(S3) = S3(step, eventS , ~e, ãck)

where ãck = pos, neg and s̃yn = contsubstate1, endsubstate1, contsubstate2, endsubstate2. A

synchronization of control (Figure 5.4) is translated into NuSMV using the same ap-

proach as Rule 12. The additional translation clauses are defined by:

(i) The encoding of process S2 is the same as the one defined in Rule 12.

(ii) The conditions !cont substate1 | !end substate1 and !cont substate2 | !end substate2

are added to the case statements of ack substate1 and ack substate2 to ensure that

the acknowledgement is sent before the continuation or termination signal is gen-

erated.
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V2(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1)
def
=

eventsubstate1(x acksubstate1).

([x = e3]acksubstate1〈pos〉.

(endsubstate1 +

contsubstate1.V2(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1)) +

Σi6=3[x = ei]acksubstate1〈neg〉.contsubstate1.

V2(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1))

W2(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2)
def
=

eventsubstate2(x acksubstate2).

([x = e3]acksubstate2〈pos〉.

(endsubstate2 +

contsubstate2.W2(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2)) +

Σi6=3[x = ei]acksubstate2〈neg〉.contsubstate2.

W2(eventsubstate2, ~e, ãck, contsubstate2, endsubstate2))

next(substate1) :=

case

substate1 = V_2 & event_buff = e_3 & end_substate1 : nil;

substate1 = V_2 & event_buff = e_3 & cont_substate1 : V_2;

esac;

next(substate2) :=

case

substate2 = W_2 & event_buff = e_3 & end_substate2 : nil;

substate2 = W_2 & event_buff = e_3 & cont_substate2 : W_2;

esac;

next(ack_substate1) :=

case

substate1 = V_2 & event_buff = e_3 & (!cont_substate1 |

!end_substate1) & !superstate_enable : pos;

esac;

next(ack_substate2) :=

case

substate2 = W_2 & event_buff = e_3 & (!cont_substate2 |
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!end_substate2) & !superstate_enable : pos;

esac;

The representations of a concurrent composite state with a fork pseudostate and a

join pseudostate are defined by Rules 12 and 13. The variables contsubstate1, endsubstate1,

contsubstate2 and endsubstate2 implemented as Boolean variables cont substate1, end substate1,

cont substate2 and end substate2 ensure the synchronization of the concurrent com-

posite state and its substates in a join.

Rule 14 An output action gc〈t f〉 ∈ Aout with arity(gc〈t f〉) = 2 which denotes a

guard-condition gc ∈ GCond is translated into a Boolean variable gc.

A(~x)
def
= event(x).([x = e1](νt f)gc〈t f〉.

(t.step.B(~x) +

f.step.A(~x)) +

Σi6=1[x = ei]step.A(~x))

next(state) :=

case

state = A & event_buff = e_1 & gc & !step : B;

esac;

next(step) :=

case

state = A & event_buff = e_1 & gc & !step : 1;

esac;

Rule 15 An initial configuration of a statechart diagram, which is specified as an event

processor configuration in the π-calculus, determines the values of the init statements

for variables state, substate, substate1 and substate2 in Rules 6, 10, 11, 12 and 13.

Rule 14 specifies that an output action representing a guard-condition is modelled as

a Boolean variable. Rule 15 stipulates that the init statements for variables which keep

track of the current active state and substates are derived from the initial configuration.

Rule 16 The consumption and retaining of an event represented as a channel are

encoded as:

next(event_buff) :=

case
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event_buff !=empty & next(step) : empty;

1 : event_buff;

esac;

The assigning of value empty to event buff signifies the consumption of an event. The

retaining of an event is mapped to the default case of the next statement of event buff.

Rule 17 Given a statechart diagram F ∈ SC with send actions represented in the π-

calculus as insGi
〈ei〉 for i = 1, . . . , n which insert event Ei modelled as ei to the event

queue of statechart diagram Gi ∈ SC. The parameters of module F is defined as:

MODULE F(event_buff, step, ins_G_1, G_1_q_buff, ..., ins_G_n,

G_n_q_buff)

Each module representing a statechart diagram contains parameters event buff and

step. The other parameters of the module are based on the send actions as defined in

Rule 10.

5.4 Correctness of the Translation

Theorem 13 There is a semantic correspondence between the firing of a transition

represented in UML statecharts based sublanguage of the π-calculus and its implemen-

tation in the NuSMV language.

Proof sketch. We consider the following cases:

Case 1. Let F,G ∈ SC, S1, S2 ∈ States(F ) and a transition which consists of E1 ∈

E , g1 ∈ GCond and act1 ∈ Act defined as send objG.E2 connecting S1 to S2 such

that G is an associated statechart diagram of objG. Suppose S1, S2 ∈ STNCS. Since

φstate(S1) = S1(step, eventS , ~e, g1, insG), φevent(E1) = e1, φguard(g1) = g1〈t f〉, φaction(

send objG.E2) = insG〈e2〉 and φstate(S2) = S2(step, eventS , ~e, g1, insG), we get a se-

quence of reductions specified as S1(step, eventS , ~e, g1, insG)
eventS(x)
−→

[x=e1]g1〈t f〉
−→

t
−→

insG〈e2〉
−→

step
−→ S2(step, eventS , ~e, g1, insG) which corresponds to conditions state =

S 1 & event buff= e 1 & g 1 that require to hold true before setting the values of ins G

to 1, G q buff to e 2, step to 1 and state to S 2.

Case 2. Let F ∈ SC, S1, S2, V1 ∈ States(F ) and a transition which consists of E1 ∈ E

connecting S1 to S2. Suppose S1 ∈ STNCCS, S2, V1 ∈ STNCS and V1 ∈ substates(S1).
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Since φstate(S1) = S1(step, eventS , ~e, eventV , pos, neg), φstate(V1) = V1(eventV , ~e, pos, neg),

φevent(E1) = e1, φstate(S2) = S2(step, eventS , ~e, pos, neg) and φ−1
state(V1(eventV , ~e, pos,

neg)) ∈ substates(φ−1
state(S1(step, eventS , ~e, eventV , pos, neg))), we get two sequences of

reductions.

The first sequence of reductions S1(step, eventS , ~e, eventV , pos, neg)
eventS(x)
−→

eventV 〈x ack〉
−→

ack(y)
−→

[y=pos]step
−→ S2(step, eventS , ~e, pos, neg) implies S1(step, eventS , ~e, eventV , pos, neg)

eventS(x)
−→

τ
−→

τ
−→

[y=pos]step
−→ S2(step, eventS , ~e, pos, neg) as eventV 〈x ack〉 and

ack(y) are unobservable actions. This corresponds to conditions state = S 1 & ack =

pos that require to hold true before setting the values of step and state to 1 and S 2.

The second sequence of reductions V1(eventV , ~e, pos, neg)
eventV (x ack)
−→

[x=e1]ack〈pos〉
−→

0 corresponds to conditions substate = V 1 & event buff = e 1 that require to hold true

before setting the values of ack and substate are set to pos and nil.

Case 3. Let F ∈ SC, S2, V2,W2, S3 ∈ States(F ), two transitions connect V2 and W2,

respectively, to a join pseudostate and a transition which consists of E1 ∈ E connecting

the join pseudostate to S3. Suppose S2 ∈ STCCS, V2,W2, S3 ∈ STNCS and V2,W2 are

substates of S2 which are located in two different orthogonal regions. Since φstate(S2) =

S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn), φstate(V2) = V2(eventsubstate1,

~e, ãck, contsubstate1, endsubstate1), φstate(W2) = W2(eventsubstate2, ~e, ãck, contsubstate2,

endsubstate2), φevent(E1) = e1, φstate(S3) = S3(step, eventS , ~e, ãck) such that ãck abbre-

viates pos, neg and s̃yn abbreviates contsubstate1, endsubstate1, contsubstate2, endsubstate2,

we get three sequences of reductions.

The first sequence of reductions S2(step, eventS , ~e, eventsubstate1, eventsubstate2, ãck,

s̃yn)
eventS(x1)
−→

eventsubstate1〈x1 acksubstate1〉
−→

eventsubstate2〈x1 acksubstate2〉
−→

acksubstate1(x2)
−→

acksubstate2(x3)
−→

[x2=pos][x3=pos]endsubstate1
−→

endsubstate2−→
step
−→ S3(step, eventS , ~e, ãck) im-

plies S2(step,eventS , ~e, eventsubstate1, eventsubstate2, ãck, s̃yn)
eventS(x1)
−→

τ
−→

τ
−→

τ
−→

τ
−→

[x2=pos][x3=pos]endsubstate1
−→

endsubstate2−→
step
−→ S3(step, eventS , ~e, ãck) as

eventsubstate1〈x1 acksubstate1〉, eventsubstate2〈x1 acksubstate2〉, acksubstate1(x2) and

acksubstate2(x3) are unobservable actions. This corresponds to conditions state = S 2 &

end substate1 & end substate2 require to hold true before setting the values of step to

1 and state to S 3.

The second sequence of reductions V2(eventsubstate1, ~e, ãck, contsubstate1, endsubstate1)
eventsubstate1(x acksubstate1)

−→
[x=e3]acksubstate1〈pos〉

−→
endsubstate1−→ 0 corresponds to (i) condi-
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tions substate1 = V 2 & event buff = e 3 & end substate1 require to hold true before

setting the value of substate1 to nil; and (ii) conditions substate1 = V 2 & event buff =

e 3 require to hold true before setting the value of ack substate1 to pos.

The argument for the third sequence of reductions is similar except V2 is replaced by

W2, eventsubstate1 is replaced by eventsubstate2, contsubstate1 is replaced by contsubstate2,

endsubstate1 is replaced by endsubstate2, acksubstate1 is replaced by acksubstate2, substate1

is replaced by substate2, V 2 is replaced by W 2 and end substate1 is replaced by

end substate2 and ack substate1 is replaced by ack substate2. Since the converse holds

true by analogous arguments and similar arguments hold for other cases, this completes

the proof the statement.

Theorem 14 There is a semantic correspondence between UML statecharts based sub-

language of the π-calculus and its implementations in the NuSMV language.

Proof sketch. Analogous to Theorem 2.

5.5 Related Work

Representative works on the analysis of UML statechart diagrams using model checking

include Latella et al. [60, 38, 39] and Lilius and Paltor [62]. UML statechart diagrams

are translated into PROMELA, which is the input language of SPIN, using EHA as

an intermediate representation in [60]. Likewise, UML statechart diagrams are trans-

formed into JACK environment using EHA as an intermediate representation in [38, 39].

Unlike the works of Latella et al. [60, 38, 39] which use EHA as an intermediate repre-

sentation, UML statechart diagrams are translated into PROMELA using rewrite rules

as an intermediate representation in the work of Lilius and Paltor [62]. Other related

work which focuses on statecharts rather than on UML statechart diagrams include

Mikk et al. [72]. The approach taken by Mikk et al. [72] is the same as one of the

studies [60] of Latella et al. in which statecharts are first transformed into EHA and

then into PROMELA. When compared with these previous studies, our approach has

advantages over them in two aspects. Firstly, the π-calculus which is an intermediate

representation of our approach is a formal method. It supports the equivalence check-

ing of statechart diagrams which other intermediate representations cannot deal with.

Secondly, Latella et al. [60], Lilius and Paltor [62] and Mikk et al. [72] adopt SPIN [48]

as the model checker. The SPIN model checker supports linear temporal logic. In the
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two other studies [38, 39] of Latella et al., the JACK environment [15] that is based on

branching temporal logic is selected as the model checker. When compared with SPIN

and JACK, the advantage of the NuSMV model checker is it has a higher expressibility

as it supports both linear and branching temporal logics.

5.6 Summary

This chapter has presented a new methodology for analyzing finite state systems. It

models a system as statechart diagrams, translates the statechart diagrams and their

execution semantics into the π-calculus and encodes the π-calculus expressions in the

NuSMV input language. A demonstration on the use of the proposed approach for

verifying the non-security aspects of the SET/A protocol is given in the next chapter.
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Chapter 6

Evaluation of the Integrated

Approach

To facilitate the exchange of goods and services over the Internet, researchers have

proposed a number of payment protocols [3]. Some of the more well-known pay-

ment protocols include Digicash [24], iKP [5], MicroMint [99], Millicent [80, 81], Mon-

dex [80, 81, 95], NetBill [32], NetCheque [80, 81], PayWord [99] and Secure Electronic

Transaction (SET) [70].

This chapter aims at illustrating the application of the integrated approach proposed

in Chapter 5 for analyzing an agent-based payment protocol and a statechart diagram

consisting of a concurrent composite state. The SET/A protocol [100], which is an

agent-based payment protocol based on the SET protocol [70], is used as a running

example throughout the rest of this thesis.

Secure Electronic Transaction (SET) [70] is a payment protocol which was developed

by the two credit card companies Visa and MasterCard. It provides secure credit card

payment over public networks such as the Internet. SET/A [100] is an agent-based

payment protocol which is based on the SET protocol. It is designed for secure credit

card payment in a mobile computing environment. The agent used in the protocol is a

mobile agent.

A mobile agent is a software agent [16] which travels from one computer to another

remote computer. Unlike a remote procedure call (RPC) which a process interacts with

a remote process over a network, a mobile agent interacts with a remote process on the

same computer by travelling over there. The application of mobile agents in payment

121
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protocols poses some new challenges:

1. A payment protocol often involves various parties which are distributed over

a network. Unlike traditional payment protocols, in an agent-based payment

protocol a customer’s agent travels to a merchant’s server for carrying out a

transaction. How can we formally specify and verify the correctness of this new

type of agent-based payment protocol?

2. Can the various parties which are involved in an agent-based protocol reach a

consensus if an agent fails while it is travelling to a merchant’s server over an

unreliable transmission medium?

3. As there is no way to guarantee that a mobile agent that moves to a merchant’s

server does not have a run-time error, can non-faulty parties agree on a decision

if the agent crashes after arriving at the merchant’s server?

An integrated approach which directly addresses the first question has been proposed in

Chapter 5. The design of a protocol is first specified in UML statechart diagrams, then

formalized in the π-calculus and finally verified automatically using NuSMV. Through

model-based analyses, the validity of the second and third questions for a particular

agent-based payment protocol can also be determined. In particular, we illustrate an

application of the integrated approach for verifying the SET/A protocol via model

checking in this chapter. The main goals of the verification are to show that the

cardholder and payment gateway have reached the same decision and the protocol is

deadlock-free.

The reminder of this chapter is structured as follows. Section 6.1 discusses related

work in the area. The SET/A protocol is given in Section 6.2. Section 6.3 describes

how the SET/A protocol is represented in UML statechart diagrams. Section 6.4

demonstrates the encoding of the statechart diagrams in the π-calculus. Section 6.5

examines the implementation of the SET/A protocol in the NuSMV language. The

verification of the SET/A protocol is covered in Section 6.6. Section 6.7 presents a

failure analysis and extends the original SET/A protocol to tolerate an agent failure.

The evaluation of the proposed approach by a statechart diagram which contains a

concurrent composite state is provided in Section 6.8. Section 6.9 concludes the chapter.

This chapter is an extended version of the paper that appeared in [57].
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6.1 Related Work

Odell et al. [79, 4] extend the UML for specifying agent systems. However, the proposed

Agent UML (AUML) addresses only part of the first question as it does not support

the verification of agent systems.

Previous studies on the verification of e-commerce protocols using model check-

ing include Heintze et al. [46], Lowe and Roscoe [63], Lu and Smolka [65], Ray and

Ray [97], etc. All these 4 studies first encode an e-commerce protocol in Communi-

cating Sequential Processes (CSP) [47] and then formally analyze the model using the

Failures-Divergence Refinement (FDR) model checker [64].

Our approach is a combination of UML statechart diagrams and the NuSMV model

checker in which the π-calculus is used as an internal representation. In contrast to [79,

4], our approach allows the analysis and verification of protocols using NuSMV. In

addition, it has an advantage over [46, 63, 65, 97] by providing a systematic way for

checking whether the alternative representations of a protocol in statechart diagrams

are equivalent or not through the use of the π-calculus.

6.2 The SET/A Protocol

The SET/A protocol focuses on the initiation, purchase and authorization phases. The

steps of the protocol are given in Figure 6.1.

Step 1: The cardholder C sends a dispatch request which contains the purchase request

PchaseReq, its signature certificate CertC , the order information OI and the

payment instructions PI to the agent A.

Step 2: Upon arrival at the merchant’s server, the agent A sends an initialization re-

quest to the merchant M .

Step 3: M sends a response which includes the unique transaction identifier TransId,

its signature certificate CertM and the payment gateway’s key-exchange cer-

tificate CertPG,X.

Step 4: The agent A computes the hash values H[PI] and H[OI] for PI and OI,

respectively. A dual signature DS is generated by using the H[PI] and H[OI]

pair. To prevent M from obtaining the PI, a randomly generated symmetric

key K is used for encrypting PI,DS and H[OI]. A digital envelope which

contains the keyK is then created by encryptingK with the payment gateway’s



124 CHAPTER 6. EVALUATION

1. C → A: dispatch request

〈PchaseReq,CertC , OI, PI〉

2. A→M : initialization request

〈InitReq〉

3. M → A: initialization response

〈TransId,CertM , CertPG,X〉

4. A→M : purchase request

〈TransId,CertC , OI,DS,H[PI], EPG,X−Pub[K], EK [PI,DS,H[OI]]〉

5. M → P : authorization request

〈TransId,EPG,X−Pub[K], EK [PI,DS,H[OI]]〉

6. P →M : authorization response

〈TransId,AuthCode〉

7. M → A: purchase response

〈TransId,AuthCode,CertM 〉

8. A→ C: dispatch response

〈AuthCode〉

Figure 6.1: The SET/A Protocol

public key-exchange key. Eventually, A sends all these with the transaction

identifier, the cardholder’s certificate and the OI to M .

Step 5: M checks the validity of OI using DS and H[PI]. Then M forwards the digital

envelope, the encrypted PI, the encrypted DS and the encrypted H[OI] to the

payment gateway P for payment authorization.

Step 6: Upon receipt of an authorization request, P verifies the correctness of PI

and sends an authorization response which includes the transaction identifier

TransId and the authorization code AuthCode to M .

Step 7: After receiving an authorization response, M forwards the response with its

signature certificate to A.

Step 8: A departs the merchant’s server, arrives at the cardholder’s computer and sends

a response to C.
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6.3 Modelling the SET/A Protocol Using Statechart Di-

agrams

As mentioned in preceding chapters, the statechart diagrams of UML are a graphical

notation for specifying and visualizing the dynamic aspects of a system. The mod-

elling of the SET/A protocol using UML statechart diagrams focuses on the messages

exchanged among the cardholder, agent, merchant and payment gateway. It abstracts

away the low level cryptographic mechanisms as the desired properties to be verified

are at a higher level.

Figures 6.2 and 6.3 depict the UML statechart diagrams for the cardholder and

agent. A transaction begins when the cardholder browses the merchant’s catalog, sub-

mits a purchase request (cPchaseReq) and sends a dispatch request (cDpatchReq) to

the agent. The state CBrowseCatalog is exited and the state CWaitPchaseRespn is

entered. The cardholder continues to wait in state CWaitPchaseRespn until either a

positive or negative dispatch response is received. The transaction terminates when

the cardholder enters a commit or an abort state.

CBrowseCata log

CWai tPchaseRespn

CCommi t

CAbor t

cPchaseReq /  send
agent .cDpatchReq

aPosDpatchRespn

aNegDpatchRespn

Figure 6.2: Statechart diagram of the cardholder

On receiving the dispatch request (cDpatchReq), the agent which is in an idle state

(AIdle) travels from the cardholder’s computer to the merchant’s server. Upon arrival

at the merchant’s server (aArvdSrvr), the agent sends an initialization request (aIni-

tReq) to the merchant. The agent waits for an initialization response (mInitRespn),

generates a purchase request (aPchaseReq) to the merchant and blocks until a posi-

tive or negative purchase response is received. The agent then departs the merchant’s

server, travels back to the cardholder’s computer and sends a positive or negative dis-

patch response to the cardholder.

The statechart diagrams for the merchant and payment gateway are shown in Fig-
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APchaseTravel

AAbortTravel

ACommitTrave l

ATravel ABusy

cDpatchReq

AAbort

ACommi t

AIdle

aAbortArvd/send
cardholder .aNegDpatchRespn

aCommitArvd/send
cardholder .aPosDpatchRespn

AWait In i tRespn

AWai tPchaseRespn

aArvdSrvr /send
merchant.aIn i tReq

mNegPchaseRespn

mPosPchaseRespn

mIni tRespn/send
merchant .aPchaseReq

Figure 6.3: Statechart diagram of the agent

ures 6.4 and 6.5. Upon receipt of the initialization request (aInitReq) from the agent,

the merchant returns an initialization response (mInitRespn) to the agent, waits for a

purchase request (aPchaseReq) and sends an authorization request (mAuthReq) to the

payment gateway. Depending on whether a positive or negative authorization response

is received, a positive or negative purchase response is returned to the agent.

MIdle

MCommi t

MWai tPchaseReq

MWai tAuthRespn MAbor t

aIni tReq /
send agent .mIni tRespn

pPosAuthRespn /  send
agent .mPosPchaseRespn

aPchaseReq /
send paygate.mAuthReq pNegAuthRespn /  send

agent .mNegPchaseRespn

Figure 6.4: Statechart diagram of the merchant

Based on the issuer’s approval code, the payment gateway responds to the autho-

rization request (mAuthReq) by sending a positive or negative authorization response

to the merchant.

6.4 Encoding the Statechart Diagrams in the π-Calculus

In this section, we present a π-calculus representation for the statechart diagram of the

cardholder. This is then followed by a discussion on how an interlevel transition in the
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PIdle

PVer i fyAuthReq
PCommi t

PAbor t
mAuthReq

issuApproved /
send merchant .pPosAuthRespn

issuNotApproved /
send merchant .pNegAuthRespn

Figure 6.5: Statechart diagram of the payment gateway

statechart diagram of the agent is modelled in the π-calculus.

To make the π-calculus specifications easier to read, we define an abbreviation as

follows:

ẽC = cPchaseReq, cDpatchReq, aPosDpatchRespn, aNegDpatchRespn

The four events in Figure 6.2 are mapped to four channels cPchaseReq, cDpatchReq,

aPosDpatchRespn and aNegDpatchRespn in the π-calculus according to Rule 1 of Sec-

tion 3.2. Applying Rule 2 of Section 3.2, the state CBrowseCatalog is represented in

the π-calculus by the following pattern:

CBrowseCatalog(step, eventC , ẽC , insagent)
def
=

eventC(x).

([x = cPchaseReq] . . . +

Σe∈{feC}\{cPchaseReq}[x = e] . . .)

The send action (Definition 14):

send agent.cDpatchReq

based on Rule 4 of Section 3.2 is denoted by:

insagent〈cDpatchReq〉

The end of a run-to-completion step is expressed as step. The complete π-calculus
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specification of the state CBrowseCatalog in Figure 6.2 is then described by:

CBrowseCatalog(step, eventC , ẽC , insagent)
def
=

eventC(x).

([x = cPchaseReq]insagent〈cDpatchReq〉.step.

CWaitPchaseRespn(step, eventC , ẽC , insagent) +

Σe∈{feC}\{cPchaseReq}[x = e]step.

CBrowseCatalog(step, eventC , ẽC , insagent))

Likewise, the behaviour of the state CWaitPchaseRespn in which the two transitions

are in conflict (Definition 9 and Subsection 3.4.2) is specified by:

CWaitPchaseRespn(step, eventC , ẽC , insagent)
def
=

eventC(x).

([x = aPosDpatchRespn]step.CCommit(step, eventC , ẽC , insagent) +

[x = aNegDpatchRespn]step.CAbort(step, eventC , ẽC , insagent) +

Σe∈{feC}\{aPosDpatchRespn,aNegDpatchRespn} [x = e]step.

CWaitPchaseRespn(step, eventC , ẽC , insagent))

We now illustrate how an interlevel transition which connects the substate APchaseTravel

to the substate AWaitInitRespn (see Figure 6.3) is encoded in the π-calculus. We as-

sume that ATravel and APchaseTravel are the active states of the statechart diagram.

In addition, the following abbreviations are defined to improve the readability of the

specifications:

ẽA = cDpatchReq, aArvdSrvr, aInitReq,

mInitRespn, aPchaseReq,mNegPchaseRespn,mPosPchaseRespn,

aAbortArvd, aCommitArvd, aNegDpatchRespn, aPosDpatchRespn

ĩnsA = inscardholder, insmerchant

ãck = pos, neg

The non-concurrent composite state ATravel broadcasts any received events to its

active substate APchaseTravel along channel eventsub1. It then blocks until a signal



6.4. ENCODING IN THE π-CALCULUS 129

is received along channel ack (Rule 5 of Section 3.2) as specified by the following π-

calculus specification:

ATravel(step, eventA, eventsub1, ẽA, ĩnsA, ãck)
def
=

eventA(x1).(νack)eventsub1〈x1 ack〉.ack(x2).

([x2 = pos]([x1 = aArvdSrvr]step.(νeventsub2)

(ABusy(step, eventA, eventsub2, ẽA, ĩnsA, ãck)|

AWaitInitRespn(eventsub2, ẽA, ĩnsA, ãck)) +

[x1 = aAbortArvd]step.AAbort(step, eventA, ẽA, ĩnsA, ãck) +

[x1 = aCommitArvd]step.ACommit(step, eventA, ẽA, ĩnsA, ãck)) +

[x2 = neg]step.ATravel(step, eventA, eventsub1, ẽA, ĩnsA, ãck))

If a positive acknowledgement is received and the received channel is aArvdSrvr,

ATravel sends a signal along step and continues as two concurrent processes ABusy

and AWaitInitRespn. If a negative acknowledgement is received, ATravel signals the

completion of the step and continues as itself. Rule 5 of Section 3.2 stipulates that the

substate APchaseTravel is defined by:

APchaseTravel(eventsub1, ẽA, ĩnsA, ãck)
def
=

eventsub1(x ack).

([x = aArvdSrvr]insmerchant〈aInitReq〉.ack〈pos〉+

Σe∈{feA}\{aArvdSrvr}[x = e]ack〈neg〉.

APchaseTravel(eventsub1, ẽA, ĩnsA, ãck))

The substate APchaseTravel receives events along channel eventsub1 from its super-

state ATravel. On receipt of the channel aArvdSrvr, it outputs the event aInitReq,

generates the positive acknowledgement and terminates itself.

The complete SET/A protocol is translated to its π-calculus representation in a

similar manner. A translator called SC2PiCal, which we shall describe in next chapter,

has been developed for automating the transformation process. The formalization of

statechart diagrams in the π-calculus is compositional in which a system which consists

of multiple communicating statechart diagrams are translated separately into their π-

calculus equivalent representations.
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6.5 Implementing the SET/A Protocol in the NuSMV

Language

Following the translation rules proposed in Chapter 5, we translate the 4 statechart

diagrams represented in the π-calculus into the NuSMV language. Each statechart

diagram is implemented in the NuSMV language as a module. The construction of the

SET/A protocol in the NuSMV input language has adopted an asynchronous model.

All 4 parties (modules) are executing in parallel which is based on an interleaving

semantics. In NuSMV, asynchronism is modelled by instantiating all modules with the

keyword process. One of these modules is then non-deterministically selected to execute

at a time.

The statechart diagram of the cardholder is coded in the NuSMV language (Rules 1

and 17 of Chapter 5) as line 1 in Figure 6.6.

The four π-calculus process identifiers CBrowseCatalog (step, eventC , ẽC , insagent),

CWaitPchaseRespn(step, eventC , ẽC , insagent), CCommit(step, eventC , ẽC , insagent)

and CAbort(step, eventC , ẽC , insagent) are encoded as four symbolic values (Rule 2 of

Chapter 5) as lines 2 and 3.

The channels cPchaseReq, cDpatchReq, aPosDpatchRespn and aNegDpatchRespn

are implemented in NuSMV as symbolic values (Rule 5 of Chapter 5). Consider the

π-calculus specification of the state CBrowseCatalog :

CBrowseCatalog (step, eventC , ẽC , insagent)
def
=

eventC(x).

([x = cPchaseReq]insagent〈cDpatchReq〉.step.

CWaitPchaseRespn(step, eventC , ẽC , insagent) +

Σe∈{feC}\{cPchaseReq}[x = e]step.

CBrowseCatalog (step, eventC , ẽC , insagent))

Applying Rules 6–10 of Chapter 5, we get lines 6–9, 14–21 and 26–41 of Figures 6.6

and 6.7. The value of the variable state is set to CWaitPchaseRespn when the pre-

condition on lines 8 and 9 holds. The expression assigns the value 1 (true) to the

Boolean variable step for indicating the end of a run-to-completion step on lines 18

and 19. The sending of the event cDpatchReq to the agent is regarded as setting

the values of a q buff and ins agent to cDpatchReq and 1 (true) as shown on lines
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1 MODULE cardholder(event_buff, a_q_buff, step, ins_agent)

2 VAR

3 state: {CBrowseCatalog, CWaitPchaseRespn, CCommit, CAbort};

4 ASSIGN

5 init(state) := CBrowseCatalog;

6 next(state) :=

7 case

8 state = CBrowseCatalog & event_buff = cPchaseReq &

9 !ins_agent & !step : CWaitPchaseRespn;

10 state = CWaitPchaseRespn & event_buff = aPosDpatchRespn &

11 !step : CCommit;

12 state = CWaitPchaseRespn & event_buff = aNegDpatchRespn &

13 !step : CAbort;

14 1 : state;

15 esac;

16 next(step) :=

17 case

18 state = CBrowseCatalog & event_buff = cPchaseReq &

19 !ins_agent & !step : 1;

20 state = CBrowseCatalog & event_buff = cPchaseReq &

21 ins_agent & !step : step;

22 state = CWaitPchaseRespn & event_buff = aPosDpatchRespn &

23 !step : 1;

24 state = CWaitPchaseRespn & event_buff = aNegDpatchRespn &

25 !step : 1;

26 state = next(state) & !step : 1;

27 event_buff != empty & step : 0;

28 1 : step;

29 esac;

30 next(a_q_buff) :=

31 case

32 state = CBrowseCatalog & event_buff = cPchaseReq &

33 !ins_agent & !step : cDpatchReq;

34 1 : a_q_buff;

35 esac;

Figure 6.6: NuSMV source code for the cardholder (lines 1–35)

30–33 and lines 36–39. Rule 15 of Chapter 5 stipulates that the initial value of state

is set to CBrowseCatalog (line 5). According to Rule 16 of Chapter 5, we get the

NuSMV code on lines 42–46. Likewise, we implement the π-calculus specification of

state CWaitPchaseRespn in the NuSMV code that corresponds to lines 10–13 and lines

22–25 of Figure 6.6.

In the remainder of this section, we examine how the interlevel transition, the non-
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36 next(ins_agent) :=

37 case

38 state = CBrowseCatalog & event_buff = cPchaseReq &

39 !ins_agent & !step : 1;

40 1 : ins_agent;

41 esac;

42 next(event_buff) :=

43 case

44 event_buff !=empty & next(step) : empty;

45 1 : event_buff;

46 esac;

47 FAIRNESS running

Figure 6.7: NuSMV source code for the cardholder (lines 36–47)

concurrent composite state ATravel and the substate APchaseTravel are implemented

in the NuSMV language.

Rule 4 of Chapter 5 states that the process identifier APchaseTravel(eventsub1,

ẽA, ĩnsA, ãck) representing a substate is coded as:

VAR

substate: {APchaseTravel, ...};

Direct substates of the non-concurrent composite state ATravel are modelled as a scalar

variable substate. As the state APchaseTravel is a substate of the non-concurrent com-

posite state ATravel, the substate APchaseTravel is encoded in the NuSMV language

as a symbolic value of the scalar variable substate.

Using Rule 11 of Chapter 5, the interlevel transition which is specified by the fol-

lowing fragments of π-calculus specifications:

ATravel(step, eventA, eventsub1, ẽA, ĩnsA, ãck)
def
=

eventA(x1).(νack)eventsub1〈x1 ack〉.ack(x2).

([x2 = pos]([x1 = aArvdSrvr]step.(νeventsub2)

(ABusy(step, eventA, eventsub2, ẽA, ĩnsA, ãck)|

AWaitInitRespn(eventsub2, ẽA, ĩnsA, ãck)) +

. . .) +

[x2 = neg]step.ATravel(step, eventA, eventsub1, ẽA, ĩnsA, ãck))
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APchaseTravel(eventsub1, ẽA, ĩnsA, ãck)
def
=

eventsub1(x ack).

([x = aArvdSrvr]insmerchant〈aInitReq〉.ack〈pos〉+

Σe∈{feA}\{aArvdSrvr}[x = e]ack〈neg〉.

APchaseTravel(eventsub1, ẽA, ĩnsA, ãck))

is encoded in NuSMV as shown in Figure 6.8. Lines 20 and 21 set the value of substate to

nil (Rules 3 and 11 of Chapter 5) for signifying that there is not any active substate. A

positive acknowledgement is generated by assigning the value pos to the scalar variable

ack (lines 25 and 26). The sending of the event aInitReq to the merchant is represented

by setting the values of m q buff and ins merchant to aInitReq and 1 (true) on lines

34, 35, 39 and 40. The Boolean variable superstate enable (line 28) and scalar variable

ack model the lower-first firing priority scheme. Lines 8, 9, 13, 14, 18 and 19 represent

that the target states ABusy and AWaitInitRespn are entered. The fairness constraint

on line 42 (47) in Figure 6.8 (6.7) specifies that the module is selected for execution

infinitely often.

Using a similar approach, we implement the dispatcher and the event queue as a

module in the NuSMV input language. Only one module is required as the function-

ality of the dispatcher has been incorporated into the event queue. The event queue

enqueues, dequeues and dispatches one event at a time to the event processor. In ad-

dition, the implementation of the event processor is optimized by eliminating the root

state so that a dispatched event is directly received by one of the substates of the root

state.

6.6 Verification of the SET/A Protocol

After the construction of the model, we now verify the correctness of the SET/A proto-

col. Our verification focuses on data integrity and deadlock freedom properties. Data

integrity property states that the response which is received by the cardholder is con-

sistent with the response which is sent out by the payment gateway. Deadlock freedom

property ensures that the sequence of messages exchanged among the four parties is

free from deadlock. The complication in analyzing the sequence of messages exchanged

arises from the concurrent execution of the 4 statechart diagrams (parties).

We assume that the communication channels over which the payment protocol
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1 MODULE agent(...)

2 VAR

3 substate: {APchaseTravel, ...};

4 ...

5 ASSIGN

6 next(state) :=

7 case

8 state = ATravel & ack = pos & event_buff =

9 aArvdSrvr & !step & superstate_enable : ABusy;

10 ...

11 next(step) :=

12 case

13 state = ATravel & ack = pos & event_buff =

14 aArvdSrvr & !step & superstate_enable : 1;

15 ...

16 next(substate) :=

17 case

18 state = ATravel & ack = pos & event_buff =

19 aArvdSrvr & !step & superstate_enable : AWaitInitRespn;

20 substate = APchaseTravel & event_buff =

21 aArvdSrvr & !ins_merchant & !superstate_enable: nil;

22 ...

23 next(ack) :=

24 case

25 substate = APchaseTravel & event_buff =

26 aArvdSrvr & !ins_merchant & !superstate_enable: pos;

27 ...

28 next(superstate_enable) :=

29 case

30 (next(ack)=pos | next(ack)=neg) & !step : 1;

31 ...

32 next(m_q_buff) :=

33 case

34 substate = APchaseTravel & event_buff =

35 aArvdSrvr & !ins_merchant : aInitReq;

36 ...

37 next(ins_merchant) :=

38 case

39 substate = APchaseTravel & event_buff =

40 aArvdSrvr & !ins_merchant : 1;

41 ...

42 FAIRNESS running

Figure 6.8: NuSMV source code for the agent
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operates are reliable. Only one instance of the payment protocol which consists of one

cardholder, one agent, one merchant and one payment gateway is considered in our

analysis. As an illustration, we consider the following CTL specifications:

AG(p.state = PCommit⇒ AFc.state = CCommit)

AG!((p.state = PCommit & c.state = CAbort) |

(p.state = PAbort & c.state = CCommit))

The first CTL formula states that if the payment gateway commits the transaction,

the cardholder will also eventually commit the transaction. The second CTL formula

asserts that the payment gateway and cardholder either both commit or abort the

transaction.

Another desired property is to ensure that the sequence of messages exchanged

among the 4 parties does not lead to a deadlock. The corresponding CTL formula is

given below:

AG AF(c.state = CCommit | c.state = CAbort)

Literally, the formula says it is always possible for the cardholder to receive a commit

or an abort message.

The verification of these formulas took approximately 4 seconds on a Pentium 4

2.4GHz PC with 512MB of memory using NuSMV 2.1.2 (with -dynamic and -f options)

running under the Windows XP Professional operating system.

6.7 Failure Analysis of the Protocol

In this section, we illustrate that the deadlock freedom property and one of the data

integrity properties are violated in the presence of an agent failure. An extension to the

original protocol is proposed for ensuring that a transaction is resilient to the failure of

the mobile agent.

To analyze whether the SET/A protocol is resilient to an agent failure, we model

the occurrence of a failure by adding a failure state to the original agent’s statechart

diagram as shown in Figure 6.9.
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ATravel ABusy

... ...

AFai lureerror error

Figure 6.9: Failure state

We check the new model using NuSMV, the first data integrity property

AG(p.state = PCommit⇒ AFc.state = CCommit)

is violated in the presence of an agent failure. The property fails as there is no way

for the cardholder to find out what the decision of the payment gateway is when the

agent has crashed. The deadlock freedom property is also violated as the cardholder

blocks whenever the agent has crashed.

To allow an agent failure, we extend the SET/A protocol with a cardholder inquiry

as shown in Figures 6.10, 6.11 and 6.12. The statechart diagrams of the cardholder,

agent and merchant are modified, whereas the statechart diagram of the payment gate-

way remains unchanged.

When a timeout occurs, the cardholder (Figure 6.10) sends an inquiry request (cIn-

qReq) to the merchant and waits for an inquiry response. The transaction is committed

or aborted depending on whether a positive or negative inquiry response is received.

t imeout /
send

merchant .c InqReq

CBrowseCata log

CWai tPchaseRespn

CAbort

CWai t InqRespn

CCommi t

cPchaseReq /
send agent .cDpatchReq

aPosDpatchRespn

aNegDpatchRespn

mPosInqRespn

mNegInqRespn

Figure 6.10: Modified statechart diagram of the cardholder

A timeout event is generated when an error (Figure 6.11) occurs. After entering

the failure state, a timeout event is also generated on receipt of the event mInitRespn.
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aCommitArvd /  send
cardholder .aPosDpatchRespn

AAbort

AIdle

ACommi t

APchaseTravel

AAbortTravel
aAbortArvd /  send

cardholder .aNegDpatchRespn

AWait In i tRespn

AFai lure

AWai tPchaseRespn

cDpatchReq

ACommitTrave l

aArvdSrvr /  send
merchant.aIni tReq

error /  send
cardholder. t imeout error /  send

cardholder. t imeout

mIni tRespn /  send
merchant. t imeout

mIni tRespn /  send
merchant .aPchaseReq

mNegPchaseRespn

mPosPchaseRespn

ATravel ABusy

Figure 6.11: Modified statechart diagram of the agent

If the merchant receives an inquiry request (cInqReq) from the customer before

an authorization request (mAuthReq) is sent to the payment gateway (i.e. before en-

tering the state MWaitAuthRespn or Step 5 of the Protocol), the merchant aborts

the transaction and sends a negative inquiry response (mNegInqRespn) to the cus-

tomer. This is based on the assumption that the absence of an initialization request

(aInitReq), a purchase request (aPchaseReq) or both may indicate that the agent has

crashed. Otherwise, the merchant cannot abort the transaction. It requires to wait

until an authorization response (pPosAuthRespn or pNegAuthRespn) is received from

the payment gateway and sends the corresponding inquiry response (mPosInqRespn or

mNegInqRespn) directly to the cardholder.

We encoded the revised statechart diagrams in the π-calculus and implemented

them in the NuSMV language. Then we checked the data integrity properties and

deadlock freedom property again using NuSMV. The extended SET/A model satisfies

the desired properties and the verification took about 23 seconds.
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MWai tPchaseReq

MWai tAu thRespn

MIdle

MCommi t

MAbor t

MWai t InqRespn

cInqReq /  send
cardholder .mNegInqRespn

aIni tReq /send
agent .mIn i tRespn

pPosAuthRespn /send
cardholder .mPosInqRespn

cInqReq /  send
cardholder .mPosInqRespn

pNegAuthRespn /send
cardholder .mNegInqRespn

pPosAuthRespn /  send
agent .mPosPchaseRespn

aPchaseReq /  send paygate.mAuthReq

cInqReq /  send cardholder .mNegInqRespn

t imeout

pNegAuthRespn /  send
agent .mNegPchaseRespn

cInqReq /  send
cardholder.

mNegInqRespn

cInqReq

Figure 6.12: Modified statechart diagram of the merchant

6.8 Encoding and Verifying Concurrent Composite States

Although the SET/A protocol shows the application of the approach to a real-world

problem, the modelling only uses the basic facilities of UML statechart diagrams.

Therefore, in order to demonstrate the applicability of our approach to a broader class

of problems, we analyse a small example involving a concurrent composite state.

S_1

S_2

V_1

e_1[gc]

V_2

W_2

S_3

e_2

W_1

e_3

e_2

Figure 6.13: A concurrent composite state

To improve readability, the following abbreviations are defined:

ẽ = e 1, e 2, e 3

ãck = pos, neg

s̃yn = contsubstate1, endsubstate1, contsubstate2, endsubstate2

The process S 1 representing state S 1 evolves to three concurrent processes S 2, V 1
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and W 1 according to Rule 6 of Chapter 3 and its π-calculus specification is represented

as:

S 1(step, eventS , ẽ, gc, ãck)
def
=

eventS(x).

([x = e 1](νt f)gc〈t f〉.

(t.step.

(νeventsubstate1 eventsubstate2 contsubstate1 endsubstate1 contsubstate2 endsubstate2)

(S 2(step, eventS , ẽ, gc, eventsubstate1, eventsubstate2, ãck, s̃yn)|

V 1(eventsubstate1, ẽ, ãck, contsubstate1, endsubstate1)|

W 1(eventsubstate2, ẽ, ãck, contsubstate2, endsubstate2)) +

f.step.S 1(step, eventS , ẽ, gc, ãck)) +

Σe∈{ee}\{e 1}[x = e]step.S 1(step, eventS , ẽ, gc, ãck))

The concurrent composite state S 2 and its substates V 1 and V 2 are defined in the

π-calculus as:

S 2(step, eventS , ẽ, gc, eventsubstate1, eventsubstate2, ãck, s̃yn)
def
=

eventS(x1).(νacksubstate1 acksubstate2)eventsubstate1〈x1 acksubstate1〉.

eventsubstate2〈x1 acksubstate2〉.acksubstate1(x2).acksubstate2(x3).

([x2 = pos][x3 = pos]endsubstate1.endsubstate2.

step.S 3(step, eventS , ẽ, gc, ãck) +

[x2 = neg][x3 = neg]contsubstate1.contsubstate2.

step.S 2(step, eventS , ẽ, gc, eventsubstate1, eventsubstate2, ãck, s̃yn) +

[x2 = pos][x3 = neg]contsubstate1.contsubstate2.

step.S 2(step, eventS , ẽ, gc, eventsubstate1, eventsubstate2, ãck, s̃yn) +

[x2 = neg][x3 = pos]contsubstate1.contsubstate2.

step.S 2(step, eventS , ẽ, gc, eventsubstate1, eventsubstate2, ãck, s̃yn))
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V 1(eventsubstate1, ẽ, ãck, contsubstate1, endsubstate1)
def
=

eventsubstate1(x acksubstate1).

([x = e 2]acksubstate1〈neg〉.contsubstate1.

V 2(eventsubstate1, ẽ, ãck, contsubstate1, endsubstate1) +

Σe∈{ee}\{e 2}[x = e]acksubstate1〈neg〉.contsubstate1.

V 1(eventsubstate1, ẽ, ãck, contsubstate1, endsubstate1))

V 2(eventsubstate1, ẽ, ãck, contsubstate1, endsubstate1)
def
=

eventsubstate1(x acksubstate1).

([x = e 3]acksubstate1〈pos〉.

(endsubstate1 +

contsubstate1.V 2(eventsubstate1, ẽ, ãck, contsubstate1, endsubstate1)) +

Σe∈{ee}\{e 3}[x = e]acksubstate1〈neg〉.contsubstate1.

V 2(eventsubstate1, ẽ, ãck, contsubstate1, endsubstate1))

The π-calculus specifications of W 1 and W 2 are identical to the ones of V 1 and

V 2 with the exception of V 1, eventsubstate1, contsubstate1, endsubstate1, acksubstate1 and

V 2 are replaced by W 1, eventsubstate2, contsubstate2, endsubstate2, acksubstate2 and W 2,

respectively.

Based on the translation rules defined in Chapter 5, we translate processes S 1,

S 2, V 1 and V 2 into NuSMV. Applying Rules 12 and 14 of Chapter 5, we obtain

lines 6–17, 19–21, 23–26, 29, 30, 32–35, 38–41, 43–54, 56–63 and 65–73 in Figures 6.14

and 6.15. Likewise, we get line 1 based on Rules 1 and 17, lines 27, 28, 36 and 37 based

on Rule 13, lines 5 and 22 based on Rule 15 and lines 74–78 based on Rule 16.

Consider the case when the substate V 1 is active and an event e 2 is received, the

substate V 1 is exited and the substate V 2 is entered. This property is expressed by

the following CTL formula:

AG(concurr.substate1 = V 1 & event buff = e 2⇒

AFconcurr.substate1 = V 2)

The temporal operator F is used instead of X as there are a number of intermediate

states between V 1 and V 2 which model the run-to-completion step of UML state-
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1 MODULE concurr(event_buff, step)

2 VAR

3 ...

4 ASSIGN

5 init(state) := S_1;

6 next(state) :=

7 case

8 state = S_1 & event_buff = e_1 & gc & !step : S_2;

9 state = S_2 & end_substate1 & end_substate2 & !step : S_3;

10 state = S_2 & cont_substate1 & cont_substate2 & !step : S_2;

11 1 : state;

12 esac;

13 next(step) :=

14 case

15 state = S_1 & event_buff = e_1 & gc & !step : 1;

16 state = S_2 & end_substate1 & end_substate2 & !step : 1;

17 state = S_2 & cont_substate1 & cont_substate2 & !step : 1;

18 ...

19 event_buff != empty & step : 0;

20 1 : step;

21 esac;

22 init(substate1) := nil;

23 next(substate1) :=

24 case

25 state = S_1 & event_buff = e_1 & gc & !step : V_1;

26 substate1 = V_1 & event_buff = e_2 & cont_substate1 : V_2;

27 substate1 = V_2 & event_buff = e_3 & end_substate1 : nil;

28 substate1 = V_2 & event_buff = e_3 & cont_substate1 : V_2;

29 1 : substate1;

30 esac;

31 ...

32 next(ack_substate1) :=

33 case

34 substate1 = V_1 & event_buff = e_2 & !cont_substate1 &

35 !superstate_enable : neg;

36 substate1 = V_2 & event_buff = e_3 & (!cont_substate1 |

37 !end_substate1) & !superstate_enable : pos;

38 substate1 = next(substate1) & !step &

39 !superstate_enable & !substate1 = nil : neg;

40 1 : undefine;

41 esac;

42 ...

Figure 6.14: NuSMV code for the concurrent composite state (lines 1–42)
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43 init(cont_substate1) := 0;

44 next(cont_substate1) :=

45 case

46 state = S_2 & ack_substate1 = neg & ack_substate2 = neg

47 & !step & superstate_enable : 1;

48 state = S_2 & ack_substate1 = pos & ack_substate2 = neg

49 & !step & superstate_enable : 1;

50 state = S_2 & ack_substate1 = neg & ack_substate2 = pos

51 & !step & superstate_enable : 1;

52 state = S_2 & cont_substate1 & cont_substate2 & !step : 0;

53 1 : cont_substate1;

54 esac;

55 ...

56 init(end_substate1) := 0;

57 next(end_substate1) :=

58 case

59 state = S_2 & ack_substate1 = pos & ack_substate2 = pos

60 & !step & superstate_enable : 1;

61 state = S_2 & end_substate1 & end_substate2 & !step : 0;

62 1 : end_substate1;

63 esac;

64 ...

65 init(superstate_enable) := 0;

66 next(superstate_enable) :=

67 case

68 (next(ack_substate1) = pos |

69 next(ack_substate1) = neg) &

70 (next(ack_substate2) = pos |

71 next(ack_substate2) = neg) & !step : 1;

72 1 : 0;

73 esac;

74 next(event_buff) :=

75 case

76 event_buff !=empty & next(step) : empty;

77 1 : event_buff;

78 esac;

79 FAIRNESS running

Figure 6.15: NuSMV code for the concurrent composite state (lines 43–79)

chart diagrams. The temporal operator X is not preserved by the translation, whereas

the operators G,F and A are preserved by the translation as illustrated by the CTL

formula. Like the path quantifier A, the translation preserves the path quantifier E

since the addition of intermediate states between two states of a statechart diagram

only increases the number of states on a path and does not create any new (branching)



6.8. ANALYZING CONCURRENT COMPOSITE STATES 143

paths.

Theorem 15 Given F ∈ SC, β(F ) is its equivalent NuSMV representation, CTL{G,F,A,E}

denotes a subset of CTL with operators G,F,A and E and ψ is a formula of CTL{G,F,A,E}.

If F |= ψ then β(F ) |= ψ.

Proof sketch. Let S1, S2 ∈ States(F ), a transition connects S1 and S2, AP be a set

of atomic propositions, p ranges over AP, SNuSMV be a set of NuSMV states and

L : SNuSMV → 2AP be a labelling function that returns a set of atomic propositions

which are true at a particular NuSMV state. Consider the following cases.

Case 1. Operator G. Suppose F |= Gp. Then there exists a sequence of transitions

β(S1) −→ istate1 −→ . . . −→ istaten −→ β(S2) in the corresponding NuSMV repre-

sentation such that istatei for i = 1, . . . , n model the run-to-completion step semantics,

p ∈ L(β(S1)) and p ∈ L(β(S2)). Since p does not depend on istatei for i = 1, . . . , n

which are unobservable in F, p ∈ L(istatei). Thus, if F |= Gp then β(F ) |= Gp.

Case 2. Operator F. Suppose F |= Fp. Similarly, there exists a sequence of transitions

β(S1) −→ istate1 −→ . . . −→ istaten −→ β(S2) in the corresponding NuSMV repre-

sentation such that istatei for i = 1, . . . , n model the run-to-completion step semantics,

p ∈ L(β(S1)) and p ∈ L(β(S2)). Since p ∈ L(β(S2)), β(F ) |= Fp. Thus, if F |= Fp

then β(F ) |= Fp.

Case 3. Operator A. Let S3 ∈ States(F ) and a transition connects S1 and S3. Suppose

F |= AGp. Then there exists two sequences of transitions β(S1) −→ . . . −→ β(S2) and

β(S1) −→ . . . −→ β(S3). Since the number of branching paths for both F and β(F ) is

equal to 2 and Gp holds for each of the sequence of transitions according to Case 1,

β(F ) |= AGp. Thus, if F |= AGp then β(F ) |= AGp. The same argument can be used

to prove that if F |= AFp then β(F ) |= AFp.

Case 4. Operator E. Analogous to Case 3.

Suppose F |= ψ. As a formula ψ is constructed from one or more atomic propositions

and p is an arbitrary atomic proposition, it follows that β(F ) |= ψ holds. Thus, if

F |= ψ then β(F ) |= ψ.

The desired property that an invalid state configuration, in which V 1 and W 2 are

active, does not occur is specified as:

AG!(concurr.substate1 = V 1 & concurr.substate2 = W 2)
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It took 1 second to verify these two formulas on a Pentium 4 2.4GHz PC with

512MB of memory using NuSMV 2.1.2 (with -dynamic and -f options) running under the

Windows XP Professional operating system. This example illustrates the applicability

of our approach for the analysis of concurrent composite states.

6.9 Summary

[65] has verified a variant of the SET protocol using the FDR model checker. We

develop their idea further by studying the agent-based version of the SET protocol.

This chapter is a first step towards using an integrated approach for analyzing an

agent-based protocol. We have tackled the problems which were raised at the beginning

of this chapter. First, we have illustrated how an integrated approach was used for

analyzing the non-security aspects of the SET/A protocol. Second, we have presented

an extended SET/A protocol in which the cardholder and payment gateway can reach

a consensus when an error occurs during the agent transmission process. Third, the

extended SET/A protocol ensures that the non-faulty parties cardholder and payment

gateway can agree on a decision even if an agent failure occurs after the arrival of the

agent at the merchant’s server. In addition, we have demonstrated the applicability of

the approach for analyzing concurrent composite states.



Chapter 7

An Integrated Environment for

Communicating UML Statechart

Diagrams

As formal methods [77, 74, 30, 47, 73, 90, 106, 50] based on different underlying theories

focus on different aspects of a system, providing an integrated environment for applying

various well-established formal methods to analyze a specification expressed in a semi-

formal graphical notation contributes to a more complete analysis.

An effort which integrates UML statechart diagrams and the π-calculus for check-

ing equivalences of statechart diagrams is reported in Chapter 4. Similarly, an at-

tempt which combines UML statechart diagrams, the π-calculus and the NuSMV model

checker is described in Chapter 5. This chapter extends the work of previous chapters

and presents an integrated environment (Figure 7.1) which unifies equivalence-checking

and model-checking as a tool set.

The remainder of this chapter is organized as follows. Section 7.1 presents the de-

sign of the equivalence-checking environment and examines the implementation of the

SC2PiCal translator. The use of the equivalence-checking environment is demonstrated

by a number of examples and a case study. Section 7.2 gives the design of the model-

checking environment and discusses the implementation of the PiCal2NuSMV transla-

tor. An evaluation of the model-checking environment using a case study approach is

provided. The lessons learned from the applications of the integrated environment are

described in Section 7.3. Previous work is reviewed in 7.4. Section 7.5 summarizes the

145
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SC2PiCal

UML statechart
d iagrams

execut ion
semant ics

-calculus

M W B
(equivalence

checking)

N u S M V
(model checking)

π
PiCa l2NuSMV

Poseidon
for  UML

NuSMV code

Figure 7.1: Overview of the integrated environment

chapter.

The material in this chapter is drawn from [52].

7.1 Automated Equivalence Checking

To provide an environment which supports the equivalence-checking of UML statechart

diagrams, we have integrated two software tools: Poseidon for UML [13] and Mobility

Workbench (MWB) [110, 111].

ArgoUML [94] is an extensible, open source UML modelling tool. It is implemented

in Java [2] and is platform independent. Poseidon for UML, which is available in differ-

ent editions, is a commercial variant of ArgoUML. The Community Edition of Poseidon

for UML, like ArgoUML, is also a free UML modelling tool. It uses XML Metadata

Interchange (XMI) 1.2 [41] as its storage format. XMI, which is an open standard

adopted by Object Management Group (OMG), specifies how UML models are rep-

resented in Extensible Markup Language (XML) [18]. It permits the interoperability

between UML modelling tools.

The MWB which is written in Standard ML (SML) [78] is a software tool for mobile

processes. It runs under the Standard ML of New Jersey [91] and supports the analysis

of concurrent systems which have dynamically changing interconnection structures. In

particular, it allows the verification of strong and weak open bisimulations for processes

specified in the π-calculus.

The architecture of our equivalence-checking environment is shown in Figure 7.2.
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To integrate the two existing software tools, Poseidon for UML and MWB, we have

developed a translator called SC2PiCal. The left arm, right arm and bottom leg of

the T-diagram [7] specify the source language, target language and implementation

language of the corresponding software tool with name shown below the T-diagram.

The SC2PiCal, implemented in Java, translates an XMI document into an equivalent

representation in the π-calculus.

statechart
d iagram

Java Java

XMI XMI -calculusπ

Poseidon for  UML SC2PiCal

M W B

S M L

equivalent/
non-

equivalent
(open

bisimilar/
not  open
bisimilar)

Figure 7.2: The equivalence-checking environment

To prove the equivalence of two UML statechart diagrams, the two diagrams are

drawn and their corresponding XMI documents are generated using Poseidon. The

SC2PiCal translator then transforms the XMI documents into π-calculus expressions

(i.e. MWB code). Finally, the MWB checks whether the π-calculus expressions of the

two statechart diagrams are open bisimilar or not.

7.1.1 The Implementation of the SC2PiCal

Since XMI is based on XML, an XMI document is just an XML document in which the

XML elements conform to the XMI specification. Hence, XML Application Program-

ming Interfaces (APIs) [1] such as Document Object Model (DOM) and Simple API

for XML Processing (SAX) can both be used for creating, reading and processing an

XMI document.

As the DOM and SAX APIs are contained in the Java API for XML Processing

(JAXP) [1] which has incorporated into Java 2 Platform Standard Edition (J2SE)

version 1.4.1 [108], we have adopted J2SE version 1.4.1 as our development tool for

the SC2PiCal. In the implementation of the SC2PiCal, we use DOM (Level 2 API)

rather than SAX as it provides a more flexible way for accessing the contents of an
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XMI document.

The SC2PiCal (Figure 7.3) translates a statechart diagram expressed in XMI into

a π-calculus representation specified in the input format of the MWB as three steps.

First, the SC2PiCal reads an XMI document into a memory-resident DOM tree in which

it represents the input XMI document. Second, the SC2PiCal traverses the DOM tree,

extracts information related to states, events, guard-conditions, actions, etc. and stores

them into a number of arrays, lists, maps and sets. Finally, the SC2PiCal generates the

equivalent π-calculus representation based on the extracted information and the set of

translation rules defined in Chapter 3.

SC2PiCal

parser
tree

traverser
code

generator

XMI
document

D O M
tree

translat ion
rules

arrays,
l ists,  maps

and
sets -calculusπ

Figure 7.3: The architecture of the SC2PiCal translator

7.1.2 Using the Equivalence-checking Environment

In this subsection, we illustrate how the statechart diagrams which are classified into

strong behaviour equivalence and weak behaviour equivalence in Chapter 4 are auto-

matically proved using the equivalence-checking environment.

We first draw the statechart diagrams F2 and G2 in Figure 4.2 using Poseidon for

UML Community Edition 1.6 and save them as two XMI documents. Then we translate

the two XMI documents into their corresponding π-calculus representations as shown

in Figures 7.4 and 7.5 using the SC2PiCal.

Note that the textual representations of ν and x in the MWB are ^ and ’x, re-

spectively. In addition, each process identifier definition in the MWB starts with the

keyword agent. The MWB commands for importing the π-calculus representations of

F2 and G2 (i.e. files f2.pi and g2.pi) and checking the equivalence (congruence) of the

statechart diagrams are shown in Figure 7.6. The MWB command eq checks whether
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agent S1(step,event_ch0,e2,e1)= \

event_ch0(x1). \

([x1=e1] \

’step.S2(step,event_ch0,e2,e1)+ \

[x1=e2]’step.S1(step,event_ch0,e2,e1))

agent S2(step,event_ch0,e2,e1)= \

event_ch0(x1). \

([x1=e2] \

’step.S1(step,event_ch0,e2,e1)+ \

[x1=e1]’step.S2(step,event_ch0,e2,e1))

Figure 7.4: The π-calculus representation of F2 (file f2.pi)

agent T1(step,event_ch0,e2,e1)= \

event_ch0(x1). \

([x1=e1] \

’step.T2(step,event_ch0,e2,e1)+ \

[x1=e1]’step.T2(step,event_ch0,e2,e1)+ \

[x1=e2]’step.T1(step,event_ch0,e2,e1))

agent T2(step,event_ch0,e2,e1)= \

event_ch0(x1). \

([x1=e2] \

’step.T1(step,event_ch0,e2,e1)+ \

[x1=e1]’step.T2(step,event_ch0,e2,e1))

Figure 7.5: The π-calculus representation of G2 (file g2.pi)

two processes P,Q ∈ A are related by a strong open bisimulation.

Similarly, we prove that the statechart diagrams in Figure 4.4 (i.e. F3 and G3)

and the statechart diagrams in Figure 4.7 (i.e. F4 and G4) are both equivalent. The

following MWB command is used for analyzing F3 and G3:

weqd (step, event, e1, e2, e3, pos, neg) S3(step, event, e2, e1, e3)
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The Mobility Workbench

(MWB’97, polyadic version 3.122, built Mon Apr 21

23:02:07 2003)

MWB>input "f2.pi"

MWB>input "g2.pi"

MWB>eq S1(step, event, e2, e1) T1(step, event, e2, e1)

The two agents are related.

Relation size = 4.

MWB>

Figure 7.6: Equivalence-checking of F2 and G2 with the MWB

Statechart Size of the Open Real Time

Diagrams Bisimulation Relation Elapsed (secs)

F2, G2 4 0.000

F3, G3 14 0.016

F4, G4 36 0.032

Table 7.1: Performance analysis of equivalence checking

T2(step, event, e2, e1, e3, pos, neg)

The MWB command weqd checks whether the two processes with process identifiers

S3(step, event, e2, e1, e3),T2(step,event,e2, e1,e3,pos,neg)∈ = are related by a weak open

bisimulation given that channels step,event,e1,e2,e3,pos and neg are distinct. Table 7.1

shows the size of the open bisimulation relation R [110, 111] and the real time elapsed

for equivalence checking in seconds for the three pairs of statechart diagrams. The real

time elapsed for equivalence checking is obtained by using the MWB time command.

The tests run under Windows XP on a 2.4GHz Pentium 4 PC with 512 MB of memory

using MWB version 3.122.

7.1.3 Evaluation of the Equivalence-checking Environment

This subsection evaluates the equivalence-checking environment using the SET/A case

study introduced in previous chapter. We first model the agent of the extended SET/A
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protocol proposed in previous chapter as two different versions of statechart diagrams.

They are then shown to be equivalent using the proposed equivalence-checking envi-

ronment. In addition, the whole SET/A protocol which includes the cardholder (cus-

tomer), the merchant, the agent and the payment gateway is also translated into the

π-calculus using the SC2PiCal for verifying the generated π-calculus expressions based

on the proposed translation rules discussed in Chapter 3.

To recapitulate, SET/A is an agent-based payment protocol which is designed for

secure credit card payment in mobile computing environment. The agent used in the

protocol is a mobile agent which travels from the cardholder’s computer to the mer-

chant’s server. Upon arrival at the merchant’s server, it first sends a purchase request

to the merchant. Then it waits for a response from the merchant and travels back to

the cardholder’s computer. For a more detailed description of the protocol, the reader

is referred to the previous chapter.

Figure 7.7 shows the agent as a flat statechart diagram with 9 non-composite states

and 13 transitions. Through clustering, we represent the agent as a hierarchical stat-

echart diagram (Figure 7.8) with 9 non-composite states, 2 non-concurrent composite

states and 10 transitions as discussed in previous chapter. Out of the 10 transitions,

6 of them are interlevel transitions. To distinguish between the states of the flat and

hierarchical statechart diagrams, suffixes 1 and 2 are added to the state names of the

flat statechart diagram and hierarchical statechart diagram, respectively.

The model of the agent is a good candidate for testing the equivalence-checking

environment. First, it contains the three basic interlevel transition patterns as shown

in Figure 7.9. Second, in Figures 7.7 and 7.8 the action parts of the transitions are

send actions in which the agent object sends events to target objects cardholder and

merchant. This illustrates that the equivalence-checking environment supports commu-

nication between multiple interacting statechart diagrams in which they are associated

with multiple objects.

We translate the two versions of the statechart diagrams into the π-calculus using

the SC2PiCal. They are shown to be equivalent using the MWB. The size of the

open bisimulation relation is 67. It took 1.281 seconds of real time to perform the

equivalence-checking process.

To provide a more detailed analysis of the equivalence-checking environment, we

further investigate the relationships between:

(i) the complexity of the pair of statechart diagrams and the time taken for the
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aCommitArvd /  send
cardholder .aPosDpatchRespn

AAbort1

AIdle1

ACommi t1

APchaseTravel1

AAbortTravel1
aAbortArvd /  send

cardholder .aNegDpatchRespn

AWait In i tRespn1

AFai lure1

AWai tPchaseRespn1

cDpatchReq

ACommitTravel1

error /  send
cardholder. t imeout

aArvdSrvr /  send
merchant.aIni tReq

error /  send
cardholder. t imeout

error /  send
cardholder. t imeout

error /  send
cardholder. t imeout

error /  send
cardholder. t imeout

mIni tRespn /  send
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mIni tRespn /  send
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mNegPchaseRespn
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Figure 7.7: Flat statechart diagram for the agent

aCommitArvd /  send
cardholder .aPosDpatchRespn

AAbort2

AIdle2

ACommi t2

APchaseTravel2

AAbortTravel2
aAbortArvd /  send

cardholder .aNegDpatchRespn

AWait In i tRespn2

AFai lure2

AWai tPchaseRespn2

cDpatchReq

ACommitTravel2

aArvdSrvr /  send
merchant.aIni tReq

error /  send
cardholder. t imeout error /  send
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Figure 7.8: Hierarchical statechart diagram for the agent

translations by the SC2PiCal translator;
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Figure 7.9: Interlevel transition patterns

(ii) the complexity of the pair of statechart diagrams and the size of open bisimulation

relation; and

(iii) the complexity of the pair of statechart diagrams and the real time elapsed for

equivalence checking by the MWB.

A number of factors which contribute to the complexity of the statechart diagrams

are identified and measured as shown in Table 7.2. The number of send actions is a

measure of the degree of interaction between communicating statechart diagrams.

As illustrated in the table, the increase in the complexity of the pair of statechart

diagrams does not have much effect on the time taken for the translations by the

SC2PiCal translator. In contrast, the increase in the complexity of the pair of state-

chart diagrams leads to an increase in the size of open bisimulation relation and real

time elapsed for equivalence checking by the MWB. To take a closer look at the rela-

tionship between (i) the complexity of the pair of statechart diagrams and the size of

open bisimulation relation; and (ii) the complexity of the pair of statechart diagrams

and the real time elapsed for equivalence checking, we increase the size of the number

of substates in the hierarchical statechart diagram and number of states in the un-

folded version of the statechart diagram in Figure 4.6. Table 7.3 presents the results

of performance tests. A plot of (i) size of open bisimulation relation against number

of substates/states; and (ii) real time elapsed for equivalence checking against number

of substates/states are given in Figures 7.10 and 7.11. The size of open bisimulation

relation is a linear function of the number of substates in the hierarchical statechart di-

agram/number of states in the unfolded version of the statechart diagram. In contrast,
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Statechart Diagrams

Pair 1 Pair 2 Pair 3 Case Study

F2 G2 F3 G3 F4 G4 Flat Hierarchical

agent agent

Complexity

no. of basic states 2 3 3 3 5 5 9 9

no. of non-concurrent 0 0 0 1 0 0 0 2

composite states

no. of concurrent composite 0 0 0 0 1 0 0 0

states

total no. of states 2 3 3 4 6 5 9 11

no. of non-interlevel 2 4 4 2 2 5 13 4

transitions

no. of interlevel transitions 0 0 0 1 0 0 0 6

no. of incoming transitions 0 0 0 0 1 0 0 0

to fork pseudostates

no. of outgoing transitions 0 0 0 0 2 0 0 0

from fork pseudostates

total no. of transitions 2 4 4 3 5 5 13 10

no. of send actions 0 0 0 0 0 0 10 7

size of open bisimulation 4 14 36 67

relation

Performance

time taken for the translations < 1 < 1 < 1 < 1

by the SC2PiCal (secs)

real time elapsed for 0.000 0.016 0.032 1.281

equivalence checking by the

MWB (secs)

total time taken (secs) < 1.000 < 1.016 < 1.032 < 2.281

Table 7.2: Performance analysis of the equivalence-checking environment
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no. of substates in the hierarchical size of open real time elapsed

statechart diagram / no. of states bisimulation for equivalence

in the unfolded version of the relation checking by the MWB

statechart diagram

8 73 0.641

16 113 2.328

32 193 17.844

48 273 76.296

64 348 235.796

Table 7.3: Variation of size of open bisimulation relation and real time elapsed for

equivalence checking against no. of substates/states

the real time elapsed for equivalence checking is an exponential function of the number

of substates in the hierarchical statechart diagram/number of states in the unfolded

version of the statechart diagram.

7.2 Automated Model Checking

To determine whether a system represented in the π-calculus satisfies its specifications,

a model-checking environment (Figure 7.12) is provided. The model-checking environ-

ment consists of two components: PiCal2NuSMV and NuSMV.

The PiCal2NuSMV, which is written in Java, translates π-calculus expressions gen-

erated by the SC2PiCal into the NuSMV input language in a single pass.

The NuSMV model checker is implemented in ANSI C. It verifies the model specified

by the generated NuSMV code against the Computation Tree Logic (CTL) specifica-

tions. If the model is invalid, a counter-example is generated for each violated CTL

specification.

7.2.1 The Implementation of the PiCal2NuSMV

The transformation from the π-calculus into the NuSMV input language (Figure 7.13)

is divided into three stages: lexical analysis, syntax analysis and code generation.

The lexer inputs a stream of characters from a file and groups them into π-calculus

tokens. The parser determines whether a stream of π-calculus tokens conform to the
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Figure 7.10: Size of open bisimulation relation vs. no. of substates/states

π-calculus grammar. It collects and stores information related to module declarations,

variable declarations, case expressions, etc. into a number of lists and sets. The code

generator then produces NuSMV code using the translation rules defined in Chapter 5.

The lexer and parser are constructed using a compiler tool ANTLR (ANother Tool

for Language Recognition) 2.7.2 [86]. We define π-calculus lexer rules in ANTLR syntax

which is based on regular expressions. Similarly, we specify π-calculus parser rules in

ANTLR syntax which is based on Extended Backus-Naur Form (EBNF). As the lexer

and parser rules are stored in a single file, we execute the Java class antlr.Tool which

inputs the grammar file and generates the lexer and parser in Java. The generated Java

source code is then compiled into Java bytecode as usual.

The code generator, which is written in Java, is built by hand. It implements the

translation rules and outputs NuSMV source code according to the collected compila-

tion information in the syntax analysis stage.
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Figure 7.11: Real time elapsed for equivalence checking vs. no. of substates/states
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input

language

Figure 7.12: The model-checking environment

7.2.2 Using the Model-checking Environment

We first use Poseidon for UML to document the behaviour of a system represented using

several (linked) statechart diagrams. Then we save the statechart diagrams into XMI

documents and translate the XMI documents into equivalent π-calculus representations
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Figure 7.13: The architecture of the PiCal2NuSMV translator

which are stored in separate files using the SC2PiCal described in previous section. The

PiCal2NuSMV reads a text file which contains all these file names, translates each file

into NuSMV code and generates the equivalent representation of the system in the

NuSMV input language as a single file. NuSMV inputs the generated file, checks the

model against the CTL formulas specified by the user and constructs a trace when an

CTL formula is invalid.

7.2.3 Evaluation of the Model-checking Environment

Two case studies are used for evaluating the model-checking environment. The first

case study is based on the original SET/A protocol, whereas the second case study is

based on the extended version of the SET/A protocol proposed in Chapter 6. Unlike

the original SET/A protocol, the extended SET/A protocol ensures that a transaction

is resilient to the failure of the mobile shopping agent.

We model the cardholder, agent, merchant and payment gateway of the original

SET/A protocol as 4 statechart diagrams with 23 states and 17 transitions. Out of

the 23 states and 17 transitions, there are 2 non-concurrent composite states and 6

interlevel transitions (see Table 7.4). Then we translate the statechart diagrams into

their π-calculus equivalent representations as 23 process definitions using the SC2PiCal.

Finally, the 23 process definitions are transformed into the NuSMV input language as

4 modules using the PiCal2NuSMV.

The translations from statechart diagrams into π-calculus specifications using SC2PiCal

and π-calculus specifications into NuSMV code using PiCal2NuSMV took 2 seconds and

1 second, respectively. The verification of the three CTL formulas discussed in Chap-
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Case Studies

SET/A Protocol Extended SET/A

Protocol

Complexity

no. of basic states 21 24

no. of non-concurrent composite 2 2

states

total no. of states 23 26

no. of non-interlevel transitions 11 25

no. of interlevel transitions 6 6

total no. of transitions 17 31

no. of send actions 11 21

Performance

time taken for the translation by 2 2

the SC2PiCal (secs)

time taken for the translation by 1 1

the PiCal2NuSMV (secs)

time taken for the verification 4 23

by the NuSMV (secs)

no. of BDD nodes allocated 87897 222855

total time taken (secs) 7 26

Table 7.4: Performance analysis of the model-checking environment
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ter 6 took approximately 4 seconds on a Pentium 4 2.4GHz PC with 512MB of memory

using NuSMV 2.1.2 (with -dynamic and -f options) running under the Windows XP

Professional operating system.

A similar exercise is carried out with the extended SET/A protocol. In the state-

chart diagrams of the extended SET/A protocol, there are 26 states and 31 transitions.

Out of the 26 states and 31 transitions, there are 2 non-concurrent composite states and

6 interlevel transitions. The translations took 2 seconds and 1 second, respectively. The

desired properties are satisfied by the extended SET/A protocol and the verification

took 23 seconds. The results are presented in Table 7.4.

As Table 7.4 shows, the increase in the numbers of basic states, non-interlevel tran-

sitions and send actions by factors of 1.14, 2.27 and 1.91, respectively, does not have

much effect on the translation times of the SC2PiCal and PiCal2NuSMV translators.

However, the number of BDD nodes allocated increases by a factor of 2.54. The verifi-

cation time taken by the NuSMV model checker increases by a factor of 5.75 in which

the order of magnitude is quite close to the theoretical value if the weightings of all

complexity factors are assumed to be 1. A more detailed treatment of the performance

of NuSMV in terms of BDDs by using a number of examples described in previous

studies is provided in [27].

7.3 Lessons Learned

The lessons gained from the use and evaluation of the integrated environment are

enumerated as follows:

1. We assume that the weightings of all complexity factors in Tables 7.2 and 7.4 are

equal to the value 1. Consider the hierarchical agent and the SET/A protocol, the

overall complexity of statechart diagrams increases by a factor of 10.06 when the

numbers of basic states, non-interlevel transitions and send actions increase by

factors of 2.33, 2.75 and 1.57, respectively. As the time taken for the translation

by the SC2PiCal translator increases by only a factor of around 2, this reveals

that the SC2PiCal translator has a relatively small effect on the performance of

the integrated environment.

2. As discussed in the previous section, the increase in the complexity of statechart

diagrams does not have much effect on the translation times of the PiCal2NuSMV

translator.
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3. The execution times for equivalence checking and model checking increase as the

complexity of statechart diagrams increases. As illustrated in Figure 7.11, the

growth rate of real time elapsed for equivalence checking is exponential. The

performance of the equivalence-checking environment and model-checking envi-

ronment depends mainly on the software tools MWB and NuSMV rather than

on the translators SC2PiCal and PiCal2NuSMV.

4. To address the state explosion problem of the MWB and NuSMV, the essence is

to reduce a problem to a manageable size through (i) adopting abstraction tech-

nique [30, 49] that abstracts away irrelevant details; and (ii) performing formal

analysis on the critical part of a complex system instead of the complete system.

7.4 Related Work

In [105, 17] a formalism FOCUS, that supports different views for the specification

of embedded systems, is integrated with various formal methods and tools for model

checking, theorem proving and testing. In contrast, our integration of formal methods

and tools combines UML statechart diagrams with the π-calculus, MWB and NuSMV

for equivalence checking and model checking. When compared with FOCUS, our ap-

proach provides a wider coverage as it is not only limited to embedded systems.

7.5 Summary

The integrated environment comprises a collection of heterogeneous tools for the anal-

ysis of UML statechart diagrams. Two translators SC2PiCal and PiCal2NuSMV have

been developed for combining Poseidon for UML, MWB and NuSMV as an integrated

environment which supports equivalence checking and model checking. The SC2PiCal

transforms statechart diagrams represented as XMI documents into π-calculus specifi-

cations, while the PiCal2NuSMV generates NuSMV code from the π-calculus specifi-

cations.

The correctness and performance of the integrated environment have been tested

and evaluated using the original SET/A protocol and the extended SET/A protocol.

As the SET/A protocol is based on the SET protocol which is a real-world application,

this proves that the integrated environment works in practice.

The integrated environment is novel in the sense that it combines various well-
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established formal methods and tools as a tool set for the analysis of UML statechart

diagrams. The novel features of the integrated environment are summarized below:

1. The proposed integrated environment is a cross-disciplinary challenge. Methods

and software tools originally used in process algebras and model checking are

adapted to the software engineering field for analyzing and verifying the design

of an agent-based e-commerce payment protocol.

2. The integrated environment not only allows two analysis tools to be executed

from a single interface, but it provides new capabilities that facilitate equivalence-

checking and model-checking of UML statechart diagrams.

3. The architecture of the integrated environment is based on XMI that permits the

exchange of data between UML modelling tools.

4. The integrated environment adopts an open, extensible and modular architecture.

A new tool can be easily incorporated into the existing integrated environment

through the development of a mapping between the π-calculus and the new tool.



Chapter 8

Conclusions

The lack of a formal execution semantics and the need for a formal analysis of UML

statechart diagrams motivate this work. A precise execution semantics is a prerequisite

for carrying out any form of formal analysis on UML statechart diagrams. The for-

malization is a difficult task as (i) the UML documentation is incomplete; and (ii) the

behaviour of an interlevel transition is hard to represent. When compared with tra-

ditional testing techniques, a formal analysis provides a thorough analysis of a model

against its specifications. It allows the verification of the model in the design stage of

software development instead of the implementation stage.

This thesis has presented improvements and extensions to the original execution

semantics. An attempt to formalize the execution semantics in the π-calculus has been

described. Examples illustrating the formalization of various graphical constructs in the

π-calculus have been provided. An integrated approach for equivalence checking and

model checking of statechart diagrams has been proposed. To support the integrated

approach, an integrated environment which offers tools for automating the equivalence-

checking and model-checking processes has been implemented. The application of the

integrated approach and integrated environment has been demonstrated by a case study.

8.1 Summary of Contributions

Our work contributes to the software engineering field by providing a precise definition

for the execution semantics of communicating UML statechart diagrams and devel-

oping a systematic approach which unifies statechart diagrams with different formal

methods and software tools. The main contributions of this thesis are enumerated as
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the following points:

1. We have proposed a compositional approach for modelling state hierarchy through

the use of parallel composition and firing priority scheme via channel passing.

The structure-preserving approach greatly simplifies the encoding of interlevel

transitions.

2. The execution semantics of communicating UML statechart diagrams has been

formalized in the π-calculus. The formalization not only clarifies and extends the

original UML semantics, but it provides a basis for the formal analysis of the

statechart diagrams.

3. A rigorous approach, which is based on the structural congruence and open bisim-

ulations of the π-calculus, has been presented. It provides a systematic way for

proving the equivalence of two statechart diagrams.

4. An integration of statechart diagrams, the π-calculus and NuSMV for verifying

the design of a system against its specifications has been advocated.

5. We have illustrated the applicability of the integrated approach by using the

SET/A protocol as a case study. An examination reveals that the SET/A protocol

is not resilient to the failure of the mobile agent. To ensure that all non-faulty

parties agree on a same decision, an extended SET/A protocol has been given.

6. As a proof of concepts, an integrated environment which supports equivalence

checking and model checking has been implemented. The existing tools Poseidon

for UML, MWB and NuSMV are linked up through the two translators SC2PiCal

and PiCal2NuSMV which we have developed.

7. The integrated environment automates the equivalence checking and model check-

ing of UML statechart diagrams. It enables a user to perform a formal analysis

and reasoning on the design of a system.

Although there are a number of studies on the formalization, equivalence checking and

model checking of UML statechart diagrams [61, 60, 38, 39, 62, 113] in the literature,

our approach is better as (i) state hierarchy and interlevel transitions are encoded in

a simple and direct way; (ii) the formalizations of notational elements and execution

semantics are both represented by the same formalism; (iii) the formalized execution

semantics covers a single statechart diagram as well as multiple interacting statechart

diagrams; (iv) the π-calculus is an intermediate representation which facilitates the

equivalence checking of statechart diagrams; (v) the equivalence checking of statechart

diagrams which contain interlevel transitions is addressed; and (vi) NuSMV allows
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specifications to be expressed in either linear or branching temporal logic.

The main drawback of our approach is it is only technically limited to a subset of

UML statechart diagrams. However, the proposed formalization is flexible enough for

including other notational elements such as history pseudostates, state references and

deferred events as discussed in Section 3.6.

Formal arguments on the correctness of the formalization of UML statechart dia-

grams and implementation of UML statecharts based π-calculus expressions in NuSMV

language have been given. We have also defined isomorphism, strong behavioural equiv-

alence and weak behavioural equivalence in terms of UML statechart diagrams and

shown that there are a correspondence between isomorphism and structural congru-

ence, strong behavioural equivalence and strong open bisimulation as well as weak

behavioural equivalence and weak open bisimulation.

8.2 Future Research

This work is a first step towards equivalence checking and model checking of UML

statechart diagrams using an integrated approach. Based on our current work, there

are several directions for future research.

Firstly, we consider only the core part of statechart diagrams in our formalization.

A future research direction is to formalize other notational elements such as time events

and deferred events. The support of time events is of particular interest as it facilitates

the analysis of real-time systems. To model time events, an extension to the π-calculus

for encoding a timer is required. A detailed discussion on how a timer can be incor-

porated into the π-calculus is given in [8]. Another possible direction is to study the

formalization of sequence diagrams. In the UML, the dynamic behaviour of a system

is represented using various diagrams including statechart diagrams and sequence di-

agrams. A statechart diagram specifies the complete lifecycle of an object, while a

sequence diagram specifies the partial lifecycle of each object which takes part in an

interaction. Due to the existence of two model views, inconsistency between statechart

diagrams and sequence diagrams occurs inevitably during the software development

and software evolution processes. To ensure the inter-model consistency is preserved,

an approach which is similar to the equivalence checking of statechart diagrams can

be developed for checking whether a set of sequence diagrams is consistent with a

corresponding set of statechart diagrams.
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Secondly, the integrated approach is limited to equivalence checking and model

checking of statechart diagrams. One promising research area is to examine intra-model

consistency checking for determining whether the statechart diagrams of classes linked

with a generalization relationship are consistent. Another promising research area is

to explore the use of theorem proving [40] for the analysis of statechart diagrams.

Thirdly, the incorporation of other formalisms and software tools into the exist-

ing integrated environment for providing a wider range of analysis is also an interest

research direction. In future work, we plan to incorporate more tools such as LySa Ex-

tractor [21] into our approach so that it provides a way to analyze the security aspects

of an agent-based payment protocol.

Finally, more experiments on the integrated approach and integrated environment

with respect to practicality, performance and learning curve are required before a tech-

nology transfer to industry is possible.



Appendix A

Command Reference for the

Integrated Environment

The integrated environment includes a collection of tools which aim to support the

equivalence checking and model checking of UML statechart diagrams, through the

implementation of two translators SC2PiCal and PiCal2NuSMV and the use of three

pre-existing tools Poseidon for UML, MWB and NuSMV which are all integrated for

the specification and analysis of statechart diagrams.

This appendix contains a list of commands used for the equivalence checking and

model checking of statechart diagrams. A description of the command’s function is

followed by the command syntax and options (if any). The conventions adopted in this

appendix are given below:

1. Commands and options that are in boldface should be typed verbatim.

2. Options enclosed in square brackets are optional. Do not include the square

brackets in your command.

3. Parameters enclosed in angle brackets should be replaced with user-specified val-

ues. Do not include the angle brackets in your command.

4. Parameter that can be repeated in a command is indicated by an ellipsis. Do not

include the ellipsis in your command.

5. The blank spaces, double quotes, parentheses and commas are part of the syntax

and require to be entered verbatim.
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A.1 SC2PiCal

SC2PiCal is an academic tool which transforms a UML statechart expressed in XMI for-

mat into an equivalent π-calculus representation. It uses DOM (Level 2 API) integrated

in Java 2 Platform Standard Edition (J2SE) for processing the XMI representation of

the UML statechart.

java SC2PiCal – Translates a UML statechart diagram in XMI format into a corre-

sponding representation in the π-calculus.

java SC2PiCal <input-file> <output-file>

A.2 MWB

MWB is the main tool for analyzing π-calculus processes. One of its key features is

it permits the verification of open bisimulations for π-calculus processes. The tool is

freely available on the Internet at

http://www.it.uu.se/research/group/mobility/mwb

mwb – invoke the MWB

mwb

input – reads π-calculus specifications from the specified file into the MWB

input “<file>”

eq – checks whether two processes are related by a strong open bisimulation

eq <process1> <process2>

weq – checks whether two processes are related by a weak open bisimulation

weq <process1> <process2>

eqd – checks whether two processes are related by a strong open bisimulation given

that a list of channels separated by commas are distinct

eqd (<channel1>,<channel2>,...,<channeln>) <process1> <process2>

weqd – checks whether two processes are related by a weak open bisimulation given

that a list of channels separated by commas are distinct

weqd (<channel1>,<channel2>,...,<channeln>) <process1> <process2>
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time – executes a command and shows its execution statistics

time <command>

quit – exits the MWB

quit

Figure A.1 shows a sample session illustrating the verification of two UML state-

charts based π-calculus processes (Figures A.2, A.3 and A.4) which are weakly open

bisimilar.

The Mobility Workbench

(MWB’97, polyadic version 3.122, built Mon Apr 21 23:02:07 2003)

MWB>input "f3.pi"

MWB>input "g3.pi"

MWB>weqd (step,event,e1,e2,e3,pos,neg) S3(step,event,e2,e1,e3) \

T2(step,event,e2,e1,e3,pos,neg)

The two agents are related.

Relation size = 14.

MWB>

Figure A.1: A sample session of the MWB

agent S1(step,event_ch0,e2,e1,e3)= \

event_ch0(x1). \

([x1=e1] \

’step.S2(step,event_ch0,e2,e1,e3)+ \

[x1=e2]’step.S3(step,event_ch0,e2,e1,e3)+ \

[x1=e3]’step.S1(step,event_ch0,e2,e1,e3))

agent S2(step,event_ch0,e2,e1,e3)= \

event_ch0(x1). \

([x1=e2] \

’step.S3(step,event_ch0,e2,e1,e3)+ \

[x1=e1]’step.S2(step,event_ch0,e2,e1,e3)+ \

[x1=e3]’step.S2(step,event_ch0,e2,e1,e3))

Figure A.2: File content of f3.pi
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agent S3(step,event_ch0,e2,e1,e3)= \

event_ch0(x1). \

([x1=e3] \

’step.S1(step,event_ch0,e2,e1,e3)+ \

[x1=e2]’step.S3(step,event_ch0,e2,e1,e3)+ \

[x1=e1]’step.S3(step,event_ch0,e2,e1,e3))

Figure A.3: File content of f3.pi (continued)

agent V1(event_ch1,e2,e1,e3,pos,neg)= \

event_ch1(x1,ack). \

([x1=e1] \

’ack<neg>.V2(event_ch1,e2,e1,e3,pos,neg)+ \

[x1=e2]’ack<pos>.0+ \

[x1=e3]’ack<neg>.V1(event_ch1,e2,e1,e3,pos,neg))

agent V2(event_ch1,e2,e1,e3,pos,neg)= \

event_ch1(x1,ack). \

([x1=e2] \

’ack<pos>.0+ \

[x1=e1]’ack<neg>.V2(event_ch1,e2,e1,e3,pos,neg)+ \

[x1=e3]’ack<neg>.V2(event_ch1,e2,e1,e3,pos,neg))

agent T1(step,event_ch0,event_ch1,e2,e1,e3,pos,neg)= \

event_ch0(x1). \

(^ack)’event_ch1<x1,ack>.ack(x2). \

([x2=pos]’step.T2(step,event_ch0,e2,e1,e3,pos,neg)+ \

[x2=neg]’step.T1(step,event_ch0,event_ch1,e2,e1,e3,pos,neg))

agent T2(step,event_ch0,e2,e1,e3,pos,neg)= \

event_ch0(x1). \

([x1=e3] \

’step.(^event_ch1)(T1(step,event_ch0,event_ch1,e2,e1,e3,pos,neg) | V1(event_ch1,e2,e1,e3,pos,neg))+ \

[x1=e2]’step.T2(step,event_ch0,e2,e1,e3,pos,neg)+ \

[x1=e1]’step.T2(step,event_ch0,e2,e1,e3,pos,neg))

Figure A.4: File content of g3.pi

A.3 PiCal2NuSMV

PiCal2NuSMV is an academic tool which transforms UML statecharts based π-calculus

representations into equivalent NuSMV code. The lexer and parser generated by

ANTLR are used for parsing the UML statecharts based π-calculus expressions.

java PiCal2NuSMV – Transforms separate π-calculus representations of UML stat-
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echart diagrams into corresponding NuSMV representations and combines them

as a single file for model checking

java PiCal2NuSMV <input-file> <output-file>

where <input-file> is a plain text file which contains the filenames of separate

π-calculus representations.

A.4 NuSMV

NuSMV is a model checker which checks whether a system fulfills its specifications.

The tool is available free of charge on the Internet at

http://nusmv.irst.itc.it

nusmv – invokes NuSMV in batch mode

nusmv [options] <input-file>

useful options:

-dynamic enables the use of dynamic variable ordering

-f enables the computation of reachable states for improving the

performance of CTL model checking

A sample session, which illustrates the verification of the two CTL formulas dis-

cussed in Section 6.8, is shown in Figure A.5.

C:\research\nusmv-2.1.2\bin>nusmv -dynamic -f concurr.smv

*** This is NuSMV 2.1.2 (compiled 2002-11-22 12:00:00)

*** For more information of NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv-users@irst.itc.it>.

-- specification AG ((concurr.substate1 = V_1 & event_buff = e_2) -> AF concurr.

substate1 = V_2) is true

-- specification AG (!(concurr.substate1 = V_1 & concurr.substate2 = W_2)) is tr

ue

Figure A.5: A sample session of NuSMV
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Appendix B

The Implementation of the

Integrated Environment

Sections 7.1.1 and 7.2.1 give an overview of the implementation and architecture of the

SC2PiCal and PiCal2NuSMV translators. The usage and command reference of the

integrated environment are provided in Sections 7.1.2 and 7.2.2 as well as Appendix A.

The practicality and performance of the integrated environment are evaluated using a

case study approach in Sections 7.1.3 and 7.2.3. In addition, the applications of the

integrated environment for the equivalence checking and model checking of UML state-

chart diagrams are demonstrated. This appendix expands on these previous sections by

providing a more detailed discussion about the principles, concepts and techniques for

the implementation of the SC2PiCal and PiCal2NuSMV using the Java programming

language. The complete toolchain is illustrated through a number of examples.

B.1 The Architecture of the Integrated Environment

The integrated environment automates the equivalence checking and model checking of

UML statechart diagrams. As shown in Figure B.1, the integrated environment consists

of five components:

1. Poseidon for UML,

2. MWB (Mobility Workbench),

3. NuSMV,

4. SC2PiCal and
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5. PiCal2NuSMV.

Poseidon for UML is a modelling tool for drawing UML statechart diagrams and gener-

ating the corresponding UML statechart diagrams in XMI format. MWB is a π-calculus

tool which checks whether two π-calculus processes are strongly and weakly open bisim-

ilar. NuSMV is a model checker which verifies whether a property is maintained or not

in the specification. SC2PiCal is a translator which transforms UML statechart dia-

grams in XMI format into the π-calculus, whereas PiCal2NuSMV is a translator which

transforms the UML statecharts based π-calculus into NuSMV code. Both transla-

tors are implemented in Java as (i) it is portable and (ii) it encompasses classes for

manipulating an XMI (XML) document.

SC2PiCal

UML statechart

diagrams in XMI

format

-calculus
MWB

NuSMV

π

PiCal2NuSMV

Poseidon

for UML

NuSMV code

parser
tree

traverser

code

generator

lexer parser
code

generator

DOM

tree

arrays, lists,

maps and sets

lists and

sets
-calculus

tokens
π

not open

bisimilar

open

bisimilar

counterexample

model satisfies

system

specifications

Figure B.1: Toolset architecture

B.2 The Detailed Implementation of SC2PiCal

The JAXP (Java API for XML Processing), which is a component of J2SE (Java 2

Platform Standard Edition), contains four APIs: DOM Level 1 and Level 2 and SAX1

and SAX2, but each of the first versions is now deprecated.

As pointed out in Section 7.1.1, we adopt DOM in preference to SAX2 because of

the greater flexibility in manipulating an XML document as a result of the DOM parser

constructing a memory-resident tree.

The three main phases of translating UML statechart diagrams in XMI format
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into the π-calculus are delineated in Figure B.1. The first phase accepts an XMI

document as input and generates a DOM tree using the APIs of DOM Level 2. The

second phase traverses the DOM tree and stores each transition of a statechart diagram

which includes source state, event, guard-condition, action and target state as elements

of a 2-dimensional array. The final phase then produces the equivalent π-calculus

specification (MWB code). The implementation starts with the use of standard patterns

for constructing a DOM parser and acquiring the root of the DOM tree as follows:

1 DocumentBuilderFactory factory =
2 DocumentBuilderFactory.newInstance();
3 factory.setValidating( false );
4 factory.setNamespaceAware( true );
5 DocumentBuilder builder = factory.newDocumentBuilder();
6 builder.setErrorHandler( new MyErrorHandler() );
7 document = builder.parse( new File( file ) );
8 processNode( document );

The purpose of lines 1–5 is to produce a non-validating, namespace-aware DOM

parser from an instance of the factory class DocumentBuilderFactory. A non-validating

parser is fabricated instead of a validating one as the XMI document generated by Po-

seidon for UML is not associated with an XML schema or a Document Type Definition

(DTD). The static method newInstance creates a new DocumentBuilderFactory object.

The methods setValidating and setNamespaceAware specify that the DocumentBuilder

object (parser) to be created performs no validation on the XMI (XML) document and

treats a colon character as a delimiter between a namespace name and a tag name, re-

spectively. The method newDocumentBuilder creates a DocumentBuilder object. The

parameter of the method setErrorHandler defines that a MyErrorHandler object is

used as the error handler. The method parse parses an XMI (XML) document and

returns a Document object which is the root of the DOM tree. The returned Document

object is then passed as a parameter to the method processNode (a tree traverser).

The tree traverser is implemented as two methods processNode and processChildNodes

as shown in Figures B.2, B.3, B.4, B.5, B.6 and B.7. The major considerations and

difficulties for the implementation of the tree traverser are:

1. The identifier (id attribute) is an unique identity for an XML element within an

XMI document. As the XMI representation of a transition is based on identifiers

rather than the names of source state, event, guard-condition, action and target

state, there is a need to maintain a mapping between the identifiers and the names
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1 public void processNode( Node currentNode )
2 {
3 String state_name="";
4 switch ( currentNode.getNodeType() ) {
5 case Node.DOCUMENT_NODE:
6 Document doc = ( Document ) currentNode;
7 processChildNodes( doc.getChildNodes() );
8 break;
9 case Node.ELEMENT_NODE:

10 if (currentNode.getNodeName().equals("UML:SimpleState") |
11 (currentNode.getNodeName().equals("UML:Transition") &
12 currentNode.getParentNode().getNodeName().equals("UML:StateMachine.transitions")) |
13 currentNode.getNodeName().equals("UML:Guard") |
14 currentNode.getNodeName().equals("UML:BooleanExpression") |
15 currentNode.getNodeName().equals("UML:CallAction") |
16 currentNode.getNodeName().equals("UML:ActionExpression") |
17 currentNode.getNodeName().equals("UML:CallEvent") |
18 (currentNode.getNodeName().equals("UML:CompositeState") &
19 currentNode.getParentNode().getNodeName().equals("UML:CompositeState.subvertex")) |
20 (currentNode.getNodeName().equals("UML:CompositeState") &
21 currentNode.getParentNode().getNodeName().equals("UML:Transition.source")) |
22 (currentNode.getNodeName().equals("UML:CompositeState") &
23 currentNode.getParentNode().getNodeName().equals("UML:Transition.target")) |
24 currentNode.getNodeName().equals("UML:Pseudostate") |
25 currentNode.getNodeName().equals("UML:Class")) {
26 NamedNodeMap attributeNodes = currentNode.getAttributes();
27 for ( int i = attributeNodes.getLength()-1; i >=0; i--){
28 Attr attribute = ( Attr ) attributeNodes.item( i );
29 if (attribute.getNodeName().equals("name") &
30 attribute.getOwnerElement().getNodeName().equals("UML:SimpleState")) {
31 state_name = attribute.getNodeValue();
32 }
33 if (attribute.getNodeName().equals("xmi.id") &
34 attribute.getOwnerElement().getNodeName().equals("UML:SimpleState")) {
35 id_to_name.put(attribute.getNodeValue(), state_name);
36 all_states.add(attribute.getNodeValue());
37 if (!encl_state_id.equals("")) {
38 childparent_put(attribute.getNodeValue(), encl_state_id);
39 }
40 }

Figure B.2: Statechart element processing code

of the various notational elements. The key factor to consider when choosing a

mapping implementation is time complexity. In our implementation, we use a map

as the time taken to determine whether the mapping contains a corresponding

name for a particular identifier is constant.

2. The core data structure of the tree traverser is a table which takes the form of

a 2-dimensional array of 5 columns. Each transition recovered from the XMI

representation is stored in the table. The 5 columns of the table hold the identi-

fiers of source state, event, guard-condition, action and target state, respectively.

The time for locating a transition in the table is proportional to the number of

transitions in a UML statechart diagram.
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3. To overcome the name conflict problem of notational elements, the identifier of

an XML element is used as an unique identifier for the corresponding notational

element. The adoption of this approach reduces the complexity of the implemen-

tation by not manipulating another set of internally defined identifiers.

By way of commentary on the translation code in Figures B.2, B.3, B.4, B.5, B.6

and B.7, we make the following observations:

lines 5–8: If the received node is a document node, the method getChildNodes is

invoked (line 7) to obtain a list of all child nodes of the received node. The

method processChildNodes (Figures B.6 and B.7) then processes each of the child

nodes by executing the method processNode as specified on lines 166, 198 and

202.

lines 27 and 61–69: The for statement on line 27 iterates over the list of attribute

nodes of the current node. If the current node is an element node and is an event,

the name and identifier of the event are retrieved from the attribute nodes using

the method getNodeValue (lines 63 and 68). The name and identifier of the event

are then stored in a set events and a map id to name.

lines 29–60 and 70–121: The names and identifiers of other notational elements

which include state, guard-condition, action, transition and composite state are

extracted using a similar approach. Lines 29–40, 41–50, 51–60, 70–109 and 110–

121 detail, respectively, the extraction of state, guard-condition, action, transition

and composite state. The identifiers of event trigger, non-composite source state,

composite source state, non-composite target state and composite target state

of transitions are retrieved by the method getNodeValue on lines 74, 80, 92, 98

and 107. The values of the variables source id, event id, guard id, action id and

target id are then assigned to a 2-dimensional array transition on lines 177–187

for facilitatng the generation of the π-calculus specification.

After collecting all the required information by the tree traverser, we now discuss

how the π-calculus expressions are generated. The implementation considerations of

the code generator are enumerated as follows:

1. The code generation process is divided into three steps. Firstly, the parameters

of a process identifier are constructed and the process identifier corresponding to
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41 if (attribute.getNodeName().equals("name") &
42 attribute.getOwnerElement().getNodeName().equals("UML:Guard")) {
43 guard_name = attribute.getNodeValue();
44 guards.add(guard_name);
45 }
46 if (attribute.getNodeName().equals("xmi.id") &
47 attribute.getOwnerElement().getNodeName().equals("UML:Guard")) {
48 guard_id = attribute.getNodeValue();
49 id_to_name.put(guard_id, guard_name);
50 }
51 if (attribute.getNodeName().equals("name") &
52 attribute.getOwnerElement().getNodeName().equals("UML:CallAction")) {
53 action_name = attribute.getNodeValue();
54 actions.add(action_name);
55 }
56 if (attribute.getNodeName().equals("xmi.id") &
57 attribute.getOwnerElement().getNodeName().equals("UML:CallAction")) {
58 action_id = attribute.getNodeValue();
59 id_to_name.put(action_id, action_name);
60 }
61 if (attribute.getNodeName().equals("name") &
62 attribute.getOwnerElement().getNodeName().equals("UML:CallEvent")) {
63 event_name = attribute.getNodeValue();
64 events.add(event_name);
65 }
66 if (attribute.getNodeName().equals("xmi.id") &
67 attribute.getOwnerElement().getNodeName().equals("UML:CallEvent")) {
68 id_to_name.put(attribute.getNodeValue(), event_name);
69 }
70 if (attribute.getNodeName().equals("xmi.idref") &
71 attribute.getOwnerElement().getNodeName().equals("UML:CallEvent") &
72 attribute.getOwnerElement().getParentNode().getNodeName().
73 equals("UML:Transition.trigger")) {
74 event_id = attribute.getNodeValue();
75 }
76 if (attribute.getNodeName().equals("xmi.idref") &
77 attribute.getOwnerElement().getNodeName().equals("UML:SimpleState") &
78 attribute.getOwnerElement().getParentNode().getNodeName().
79 equals("UML:Transition.source")) {
80 source_id = attribute.getNodeValue();
81 if (concurrent & !hasSuperState(source_id)) {
82 if (class_name==null | class_name.equals(""))
83 ch_table.put(source_id, "event_ch0");
84 else
85 ch_table.put(source_id, "event_" + class_name);
86 }
87 }
88 if (attribute.getNodeName().equals("xmi.idref") &
89 attribute.getOwnerElement().getNodeName().equals("UML:CompositeState") &
90 attribute.getOwnerElement().getParentNode().getNodeName().
91 equals("UML:Transition.source")) {
92 source_id = attribute.getNodeValue();
93 }

Figure B.3: Statechart element processing code (continued)

the source state is then generated. Secondly, input action and matching construct

representing the receipt of an event as well as π-calculus actions denoting guard-

condition, action and interaction between a composite state and its substate(s)

are produced. Finally, output action step and process identifier modelling the
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94 if (attribute.getNodeName().equals("xmi.idref") &
95 attribute.getOwnerElement().getNodeName().equals("UML:SimpleState") &
96 attribute.getOwnerElement().getParentNode().getNodeName().
97 equals("UML:Transition.target")) {
98 target_id = attribute.getNodeValue();
99 if (concurrent & !source_id.equals(target_id)) {

100 ch_table.put(target_id, ch_table.get(source_id));
101 }
102 }
103 if (attribute.getNodeName().equals("xmi.idref") &
104 attribute.getOwnerElement().getNodeName().equals("UML:CompositeState") &
105 attribute.getOwnerElement().getParentNode().getNodeName().
106 equals("UML:Transition.target")) {
107 target_id = attribute.getNodeValue();
108 concur_state_no_of_regions_put(target_id, new Integer(no_of_orth_regions));
109 }
110 if (attribute.getNodeName().equals("name") &
111 attribute.getOwnerElement().getNodeName().equals("UML:CompositeState")) {
112 encl_state_name = attribute.getNodeValue();
113 }
114 if (attribute.getNodeName().equals("xmi.id") &
115 attribute.getOwnerElement().getNodeName().equals("UML:CompositeState")) {
116 encl_state_id = attribute.getNodeValue();
117 id_to_name.put(encl_state_id, encl_state_name);
118 ch = "event_ch" + no_of_orth_regions;
119 ch_table.put(encl_state_id, ch);
120 all_states.add(attribute.getNodeValue());
121 }
122 if (attribute.getNodeName().equals("isConcurrent") &
123 attribute.getOwnerElement().getNodeName().equals("UML:CompositeState") &
124 attribute.getNodeValue().equals("true")) {
125 concurrent = true;
126 no_of_orth_regions = 0;
127 }

Figure B.4: Statechart element processing code (continued)

target state are yielded.

2. The generation of π-calculus specifications is a non-trivial process as:

(i) The existence of non-concurrent composite states, concurrent composite

states and interlevel transitions complicates the development as well as the

testing of the code generator.

(ii) In the π-calculus representations, substates which belong to the same or-

thogonal region of a concurrent composite state should use the same chan-

nel for communicating with the concurrent composite state, while substates

which are in different orthogonal regions should use different channels for

interacting with the concurrent composite state. To ensure that the correct

channel is used, a table is maintained for keeping track of the channels for

the substates of a concurrent composite state.
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128 if (attribute.getNodeName().equals("name") &
129 attribute.getOwnerElement().getNodeName().equals("UML:SimpleState") &
130 attribute.getOwnerElement().getParentNode().getNodeName().
131 equals("UML:CompositeState.subvertex") &
132 attribute.getOwnerElement().getParentNode().getParentNode().getNodeName().
133 equals("UML:CompositeState")) {
134 NamedNodeMap comp_state_attributeNodes =
135 attribute.getOwnerElement().getParentNode().getParentNode().
136 getAttributes();
137 for ( int k = comp_state_attributeNodes.getLength()-1; k >=0; k--){
138 Attr comp_state_attribute = (Attr) comp_state_attributeNodes.item(k);
139 if (comp_state_attribute.getNodeName().equals("isConcurrent") &
140 comp_state_attribute.getNodeValue().equals("true")) {
141 concur_substates.add(attribute.getNodeValue());
142 }
143 }
144 }
145 ... /* process other element nodes */
146 }
147 }
148 processChildNodes( currentNode.getChildNodes() );
149 break;
150 }
151 }

Figure B.5: Statechart element processing code (continued)

152 public void processChildNodes( NodeList children )
153 {
154 if ( children.getLength() != 0 )
155 for ( int i = 0; i < children.getLength(); i++){
156 if (children.item(i).getNodeName().equals("UML:Transition") &&
157 children.item(i).getParentNode().getNodeName().
158 equals("UML:StateMachine.transitions")) {
159 source_id = "";
160 event_id = "";
161 guard_id = "";
162 action_id = "";
163 target_id = "";
164 guard_exp_id = "";
165 action_exp_id = "";
166 processNode( children.item( i ) );
167 if (hasSubStates(source_id)) {
168 ... /* process transitions of composite state */
169 }
170 else
171 if (hasSuperState(source_id) &&
172 !(encl_state(target_id).equals(encl_state(source_id)))) {
173 ... /* process interlevel transition */
174 }
175 else

Figure B.6: Statechart element processing code (continued)

(iii) An event trigger of a join pseudostate is associated with the outgoing tran-

sition instead of the incoming transitions. As a result, the construction of

a matching construct which involves a join pseudostate should refer to the
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176 if (!pseudostate_ids.contains(source_id)) {
177 transition[no_of_trans][0] = source_id;
178 transition[no_of_trans][1] = event_id;
179 if (guard_exp_id.equals(""))
180 transition[no_of_trans][2] = guard_id;
181 else
182 transition[no_of_trans][2] = guard_exp_id;
183 if (action_exp_id.equals(""))
184 transition[no_of_trans][3] = action_id;
185 else
186 transition[no_of_trans][3] = action_exp_id;
187 transition[no_of_trans][4] = target_id;
188 no_of_trans++;
189 }
190 else
191 ... /* process transition of the pseudostate */
192 }
193 else
194 if (children.item(i).getNodeName().equals("UML:CompositeState") &&
195 children.item(i).getParentNode().getNodeName().
196 equals("UML:CompositeState.subvertex")) {
197 ... /* process composite state */
198 processNode( children.item( i ) );
199 ...
200 }
201 else
202 processNode( children.item( i ) );
203 }
204 }

Figure B.7: Statechart element processing code (continued)

event trigger of the outgoing transition.

(iv) A transition in which the target state is a join pseudostate should use the

target state of the outgoing transition of the join pseudostate for generating

the π-calculus specification.

According to Rules 1 and 2 of the formalization in Chapter 3, each event which is

represented as a channel is a parameter of the process identifier. An iterator is used

for retrieving the event names from the set events collected by the tree traverser. The

generated event parameters are stored in a variable e params. Lines 1–8 of Figure B.8

are the code for an iterator that processes the set events.

Likewise, the code fragments for guard-conditions and actions are on lines 9–12 and

13–37 of Figure B.8, respectively. Channels related to guard-conditions and actions are

stored in variables g params and a params. All these variables and state name are then

concatenated and stored in a variable source state exp.

Consider a UML statechart diagram that comprises three states S 1, S 2 and S 3

as well as two event triggers e 1 and e 2 as illustrated in Figure B.9. The XMI repre-
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1 Iterator eit = events.iterator();
2 while (eit.hasNext()) {
3 tmp_evt = (String) eit.next();
4 if (!processed_evts_params.contains(tmp_evt)) {
5 e_params = e_params + "," + tmp_evt;
6 processed_evts_params.add(tmp_evt);
7 }
8 }
9 Iterator git = guards.iterator();

10 while (git.hasNext()) {
11 g_params = g_params + "," + (String)git.next();
12 }
13 Iterator ait = actions.iterator();
14 while (ait.hasNext()) {
15 tmp_act = (String)ait.next();
16 if (tmp_act.substring(0,4).equals("send")) {
17 startpos = 5;
18 endpos = tmp_act.indexOf(’.’);
19 rcvd_obj = tmp_act.substring(startpos,endpos);
20 if (!processed_params.contains("ins_" + rcvd_obj)) {
21 a_params = a_params + "," + "ins_" + rcvd_obj;
22 processed_params.add("ins_" + rcvd_obj);
23 }
24 startpos = endpos + 1;
25 endpos = tmp_act.length();
26 tmp_evt = tmp_act.substring(startpos,endpos);
27 if (!processed_params.contains(tmp_evt)) {
28 a_params = a_params + "," + tmp_evt;
29 processed_params.add(tmp_evt);
30 }
31 }
32 else
33 if (!processed_params.contains(tmp_act)) {
34 a_params = a_params + "," + tmp_act;
35 processed_params.add(tmp_act);
36 }
37 }

Figure B.8: Constructing parameters for process identifier
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sentation of the UML statechart diagram generated by Poseidon for UML is shown in

Figures B.10 and B.11. For the sake of clarity, unnecessary detail is elided and marked

by an ellipsis. Lines 1 and 2 identify that XML version 1.0, UTF-8 encoding and XMI

version 1.2 are used. Lines 4–16, 17–32 and 33–45 are the XMI representations of the

states S 1, S 2 and S 3, respectively. Likewise, the XMI representations of the two

transitions and two event triggers correspond to lines 48–66, 67–85, 88–97 and 98–107.

 

Figure B.9: The screenshot of example 1

Figure B.12 shows the MWB code (π-calculus representation) of Figure B.9 gener-

ated by the SC2PiCal. Line 1 of Figure B.12 is based on the variable source state exp.

To generate the input action on line 2 of Figure B.12, we define two variables as:

1 String input_ch = "x";
2 String ich;

Figure B.13 is a block of code for building an input action. We consider the following

cases:
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1 <?xml version = ’1.0’ encoding = ’UTF-8’ ?>
2 <XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Fri Nov 18 23:43:08 CST 2005’>
3 ...
4 <UML:SimpleState xmi.id = ’a14’ name = ’S_1’ isSpecification = ’false’>
5 <UML:ModelElement.taggedValue>
6 <UML:TaggedValue xmi.id = ’a15’ isSpecification = ’false’
7 dataValue = ’-64--88-1-100-779dce:107a3fee6e8:-7ff7’>
8 <UML:TaggedValue.type>
9 <UML:TagDefinition xmi.idref = ’a3’/>

10 </UML:TaggedValue.type>
11 </UML:TaggedValue>
12 </UML:ModelElement.taggedValue>
13 <UML:StateVertex.outgoing>
14 <UML:Transition xmi.idref = ’a16’/>
15 </UML:StateVertex.outgoing>
16 </UML:SimpleState>
17 <UML:SimpleState xmi.id = ’a17’ name = ’S_2’ isSpecification = ’false’>
18 <UML:ModelElement.taggedValue>
19 <UML:TaggedValue xmi.id = ’a18’ isSpecification = ’false’
20 dataValue = ’-64--88-1-100-779dce:107a3fee6e8:-7ff6’>
21 <UML:TaggedValue.type>
22 <UML:TagDefinition xmi.idref = ’a3’/>
23 </UML:TaggedValue.type>
24 </UML:TaggedValue>
25 </UML:ModelElement.taggedValue>
26 <UML:StateVertex.outgoing>
27 <UML:Transition xmi.idref = ’a19’/>
28 </UML:StateVertex.outgoing>
29 <UML:StateVertex.incoming>
30 <UML:Transition xmi.idref = ’a16’/>
31 </UML:StateVertex.incoming>
32 </UML:SimpleState>
33 <UML:SimpleState xmi.id = ’a20’ name = ’S_3’ isSpecification = ’false’>
34 <UML:ModelElement.taggedValue>
35 <UML:TaggedValue xmi.id = ’a21’ isSpecification = ’false’
36 dataValue = ’-64--88-1-100-779dce:107a3fee6e8:-7ff5’>
37 <UML:TaggedValue.type>
38 <UML:TagDefinition xmi.idref = ’a3’/>
39 </UML:TaggedValue.type>
40 </UML:TaggedValue>
41 </UML:ModelElement.taggedValue>
42 <UML:StateVertex.incoming>
43 <UML:Transition xmi.idref = ’a19’/>
44 </UML:StateVertex.incoming>
45 </UML:SimpleState>
46 ...

Figure B.10: The XMI representation of example 1

1. If both the source and target states are substates of a concurrent composite state,

the input action is generated by the statements on lines 6–8.

2. If the source state is a substate of a concurrent composite state and the target

state is a basic state in which the transition is an interlevel transition, the input

action is produced by the statements on lines 12–14.

3. If the source state is a substate of a non-concurrent composite state and a con-

current composite state is present, the input action is yielded by the statement

on line 17.

4. If the source state is a substate of a non-concurrent composite state and a con-
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47 <UML:StateMachine.transitions>
48 <UML:Transition xmi.id = ’a16’ name = ’t_1’ isSpecification = ’false’>
49 <UML:ModelElement.taggedValue>
50 <UML:TaggedValue xmi.id = ’a22’ isSpecification = ’false’
51 dataValue = ’-64--88-1-100-779dce:107a3fee6e8:-7ff4’>
52 <UML:TaggedValue.type>
53 <UML:TagDefinition xmi.idref = ’a3’/>
54 </UML:TaggedValue.type>
55 </UML:TaggedValue>
56 </UML:ModelElement.taggedValue>
57 <UML:Transition.trigger>
58 <UML:CallEvent xmi.idref = ’a23’/>
59 </UML:Transition.trigger>
60 <UML:Transition.source>
61 <UML:SimpleState xmi.idref = ’a14’/>
62 </UML:Transition.source>
63 <UML:Transition.target>
64 <UML:SimpleState xmi.idref = ’a17’/>
65 </UML:Transition.target>
66 </UML:Transition>
67 <UML:Transition xmi.id = ’a19’ name = ’t_2’ isSpecification = ’false’>
68 <UML:ModelElement.taggedValue>
69 <UML:TaggedValue xmi.id = ’a24’ isSpecification = ’false’
70 dataValue = ’-64--88-1-100-779dce:107a3fee6e8:-7ff3’>
71 <UML:TaggedValue.type>
72 <UML:TagDefinition xmi.idref = ’a3’/>
73 </UML:TaggedValue.type>
74 </UML:TaggedValue>
75 </UML:ModelElement.taggedValue>
76 <UML:Transition.trigger>
77 <UML:CallEvent xmi.idref = ’a25’/>
78 </UML:Transition.trigger>
79 <UML:Transition.source>
80 <UML:SimpleState xmi.idref = ’a17’/>
81 </UML:Transition.source>
82 <UML:Transition.target>
83 <UML:SimpleState xmi.idref = ’a20’/>
84 </UML:Transition.target>
85 </UML:Transition>
86 </UML:StateMachine.transitions>
87 ...
88 <UML:CallEvent xmi.id = ’a23’ name = ’e_1’ isSpecification = ’false’>
89 <UML:ModelElement.taggedValue>
90 <UML:TaggedValue xmi.id = ’a26’ isSpecification = ’false’
91 dataValue = ’-64--88-1-100-779dce:107a3fee6e8:-7ff2’>
92 <UML:TaggedValue.type>
93 <UML:TagDefinition xmi.idref = ’a3’/>
94 </UML:TaggedValue.type>
95 </UML:TaggedValue>
96 </UML:ModelElement.taggedValue>
97 </UML:CallEvent>
98 <UML:CallEvent xmi.id = ’a25’ name = ’e_2’ isSpecification = ’false’>
99 <UML:ModelElement.taggedValue>

100 <UML:TaggedValue xmi.id = ’a27’ isSpecification = ’false’
101 dataValue = ’-64--88-1-100-779dce:107a3fee6e8:-7ff1’>
102 <UML:TaggedValue.type>
103 <UML:TagDefinition xmi.idref = ’a3’/>
104 </UML:TaggedValue.type>
105 </UML:TaggedValue>
106 </UML:ModelElement.taggedValue>
107 </UML:CallEvent>
108 ...
109 </XMI>

Figure B.11: The XMI representation of example 1 (continued)

current composite state is absent, the input action is emitted by the statement

on line 22.

5. If the source state is a concurrent composite state, the input action is obtained
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1 agent S_1(step,event_ch0,e_1,e_2)= \
2 event_ch0(x1). \
3 ([x1=e_1] \
4 ’step.S_2(step,event_ch0,e_1,e_2)+ \
5 [x1=e_2]’step.S_1(step,event_ch0,e_1,e_2))
6

7 agent S_2(step,event_ch0,e_1,e_2)= \
8 event_ch0(x1). \
9 ([x1=e_2] \

10 ’step.S_3(step,event_ch0,e_1,e_2)+ \
11 [x1=e_1]’step.S_2(step,event_ch0,e_1,e_2))

Figure B.12: The MWB code of example 1

by running the statement on line 28. The for loop on lines 29–48 is to output

actions which represent the interaction between the concurrent composite state

and its substates.

6. If the source state is not a concurrent composite state and a concurrent composite

state is present, the input action is determined by the statement on line 53.

7. If the source state is not a concurrent composite state and a concurrent composite

state is absent, the input action is constructed by the statement on line 57.

Line 2 of Figure B.12 is obtained by executing statements on lines 1, 57 and 60 of

Figure B.13.

Figure B.14 is a snippet of code which produces matching construct. The cases

whether an event is present or not in a transition are treated separately. The presence of

an event in a transition is handled by line 2 of Figure B.14, while the absence of an event

in a transition is processed by either lines 7–9 or line 12. If the source state is a substate

of a concurrent composite state and the target state is a join pseudostate, the event of

the outgoing transition of the join pseudostate is used to build the matching construct

using the statements on lines 7 and 8 of Figure B.14 as the incoming transitions of

the join pseudostate are triggerless transitions. The matching construct on line 3 of

Figure B.12 is constructed using line 2 of Figure B.14.

The code fragment which generates code for target state is shown in Figures B.15

and B.16. In what follows, we summarize some of the most important cases considered

when constructing code for target state.

lines 3–8: are executed if the target state has a superstate and the superstates of the
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1 ich = input_ch + i;
2 if (hasSuperState(transition[index][0])) {
3 if (concurrent) {
4 if (concur_substates.contains(id_to_name.get(transition[index][0])) &
5 concur_substates.contains(id_to_name.get(transition[index][4]))) {
6 ch_no = ((String) concur_ch_table.get(transition[index][0])).substring(14);
7 input_exp = concur_ch_table.get(transition[index][0]) +
8 "(" + ich + ",ack_substate" + ch_no + ")";
9 }

10 else {
11 if (concur_substates.contains(id_to_name.get(transition[index][0]))) {
12 ch_no = ((String) concur_ch_table.get(tmp_state)).substring(14);
13 input_exp = (String) concur_ch_table.get(tmp_state) + "(" + ich + ",ack_substate" +
14 ch_no + ")";
15 }
16 else {
17 input_exp = ch_table.get(transition[index][0]) + "(" + ich + ",ack" + ")";
18 }
19 }
20 }
21 else {
22 input_exp = event_ch1 + "(" + ich + ",ack" + ")";
23 }
24 }
25 else {
26 if (concurrent) {
27 if (concur_comp_states.contains(id_to_name.get(transition[index][0]))) {
28 input_exp = ch_table.get(transition[index][0]) + "(" + input_ch + "1" + ")" + ".";
29 for (m=1; m<=((Integer)comp_state_no_of_orth_regions_table.get(
30 id_to_name.get(transition[index][0]))).intValue(); m++) {
31 ack_ch_no = m + 1;
32 if (m==1) {
33 channel_list = "ack_substate" + m;
34 send_event_list = "’event_substate" + m +
35 "<" + input_ch + "1" + "," + "ack_substate" + m + ">";
36 recd_ack_list = "ack_substate" + m +
37 "(" + input_ch + ack_ch_no + ")";
38 }
39 else {
40 channel_list = channel_list + "," + "ack_substate" + m;
41 send_event_list = send_event_list + "." +
42 "’event_substate" + m +
43 "<" + input_ch + "1" + "," + "ack_substate" + m + ">";
44 recd_ack_list = recd_ack_list + "." +
45 "ack_substate" + m +
46 "(" + input_ch + ack_ch_no + ")";
47 }
48 }
49 input_exp = input_exp + "(" + "^" + channel_list + ")" + " \\" + "\n" +
50 send_event_list + "." + " \\" + "\n" + recd_ack_list;
51 }
52 else {
53 input_exp = ch_table.get(transition[index][0]) + "(" + ich + ")";
54 }
55 }
56 else {
57 input_exp = event_ch0 + "(" + ich + ")";
58 }
59 }
60 writeln(input_exp + "." + " \\");

Figure B.13: Generating input action



188 APPENDIX B. DETAILED IMPLEMENTATION

1 if (id_to_name.get(transition[index][1]) != null) {
2 e_match_exp = "[" + ich + "=" + id_to_name.get(transition[index][1]) + "]";
3 }
4 else
5 if (concur_substates.contains(id_to_name.get(transition[index][0])) &
6 joins.contains(transition[index][4])) {
7 join_event = locate_join_event(transition[index][4]);
8 e_match_exp = "[" + ich + "=" + join_event + "]";
9 processed_events.add(join_event);

10 }
11 else {
12 e_match_exp = "";
13 }

Figure B.14: Generating matching construct

source and target states are different.

lines 16–34: are run whenever the target state is a concurrent composite state.

lines 38–39: are invoked when the target state is a non-concurrent composite state.

lines 46–53: are executed only if both the source and target states are substates of a

concurrent composite state.

lines 71–73: are invoked if the target state is a fork pseudostate.

lines 77–85: are evaluated whenever the target state is a join pseudostate.

lines 88–91: are run when the target state is a basic state.

The execution of lines 88–91 of Figure B.16 produces as its results a value for the

variable target state exp. The output action step and target state of Figure B.12 are

created by concatenating the output action step with the variable target state exp.

The operator + and continuation character \ on line 4 of Figure B.12 as well as the

matching construct for other event i.e. line 5 of Figure B.12 are generated by the code

fragment as shown in Figure B.17.

The operator + and continuation character \ are produced by the method writeln

on line 7. The if statement on lines 5 and 6 specify that any events which are not

equal to event e 1 (transition[index][1]) and have not been processed are regarded as

other events. A π-calculus expression which consists of a matching construct, an output

prefix step and a process identifier is generated for each of these events.
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1 if (hasSuperState(transition[index][4]) &&
2 !(encl_state(transition[index][4]).equals(encl_state(transition[index][0])))) {
3 target_params = event_ch1 + e_params + g_params + a_params + other_params;
4 target_state_exp = id_to_name.get(transition[index][4]) + "(" + target_params + ")";
5 target_state_exp = "(" + "^" + event_ch1 + ")" + " \\" + "\n" +
6 "(" + id_to_name.get(encl_state(transition[index][4])) +
7 "(" + "step," + event_ch0 + "," + target_params + ")" + " | " +
8 " \\" + "\n" + target_state_exp + ")";
9 }

10 else
11 if (transition[index][4].equals("0"))
12 target_state_exp = "0";
13 else {
14 if (!(concur_state.indexOf(transition[index][4])==-1) &
15 (transition[index][1]!=null)) {
16 ListIterator lt = comp_state.listIterator();
17 while (lt.hasNext()) {
18 if (lt.next().equals(transition[index][4])) {
19 target_params = ch_table.get((String) default_state.get(l)) +
20 e_params + g_params + a_params + other_params;
21 ch_list = ch_list + "," + ch_table.get((String) default_state.get(l));
22 restrict_list = restrict_list + "(" + "^" +
23 ch_table.get((String) default_state.get(l)) + ")";
24 target_state_exp = target_state_exp + " | " + " \\" + "\n" +
25 id_to_name.get((String) default_state.get(l)) +
26 "(" + target_params + ")";
27 }
28 l++;
29 }
30 target_state_exp = restrict_list +
31 "(" + id_to_name.get(transition[index][4]) +
32 "(" + "step" + "," + event_ch0 + e_params + g_params +
33 a_params + other_params + ch_list + ")" +
34 target_state_exp + ")";
35 }
36 else
37 if (hasSubStates(transition[index][4])) {
38 target_state_exp = id_to_name.get(transition[index][4]) +
39 "(" + params + ")";
40 }
41 else {
42 if (hasSuperState(transition[index][4])) {
43 if (concurrent) {
44 if (concur_substates.contains(id_to_name.get(transition[index][0])) &
45 concur_substates.contains(id_to_name.get(transition[index][4]))) {
46 ch_no = ((String) concur_ch_table.get(transition[index][0])).substring(14);
47 target_params = concur_ch_table.get(transition[index][0]) +
48 e_params + g_params + a_params + other_params + "," +
49 "cont_substate" + ch_no + "," +
50 "end_substate" + ch_no;
51 target_state_exp = "cont_substate" + ch_no + "." +
52 id_to_name.get(transition[index][4]) + "(" +
53 target_params + ")";
54 }
55 else {
56 target_params = ch_table.get(transition[index][4]) + e_params + g_params +
57 a_params + other_params;
58 target_state_exp = id_to_name.get(transition[index][4]) + "(" +
59 target_params + ")";
60 }
61 }
62 else {
63 target_params = event_ch1 + e_params + g_params + a_params +
64 other_params;
65 target_state_exp = id_to_name.get(transition[index][4]) + "(" +
66 target_params + ")";
67 }
68 }
69 else {

Figure B.15: Generating code for target state
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70 if (forks.contains(transition[index][4])) {
71 target_params = e_params + g_params + a_params + other_params;
72 target_state_exp = gen_targets_for_a_fork(transition[index][4], target_params,
73 event_ch0);
74 }
75 else {
76 if (joins.contains(transition[index][4])) {
77 if (concur_substates.contains(id_to_name.get(transition[index][0]))) {
78 target_state_exp = source_state_exp;
79 }
80 else {
81 target_params = "step" + "," + event_ch0 + e_params + g_params + a_params +
82 other_params;
83 target_state_exp = gen_targets_for_a_join(transition[index][4],target_params,
84 event_ch0);
85 }
86 }
87 else {
88 target_params = "step" + "," + event_ch0 + e_params + g_params + a_params +
89 other_params;
90 target_state_exp = id_to_name.get(transition[index][4]) + "(" +
91 target_params + ")";
92 }
93 }
94 }
95 }
96 }

Figure B.16: Generating code for target state (continued)

Based on the same principles, concepts and techniques, the other π-calculus ex-

pressions which correspond to guard-condition, action and composite state can also be

generated as illustrated in the subsequent sections.

B.3 The Detailed Implementation of PiCal2NuSMV

The translation of UML statecharts based π-calculus into NuSMV code comprises three

main steps as illustrated in Figure B.1. The lexical analysis and syntax analysis are

done in the first two steps. A π-calculus specification is taken as input and the out-

puts are a number of lists and sets which contain state variable declaration, substate

variable declaration and transition relation represented as a set of next statements.

Subsequently, the code generator yields the corresponding NuSMV code.

ANTLR (ANother Tool for Language Recognition) is a software tool for generating

a lexer and parser based on a specified grammar. To generate a lexer and parser for the

π-calculus, we start from the widely-accepted BNF grammar for the π-calculus given

in Figure B.18.

However, while suitable for typesetting the π-calculus, it is not appropriate for a
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1 if (!e_match_exp.equals("")) {
2 Iterator eit2 = events.iterator();
3 while (eit2.hasNext()) {
4 String tmp_event = (String)eit2.next();
5 if (!tmp_event.equals(id_to_name.get(transition[index][1])) &&
6 !(processed_events.contains(tmp_event))) {
7 writeln("+" + " \\");
8 e_match_exp = "[" + ich + "=" + tmp_event + "]";
9 if (hasSuperState(transition[index][0]))

10 if (concur_substates.contains(id_to_name.get(transition[index][0])) &
11 concur_substates.contains(id_to_name.get(transition[index][4]))) {
12 ch_no = ((String) concur_ch_table.get(transition[index][0])).
13 substring(14);
14 write(e_match_exp + "’ack_substate" + ch_no + "<neg>." +
15 "cont_substate" + ch_no + "." + source_state_exp);
16 }
17 else {
18 if (concur_substates.contains(id_to_name.get(transition[index][0])) &
19 joins.contains(transition[index][4])) {
20 ch_no = ((String) concur_ch_table.get(tmp_state)).substring(14);
21 write(e_match_exp + "’ack_substate" + ch_no + "<neg>." +
22 "cont_substate" + ch_no + "." + source_state_exp);
23 }
24 else {
25 write(e_match_exp + "’ack<neg>." +
26 source_state_exp);
27 }
28 }
29 else {
30 write(e_match_exp + "’step." +
31 source_state_exp);
32 }
33 }
34 }
35 writeln(")");
36 }
37 else {
38 writeln("");
39 }

Figure B.17: Generating matching constructs for other events
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P ::= 0 | x(~y).P | x〈~y〉.P | (ν~x)P | [x = y]P | P |P | P + P | A(~x)

Figure B.18: The grammar for the π-calculus

machine processable representation. Consequently, we use the EBNF grammar corre-

sponding to the input language for the Mobility Workbench. A fragment of the ANTLR

input specification which includes both the EBNF grammar and actions are given in

Figures B.19 and B.20.

1 class PiCalParser extends Parser;
2 options {k = 2;}
3

4 multiDefn : (agentDefn)* EOF;
5 agentDefn : {String v_agentId;}
6 AGENT v_agentId=agentId
7 {PiCal2NuSMV.set_cur_state(v_agentId);
8 PiCal2NuSMV.set_init_state(v_agentId);}
9 EQ process

10 {PiCal2NuSMV.reset_superstate_enable_flag();};
11 agentId returns [String value = new String()]
12 : {String v_channelList;}
13 v_agentname:AGENTNAME
14 {PiCal2NuSMV.set_cur_agent_name(v_agentname.getText());}
15 LPAREN v_channelList=channelList RPAREN
16 {value = v_agentname.getText();
17 if (PiCal2NuSMV.get_gen_substate_flag())
18 PiCal2NuSMV.append_substate_var_decl(value);
19 else
20 PiCal2NuSMV.append_state_var_decl(value);};

Figure B.19: Fragment of the ANTLR input specification

Line 1 is a parser declaration which specifies the parser to be generated. Line 2

is the options section. The option k=2 defines a token lookahead value of two. Line

4 is a parser rule. The rule states that a valid π-calculus file contains multiple agent

definitions followed by an end-of-file token. Lines 5–10 stipulate the second parser rule.

The statements on lines 5, 7, 8 and 10, which are embedded in the EBNF grammar

and enclosed in braces, are actions. These embedded actions are incorporated into the

source code of the parser. They store information related to state variable declaration,

substate variable declaration and transition relation to a number of lists and sets when

expressions are parsed. Likewise, the parser rules for agent identifiers, non-deterministic

choices, parallel compositions, matching constructs and restrictions are defined on lines
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21 channelList returns [String value = new String()]
22 : v_channel:CHANNEL
23 {value = v_channel.getText();
24 if (!PiCal2NuSMV.retrieve_cur_agent_name().equals("")) {
25 PiCal2NuSMV.linkup_substate_channels(
26 PiCal2NuSMV.retrieve_cur_agent_name(),value);
27 }
28 PiCal2NuSMV.clear_cur_agent_name();
29 }
30 (COMMA CHANNEL)*;
31 process : sumExpr;
32 sumExpr : parallelExpr
33 ({if (PiCal2NuSMV.is_superstate_enable())
34 PiCal2NuSMV.append_tmp_case_cond(PiCal2NuSMV.get_common_cond());}
35 PLUS parallelExpr)*
36 {PiCal2NuSMV.reset_ack_substate_flag();};
37 parallelExpr : expr (PARALLEL
38 {PiCal2NuSMV.set_gen_substate_flag();
39 PiCal2NuSMV.chk_concur_comp_state();
40 PiCal2NuSMV.append_multi_list("substate");
41 PiCal2NuSMV.rm_frm_tmp_var_list("state");
42 } expr)*
43 {PiCal2NuSMV.reset_vars();
44 PiCal2NuSMV.reset_gen_substate_flag();};
45 expr : (match)* subExpr;
46 subExpr : (restrict)? term;
47 ...

Figure B.20: Fragment of the ANTLR input specification (continued)

11–20, 32–36, 37–44, 45 and 46, respectively.

Next, ANTLR constructs a lexer and a parser from the specification in Figures B.19

and B.20, instances of which may be created thus:

1 try {
2 input = new DataInputStream(new FileInputStream(fname));
3 module_name = fname;
4 } catch(Exception e) {System.err.println(e.getMessage());}
5 PiCalLexer lexer = new PiCalLexer(input);
6 PiCalParser parser = new PiCalParser(lexer);
7 gen_module();

A DataInputStream object based on the filename of the π-calculus expressions is

created. The filename of the π-calculus expressions is also used as the module name.

A lexer and parser are created, respectively, by using the DataInputStream object and

lexer as arguments of the constructors.

Once a parser has been constructed, we can address the transformation of the

π-calculus representation into NuSMV code for the purpose of model-checking. Imple-

mentation issues and considerations of the translation module include:
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1. Like the code generator of SC2PiCal, non-concurrent composite states, concurrent

composite states and interlevel transitions cause the implementation to become

more complex.

2. As defined by Rule 12 of Chapter 5, the signals cont and end in a π-calculus

specification are represented in NuSMV as Boolean variables. The number of cont

and end variables to be generated in the VAR section depends on the number

of the orthogonal regions of the concurrent composite state. The number of

orthogonal regions is obtained indirectly from a π-calculus process definition by

counting the number of concurrent processes in the process definition.

3. The key data structure is a set var list which keeps a set of NuSMV variables

to be included in the ASSIGN section. The ASSIGN section is constructed by

looping over the set var list and retrieving all the corresponding next statements

from the list case cond stmt.

The starting point is the method gen module, the implementation of which is given

below:

1 public static void gen_module() {
2 gen_module_decl();
3 gen_var_decl();
4 gen_assign_stmts();
5 gen_fairness_stmt();
6 }

The structure of the method gen module coincides with the structure of a NuSMV

module:

line 2: the module declaration,

line 3: the VAR section,

line 4: the ASSIGN section and

line 5: the fairness constraint.

The fairness constraint specifies that the module is selected for execution infinitely

often. The following code fragments implement the method gen module decl and its

two related methods get module name and to comma sep list :
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1 private static void gen_module_decl() {
2 writeln("MODULE " + get_module_name(module_name) +
3 "(" + to_comma_sep_list(param_list) + ")");
4 }
5

6 private static String get_module_name(String in_string) {
7 int startPos = in_string.indexOf(’\\’)+ 1;
8 int endPos = in_string.indexOf(’.’);
9 String module_name = in_string.substring(startPos, endPos);

10 return module_name;
11 }
12

13 private static String to_comma_sep_list(Set in_set) {
14 String out_string = "";
15 Iterator it = in_set.iterator();
16 while (it.hasNext()) {
17 if (out_string.equals(""))
18 out_string += (String) it.next();
19 else
20 out_string += (String) "," + it.next();
21 }
22 return out_string;
23 }

The method gen module decl outputs the module declaration (line 1 of Figure B.21)

to a file. The method get module name inputs a string which consists of a subdirectory,

if any, a filename as well as an extension and returns the filename as the module name.

The method to comma sep list returns all the elements of the set param list as a string

in which each element is separated by a comma.

The method gen var decl, which outputs variable declarations, is implemented as

Figures B.22 and B.23. Lines 2 and 3 of Figure B.21 are generated by lines 3–18 of

the method gen var decl. The symbolic values of the scalar variable state are retrieved

from the set state var decl.

By implementing the methods gen assign stmts and gen fairness stmt using a simi-

lar strategy, the ASSIGN section (lines 4–24 of Figure B.21) and the fairness constraint

(line 25 of Figure B.21) are generated. The method gen assign stmts (Figure B.24) pro-

duces line 4 of Figure B.21 and invokes the method retrieve case stmt (Figures B.25

and B.26) for constructing the initial and next statements. The set var list (line 5

of Figure B.25) stores the set of NuSMV variables in which the transition relation is

defined in the ASSIGN section. Similarly, each element of the lists case cond varname

(line 8 of Figure B.25) and case cond stmt (line 13 of Figure B.25) holds a NuSMV

variable name and its corresponding next statement which consists of the precondition

and the next possible value(s) of the NuSMV variable. For each NuSMV variable in the
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1 MODULE sc_1(step,event_buff)
2 VAR
3 state: {S_3,S_1,S_2};
4 ASSIGN
5 init(state) := S_1;
6 next(state) :=
7 case
8 state=S_1 & event_buff=e_1 & !step:S_2;
9 state=S_2 & event_buff=e_2 & !step:S_3;

10 1: state;
11 esac;
12 next(step) :=
13 case
14 state=S_1 & event_buff=e_1 & !step:1;
15 state=S_2 & event_buff=e_2 & !step:1;
16 state=next(state) & !step: 1;
17 event_buff != empty & step: 0;
18 1: step;
19 esac;
20 next(event_buff):=
21 case
22 event_buff != empty & next(step): empty;
23 1 : event_buff;
24 esac;
25 FAIRNESS running

Figure B.21: The NuSMV code of example 1

set var list, the list case cond varname is looped over. If the NuSMV variable exists in

the list case cond varname and is a variable defined within the NuSMV module, an ini-

tial statement is generated. Additionally, all the associated next statements are fetched

from the list case cond stmt and then emitted by the method retrieve case stmt.

Executing lines 17 and 18 of Figure B.25 as well as lines 29 and 30 of Figure B.25 out-

put the init statement, next statement and case statement on lines 5–7 of Figure B.21.

Lines 8 and 9 of Figure B.21 are constructed by executing line 32 of Figure B.25 and

the while statement on line 10 of Figure B.25 twice. Lines 10 and 11 of Figure B.21 are

generated by lines 78 and 81 of Figure B.26. Likewise, lines 12–15 of Figure B.21 as

well as lines 18 and 19 of Figure B.21 are obtained. The statements on lines 16, 17 and

20–24 of Figure B.21 are produced by lines 39, 59 and 85 of Figure B.26. The method

gen fairness stmt, which yields line 25 of Figure B.21, is defined below:

1 private static void gen_fairness_stmt() {
2 writeln("FAIRNESS running");
3 }
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1 private static void gen_var_decl() {
2 int index;
3 writeln("VAR");
4 write("state: ");
5 write("{");
6 index = 1;
7 Iterator it;
8 it = state_var_decl.iterator();
9 while (it.hasNext()) {

10 if (index == 1) {
11 write(it.next());
12 }
13 else {
14 write("," + it.next());
15 }
16 index++;
17 }
18 writeln("};");
19 if (!substate_var_decl.isEmpty()) {
20 if (concur_comp_state_flag) {
21 for (int i=0; i<=no_of_regions; i++) {
22 if (substate[i].size() > 0) {
23 writeln("substate" + i + ": {" + to_comma_sep_list(substate[i]) +
24 ",nil" + "};");
25 writeln("ack_substate" + i + ": {pos, neg, undefine};");
26 writeln("cont_substate" + i + ": boolean;");
27 writeln("end_substate" + i + ": boolean;");
28 }
29 }
30 }

Figure B.22: The gen var decl method

B.4 Example 2

To further illustrate the process reported in the thesis and the tools that have been

developed to support it, this section provides another example starting from a diagram

that depicts a range of the features of UML statecharts, so that the way each of these

features is handled at the different stages can be observed.

B.4.1 Statechart Diagrams

As discussed in Chapter 3, the features of UML statecharts that are addressed in this

thesis are:

• event

• state
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31 else {
32 write("substate: ");
33 write("{");
34 index = 1;
35 substate_var_decl.add("nil");
36 it = substate_var_decl.iterator();
37 while (it.hasNext()) {
38 if (index == 1) {
39 write(it.next());
40 }
41 else {
42 write("," + it.next());
43 }
44 index++;
45 }
46 writeln("};");
47 }
48 if (!concur_comp_state_flag) {
49 writeln(ack_decl);
50 }
51 retrieve_guard_cond_decl();
52 writeln(superstate_enable_decl);
53 }
54 }

Figure B.23: The gen var decl method (continued)

1 private static void gen_assign_stmts() {
2 writeln("ASSIGN");
3 retrieve_case_stmt();
4 }

Figure B.24: The gen assign stmts method

• guard-condition

• action

• non-concurrent composite state

• concurrent composite state

Thus the diagram (taken from a screenshot of the Poseidon for UML system) in Fig-

ure B.27 has been prepared to capture features event, state, guard-condition, action

and non-concurrent composite state. Poseidon for UML exports a statechart diagram

in an XMI format and the equivalent of the diagram in the screenshot (with elision

to avoid unnecessary detail) appears in Figures B.28, B.29 and B.30. The XMI rep-

resentations of the states S 1 and S 2 as well as the non-composite state S 3 and its
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1 public static void retrieve_case_stmt() {
2 int k;
3 String prev_var = "";
4 String tmp_substate_stmts = "";
5 Iterator it1 = var_list.iterator();
6 while (it1.hasNext()) {
7 String cur_var = (String) it1.next();
8 ListIterator it2 = case_cond_varname.listIterator();
9 int index = 0;

10 while (it2.hasNext()) {
11 if (cur_var.equals((String)it2.next())) {
12 ListIterator it3 = case_cond_type.listIterator(index);
13 ListIterator it4 = case_cond_stmt.listIterator(index);
14 String out_type = (String)it3.next();
15 String out_stmt = (String)it4.next();
16 if (!cur_var.equals(prev_var)) {
17 if (cur_var.equals("state"))
18 gen_init_state();
19 if (cur_var.equals("substate"))
20 gen_init_substate();
21 if (cur_var.endsWith("_sent"))
22 gen_init_sent(cur_var);
23 if (cur_var.startsWith("substate") & cur_var.length() > 8)
24 gen_init_substate_of_concur(cur_var);
25 if (cur_var.startsWith("cont_substate"))
26 gen_init_cont_substate(cur_var);
27 if (cur_var.startsWith("end_substate"))
28 gen_init_end_substate(cur_var);
29 writeln(out_type + "(" + cur_var +") " + ":= ");
30 writeln("case");
31 }
32 writeln(out_stmt);
33 prev_var = cur_var;
34 }
35 index++;
36 }

Figure B.25: The retrieve case stmt method
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37 if (cur_var.equals("step")) {
38 if (substate_var_decl.isEmpty())
39 writeln("state=next(state) & !step: 1" + ";");
40 else {
41 Iterator it5 = superstate_list.iterator();
42 while (it5.hasNext()) {
43 writeln("state=" + it5.next() + " & ack=neg & !step " +
44 "& superstate_enable: 1;");
45 }
46 if (no_of_regions > 1) {
47 for (int m=1; m<=no_of_regions; m++) {
48 tmp_substate_stmts = tmp_substate_stmts + " & substate" +
49 m + " = nil";
50 }
51 writeln("state=next(state) & !step" + tmp_substate_stmts +
52 ": 1" + ";");
53 }
54 else {
55 writeln("state=next(state) & !step & substate = nil: 1" + ";");
56 writeln("state=next(state) & !step & superstate_enable: 1" + ";");
57 }
58 }
59 writeln("event_buff != empty & step: 0;");
60 }
61 if (cur_var.equals("ack")) {
62 if (!case_cond_varname.contains("ack")) {
63 writeln("next" + "(" + cur_var +") " + ":= ");
64 writeln("case");
65 }
66 writeln("substate=next(substate) & !step & !superstate_enable " +
67 "& !substate = nil: neg;");
68 writeln("1: " + "undefine" + ";");
69 }
70 else {
71 if (cur_var.startsWith("ack_substate")) {
72 k = Integer.parseInt(cur_var.substring(12));
73 writeln("substate" + k + " = next(substate" + k + ") & !step & " +
74 "!superstate_enable & !substate" + k + " = nil: neg;");
75 writeln("1: undefine;");
76 }
77 else {
78 writeln("1: " + cur_var + ";");
79 }
80 }
81 writeln("esac;");
82 }
83 if (!substate_var_decl.isEmpty())
84 gen_superstate_enable_case_stmts();
85 gen_event_buff_stmts();
86 }

Figure B.26: The retrieve case stmt method (continued)
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substate V 1 are on lines 4–16, 17–32, 33–58 and 44–56, respectively. Similarly, lines

61–109, 110–128, 131–140 and 141–150 are the equivalent representations of the two

transitions and the two events in XMI format.

 

Figure B.27: The screenshot of example 2

B.4.2 The π-Calculus Representation

The first step is to translate the XMI representation of the UML statechart into the

π-calculus, using the program SC2PiCal. Applying the translation rules that were

discussed in detail in Chapter 3, the specification in Figure B.31 is obtained. This π-

calculus notation is written to satisfy the input grammar for the MWB (Figure B.31);

a more conventional presentation is given in Figures B.32 and B.33 . Particular points

to observe about the translation are:

lines 122–127 (Figure B.4): A non-concurrent composite state is distinguished from

a concurrent composite state by the isConcurrent attribute as shown on line 34
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1 <?xml version = ’1.0’ encoding = ’UTF-8’ ?>
2 <XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Fri Nov 25 00:08:41 CST 2005’>
3 ...
4 <UML:SimpleState xmi.id = ’a13’ name = ’S_1’ isSpecification = ’false’>
5 <UML:ModelElement.taggedValue>
6 <UML:TaggedValue xmi.id = ’a14’ isSpecification = ’false’
7 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ffc’>
8 <UML:TaggedValue.type>
9 <UML:TagDefinition xmi.idref = ’a6’/>

10 </UML:TaggedValue.type>
11 </UML:TaggedValue>
12 </UML:ModelElement.taggedValue>
13 <UML:StateVertex.outgoing>
14 <UML:Transition xmi.idref = ’a15’/>
15 </UML:StateVertex.outgoing>
16 </UML:SimpleState>
17 <UML:SimpleState xmi.id = ’a16’ name = ’S_2’ isSpecification = ’false’>
18 <UML:ModelElement.taggedValue>
19 <UML:TaggedValue xmi.id = ’a17’ isSpecification = ’false’
20 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ffb’>
21 <UML:TaggedValue.type>
22 <UML:TagDefinition xmi.idref = ’a6’/>
23 </UML:TaggedValue.type>
24 </UML:TaggedValue>
25 </UML:ModelElement.taggedValue>
26 <UML:StateVertex.outgoing>
27 <UML:Transition xmi.idref = ’a18’/>
28 </UML:StateVertex.outgoing>
29 <UML:StateVertex.incoming>
30 <UML:Transition xmi.idref = ’a15’/>
31 </UML:StateVertex.incoming>
32 </UML:SimpleState>
33 <UML:CompositeState xmi.id = ’a19’ name = ’S_3’ isSpecification = ’false’
34 isConcurrent = ’false’>
35 <UML:ModelElement.taggedValue>
36 <UML:TaggedValue xmi.id = ’a20’ isSpecification = ’false’
37 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ffa’>
38 <UML:TaggedValue.type>
39 <UML:TagDefinition xmi.idref = ’a6’/>
40 </UML:TaggedValue.type>
41 </UML:TaggedValue>
42 </UML:ModelElement.taggedValue>
43 <UML:CompositeState.subvertex>
44 <UML:SimpleState xmi.id = ’a21’ name = ’V_1’ isSpecification = ’false’>
45 <UML:ModelElement.taggedValue>
46 <UML:TaggedValue xmi.id = ’a22’ isSpecification = ’false’
47 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ff9’>
48 <UML:TaggedValue.type>
49 <UML:TagDefinition xmi.idref = ’a6’/>
50 </UML:TaggedValue.type>
51 </UML:TaggedValue>
52 </UML:ModelElement.taggedValue>
53 <UML:StateVertex.incoming>
54 <UML:Transition xmi.idref = ’a18’/>
55 </UML:StateVertex.incoming>
56 </UML:SimpleState>
57 </UML:CompositeState.subvertex>
58 </UML:CompositeState>
59 ...
60 <UML:StateMachine.transitions>
61 <UML:Transition xmi.id = ’a15’ name = ’t_1’ isSpecification = ’false’>
62 <UML:ModelElement.taggedValue>
63 <UML:TaggedValue xmi.id = ’a23’ isSpecification = ’false’
64 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ff6’>
65 <UML:TaggedValue.type>
66 <UML:TagDefinition xmi.idref = ’a6’/>
67 </UML:TaggedValue.type>
68 </UML:TaggedValue>
69 </UML:ModelElement.taggedValue>
70 <UML:Transition.guard>

Figure B.28: The XMI rendering of example 2
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71 <UML:Guard xmi.id = ’a24’ name = ’g1’ isSpecification = ’false’>
72 <UML:Guard.expression>
73 <UML:BooleanExpression xmi.id = ’a25’ language = ’java’ body = ’gc’/>
74 </UML:Guard.expression>
75 <UML:ModelElement.taggedValue>
76 <UML:TaggedValue xmi.id = ’a26’ isSpecification = ’false’
77 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ff3’>
78 <UML:TaggedValue.type>
79 <UML:TagDefinition xmi.idref = ’a6’/>
80 </UML:TaggedValue.type>
81 </UML:TaggedValue>
82 </UML:ModelElement.taggedValue>
83 </UML:Guard>
84 </UML:Transition.guard>
85 <UML:Transition.effect>
86 <UML:CallAction xmi.id = ’a27’ name = ’a_1’ isSpecification = ’false’ isAsynchronous = ’false’>
87 <UML:Action.script>
88 <UML:ActionExpression xmi.id = ’a28’ language = ’java’ body = ’send o.e_2’/>
89 </UML:Action.script>
90 <UML:ModelElement.taggedValue>
91 <UML:TaggedValue xmi.id = ’a29’ isSpecification = ’false’
92 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ff1’>
93 <UML:TaggedValue.type>
94 <UML:TagDefinition xmi.idref = ’a6’/>
95 </UML:TaggedValue.type>
96 </UML:TaggedValue>
97 </UML:ModelElement.taggedValue>
98 </UML:CallAction>
99 </UML:Transition.effect>

100 <UML:Transition.trigger>
101 <UML:CallEvent xmi.idref = ’a30’/>
102 </UML:Transition.trigger>
103 <UML:Transition.source>
104 <UML:SimpleState xmi.idref = ’a13’/>
105 </UML:Transition.source>
106 <UML:Transition.target>
107 <UML:SimpleState xmi.idref = ’a16’/>
108 </UML:Transition.target>
109 </UML:Transition>
110 <UML:Transition xmi.id = ’a18’ name = ’t_2’ isSpecification = ’false’>
111 <UML:ModelElement.taggedValue>
112 <UML:TaggedValue xmi.id = ’a31’ isSpecification = ’false’
113 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ff5’>
114 <UML:TaggedValue.type>
115 <UML:TagDefinition xmi.idref = ’a6’/>
116 </UML:TaggedValue.type>
117 </UML:TaggedValue>
118 </UML:ModelElement.taggedValue>
119 <UML:Transition.trigger>
120 <UML:CallEvent xmi.idref = ’a32’/>
121 </UML:Transition.trigger>
122 <UML:Transition.source>
123 <UML:SimpleState xmi.idref = ’a16’/>
124 </UML:Transition.source>
125 <UML:Transition.target>
126 <UML:SimpleState xmi.idref = ’a21’/>
127 </UML:Transition.target>
128 </UML:Transition>
129 </UML:StateMachine.transitions>
130 ...
131 <UML:CallEvent xmi.id = ’a30’ name = ’e_1’ isSpecification = ’false’>
132 <UML:ModelElement.taggedValue>
133 <UML:TaggedValue xmi.id = ’a33’ isSpecification = ’false’
134 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ff4’>
135 <UML:TaggedValue.type>
136 <UML:TagDefinition xmi.idref = ’a6’/>
137 </UML:TaggedValue.type>
138 </UML:TaggedValue>
139 </UML:ModelElement.taggedValue>
140 </UML:CallEvent>

Figure B.29: The XMI rendering of example 2 (continued)
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141 <UML:CallEvent xmi.id = ’a32’ name = ’e_3’ isSpecification = ’false’>
142 <UML:ModelElement.taggedValue>
143 <UML:TaggedValue xmi.id = ’a34’ isSpecification = ’false’
144 dataValue = ’-64--88-1-100-114382d:107c2f610ba:-7ff0’>
145 <UML:TaggedValue.type>
146 <UML:TagDefinition xmi.idref = ’a6’/>
147 </UML:TaggedValue.type>
148 </UML:TaggedValue>
149 </UML:ModelElement.taggedValue>
150 </UML:CallEvent>
151 ...
152 </XMI>

Figure B.30: The XMI rendering of example 2 (continued)

of Figure B.28. Line 125 of Figure B.4 sets the Boolean variable concurrent to

the value true if the composite state is a concurrent composite state.

lines 3–8 (Figure B.15): If the target state is a substate which is enclosed by a

non-concurrent composite state, lines 5–8 of Figure B.15 output the channel dec-

laration on line 15 and the process identifiers on lines 16 and 17 of Figure B.31.

1 agent S_1(step,event_ch0,e_1,e_3,gc,ins_o,e_2,pos,neg)= \
2 event_ch0(x1). \
3 ([x1=e_1] \
4 (^true,false)’gc<true,false>. \
5 (true. \
6 ’ins_o<e_2>. \
7 ’step.S_2(step,event_ch0,e_1,e_3,gc,ins_o,e_2,pos,neg)+ \
8 false. \
9 ’step.S_1(step,event_ch0,e_1,e_3,gc,ins_o,e_2,pos,neg))+ \

10 [x1=e_3]’step.S_1(step,event_ch0,e_1,e_3,gc,ins_o,e_2,pos,neg))
11

12 agent S_2(step,event_ch0,e_1,e_3,gc,ins_o,e_2,pos,neg)= \
13 event_ch0(x1). \
14 ([x1=e_3] \
15 ’step.(^event_ch1) \
16 (S_3(step,event_ch0,event_ch1,e_1,e_3,gc,ins_o,e_2,pos,neg) | \
17 V_1(event_ch1,e_1,e_3,gc,ins_o,e_2,pos,neg))+ \
18 [x1=e_1]’step.S_2(step,event_ch0,e_1,e_3,gc,ins_o,e_2,pos,neg))

Figure B.31: The machine-readable form of the π-calculus representation of the XMI

rendering in Figures B.28–B.30

B.4.3 The NuSMV Representation

In the second part of the thesis, the objective was to establish properties of the UML

statechart using model-checking by means of the NuSMV model-checker. This rep-
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S 1(step, eventch0, e 1, e 3, gc, inso, e 2, pos, neg) =

eventch0(x1).

([x1 = e 1]

(νtrue false)gc〈true false〉.

(true.

inso〈e 2〉.

step.S 2(step, eventch0, e 1, e 3, gc, inso, e 2, pos, neg) +

false.

step.S 1(step, eventch0, e 1, e 3, gc, inso, e 2, pos, neg)) +

[x1 = e 3]step.S 1(step, eventch0, e 1, e 3, gc, inso, e 2, pos, neg))

Figure B.32: The pretty-printed form of the π-calculus in Figure B.31

S 2(step, eventch0, e 1, e 3, gc, inso, e 2, pos, neg) =

eventch0(x1).

([x1 = e 3]

step.(νeventch1)

(S 3(step, eventch0, eventch1, e 1, e 3, gc, inso, e 2, pos, neg)|

V 1(eventch1, e 1, e 3, gc, inso, e 2, pos, neg)) +

[x1 = e 1]step.S 2(step, eventch0, e 1, e 3, gc, inso, e 2, pos, neg))

Figure B.33: The pretty-printed form of the π-calculus in Figure B.31 (continued)

resentation (Figures B.34 and B.35) is generated according to the rules presented in

Chapter 5. The main features of note in the translation are:

lines 32–46, 49 and 52 (Figure B.23): If a statechart diagram contains a non-concurrent

composite state, NuSMV variables substate, ack and superstate enable are gener-

ated as shown on lines 4, 5 and 7 of Figure B.34.

lines 61–69 (Figure B.26): The code fragment yields the next statements for the



206 APPENDIX B. DETAILED IMPLEMENTATION

NuSMV variable ack on lines 14–18 of Figure B.34.

line 84 (Figure B.26): The invocation of the method gen superstate enable case stmts

emits lines 48–53 of Figure B.35.

1 MODULE sc_2(ins_o,o_q_buff,step,event_buff)
2 VAR
3 state: {S_3,S_1,S_2};
4 substate: {nil,V_1};
5 ack: {pos, neg, undefine};
6 gc: boolean;
7 superstate_enable: boolean;
8 ASSIGN
9 next(ins_o) :=

10 case
11 state=S_1 & event_buff=e_1 & gc & !ins_o & !step:1;
12 1: ins_o;
13 esac;
14 next(ack) :=
15 case
16 substate=next(substate) & !step & !superstate_enable & !substate = nil: neg;
17 1: undefine;
18 esac;

Figure B.34: The NuSMV representation of the π-calculus in Figure B.31

B.5 Example 3

Likewise, the UML statechart in Figure B.36 is represented in XMI format as shown

in Figures B.37–B.40. The value of the isConcurrent attribute is true (line 5) as state

S 2 is a concurrent composite state. The XMI representations of the composite state

and basic states are on lines 4–108. Similarly, the XMI representations of the transi-

tions and events are on lines 110–202 and 204–243, respectively. The corresponding

π-calculus representation and NuSMV code have been provided and discussed in detail

in Section 6.8. A few additional remarks are given below:

lines 128–146 (Figure B.5): For each attribute (line 137) of the grandparent node

of the owner element (line 135), the attribute name and attribute value are tested.

If the attribute name and attribute value equal to isConcurrent and true (lines

139 and 140), respectively, this means that the current node name is the name of

a substate of a concurrent composite state. The substate name of the concurrent
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19 init(substate) := nil;
20 next(substate) :=
21 case
22 state=S_2 & event_buff=e_3 & !step:V_1;
23 1: substate;
24 esac;
25 init(state) := S_1;
26 next(state) :=
27 case
28 state=S_1 & event_buff=e_1 & gc & !ins_o & !step:S_2;
29 state=S_2 & event_buff=e_3 & !step:S_3;
30 1: state;
31 esac;
32 next(o_q_buff) :=
33 case
34 state=S_1 & event_buff=e_1 & gc & !ins_o & !step:e_2;
35 1: o_q_buff;
36 esac;
37 next(step) :=
38 case
39 state=S_1 & event_buff=e_1 & gc & !ins_o & !step:1;
40 state=S_1 & event_buff=e_1 & gc & ins_o & !step:step;
41 state=S_2 & event_buff=e_3 & !step:1;
42 state=S_3 & ack=neg & !step & superstate_enable: 1;
43 state=next(state) & !step & substate = nil: 1;
44 state=next(state) & !step & superstate_enable: 1;
45 event_buff != empty & step: 0;
46 1: step;
47 esac;
48 init(superstate_enable) := 0;
49 next(superstate_enable) :=
50 case
51 (next(ack)=pos | next(ack)=neg) & !step: 1;
52 1: 0;
53 esac;
54 next(event_buff):=
55 case
56 event_buff != empty & next(step): empty;
57 1 : event_buff;
58 esac;
59 FAIRNESS running

Figure B.35: The NuSMV representation of the π-calculus in Figure B.31 (continued)

composite state is then kept in a set concur substate (line 141) which differentiates

it from other states.

lines 6–8 (Figure B.13): A snippet which yields an input action when the source

and target states are substates of a concurrent composite state. States V 1 and

V 2 as well as W 1 and W 2 are examples of this.
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lines 71–73 (Figure B.16): The transition which connects the state S 1 and the fork

pseudostate is handled by this block of code.

lines 77–85 (Figure B.16): A code fragment that deals with the join pseudostate in

Figure B.36.

lines 10–15 (Figure B.17): These statements are executed and they produce match-

ing constructs for other events when both the source state (transition[index][0])

and target state (transition[index][4]) are substates of a concurrent composite

state. The map concur ch table (lines 12 and 13) associates a substate with its

corresponding channel for receiving an event. An example of which is the states

V 1 and V 2 of Figure B.36.

lines 18–22 (Figure B.17): An execution of the code fragment outputs matching

constructs for other events if the source state (transition[index][0]) is a substate

of a concurrent composite state and the target state (transition[index][4]) is a

join. A typical example is the transition between the state V 2 and the join in

Figure B.36.
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Figure B.36: The screenshot of example 3

1 <?xml version = ’1.0’ encoding = ’UTF-8’ ?>
2 <XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Nov 28 13:42:36 CST 2005’>
3 ...
4 <UML:CompositeState xmi.id = ’a11’ name = ’S_2’ isSpecification = ’false’
5 isConcurrent = ’true’>
6 <UML:ModelElement.taggedValue>
7 <UML:TaggedValue xmi.id = ’a12’ isSpecification = ’false’
8 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fea’>
9 <UML:TaggedValue.type>

10 <UML:TagDefinition xmi.idref = ’a13’/>
11 </UML:TaggedValue.type>
12 </UML:TaggedValue>
13 </UML:ModelElement.taggedValue>
14 <UML:CompositeState.subvertex>
15 <UML:SimpleState xmi.id = ’a14’ name = ’W_1’ isSpecification = ’false’>
16 <UML:ModelElement.taggedValue>
17 <UML:TaggedValue xmi.id = ’a15’ isSpecification = ’false’
18 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fdb’>
19 <UML:TaggedValue.type>
20 <UML:TagDefinition xmi.idref = ’a13’/>
21 </UML:TaggedValue.type>
22 </UML:TaggedValue>
23 </UML:ModelElement.taggedValue>

Figure B.37: The XMI representation of example 3
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24 <UML:StateVertex.outgoing>
25 <UML:Transition xmi.idref = ’a16’/>
26 </UML:StateVertex.outgoing>
27 <UML:StateVertex.incoming>
28 <UML:Transition xmi.idref = ’a17’/>
29 </UML:StateVertex.incoming>
30 </UML:SimpleState>
31 <UML:SimpleState xmi.id = ’a18’ name = ’V_1’ isSpecification = ’false’>
32 <UML:ModelElement.taggedValue>
33 <UML:TaggedValue xmi.id = ’a19’ isSpecification = ’false’
34 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fda’>
35 <UML:TaggedValue.type>
36 <UML:TagDefinition xmi.idref = ’a13’/>
37 </UML:TaggedValue.type>
38 </UML:TaggedValue>
39 </UML:ModelElement.taggedValue>
40 <UML:StateVertex.outgoing>
41 <UML:Transition xmi.idref = ’a20’/>
42 </UML:StateVertex.outgoing>
43 <UML:StateVertex.incoming>
44 <UML:Transition xmi.idref = ’a21’/>
45 </UML:StateVertex.incoming>
46 </UML:SimpleState>
47 <UML:SimpleState xmi.id = ’a22’ name = ’V_2’ isSpecification = ’false’>
48 <UML:ModelElement.taggedValue>
49 <UML:TaggedValue xmi.id = ’a23’ isSpecification = ’false’
50 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fd9’>
51 <UML:TaggedValue.type>
52 <UML:TagDefinition xmi.idref = ’a13’/>
53 </UML:TaggedValue.type>
54 </UML:TaggedValue>
55 </UML:ModelElement.taggedValue>
56 <UML:StateVertex.outgoing>
57 <UML:Transition xmi.idref = ’a24’/>
58 </UML:StateVertex.outgoing>
59 <UML:StateVertex.incoming>
60 <UML:Transition xmi.idref = ’a20’/>
61 </UML:StateVertex.incoming>
62 </UML:SimpleState>
63 <UML:SimpleState xmi.id = ’a25’ name = ’W_2’ isSpecification = ’false’>
64 <UML:ModelElement.taggedValue>
65 <UML:TaggedValue xmi.id = ’a26’ isSpecification = ’false’
66 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fd8’>
67 <UML:TaggedValue.type>
68 <UML:TagDefinition xmi.idref = ’a13’/>
69 </UML:TaggedValue.type>
70 </UML:TaggedValue>
71 </UML:ModelElement.taggedValue>
72 <UML:StateVertex.outgoing>
73 <UML:Transition xmi.idref = ’a27’/>
74 </UML:StateVertex.outgoing>
75 <UML:StateVertex.incoming>
76 <UML:Transition xmi.idref = ’a16’/>
77 </UML:StateVertex.incoming>
78 </UML:SimpleState>
79 </UML:CompositeState.subvertex>
80 </UML:CompositeState>
81 ...
82 <UML:SimpleState xmi.id = ’a31’ name = ’S_1’ isSpecification = ’false’>
83 <UML:ModelElement.taggedValue>
84 <UML:TaggedValue xmi.id = ’a32’ isSpecification = ’false’
85 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fe4’>
86 <UML:TaggedValue.type>
87 <UML:TagDefinition xmi.idref = ’a13’/>
88 </UML:TaggedValue.type>
89 </UML:TaggedValue>
90 </UML:ModelElement.taggedValue>
91 <UML:StateVertex.outgoing>
92 <UML:Transition xmi.idref = ’a30’/>
93 </UML:StateVertex.outgoing>
94 </UML:SimpleState>
95 ...
96 <UML:SimpleState xmi.id = ’a36’ name = ’S_3’ isSpecification = ’false’>
97 <UML:ModelElement.taggedValue>
98 <UML:TaggedValue xmi.id = ’a37’ isSpecification = ’false’
99 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fd5’>

100 <UML:TaggedValue.type>
101 <UML:TagDefinition xmi.idref = ’a13’/>
102 </UML:TaggedValue.type>
103 </UML:TaggedValue>
104 </UML:ModelElement.taggedValue>
105 <UML:StateVertex.incoming>
106 <UML:Transition xmi.idref = ’a35’/>
107 </UML:StateVertex.incoming>
108 </UML:SimpleState>
109 ...

Figure B.38: The XMI representation of example 3 (continued)
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110 <UML:Transition xmi.id = ’a30’ name = ’t_1’ isSpecification = ’false’>
111 <UML:ModelElement.taggedValue>
112 <UML:TaggedValue xmi.id = ’a38’ isSpecification = ’false’
113 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fe2’>
114 <UML:TaggedValue.type>
115 <UML:TagDefinition xmi.idref = ’a13’/>
116 </UML:TaggedValue.type>
117 </UML:TaggedValue>
118 </UML:ModelElement.taggedValue>
119 <UML:Transition.guard>
120 <UML:Guard xmi.id = ’a39’ name = ’anon’ isSpecification = ’false’>
121 <UML:Guard.expression>
122 <UML:BooleanExpression xmi.id = ’a40’ language = ’java’ body = ’gc’/>
123 </UML:Guard.expression>
124 <UML:ModelElement.taggedValue>
125 <UML:TaggedValue xmi.id = ’a41’ isSpecification = ’false’
126 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fc9’>
127 <UML:TaggedValue.type>
128 <UML:TagDefinition xmi.idref = ’a13’/>
129 </UML:TaggedValue.type>
130 </UML:TaggedValue>
131 </UML:ModelElement.taggedValue>
132 </UML:Guard>
133 </UML:Transition.guard>
134 <UML:Transition.trigger>
135 <UML:CallEvent xmi.idref = ’a42’/>
136 </UML:Transition.trigger>
137 <UML:Transition.source>
138 <UML:SimpleState xmi.idref = ’a31’/>
139 </UML:Transition.source>
140 <UML:Transition.target>
141 <UML:Pseudostate xmi.idref = ’a28’/>
142 </UML:Transition.target>
143 </UML:Transition>
144 ...
145 <UML:Transition xmi.id = ’a35’ name = ’t_4’ isSpecification = ’false’>
146 <UML:ModelElement.taggedValue>
147 <UML:TaggedValue xmi.id = ’a45’ isSpecification = ’false’
148 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fd4’>
149 <UML:TaggedValue.type>
150 <UML:TagDefinition xmi.idref = ’a13’/>
151 </UML:TaggedValue.type>
152 </UML:TaggedValue>
153 </UML:ModelElement.taggedValue>
154 <UML:Transition.trigger>
155 <UML:CallEvent xmi.idref = ’a46’/>
156 </UML:Transition.trigger>
157 <UML:Transition.source>
158 <UML:Pseudostate xmi.idref = ’a33’/>
159 </UML:Transition.source>
160 <UML:Transition.target>
161 <UML:SimpleState xmi.idref = ’a36’/>
162 </UML:Transition.target>
163 </UML:Transition>
164 ...
165 <UML:Transition xmi.id = ’a20’ name = ’t_2’ isSpecification = ’false’>
166 <UML:ModelElement.taggedValue>
167 <UML:TaggedValue xmi.id = ’a49’ isSpecification = ’false’
168 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fcf’>
169 <UML:TaggedValue.type>
170 <UML:TagDefinition xmi.idref = ’a13’/>
171 </UML:TaggedValue.type>
172 </UML:TaggedValue>
173 </UML:ModelElement.taggedValue>

Figure B.39: The XMI representation of example 3 (continued)
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174 <UML:Transition.trigger>
175 <UML:CallEvent xmi.idref = ’a50’/>
176 </UML:Transition.trigger>
177 <UML:Transition.source>
178 <UML:SimpleState xmi.idref = ’a18’/>
179 </UML:Transition.source>
180 <UML:Transition.target>
181 <UML:SimpleState xmi.idref = ’a22’/>
182 </UML:Transition.target>
183 </UML:Transition>
184 <UML:Transition xmi.id = ’a16’ name = ’t_3’ isSpecification = ’false’>
185 <UML:ModelElement.taggedValue>
186 <UML:TaggedValue xmi.id = ’a51’ isSpecification = ’false’
187 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fce’>
188 <UML:TaggedValue.type>
189 <UML:TagDefinition xmi.idref = ’a13’/>
190 </UML:TaggedValue.type>
191 </UML:TaggedValue>
192 </UML:ModelElement.taggedValue>
193 <UML:Transition.trigger>
194 <UML:CallEvent xmi.idref = ’a52’/>
195 </UML:Transition.trigger>
196 <UML:Transition.source>
197 <UML:SimpleState xmi.idref = ’a14’/>
198 </UML:Transition.source>
199 <UML:Transition.target>
200 <UML:SimpleState xmi.idref = ’a25’/>
201 </UML:Transition.target>
202 </UML:Transition>
203 ...
204 <UML:CallEvent xmi.id = ’a42’ name = ’e_1’ isSpecification = ’false’>
205 <UML:ModelElement.taggedValue>
206 <UML:TaggedValue xmi.id = ’a53’ isSpecification = ’false’
207 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fcd’>
208 <UML:TaggedValue.type>
209 <UML:TagDefinition xmi.idref = ’a13’/>
210 </UML:TaggedValue.type>
211 </UML:TaggedValue>
212 </UML:ModelElement.taggedValue>
213 </UML:CallEvent>
214 <UML:CallEvent xmi.id = ’a50’ name = ’e_2’ isSpecification = ’false’>
215 <UML:ModelElement.taggedValue>
216 <UML:TaggedValue xmi.id = ’a54’ isSpecification = ’false’
217 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fcc’>
218 <UML:TaggedValue.type>
219 <UML:TagDefinition xmi.idref = ’a13’/>
220 </UML:TaggedValue.type>
221 </UML:TaggedValue>
222 </UML:ModelElement.taggedValue>
223 </UML:CallEvent>
224 <UML:CallEvent xmi.id = ’a52’ name = ’e_2’ isSpecification = ’false’>
225 <UML:ModelElement.taggedValue>
226 <UML:TaggedValue xmi.id = ’a55’ isSpecification = ’false’
227 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fcb’>
228 <UML:TaggedValue.type>
229 <UML:TagDefinition xmi.idref = ’a13’/>
230 </UML:TaggedValue.type>
231 </UML:TaggedValue>
232 </UML:ModelElement.taggedValue>
233 </UML:CallEvent>
234 <UML:CallEvent xmi.id = ’a46’ name = ’e_3’ isSpecification = ’false’>
235 <UML:ModelElement.taggedValue>
236 <UML:TaggedValue xmi.id = ’a56’ isSpecification = ’false’
237 dataValue = ’-64--88-1-100-779dce:107d54ed365:-7fca’>
238 <UML:TaggedValue.type>
239 <UML:TagDefinition xmi.idref = ’a13’/>
240 </UML:TaggedValue.type>
241 </UML:TaggedValue>
242 </UML:ModelElement.taggedValue>
243 </UML:CallEvent>
244 ...
245 </XMI>

Figure B.40: The XMI representation of example 3 (continued)
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