358 research outputs found

    Algorithms for Transcriptome Quantification and Reconstruction from RNA-Seq Data

    Get PDF
    Massively parallel whole transcriptome sequencing and its ability to generate full transcriptome data at the single transcript level provides a powerful tool with multiple interrelated applications, including transcriptome reconstruction, gene/isoform expression estimation, also known as transcriptome quantification. As a result, whole transcriptome sequencing has become the technology of choice for performing transcriptome analysis, rapidly replacing array-based technologies. The most commonly used transcriptome sequencing protocol, referred to as RNA-Seq, generates short (single or paired) sequencing tags from the ends of randomly generated cDNA fragments. RNA-Seq protocol reduces the sequencing cost and significantly increases data throughput, but is computationally challenging to reconstruct full-length transcripts and accurately estimate their abundances across all cell types. We focus on two main problems in transcriptome data analysis, namely, transcriptome reconstruction and quantification. Transcriptome reconstruction, also referred to as novel isoform discovery, is the problem of reconstructing the transcript sequences from the sequencing data. Reconstruction can be done de novo or it can be assisted by existing genome and transcriptome annotations. Transcriptome quantification refers to the problem of estimating the expression level of each transcript. We present a genome-guided and annotation-guided transcriptome reconstruction methods as well as methods for transcript and gene expression level estimation. Empirical results on both synthetic and real RNA-seq datasets show that the proposed methods improve transcriptome quantification and reconstruction accuracy compared to previous methods

    Optimization Techniques For Next-Generation Sequencing Data Analysis

    Get PDF
    High-throughput RNA sequencing (RNA-Seq) is a popular cost-efficient technology with many medical and biological applications. This technology, however, presents a number of computational challenges in reconstructing full-length transcripts and accurately estimate their abundances across all cell types. Our contributions include (1) transcript and gene expression level estimation methods, (2) methods for genome-guided and annotation-guided transcriptome reconstruction, and (3) de novo assembly and annotation of real data sets. Transcript expression level estimation, also referred to as transcriptome quantification, tackle the problem of estimating the expression level of each transcript. Transcriptome quantification analysis is crucial to determine similar transcripts or unraveling gene functions and transcription regulation mechanisms. We propose a novel simulated regression based method for transcriptome frequency estimation from RNA-Seq reads. Transcriptome reconstruction refers to the problem of reconstructing the transcript sequences from the RNA-Seq data. We present genome-guided and annotation-guided transcriptome reconstruction methods. Empirical results on both synthetic and real RNA-seq datasets show that the proposed methods improve transcriptome quantification and reconstruction accuracy compared to currently state of the art methods. We further present the assembly and annotation of Bugula neritina transcriptome (a marine colonial animal), and Tallapoosa darter genome (a species-rich radiation freshwater fish)

    Computational Methods for Sequencing and Analysis of Heterogeneous RNA Populations

    Get PDF
    Next-generation sequencing (NGS) and mass spectrometry technologies bring unprecedented throughput, scalability and speed, facilitating the studies of biological systems. These technologies allow to sequence and analyze heterogeneous RNA populations rather than single sequences. In particular, they provide the opportunity to implement massive viral surveillance and transcriptome quantification. However, in order to fully exploit the capabilities of NGS technology we need to develop computational methods able to analyze billions of reads for assembly and characterization of sampled RNA populations. In this work we present novel computational methods for cost- and time-effective analysis of sequencing data from viral and RNA samples. In particular, we describe: i) computational methods for transcriptome reconstruction and quantification; ii) method for mass spectrometry data analysis; iii) combinatorial pooling method; iv) computational methods for analysis of intra-host viral populations

    SSP: An interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads

    Get PDF
    AbstractRecent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp

    Efficient Minimum Flow Decomposition via Integer Linear Programming

    Get PDF
    Extended version of RECOMB 2022 paperMinimum flow decomposition (MFD) is an NP-hard problem asking to decompose a network flow into a minimum set of paths (together with associated weights). Variants of it are powerful models in multiassembly problems in Bioinformatics, such as RNA assembly. Owing to its hardness, practical multiassembly tools either use heuristics or solve simpler, polynomial time-solvable versions of the problem, which may yield solutions that are not minimal or do not perfectly decompose the flow. Here, we provide the first fast and exact solver for MFD on acyclic flow networks, based on Integer Linear Programming (ILP). Key to our approach is an encoding of all the exponentially many solution paths using only a quadratic number of variables. We also extend our ILP formulation to many practical variants, such as incorporating longer or paired-end reads, or minimizing flow errors. On both simulated and real-flow splicing graphs, our approach solves any instance inPeer reviewe

    Assembly, quantification, and downstream analysis for high trhoughput sequencing data

    Get PDF
    Next Generation Sequencing is a set of relatively recent but already well-established technologies with a wide range of applications in life sciences. Despite the fact that they are constantly being improved, multiple challenging problems still exist in the analysis of high throughput sequencing data. In particular, genome assembly still suffers from inability of technologies to overcome issues related to such structural properties of genomes as single nucleotide polymorphisms and repeats, not even mentioning the drawbacks of technologies themselves like sequencing errors which also hinder the reconstruction of the true reference genomes. Other types of issues arise in transcriptome quantification and differential gene expression analysis. Processing millions of reads requires sophisticated algorithms which are able to compute gene expression with high precision and in reasonable amount of time. Following downstream analysis, the utmost computational task is to infer the activity of biological pathways (e.g., metabolic). With many overlapping pathways challenge is to infer the role of each gene in activity of a given pathway. Assignment products of a gene to a wrong pathway may result in misleading differential activity analysis, and thus, wrong scientific conclusions. In this dissertation I present several algorithmic solutions to some of the enumerated problems above. In particular, I designed scaffolding algorithm for genome assembly and created new tools for differential gene and biological pathways expression analysis

    IsoTree: A New Framework for De novo Transcriptome Assembly from RNA-seq Reads

    Get PDF
    High-throughput sequencing of mRNA has made the deep and efficient probing of transcriptome more affordable. However, the vast amounts of short RNA-seq reads make de novo transcriptome assembly an algorithmic challenge. In this work, we present IsoTree, a novel framework for transcripts reconstruction in the absence of reference genomes. Unlike most of de novo assembly methods that build de Bruijn graph or splicing graph by connecting k−mersk-mers which are sets of overlapping substrings generated from reads, IsoTree constructs splicing graph by connecting reads directly. For each splicing graph, IsoTree applies an iterative scheme of mixed integer linear program to build a prefix tree, called isoform tree. Each path from the root node of the isoform tree to a leaf node represents a plausible transcript candidate which will be pruned based on the information of paired-end reads. Experiments showed that in most cases IsoTree performs better than other leading transcriptome assembly programs. IsoTree is available at https://github.com/Jane110111107/IsoTree

    On de novo Bridging Paired-end RNA-seq Data

    Full text link
    The high-throughput short-reads RNA-seq protocols often produce paired-end reads, with the middle portion of the fragments being unsequenced. We explore if the full-length fragments can be computationally reconstructed from the sequenced two ends in the absence of the reference genome - a problem here we refer to as de novo bridging. Solving this problem provides longer, more informative RNA-seq reads, and benefits downstream RNA-seq analysis such as transcript assembly, expression quantification, and splicing differential analysis. However, de novo bridging is a challenging and complicated task owing to alternative splicing, transcript noises, and sequencing errors. It remains unclear if the data provides sufficient information for accurate bridging, let alone efficient algorithms that determine the true bridges. Methods have been proposed to bridge paired-end reads in the presence of reference genome (called reference-based bridging), but the algorithms are far away from scaling for de novo bridging as the underlying compacted de Bruijn graph(cdBG) used in the latter task often contains millions of vertices and edges. We designed a new truncated Dijkstra's algorithm for this problem, and proposed a novel algorithm that reuses the shortest path tree to avoid running the truncated Dijkstra's algorithm from scratch for all vertices for further speeding up. These innovative techniques result in scalable algorithms that can bridge all paired-end reads in a cdBG with millions of vertices. Our experiments showed that paired-end RNA-seq reads can be accurately bridged to a large extent. The resulting tool is freely available at https://github.com/Shao-Group/rnabridge-denovo.Comment: 10 pages, 4 figure
    • …
    corecore