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OPTIMIZATION TECHNIQUES FOR NEXT-GENERATION SEQUENCING DATA

ANALYSIS

by

ADRIAN CACIULA

Under the Direction of Dr. Alexander Zelikovsky

ABSTRACT

High-throughput RNA sequencing (RNA-Seq) is a popular cost-efficient technology with

many medical and biological applications. This technology, however, presents a number of

computational challenges in reconstructing full-length transcripts and accurately estimate

their abundances across all cell types.

Our contributions include (1) transcript and gene expression level estimation methods,

(2) methods for genome-guided and annotation-guided transcriptome reconstruction, and (3)



de novo assembly and annotation of real data sets. Transcript expression level estimation,

also referred to as transcriptome quantification, tackle the problem of estimating the

expression level of each transcript. Transcriptome quantification analysis is crucial to

determine similar transcripts or unraveling gene functions and transcription regulation

mechanisms. We propose a novel simulated regression based method for transcriptome

frequency estimation from RNA-Seq reads. Transcriptome reconstruction refers to the

problem of reconstructing the transcript sequences from the RNA-Seq data. We present

genome-guided and annotation-guided transcriptome reconstruction methods. Empirical

results on both synthetic and real RNA-seq datasets show that the proposed methods

improve transcriptome quantification and reconstruction accuracy compared to currently

state of the art methods. We further present the assembly and annotation of Bugula neritina

transcriptome (a marine colonial animal), and Tallapoosa darter genome (a species-rich

radiation freshwater fish).

INDEX WORDS: Transcriptome quantification, Regression, Transcriptome
reconstruction, Alternative splicing, RNA-Seq, Assembly and
annotation.
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PART 1

INTRODUCTION

Massively parallel whole transcriptome sequencing and its ability to generate full

transcriptome data at the single transcript level provides a powerful tool with multiple

interrelated applications, including transcriptome reconstruction ([3], [4], [5], [6]), gene/isoform

expression estimation ([7], [8], [5], [9], also known as transcriptome quantification, studying

trans- and cis-regulatory effect [10], studying parent-of origin effect [10], [11], [12], and

calling expressed variants ([13]). As a result, whole transcriptome sequencing has become

the technology of choice for performing transcriptome analysis, rapidly replacing array-based

technologies ([14]).

The most commonly used transcriptome sequencing protocol, referred to as RNA-Seq,

generates short (single or paired) sequencing tags from the ends of randomly generated

cDNA fragments. Using transcriptome sequencing data, most current research employs

methods that depend on existing transcriptome annotations. Unfortunately, as shown by

recent studies ([15]), existing transcript libraries still miss large numbers of transcripts.

The incompleteness of annotation libraries poses a serious limitation to using this powerful

technology since accurate normalization of data critically requires knowledge of expressed

transcript sequences ([7], [8], [16]. [9]. Another challenge in transcriptomic analysis comes

from the ambiguities in read/tag mapping to the reference. My dissertation research focuses

on two main problems in transcriptome data analysis, namely, transcriptome reconstruction

and quantification, and we show how these challenges are handled. Transcriptome

reconstruction, also referred to as novel isoform discovery, is the problem of reconstructing

the transcript sequences from the sequencing data. Reconstruction can be done de novo

or it can be assisted by existing genome and transcriptome annotations. Transcriptome

quantification refers to the problem of estimating the expression level of each transcript.
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1.1 High-Throughput Sequencing

History of DNA sequencing is rich and diverse. The majority of DNA protocols relied on

Sanger capillary-based semi-automated sequencing technology. Sanger biochemistry allows

to achieve up to 1,000 bp read length, and per-base “raw” accuracy as high as 99.999%. Due

to high accuracy, genomes sequenced by Sanger technology currently are used in modern

databases.

Second-generation of DNA sequencing technologies are more parallelizable and have

higher throughput compared to Sanger protocol. These technologies are collectively called

Next Generation Sequencing (NGS). Many NGS technologies have been realised as a

commercial product (e.g., the Illumina HiSeq Systems (marketed by Illumina, San Diego,

CA, USA), the SOLiD Systems (marketed by Applied Biosystems by Life Technologies;

San Diego, CA, USA), 454 Genome Sequencers (Roche Applied Science; Penzberg,

Upper Bavaria, Germany), the HeliScope Single Molecule Sequencer technology (Helicos;

Cambridge, MA, USA), Ion Personal Genome Machine Sequencer(marketed by Ion Torrent

by Life Technologies, San Diego, CA, USA). These technologies produce reads of length 50

- 500bp and up to 600 Gb of throughput.

1.2 RNA-Seq protocol

Recent advances in DNA sequencing have made it possible to sequence the whole

transcriptome by massively parallel sequencing, commonly referred as RNA-Seq [7]. RNA-Seq,

or deep sequencing of RNAs, is a cost-efficient high-coverage powerful technology for

transcriptome analysis [14]. RNA-Seq allows reduction of the sequencing cost and

significantly increases data throughput, but it is computationally challenging to use such

RNA-Seq data for reconstructing of full length transcripts and accurately estimate their

abundances across all cell types.

RNA-Seq, uses next generation sequencing technologies, such as SOLiD ([17]), 454 ([18]),

Illumina ([19]), or Ion Torrent ([20]). Figure 1.1 depicts the steps in an RNA-Sequencing
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From RNA 

– through the process of hybridization-

Make cDNA & shatter into 

fragments

Sequence fragment ends 

A B C D E

Map reads to genome

Gene Expression (GE)Isoform Expression (IE)

A B C

A C

D E

Isoform Discovery (ID)

Nicolae, et. al., 11]

 !"#$%&'%()*+%,'-.)(,/.01-#+%2%+'.%,3+4-03('35'6%(%'%71.%,,03(

Figure 1.1 A schematic representation of the genome-guided RNA-Seq protocol.

experiment, including the first step of analysis which is typically mapping the data to a

reference. After extracting the RNA sample, it is converted to cDNA fragments. The

distribution of the fragment lengths is determined during the RNA-Seq experiment and can

be useful in downstream analysis. This is usually followed by an amplification step; then

one or both ends of the cDNA fragments are sequenced producing either single or paired-end

reads. Sequencing can be either directional, meaning that all reads come from the coding

strand for single reads. For paired end read, directional sequencing implied that the first

read in the pair comes from the coding strand, while the second comes from the non-coding

strands. This strand specificity is not maintained in non-directional sequencing. The specifics

of the sequencing protocols vary from one technology to the other. Similarly, the length of

produced reads varies depending on the technology with newer technologies producing longer

reads.

Ubiquitous regulatory mechanisms such as the use of alternative transcription start and

polyadenylation sites, alternative splicing, and RNA editing result in multiple messenger
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RNA (mRNA) isoforms being generated from a single genomic locus. Most prevalently,

alternative splicing is estimated to take place for over 90% of the multi-exon human genes

across diverse cell types [8], with as much as 68% of multi-exon genes expressing multiple

isoforms in a clonal cell line of colorectal cancer origin [21]. Not surprisingly, the ability to

reconstruct full length transcript sequences and accurately estimate their expression levels

is widely believed to be critical for unraveling gene functions and transcription regulation

mechanisms [22].

The common applications of RNA-seq are gene expression level estimation, isoform

expression level estimation (i.e. estimate the expression level of each transcript), novel

transcript discovery, and transcriptome reconstruction. A variety of new methods and tools

have been recently developed to tackle these problems.

1.2.1 Transcriptome Quantification

Estimating transcript and gene expression levels has long been an important application

for RNA-Seq analyses. Estimation of isoform expression level is not a trivial task .There

is yet no standard protocol for measuring isoforms abundances from RNA-Seq data. The

key challenge in transcriptome quantification is accurate assignment of ambiguous reads to

isoforms. The main difficulty in inferring expression levels for full-length transcripts lies in

the fact that current sequencing technologies generate short reads (from few tens to hundreds

of bases), many of which cannot be unambiguously assigned to individual transcripts.

1.2.2 Transcriptome Reconstruction

Identifying of all transcripts expressed in a particular sample require the assembly of

reads into transcription units. This process is collectively called transcriptome reconstruction.

A number of recent works have addressed the problem of transcriptome reconstruction

from RNA-Seq reads. These methods fall into three categories: “genome-guided”,

“genome-independent” and “annotation-guided” methods [23]. Genome-independent methods

such as Trinity [24] or transAbyss [25] directly assemble reads into transcripts. A commonly
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used approach for such methods is de Brujin graph [26] utilizing ”k-mers”. The use of

genome-independent methods becomes essential when there is no trusted genome reference

that can be used to guide reconstruction. On the other end of the spectrum, annotation

guided methods [27, 28] make use of available information in existing transcript annotations

to aid in the discovery of novel transcripts. RNA-Seq reads can be mapped onto reference

genome, reference annotations, exon-exon junction libraries, or combinations thereof, and

the resulting alignments are used to reconstruct transcripts.

1.3 Contributions

Our contributions include (1) transcript and gene expression level estimation methods,

(2) methods for genome-guided and annotation-guided transcriptome reconstruction, and

(3) de novo assembly and annotation of real data sets. In particular:

• SimReg : A novel Simulated Regression based algorithm for transcriptome quantification.

To solve the problem of transcript and gene expression level estimation from RNA-Seq

data, we propose SimReg, a Monte-Carlo simulated regression based method, that uses

a more accurate simulation of read emission. Simulated data experiments demonstrate

superior frequency estimation accuracy of SimReg comparatively to that of the existing

tools.

• DRUT : “Discovery and Reconstruction of Unannotated Transcripts” (DRUT) [29],

a novel annotation-guided method for transcriptome discovery and reconstruction in

partially annotated genomes. DRUT can be used to enhance existing transcriptome

assemblers, such as Cufflinks [3]. It was shown that Cufflinks enhanced by DRUT has

superior quality of reconstruction and frequency estimation of transcripts.

• Genome-guided transcriptome reconstruction methods:

MaLTA : Maximum Likelihood Transcriptome Assembly, incorporates maximum

likelihood model for candidate transcript expression estimation.
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TRIP : “Transciptome Reconstruction using Integer Programing” (TRIP [6] ).

The method incorporates information about fragment length distribution of RNA-Seq

paired-end reads to reconstruct novel transcripts. The first step is to infer exon

boundaries from spliced genome alignments of the reads. Then, create a splice graph

based on inferred exon boundaries. Third step enumerates all maximal paths in the

splice graph corresponding to putative transcripts. The problem of selecting true

transcripts is formulated as an integer program (IP) which minimizes the set of selected

transcripts subject to a good statistical fit between the fragment length distribution

(empirically determined during library preparation) and fragment lengths implied by

mapped read pairs.

MLIP : “ Maximum Likelihood Integer Programming ”. Recent advances in

sequencing technologies made it possible to produce longer single-end reads with the

length comparable to length of fragment for paired-end technology[20]. Novel method

was developed to address transcriptome reconstruction problem from single RNA-Seq

reads. MLIP aims is to predict the minimum number of transcripts explaining the set

of input reads with the highest quantification accuracy. This is achieved by coupling

a integer programming formulation with an expectation maximization model for

isoform expression estimation. Empirical results on both synthetic and real RNA-seq

datasets show that the proposed methods improve transcriptome quantification and

reconstruction accuracy compared to previous methods.

• De novo assembly and annotation of real data sets:

Assembly of Illumina RNA-Seq Reads and Contig Annotation for Bugula neritina

Assembly and Annotation of the Etheostoma tallapoosae Genome

I am the leading contributor to the development of the transcriptome quantification

method, SimReg. For the proposed reconstruction methods (2), I have contributed to all

developmental stages but Serghei Mangul was the leading contributor. For the assembly



7

and annotation of real data sets (3), I had equal contribution in doing the bioinformatics

analyses.

1.4 Future Work

In ongoing work we are exploring possibility of integrating transcriptome quantification

and transcriptome reconstruction that will possibly lead to quantification based reconstruction

method. Currently, Next Generation Sequencing technologies allow to run library preparation

step multiple times varying the fragment length distribution for every step. Additionally,

it is possible to perform read barcoding for every library preparation step, which will

produce reads with different fragment lengths. To take adventure of this technology we

plan to develop the method able to handle reads from multiple libraries. We expect to

improve reconstruction accuracy by integrating different fragment length distributions into

transcriptome reconstruction algorithm. Also we are planning to release software tool for

transcriptome quantification and reconstruction that will include all our methods.

1.5 Organization

Dissertation is organized as follows. Chapter 1 gives a brief description of the RNA-Seq

technology and discuss application of this technology for transcriptome quantification and

reconstruction problems. Chapter 2 presents the transcriptome quantification problem and

motivation behind it. Chapter 3 introduces transcriptome reconstruction problem and gives

classification of existing methods. Chapter 4 presents de novo assembly and annotation of

two real data sets. Discussion and future directions are provided in the Chapter 5.
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PART 2

TRANSCRIPTOME QUANTIFICATION

2.1 Introduction

Massively parallel whole transcriptome sequencing, commonly referred as RNA-Seq, is

quickly becoming the technology of choice for gene expression profiling. However, due to the

short read length delivered by sequencing technologies, estimation of expression levels for

alternative splicing gene isoforms remains challenging.

2.1.1 Background

Ubiquitous regulatory mechanisms such as the use of alternative transcription start and

polyadenylation sites, alternative splicing, and RNA editing result in multiple messenger

RNA (mRNA) isoforms being generated from a single genomic locus. Most prevalently,

alternative splicing is estimated to take place for over 90% of the multi-exon human genes

across diverse cell types [8, 21]. The ability to reconstruct full length isoform sequences and

accurately estimate their expression levels is widely believed to be critical for unraveling

gene functions and transcription regulation mechanisms [22].

Two key interrelated computational problems arise in the context of transcriptome

quantification: gene expression level estimation (GE), and isoform expression level estimation

(IE). Targeted GE using methods such as quantitative PCR has long been a staple

of genetic studies. The completion of the human genome has been a key enabler for

genome-wide GE performed using expression microarrays. Since expression microarrays

have limited capability of detecting alternative splicing events, specialized splicing arrays

have been developed for genome-wide interrogation of both annotated exons and exon-exon

junctions. However, despite sophisticated deconvolution algorithms [30, 31], the fragmentary

information provided by splicing arrays is typically insufficient for unambiguous identification
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Figure 2.1 Screenshot from Genome browser [1]

of full-length transcripts [32, 33]. Massively parallel whole transcriptome sequencing,

commonly referred to as RNA-Seq, is quickly replacing microarrays as the technology

of choice for performing GE due to their wider dynamic range and digital quantitation

capabilities [14]. Unfortunately, most RNA-Seq studies to date still ignore alternative splicing

or, similar to splicing array studies, restrict themselves to surveying the expression levels

of exons and exon-exon junctions. The main difficulty in inferring expression levels for

full-length isoforms lies in the fact that current sequencing technologies generate short reads

(from few tens to hundreds of bases), many of which cannot be unambiguously assigned to

individual isoforms.

Recent review of computational methods for transcriptome quantification from RNA-Seq

data reports several problems with the current state of transcriptome quantification, among

them a significant variation in expressions level distributions throughout transcriptome

reconstruction and quantification tools [34]. Transcriptome quantification from RNA-Seq

data highly depends on read depth. Due to the sparse read support at some loci, many tools

fail to report all/some of the exons or exon-intron junctions.

Improving isoform frequency estimation error rate is critical for detecting similar

transcripts or unraveling gene functions and transcription regulation mechanisms, especially

in those cases when one isoform is a subset of another. Figure 2.1 shows a gene with

sub-transcripts from human genome (hg19).

2.1.2 Related work

From optimization point of view, the variety of approaches to transcriptome quantification

and reconstruction is very wide. The most popular approach is maximizing likelihood using

different variants of expectation-maximization (EM) [9, 35, 36], integer linear program (LP)
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based methods [6, 37], min-cost flow [38], and regression [39].

RNA-Seq by Expectation Maximization (RSEM) is an Expectation-Maximization (EM)

algorithm that works on the isoform level. The initial version of RSEM only handled

single-end reads, however, the latest version [35] has been extended to support paired-end

reads, variable-length reads, and incorporates fragment length distribution and quality scores

in its modeling. In addition to the maximum likelihood estimates of isoform expressions,

RSEM also calculates 95% confidence intervals and posterior mean estimates. RSEM is the

best algorithm presented so far, so we compare our tool SimReg to RSEM in Results and

Discussion section.

The main limitation of statistically-sound EM approach is that it does not include

uniformity of transcript coverage, i.e., it is not clear how to make sure that a solution with

more uniform coverage of transcripts will be preferred to the one where coverage is volatile.

LP and integer LP based methods overcome this limitation but cannot handle many isoforms

simultaneously.

More recently, the authors of [36] proposed a quasi-multinomial model with a single

parameter to capture positional, sequence and mapping biases. Tomescu et al. [40] proposed

a method based on network flows for a multiassembly problem arising from transcript

identification and quantification with RNA-Seq. This approach is good at keeping overall

uniformity coverage but is not suitable for likelihood maximization.

Regression based approaches are the most related to the proposed method. The most

representative of these is IsoLasso approach [39]. IsoLasso mathematically model a gene

partitions into segments (a segment is a consecutive exon region while a subexon is a

non-spliced region).

IsoLasso approach also assumes reads being uniformly sampled from transcripts. The

Poisson distribution [41] then used to approximate the binomial distribution for the number

of reads falling into each segment or subexon. The following quadratic program [39] is

well-known as a LASSO approach [42]:
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minimize:
M∑
i=1

(
ri
li
−

N∑
j=1

ajixj

)2

subject to: xj ≥ 0 , 1 ≤ j ≤ N ,
N∑
j=1

xj ≤ λ , ∀t = 1...|T |

(2.1)

and two more “completeness” constraints (namely that each segment or junction with

mapped reads is covered by at least one isoform; and the sum of expression levels of all

isoforms that contain this segment or junction should be strictly positive[39]) were added to

this program in IsoLasso. The main over-simplification is an assumption that each segment

receives from containing transcripts the number of reads proportional to its length. For

example, it is not clear how to handle very short subexons and take in account position of

a subexon in a transcript. Fragment length distribution also can discriminate one subexon

from another. Especially difficult to accurately estimate portions of pair-end reads emitted

from each subexon since in fact such reads are frequently emitted by multiple subexons

collectively. Furthermore, mapping of the reads into transcripts is frequently ambiguous

which is consciously ignored in [39].

Inferring expression at isoform level provides information for finer-resolution biological

studies, and also leads to more accurate estimates of expression at the gene level by allowing

rigorous length normalization. Genome-wide gene expression level estimates derived from

isoform level estimates are significantly more accurate than those obtained directly from

RNA-Seq data using isoform-oblivious GE methods such as the widely used counting of

unique reads, the rescue method of [7], or the EM algorithm of [43].

RNA-Seq analyses typically start by mapping sequencing reads onto the reference

genome, transcript libraries, exon-exon junction libraries, or combinations thereof. Early

RNA-Seq studies have recognized that limited read lengths result in a significant percentage

of so called multireads, i.e., reads that map equally well at multiple locations in the genome. A

simple (and still commonly used) approach is to discard multireads, and estimate expression
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levels using only the so called unique reads. Mortazavi et al. [7] proposed a multiread

“rescue” method whereby initial gene expression levels are estimated from unique reads and

used to fractionally allocate multireads, with final expression levels obtained by re-estimation

based on total counts obtained after multiread allocation. An expectation-maximization

(EM) algorithm that extends this scheme by repeatedly alternating between fractional read

allocation and re-estimation of gene expression levels was recently proposed in [43].

A number of recent works have addressed the IE problem, namely isoform expression

level estimation from RNA-Seq reads. Under a simplified “exact information” model,

[33] showed that neither single nor paired read RNA-Seq data can theoretically guarantee

unambiguous inference of isoform expression levels, although paired reads may be sufficient

to deconvolute expression levels for the majority of annotated isoforms. The key challenge

in IE is accurate assignment of ambiguous reads to isoforms. Compared to the GE context,

read ambiguity is much more significant, since it affects not only multireads, but also

reads that map at a unique genome location expressed in multiple isoforms. Estimating

isoform expression levels based solely on unambiguous reads, as suggested, e.g., in [21],

results in splicing-dependent biases similar to the transcript-length bias noted in [44], further

complicating the design of unbiased differential expression tests based on RNA-Seq data.

To overcome this difficulty, [41] proposed a Poisson model of single-read RNA-Seq data

explicitly modeling isoform frequencies. Under their model, maximum likelihood estimates

are obtained by solving a convex optimization problem, and uncertainty of estimates is

obtained by importance sampling from the posterior distribution. Li et al. [45] introduced

an expectation-maximization (EM) algorithm similar to that of [43] but applied to isoforms

instead of genes. Unlike the method of [41], which estimates isoform frequencies only from

reads that map to a unique location in the genome, the algorithm of [45] incorporates

multireads as well. The IE problem for single reads is also tackled in [46], who propose

an EM algorithm for inferring isoform expression levels from the read coverage of exons

(reads spanning exon junctions are ignored).
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2.1.3 Our contributions

In this section we focus on the IE problem, namely estimating isoform expression levels

(interchangeably referred to as frequencies) from RNA-Seq reads, under the assumption

that a complete list of candidate isoforms is available. Projects such as [47] and [48] have

already assembled large libraries of full-length cDNA sequences for humans and other model

organisms, and the coverage of these libraries is expected to continue to increase rapidly

following ultra-deep paired-end transcriptome sequencing projects such as [3, 4] and the

widely anticipated deployment of third-generation sequencing technologies such as [49, 50],

which deliver reads with significantly increased length. Inferring expression at isoform level

provides information for finer-resolution biological studies, and also leads to more accurate

estimates of expression at the gene level by allowing rigorous length normalization. Indeed,

as shown in the ‘Experimental results’ section, genome-wide gene expression level estimates

derived from isoform level estimates are significantly more accurate than those obtained

directly from RNA-Seq data using isoform-oblivious GE methods such as the widely used

counting of unique reads, the rescue method of [7], or the EM algorithm of [43].

2.2 SimReg : Simulated Regression Algorithm for Transcriptome Quantification

from RNA-Seq Data

The proposed method for estimating frequencies of transcripts is based on the novel

approach for estimating expected read frequencies. First we describe the essence of our

approach and contrast it with IsoLasso.

2.2.1 Mapping RNA-Seq reads

As with many RNA-Seq analyses, the first step of SimReg is to map the reads.

Our approach is to map them onto the library of known isoforms using any one of the

many available ungapped aligners (we used Bowtie [51] with default parameters in our

experiments).
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An alternative strategy is to map the reads onto the genome using a spliced alignment

tool such as TopHat [52], as done, e.g., in [3, 4]. However, preliminary experiments with

TopHat resulted in fewer mapped reads and significantly increased mapping uncertainty,

despite providing TopHat with a complete set of annotated junctions.

2.2.2 Partition reads into read classes

As discussed above, it is very difficult (if at all possible) to accurately estimate portions

of pair-end reads emitted from each subexon. Instead, rather than distinguishing reads by

their gene position, we partition reads into classes each consisting of reads consistent with

each element of a particular subset of transcripts. In other words, two reads are assigned

to the same class if they are consistent with exactly the same transcripts. Our second

innovation is to use Monte-Carlo simulations instead of attempting to formally estimate

contributions of each transcript to each read class. For any particular read class R, the

expected frequency is estimated based on the frequencies of contributing transcripts as well

as portions of reads that fall into the class R. Finally, using the standard regression method,

we estimate transcript frequencies by minimizing deviation between expected and observed

read class frequencies.

2.2.3 Splitting the transcripts and reads into independent connected components.

We assume that alignment of a read to transcript is valid if the fragment length

deviates from the mean by less than 4 standard deviations. Our simulations show that the

Monte-Carlo estimates become accurate enough only when simulated coverage is sufficiently

high, i.e., approaching 1000x. Such high coverage is time consuming since each simulated

read needs to be aligned with each possible transcript. In order to reduce runtime, we split

transcripts into small related subsets roughly corresponding to sets of overlapping genes.

First, we build the matching graph M = (T ∪ R, E), where T and R are the sets of all

transcripts and reads, respectively, and each edge e = (r, T ) ∈ E corresponds to a valid

alignment of a read r to a transcript T ∈ T . Transcript frequencies within each connected
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Algorithm 1 SimReg Algorithm

1. Split transcripts and reads into independent connected components:
Estimate mean µ and standard deviation σ of read fragment distribution
Find valid alignment of all observed reads to all transcripts

Construct matching graph M = (T ∪R, E) with edges corresponding to valid alignments
Find connected components of M
Find observed read classes R’s in R

2. Estimate transcript frequencies inside each connected component:
for each component C of M do

for each transcript T in C do
Simulate reads with 1000x coverage from T
Map simulated reads to all other transcripts in C
Find simulated read classes from reads mapped to the same subset of transcripts in
C
Find DR,T = {dR,T}, distribution of reads simulated from T between read classes in
R

end for
Combine observed read classes and simulated read classes
Find crude transcript frequencies F ′T in C minimizing deviation between observed read
class frequencies OR = {oR} and expected read class frequencies

F ′T ← argmin(DR,T × F ′T −OR)2

end for
3. Update initial estimates of transcript frequencies:
for each component C of M do

Initilize aimed read class frequencies A = {aR}with observed frequencies: aR ← oR
repeat

For i = 0, ...
Simulate reads with 100x coverage based on crude transcript frequency F ′T

sR ← simulated frequency of read class R
Compute deviations beween observed and simulated read class frequencies

∆← S −O
Update aimded read class frequencies aR –

A← AR −∆/2
Compute crude transcript frequencies F ′T based on corrected read class frequencies
{cR}, i.e.,

F ′T ← argmin(DR,T × F ′T − AR)2

until ∆2 < ε
Obtain transcript frequencies from crude transcript frequencies

end for
4. Combine transcript frequency estimates from all connected components
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Figure 2.2 Paired reads r and r′ are simulated from the transcript T1. Each read is mapped
to all other transcripts (T2, T3, T4). Mapping of the read r into the transcript T2 is not
valid since the fragment length is 4 standard deviations away from the mean. Then each
read is assigned to the corresponding read class – the read r is placed in the read class T1 T3
and the read r′ is placed in the read class T1 T3 T4.

component of M do not depend on transcript frequencies within other connected components

and can be estimated separately. A significant portion of connected components contains

just a single transcript for which the next step is trivial. Finally, the observed reads are

partitioned into read classes each consisting of reads mapped to the same transcripts (see

Figure 2.2).

2.2.4 Estimating transcript frequencies within each connected component.

As discussed above, in each connected component C we simulate reads with 1000x

coverage for each transcript (see Figure 2.2). Thus for a transcript T with the length |T | we

generate NT = 1000lT reads, where lT = |T | − µ + 1 is the adjusted length of T . Similar

to observed reads, we allow only alignments with fragment length less than 4σ away from

µ. The reads that belong to exactly the same transcripts are collapsed into a single read
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class. Let R = {R} be all read classes found in the connected component C and let RT be

the number of reads simulated from the transcript T that fall in the read class R. The first

inner loop outputs the set of coefficients DR,T = {dR,T}, where dR,T is the portion of reads

generated from T belonging to R

DR,T =

{
|RT |
NT

}
Let F ′T = {f ′T} be the crude transcript frequency, i.e., the portions of reads emitted by

transcripts in the connected component C. Then the expected read class frequency ER can

be estimated as

ER = DR,T × F ′T (2.2)

Regression-based estimation of f ′t ’s minimizes squared deviation

(DR,T × F ′T −OR)2 =
∑
R∈R

(eR − oR)2 (2.3)

between expected read class frequencies eR’s and observed read class frequencies oR’s.

Minimizing (2.3) is equivalent to the following quadratic program that can be solved with

any constrained quadratic programming solver.

minimize:
∑
R∈R

(∑
T∈C

dR,Tf
′
T − oR

)2

subject to:
∑
T∈C

f ′T = 1 and f ′T ≥ 0 , ∀T ∈ C
(2.4)

2.2.5 Update initial estimates of transcript frequencies.

The obtained crude transcript frequency estimation F ′T can deviate from the true crude

frequency since the minimization of deviation is done uniformly. Indeed, the deviation in

frequency is minimized on the same scale for each read class while different read classes

have different size, as well as contribute to different subsets of transcripts. Instead of
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estimating unknown coefficients, we propose to directly obtain F ′T for which simulated read

class frequencies SR = {sR}match the observed frequencies OR accurately enough as follows.

Until the deviation between simulated and observed read class frequencies is small

enough, we repeatedly

– simulate reads according to F ′R,

– find deviation between simulated and observed reads, ∆R = SR −OR,

– obtain read frequencies CR = OR −∆R/2 corrected half-way in the direction opposite

to the deviation

– update estimated crude transcript frequencies F ′T based on corrected read class

frequencies {CR}

Finally, the transcript frequencies fT ’s can be obtained from crude frequencies f ′T ’s as follows

fT =
f ′T/lT∑

T ′∈C f
′
T ′/lT ′

(2.5)

2.2.6 Combining transcript frequency estimates from all connected components.

Finally, we combine together individual solutions for each connected component. Let

f globT and f locT be the global frequency of the transcript T and local frequency of the transcript

T in its connected component C. Then the global frequency can be computed as follows

f globT = f locT ×
|RC |/

∑
T ′∈C f

loc
T ′ lT ′∑

C′∈C
|RC′ |∑

T ′∈C′ f locT ′ lT ′

(2.6)

where C is the set of all connected components in the graph M , |RC | is the number of reads

emitted by the transcripts contained in the connected component C.



23

Figure 2.3 Screenshot from Genome browser [1] of a gene with 21 sub-transcripts

2.3 Experimental results

We tested SimReg on several test cases using simulated human RNA-Seq data. The

RNA-Seq data was simulated from UCSC annotation (hg18 Build 36.1) using Grinder read

simulator (version 0.5.0) [53], with a uniform 0.1% error rate. Experiments on synthetic

RNA-seq datasets show that the proposed method improves transcriptome quantification

accuracy compared to previous methods.

The following three test cases have been used to validate SimReg:

Case 1: consists of a single gene with 21 transcripts extracted from chromosome 1 (see Figure

2.3). From this gene we have simulated around 3000 (coverage 100×) paired-end reads of

length 100bp and mean fragment length µ = 300.

Case 2: we have randomly chosen 100 genes from which we have simulated reads using same

parameters as in case 1.

Case 3: we have run our tool on the entire chromosome 1 which contains a total of 5509

transcripts (from 1990 genes) from where we have simulated 10M paired-end reads of length

100bp.

We have compared our results with RSEM , one of the best tool for transcriptome

quantification. Frequency estimation accuracy was assessed using r2 and the comparison

results are presented in Table 1.The results show better correlation compared with RSEM
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especially because of those cases of sub-transcripts where RSEM skewed the estimated

frequency toward super-transcripts.

Table 2.1 Comparison results between SimReg and RSEM

Isoform Expression - r2values
Case 1: 1 gene Case 2: 100 genes Case 3: chr. 1

SimReg RSEM SimReg RSEM SimReg RSEM

0.958 0.923 0.999 0.93 0.995 0.924

SimReg is freely available at http://alan.cs.gsu.edu/NGS/?q=adrian/simreg

2.4 Conclusions

We propose a novel regression based algorithm to solve the problem of transcript and

gene expression level estimation from RNA-Seq data. Our novel algorithm falls into the

category of regression based methods: namely, SimReg is a Monte-Carlo based regression

method. We propose to apply a more accurate simulation of read emission. The results

on several simulated datasets show better correlation compared with RSEM especially

because of those cases of sub-transcripts where RSEM skewed the estimated frequency

toward super-transcripts. For the real dataset a subset of human transcripts was used,

where transcripts were quantified independently by NanoString assay [?] (a total of 109

genes were targeted by 141 distinct probes). MCReg2 reports a correlation of 0.8 showing

a better performance than RSEM which reports only 0.75 correlation. However, for this

particular dataset, the IsoEM performance is of overall best (0.85).



25

PART 3

TRANSCRIPTOME RECONSTRUCTION

3.1 Introduction

Massively parallel whole transcriptome sequencing, commonly referred to as RNA-Seq,

has become the technology of choice for performing gene and isoform specific expression

profiling. However, accurate normalization of RNA-Seq data critically requires knowledge

of expressed transcript sequences [7–9, 45]. Unfortunately, as shown by recent targeted

RNA-Seq studies [15], existing transcript libraries still miss large numbers of transcripts.

The sequences of novel transcripts can be reconstructed from deep RNA-Seq data, but

this is computationally challenging due to sequencing errors, uneven coverage of expressed

transcripts, and the need to distinguish between highly similar transcripts produced by

alternative splicing.

3.1.1 Background

RNA-Seq is quickly becoming the technology of choice for transcriptome research and

analyses [14]. RNA-Seq allows reduction of the sequencing cost and significantly increases

data throughput, but it is computationally challenging to use such RNA-Seq data for

reconstructing of full length transcripts and accurately estimate their abundances across

all cell types. The common computational problems include: gene and isoform expression

level estimation, transcriptome quantification, transcriptome discovery and reconstruction.

To solve these problems requires scalable computational tools [23]. A variety of new methods

and tools have been recently developed to tackle these problems.
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3.1.2 Related Work

RNA-Seq analyses typically start by mapping sequencing reads onto the reference

genome, reference annotations, exon-exon junction libraries, or combinations thereof. In

case of mapping reads onto the reference genome one needs to use spliced alignment tools,

such as TopHat [52] or SpliceMap [54].

Identifying of all transcripts expressed in a particular sample require the assembly of

reads into transcription units. This process is collectively called transcriptome reconstruction.

A number of recent works have addressed the problem of transcriptome reconstruction

from RNA-Seq reads. These methods fall into three categories: “genome-guided”,

“genome-independent” and “annotation-guided” methods [23]. Genome-independent methods

such as Trinity [24] or transAbyss [25] directly assemble reads into transcripts. A commonly

used approach for such methods is de Brujin graph [26] utilizing ”k-mers”. The use of

genome-independent methods becomes essential when there is no trusted genome reference

that can be used to guide reconstruction. On the other end of the spectrum, annotation

guided methods [27] make use of available information in existing transcript annotations

to aid in the discovery of novel transcripts. RNA-Seq reads can be mapped onto reference

genome, reference annotations, exon-exon junction libraries, or combinations thereof, and

the resulting alignments are used to reconstruct transcripts.

Many transcriptome reconstruction methods fall in the genome-guided category. They

typically start by mapping sequencing reads onto the reference genome,using spliced

alignment tools, such as TopHat [52] or SpliceMap [54]. The spliced alignments are used

to identify exons and transcripts that explain the alignments. While some methods aim

to achieve the highest sensitivity, others work to predict the smallest set of transcripts

explaining the given input reads. Furthermore, some methods aim to reconstruct the set of

transcripts that would insure the highest quantification accuracy. Scripture [4] construct a

splicing graph from the mapped reads and reconstructs isoforms corresponding to all possible

paths in this graph. It then uses paired-end information to filter out some transcripts.

Although scripture achieves very high sensitivity, it may predict a lot of incorrect isoforms.
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Table 3.1 Classification of transcriptome reconstruction methods

Method Support paired-end Consider fragment Require
reads lenght distribution annotation

TRIP Yes Yes No
IsoLasso Yes No No
IsoInfer No No TES/TSS
Cufflinks Yes Yes No

CLIQ No No No
Scripture Yes No No
SLIDE Yes No gene/exon boundaries

The method of Trapnell et al. [3, 55], referred to as Cufflinks, constructs a read overlap graph

and generates candidate transcripts by finding a minimal size path cover via a reduction to

maximum matching in a weighted bipartite graph. Cufflinks and Scripture do not target

the quantification accuracy. IsoLasso [5] uses the LASSO [42] algorithm, and it aims to

achieve a balance between quantification accuracy and predicting the minimum number

of isoforms. It formulates the problem as a quadratic programming one, with additional

constraints to ensure that all exons and junctions supported by the reads are included

in the predicted isoforms. CLIIQ [37] uses an integer linear programming solution that

minimizes the number of predicted isoforms explaining the RNA-Seq reads while minimizing

the difference between estimated and observed expression levels of exons and junctions within

the predicted isoforms.

Table 3.1 includes classification of the available methods for genome-guided transcriptome

reconstruction based on supported parameters and underlying algorithms.

3.1.3 Our Contribution

We focus on the problem of transcriptome reconstruction from RNA-Seq data assisted

by existing genome and transcriptome annotations. To address transcriptome reconstruction

problem we developed annotation-guided and genome-guided methods.

In section 4.8 we propose a novel annotation-guided general framework for transcriptome

discovery, reconstruction and quantification in partially annotated genomes, referred as
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Discovery and Reconstruction of Unannotated Transcripts (DRUT). DRUT framework

incorporates an enhancement of EM algorithm,VTEM [56] [29], to detect overexpressed

reads and/or exons corresponding to the unannotated transcripts and to estimate annotated

transcript frequencies. Our main contribution is an expectation-maximization based method

for discovery of unannotated transcripts when partial information about genome annotation

is given. A key feature of our algorithm is its usage of the existing genome annotation

information to detect reads from unannotated transcripts and accurately estimate annotated

transcripts abundances. Moreover, the algorithm applies transcriptome assembler on subset

of reads to improve the quality of the transcriptome reconstruction. The recently published

paper [27] is the only related work that we are aware of, which exploits information

about genome annotations. RABT is an annotation-guided assembler built upon Cufflinks

assembler [3] that determines the minimum number of transcripts needed to explain reads

mapped to the reference genome.

We also present experimental results on in silico datasets generated with various

sequencing parameters and distribution assumptions. The results show that DRUT

overperforms existing genome-guided transcriptome assemblers and show similar or better

performance with existing annotation-guided assemblers. Testing DRUT for transcriptome

quantification implies usage of VTEM [56] algorithm for partially annotated transcripts.

Our experimental studies show that DRUT significantly improves estimation of transcipts

frequencies in comparison to our previous method IsoEM [9] for partially annotated genomes.

In section 3.3 a novel “genome-guided” method called “Transcriptome Reconstruction

using Integer Programming” (TRIP) is proposed. The method incorporates information

about fragment length distribution of RNA-Seq paired end reads to reconstruct novel

transcripts. First, we infer exon boundaries from spliced genome alignments of the reads.

Then, we create a splice graph based on inferred exon boundaries. We enumerate all

maximal paths in the splice graph corresponding to putative transcripts. The problem of

selecting true transcripts is formulated as an integer program (IP) which minimizes the set of

selected transcripts subject to a good statistical fit between the fragment length distribution
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(empirically determined during library preparation) and fragment lengths implied by mapped

read pairs.

Experimental results on both real and synthetic datasets generated with various

sequencing parameters and distribution assumptions show that TRIP has increased transcriptome

reconstruction accuracy compared to previous methods that ignore information about

fragment length distribution.

3.2 Annotation-guided Transcriptome Reconstruction Algorithms

3.2.1 Mapping RNA-Seq Reads and Exon Counts

As with many RNA-Seq analyses, the first step of DRUT is to map reads (see Fig.

3.2a). Our approach maps reads onto the library of annotated transcripts using any one of

the many available ungapped aligners (we used Bowtie [51] with default parameters in our

experiments). An alternative strategy is to map the reads onto the genome using a spliced

alignment tool such as TopHat [52], as done in [3, 4].

Based on the reads mapped to the set of annotated transcripts it is possible to calculate

observed exon counts. Exon counts are calculated based both on the spliced and unspliced

reads. For the spliced reads the contribution of the read is equal to the part of the read

mapped to particular exon.

3.2.2 DRUT : Method for Discovery and Reconstruction of Unannotated Transcripts

In this section, we propose a novel annotation-guided algorithm called ”Discovery

and Reconstruction of Unannotated Transcripts”(DRUT) [29] for transcriptome discovery,

reconstruction and quantification in partially annotated genomes.

In this section we first formally define the panel and briefly describe expectation-maximization

method for transcriptome quantification, referred as IsoEM [9] . Then we show how to

estimate the quality of the model, i.e. how well model explains the relationship between

transcripts and emitted exons. Finally we describe the DRUT method that is based on

modification of Virtual String Expectation Maximization(VSEM) Algorithm [56].
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The input data for EM method consists of a panel, i.e., a bipartite graphG = {S
⋃
R,E}

such that each string is represented as a vertex s ∈ S, and each read is represented as a

vertex r ∈ R. With each vertex s ∈ S, we associate unknown frequency fs of the string.

And with each vertex r ∈ R, we associate observed read frequency or. Then for each pair

si, rj, we add an edge (si, rj) weighted by probability of string si to emit read rj.

Regardless of initial conditions EM algorithm always converge to maximum likelihood

solution (see [43]).The algorithm starts with the set of N strings. After uniform initialization

of frequencies fs, s ∈ S, the algorithm repeatedly performs the next two steps until

convergence:

• E-step: Compute the expected number n(j) of reads that come from string i under the

assumption that string frequencies f(j) are correct, based on weights hsi,j

• M-step: For each i, set the new value of fs to to the portion of reads being originated

by string s among all observed reads in the sample

In this modification of VSEM algorithm, refereed as Virtual Transcript Expectation

Maximization(VSET) algorithm , we replace the reads in the panel by corresponding exons

with the observed counts(calculated as described in ??). In order to decide if the panel

is incomplete we need to measure how well maximum likelihood model explains the exon

counts. We suggest to measure the model quality by the deviation between expected and

observed exon counts as follows:

D =

∑
j |oj − ej|
|R|

,

where |R| is number of exons, oj is the observed exon count Ej and ej is the expected exon

count rj calculated as follows:

ej =
∑
i

hsi,j∑
l hsi,l

fML
i (3.1)

where hsi,j={0 - exon Ej doesn’t belong to transcript ti , 0 - otherwise}, and fML
j is the

maximum-likelihood frequency of the transcript si.
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Figure 3.1 Flowchart for VTEM.

The DRUT method is based on our VTEM method, described above, that is created for

maximum likelihood estimation of incomplete genomic spectrum. The main idea of DRUT

algorithm (see Algorithm 2) is to add to the set of annotated transcripts a virtual transcript

which emits exons that do not fit well to annotated transcript sequences. The flowchart of

DRUT is on Fig. 3.1. Initially, all exons are connected to the virtual string with weight

hsi,j = 0. The first iteration finds the ML frequency estimations of annotated transcripts,

ML frequency estimations of virtual transcript will be equal to 0, since all edges between

virtual transcript and exons hvs,j = 0. Then these estimation are used to compute expected

frequency of the exons according to (3.3). If the expected exon frequency is less than the

observed one (under-estimated), then the lack of the exon expression is added to the weight

of the read connection to the virtual transcript. For over-estimated exons, the excess of exon

expression is subtracted from the corresponding weight (but keeping it non-negative). The

iterations are continued while the virtual string frequency is decreasing by more than ε.

The frequency fi of virtual transcript estimates the total frequency of unannotated

transcript. Therefore, based on the frequency of virtual transcript we can decide if the

panel is likely to be incomplete or not. Furthermore the output of DRUT besides estimated

frequency of the virtual transcript also contain the weights of edges connecting exons to the

virtual transcript. These weights can be interpreted as probabilities of exon to be part by the

unannotated transcripts. In order to select exons corresponding to unannotated transctipts
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Algorithm 2 VTEM algorithm

add virtual transcript vt to the set of annotated transcripts
initialize weights hvs,j = 0
while ∆vt > ε do

calculate fML
j by EM algorithm

ej =
∑

i

hsi,j∑
l hsi,l

fML
i

D =
∑

j |oj−ej |
|R|

δ = oj − ej
if δ > 0 then
hvt,j+ = δ

else
hvt,j = max{0, hvt,j + δ}

end if
end while

it is enough to select fi most probable exons. Let’s call these exons ”overexpressed” (see Fig.

3.2b).

After ”overexpressed” exons corresponding to unannotated transcripts were detected,

it becomes possible to select reads corresponding to these exons. Spliced reads are selected

only in the case when all spliced parts belong to ”overexpressed” exons. This way we add the

reads to a new read file that represents a subset of original reads. Also, this subset of reads is

merged with reads that failed to map to annotated transcripts a priori, mapping these reads

to the reference genome with spliced alignment tool e.g. TopHat[52] (see Fig. 3.2c). Merged

subset of reads are used as an input for transcriptome assembler. For our DRUT method we

choose ab initio transcriptome reconstruction tools - Cufflinks [3]. Assembled transcripts are

merged with annotated transcripts and the resulting set of transcripts is filtered to remove

duplicates (see Fig. 3.2d).

3.2.3 Experiment Results.

Our validation of DRUT includes three experiments over human RNA-seq data, two

experiments on transcriptome quantification and one experiment on transcriptome discovery

and reconstruction. Below we describe the transcriptome data and read simulation and then
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Figure 3.2 Flowchart for DRUT.

give the settings for the each experiment and analyze the obtained experimental results.

Simulated human RNA-Seq data. The human genome data (hg19, NCBI build

36) was downloaded from UCSC [57] and CCDS [58], together with the coordinates of the

transcripts in the KnownGenes table. The UCSC database contains a total of 66, 803

transcripts pertaining to 19, 372 genes, and CCDS database contains 20, 829 transcripts

from 17, 373 genes. The transcript length distribution and the number of transcripts per

genes for UCSC are shown in Fig. 3.10. Genes were defined as clusters of known transcripts

as in GNFAtlas2 table, such that CCDS data set can be identified with the subset of UCSC

data set. 30 millions single reads of length 25bp were randomly generated by sampling

fragments of transcripts from UCSC data set. Each transcript was assigned a true frequency

based on the abundance reported for the corresponding gene in the first human tissue of the
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GNFAtlas2 table, and a probability distribution over the transcripts inside a gene cluster [9].

We simulate datasets with geometric (p=0.5) distributions for the transcripts in each gene.

Single error-free reads of length 25bp, 50bp, 100bp and 200bp were randomly generated

by sampling fragments of transcripts from UCSC data set. As shown in the [9] for

transcriptome quantification purposes it is more beneficial to have shorter reads if the

throughput is fixed. At the same time, for transcriptome reconstruction is quite beneficial

to have longer reads. Read length of 100bp is the best available option for such next

generation sequencing platform as IlluminaTM[19]. Current Ion TorrentTMtechnology is

capable of producing reads of length more than 200bp. Ion TorrentTMnext generation

sequencing technology utilizes integrated circuits capable of detection ions produced by the

template-directed DNA polymerase synthesis for sequencing genomes [20].

Accuracy Estimation Transcriptome Quantification Accuracy was assessed using

error fraction (EF) and median percent error (MPE) measures used in [45]. However,

accuracy was computed against true frequencies, not against estimates derived from the

true counts as in [45]. If f̂i is the frequency estimate for an transcript with true frequency

fi, the relative error is defined as |f̂i− fi|/fi if fi 6= 0, 0 if f̂i = fi = 0, and ∞ if f̂i > fi = 0.

The error fraction with threshold τ , denoted EFτ is defined as the percentage of transcripts

with relative error greater or equal to τ . The median percent error, denoted MPE, is defined

as the threshold τ for which EFτ = 50%.

To estimate transcriptome reconstruction accuracy all assembled transcripts (referred

to as ”candidate transcripts”) are matched against annotated transcripts. Two transcripts

match if and only if they include the same set of exons. Two single-exon transcripts match

if and only if the overlapping area is at least 50% the length of each transcript.

Following [59], we use sensitivity and Positive Predictive Value (PPV) to evaluate the

performance of different methods. Sensitivity is defined as portion of the annotated transcript
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sequences being captured by candidate transcript sequences as follows:

Sensitivity =
TP

TP + FN

PPV is defined portion of annotated transcript sequences among candidate sequences

as follows:

PPV =
TP

TP + FP

Comparison on partially annotated UCSC data set. We assumed that in every

gene 25% of transcripts are not annotated. In order to create such an instance we assign

to the transcripts inside the gene a geometric distribution (p=0.5), assuming a priori that

number of transcripts inside the gene is less or equal to 3, we will refer to this experiment

as Experiment 1. This way we removed transcripts with frequency 0.25. As a result 11, 339

genes were filtered out, number of transcripts was reduced to 24, 099. Note that in our data

set unannotated transcripts do not have unique exon-exon junctions that can emit reads

indicating that certain transcripts are not annotated.

We first check how well VTEM estimates the volume of missing transcripts. Although

the frequencies of all missing transcripts are the same (25%), the volumes significantly

differ because they have different lengths. Therefore, the quality can be measured by

correlation between actual unannotated volumes and predicted missing volumes, which

represent volumes of virtual transcripts. In this experiment the quality is 61% which is

sufficiently high to give an idea which genes have unannotated transcripts in the database.

Table ?? reports the median percent error (MPE) and .15 error fraction EF.15 for the

isoform expression levels inferred from 30 millions reads of length 25bp, computed over

groups of isoforms with various expression levels.

Comparison Between DRUT, RABT and Cufflinks. In order to simulate a

partially annotated genome we removed from every gene exactly one transcript. As a result

all 19, 372 genes become partially annotated, and number of transcripts was reduced to
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47, 431. In this section, we use the sensitivity and PPV defined above to compare our

DRUT method to the most recent version of Cufflinks and RABT (version 1.3.0 of Cufflinks

and RABT downloaded from website http://cufflinks.cbcb.umd.edu/). Due to the fact that

results on 100bp and 200bp are very similar, we decided to present comparison on reads of

length 100bp. TopHap [52] is used for Cufflinks and RABT to map simulated reads to the

reference genome. For DRUT we used Bowtie [51] to map reads to the set of annotated

transcripts. For our simulation setup we assume perfect mapping of simulated reads to the

genome in case of Cufflinks and to the annotated transcripts in case of DRUT.

Intuitively, it seems more difficult to predict the transcripts in genes with more

transcripts. Following [60] we group all the genes by their number of transcripts and calculate

the sensitivity and PPV of the methods on genes with certain number of transcripts as shown

in Fig. 3.14.

Next we want to define the portion of known transcripts that is input for annotation-guided

methods as “existing annotations”. Please note that sensitivity of annotation-guided

methods needs to be compared to the “existing annotations” ratio unlike regular reconstruction

methods that do not have any a priori information about annotated transcripts. In our

simulation setup “existing annotations” ratio increases as the number of transcripts in genes

become larger.

Fig. 3.14(a) shows that for genes with more transcripts it is more difficult to correctly

reconstruct all the transcripts. As a result Cufflinks performs better on genes with few

transcripts since annotations are not used in it standard settings. DRUT has higher

sensitivity on genes with 2 and 3 transcripts, but RABT is better on gene with 4 transcripts.

For genes with more than 4 transcripts performance of annotation-guided methods is equal

to ”existing annotations ratio”, which means these methods are unable to reconstruct

unannotated transcripts.

We compared PPV for all 3 methods (Fig. 3.14(b)), all methods show high PPV

for genes with 2 transcripts. DRUT outperforms all methods on genes with more then

3 transcripts and shows comparable performance on gene with 2 and 3 transcripts.
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Figure 3.4 Comparison between DRUT, RABT, Cufflinks for groups of genes with n

transcripts (n=1,...,9) : (a) Sensitivity (b) Positive Predictive Value (PPV)
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3.3 Genome-guided Transcriptome Reconstruction Algorithms

3.3.1 Read Mapping

As with many RNA-Seq analyses, the first step of TRIP is to map the reads. We map

reads onto the genome reference using any of the available splice alignment tools (we use

TopHat [52] with default parameters in our experiments). Note that a paired read consists of

two reads flanking a fragment whose length usually follows normal distribution. The mean

and variance of fragment length distribution are usually known in advance or can be inferred

from read alignments.

3.3.2 MaLTA: Maximum Likehood Transcriptome Assembly

Existing transcriptome methods([3],[6]) use read pairing information and fragment

length distribution to accurately assemble set of transcripts expressed in a sample. This

information is not available for current Ion Torrent technology, which can makes it

challenging to assemble transcripts. Ion Torrent PGM platform is able to produce single

reads with read length in 50-300bp range. We present MaLTA, method for simultaneous

transcriptome assembly and quantification from Ion Torrent RNA-Seq data. Our approach

explores transcriptome structure and incorporates maximum likelihood model into assembly

procedure. MaLTA starts from a set of putative transcripts and selects the subset of this

transcripts with the highest support from the RNA-Seq data. Maximum likelihood estimates

of putative transcripts are computed using Expectation Maximization(EM) algorithm

which take into account alternative splicing and mapping ambiguities. EM algorithm

is state-of-the-art approach for transcriptome quantification from RNA-Seq data and are

proven to outperform count-based approaches. Several independent implementations of EM

algorithm exist in the literature ( [9], [35]).

We developed a new version of IsoEM [9] suitable for Ion Torrent RNA-Seq reads.

IsoEM is an expectation-maximization algorithm for transcript frequency estimation. It

overcomes the problem of reads mapping to multiple transcripts using iterative framework
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which simultaneously estimates transcript frequencies and imputes the missing origin of the

reads. A key feature of IsoEM, is that it exploits information provided by the distribution of

insert sizes, which is tightly controlled during sequencing library preparation under current

RNA-Seq protocols. In [9], we showed that modeling insert sizes is highly beneficial for

transcript expression level estimation even for RNA-Seq data consisting of single reads, as

in the case of Ion Torrent. Insert sizes contribute to increased estimation accuracy. They

can help disambiguating the transcript of origin for the reads. In IsoEM, insert lengths are

combined with base quality scores, and, if available, read pairing and strand information to

probabilistically allocate reads to transcripts during the expectation step of the algorithm.

Since most Ion Torrent sequencing errors are insertions and deletions, we developed a version

of IsoEM capable of handling insertions and deletions in read alignments.

The main idea of the MaLTA approach is to cover all trancriptional and splicing variants

presented in the sample with the minimum set of putative transcripts. We use new version

of IsoEM algorithm, described above, to estimate expression levels of putative transcripts.

Since we infer all possible transcripts in the sample, selecting all of them with non zero

frequency will lead to unfeasible solution. Here, we suggest to select only such transcripts

that contain novel variants and have highest support from sequencing data. To realize this

idea we suggest a greedy algorithm which traverses the list of transcripts (sorted by expression

levels in descending order) and select a transcript only if it contains a novel transcriptional

or splicing event.

3.3.3 TRIP : Transcriptome Reconstruction using Integer Programming

TRIP is a novel “genome-guided” method that incorporates fragment length distribution

into novel transcript reconstruction from paired-end RNA-Seq reads. The method starts

from a set of maximal paths corresponding to putative transcripts and selects the subset

of candidate transcript with the highest support from the RNA-Seq reads. We formulate

this problem as an integer program. The objective is to select the smallest set of putative

transcripts that yields a good statistical fit between the fragment length distribution
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empirically determined during library preparation and fragment lengths implied by mapping

read pairs to selected transcripts.

Construction of Splice Graph and Enumeration of Putative Transcripts.

Typically, alternative variants occurs due alternative transcriptional events and alternative

splicing events [61] . Transcriptional events include: alternative first exon, alternative

last exon. Splicing events include: exon skipping, intron retention, alternative 5’ splice

site(A5SS), and alternative 3’ splice site (A3SS). Transcriptional events may consist only of

non-overlapping exons. If exons partially overlap and both serve as a first or last exons we

will refer to such event as A5SS or A3SS respectively.

To represent such alternative variants we suggest to process the gene as a set of so

called “pseudo-exons” based on alternative variants obtained from aligned RNA-seq reads.

A pseudo-exon is a region of a gene between consecutive transcriptional or splicing events,

i.e. starting or ending of an exon, as shown in Figure 3.5. Hence every gene has a set

of non-overlapping pseudo-exons, from which it is possible to reconstruct a set of putative

transcripts.
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e1 e
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pse1 pse2 pse3 pse4 pse5 pse6 pse7

Tr1:

Tr2:

Tr3:

Figure 3.5 Pseudo-exons(white boxes) : regions of a gene between consecutive transcriptional

or splicing events. An example of three transcripts Tri, i = 1, 2, 3 each sharing exons(blue

boxes). Spsej and Epsej represent the starting and ending position of pseudo-exon j,

respectively.

The notations used in Figure 3.5 represents the following:
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ei : exon i ;

psej : pseudo-exon j ;

Spsej : start position of pseudo-exon j, 1 ≤ j ≤ 2n ;

Epsej : end position of pseudo-exon j, 1 ≤ j ≤ 2n ;

Tri : transcript i ;

A splice graph is a directed acyclic graph (see Fig. 3.6), whose vertices represent

pseudo-exons and edges represent pairs of pseudo-exons immediately following one another

in at least one transcript (which is witnessed by at least one (spliced) read). We enumerate

all maximal paths in the splice graph using a depth-first-search algorithm. These paths

correspond to putative transcripts and are the input for the TRIP algorithm. A gene with

n pseudo-exons may have 2n − 1 possible candidate transcripts, each composed of a subset

of the n pseudo-exons.

Next we will introduces an integer program producing minimal number of transcripts

sufficiently well covering observed paired reads.

pse5pse1 pse2 pse3 pse4 pse6 pse7

Genome

Single

reads

1 2 43 5 6 7

Figure 3.6 Splice graph. The red horizontal lines represent single reads. Reads interrupted by

dashed lines are spliced reads. Each vertex of the splice graph corresponds to a pseudo-exon

and each directed edge corresponds to a (splice) junction between two pseudo-exons.
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Integer Program Formulation. The following notations are used in the Integer

Program (IP ) formulation :

N Total number of reads ;

Jl l-th splice junction;

pj paired-end read, 1 ≤ j ≤ N ;

tk k-th candidate transcript , 1 ≤ k ≤ K;

si Expected portion of reads mapped within i standard deviations

(s1 ≈ 68%, s2 ≈ 95%, s3 ≈ 99.7%);

ε allowed deviation from the rule (ε = 0.05)

Ti(pj) Set of candidate transcripts where p can be mapped with a fragment

length between i− 1 and i standard deviations, 1 ≤ i ≤ 3;

T4(pj) Set of candidates transcripts where pj can be mapped with a

fragment length within more than 3 standard deviations;

For a given instance of the transcriptome reconstruction problem, we formulate the

integer program.

∑
tk∈T

y(t)→ min

Subject to
(1)

∑
tk∈Ti(p)

y(t) ≥ xi(p),∀p, i = 1, 4

(2) N(si − ε) ≤
∑

j xi(pj) ≤ N(si + ε), i = 1, 4

(3)
∑

i xi(p) ≤ 1,∀p

(4)
∑
tk∈Jl

y(t) ≥ 1,∀Jl

where the boolean variables are:

y(tk) = 1 if candidate transcript tk is selected, and 0 otherwise;

xi(pj) = 1 if the read pj is mapped between i− 1 and i standard deviations,

and 0 otherwise;
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The IP objective is to minimize the number of candidate transcripts subject to the

constraints (1) through (4).

Constraint (1) implies that for each paired-end read p ∈ n(si), at least one transcript

t ∈ Ti(pj) is selected. Constraint (2) restricts the number of paired-end reads mapped within

every category of standard deviation. Constraint (3) ensures that each paired-end read pj

is mapped no more than with one category of standard deviation. Finally, constraint (4)

requires that every splice junction to be present in the set of selected transcripts at least

once.

3.3.4 MLIP : Maximum Likelihood Integer Programming

Here we present a genome guided method for transcriptome reconstruction from

single-end RNA-Seq reads. Our method aims is to predict the minimum number of

transcripts explaining the set of input reads with the highest quantification accuracy. This is

achieved by coupling a integer programming formulation with an expectation maximization

model for isoform expression estimation.

Recent advances in Next Generation Sequencing (NGS) technologies made it possible

to produce longer single-end reads with the length comparable to length of fragment for

paired-end technology[20] . Therefore the primary goal of our study is to developed a method

for longer single-end reads.

The maximum likelihood integer programming (MLIP) method starts from a set of

putative transcripts and selects the subset of this transcripts with the highest support from

the RNA-Seq reads. We formulate this problem as an integer program. The objective is to

select the smallest set of putative transcripts that sufficiently explain the RNA-Seq data.

Further, maximum likelihood estimator is applied to all possible combinations of putative

transcripts of minimum size determined by integer program. Our method offers different level

of stringency from low to high. Low stringency gives priority to sensitivity of reconstruction

over precision of reconstruction, high stringency gives priority to precision over sensitivity.

The default parameter of the MLIP method is medium stringency that achieves balance
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between sensitivity and precision of reconstruction

Model description. We use a splice graph (SG) to represent alternatively spliced

isoforms for every gene in a sample. A SG is a directed acyclic graph where each vertex in

the graph represents a segment of a gene. Two segments are connected by an edge if they are

adjacent in at least one transcript. To partition a gene into a set of non-overlapping segments,

information about alternative variants is used. Typically, alternative variants occurs due

alternative transcriptional events and alternative splicing events [61] . Transcriptional events

include: alternative first exon, alternative last exon. Splicing events include: exon skipping,

intron retention, alternative 5’ splice site (A5SS), and alternative 3’ splice site (A3SS).

Transcriptional events may consist only of non-overlapping exons. If exons partially overlap

and they serve as a first or last exons we will refer to such event as A5SS or A3SS respectively.

Figure 3.7-A shows an example of a gene with 4 different exons, and 3 transcripts

produced by alternative splicing. To represent such alternative variants we suggest to

process the gene as a set of so called “pseudo-exons” based on alternative variants obtained

from aligned RNA-seq reads. A pseudo-exon is a region of a gene between consecutive

transcriptional or splicing events, i.e. starting or ending of an exon, as shown in figure 3.7-B.

Hence every gene has a set of non-overlapping pseudo-exons, from which it is possible to

reconstruct a set of putative transcripts.

SG is a directed acyclic graph (see figure 3.7-B), whose vertices represent pseudo-exons

and edges represent pairs of pseudo-exons immediately following one another in at least one

transcript (which is witnessed by at least one spliced read, as depicted in figure 3.7-B with

red lines).

First we infer exon-exon junction from mapped reads, this information is used to

build the SG. Then we enumerate all maximal paths in the SG using a depth-first-search

algorithm. These paths correspond to putative transcripts and are the input for the MLIP

algorithm. A gene with n pseudo-exons may have up to 2n−1 possible candidate transcripts,

each composed of a subset of the n pseudo-exons. Actual number of candidate transcripts
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departments on number of exons, this way splitting exons into pseudo-exons has no effect

on number of candidate transcripts.

intronpse1 pse4pse2 pse3

A. Map single reads to 

genome and identify 

the pseudo-exons

B. Splice Graph (SG) 1 2 3 4

Genome

pse1 pse2 pse4

IntronsPseudo-exons

T1

T2

T3

pse1 pse4

pse1

C. Candidate Transcripts

AAA

P !"#$

pse4pse3

Figure 3.7 Model Description. A - Pseudo-exons. Pseudo-exons(green boxes) : regions

of a gene between consecutive transcriptional or splicing events; B - Splice graph. The

red horizontal lines represent single-end reads. Reads interrupted by dashed lines are

spliced reads. Each vertex of the splice graph corresponds to a pseudo-exon and each

directed edge corresponds to a (spliced) junction between two pseudo-exons; C - Candidate

Transcripts. Candidate transcripts corresponds to maximal paths in the splice graph, which

are enumerated using a depth-first-search algorithm.

Information about poly-A site (PAS) can be integrated in the SG which improves

accuracy of candidate transcript set. The PAS represents transcription end site of the
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transcript. Theoretically, any vertex in the splicing graph can serve as PAS, which will lead

to increased number of false candidates transcripts. For this reason we computationally infer

PAS from the data. Alternatively, one can use existing annotation for PAS or specialized

protocols such as the PolyA-Seq protocol [62].

Maximum Likelihood Integer Programming Solution. Here we introduce 2-step

approach for novel transcript reconstruction from single-end RNA-Seq reads. First, we

introduce the integer program (IP ) formulation, which has an objective to minimize number

of transcripts sufficiently well covering observed reads. Since such formulation can lead to

many identical optimal solutions we will use the additional step to select maximum likelihood

solution based on deviation between observed and expected read frequencies. As with many

RNA-Seq analyses, the preliminary step of our approach is to map the reads. We map

reads onto the genome reference using any of the available splice alignment tools (we use

TopHat[52] with default parameters in our experiments).

1st step : Integer Program Formulation:

We will use the following notations in our IP formulation:

N total number of candidate ;

R total number of reads ;

Jl l-th spliced junction;

Pl l-th poly-A site(PAS);

r single-read, 1 ≤ j ≤ R ;

t candidate transcript , 1 ≤ k ≤ K;

T set of candidate transcripts

T (r) set of candidate transcripts where read r can be mapped

For a given instance of the transcriptome reconstruction problem, we formulate the IP .

The boolean variables used in IP formulation are:
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x(r → t) 1 iff read r is mapped into transcript t and 0 otherwise;

y(t) 1 if candidate transcript t is selected, and 0 otherwise;

x(r) 1 if the read r is mapped , and 0 otherwise;

The IP objective is to minimize the number of candidate transcripts subject to the

constraints (1)-(5): ∑
t∈T

y(t)→ min

Subject to:

(1) For any r, at least one transcript t is selected: y(t) ≥ x(r → t),∀r,∀t

(2) Read r can be mapped only to one transcript:
∑

t∈T (r)
x(r → t) = x(r),∀r

(3) Selected transcripts cover almost all reads:
∑
r∈R

x(r) ≥ N(1− ε)

(4) Each junction is covered by at least one selected transcript:
∑
t∈Jl

y(tk) ≥ 1,∀Jl

(5) Each PAS is covered by at least one selected transcript:
∑
tk∈Pl

y(tk) ≥ 1,∀Pl

We use CPLEX [63] to solve the IP , the rest of implementation is done using Boost

C++ Libraries and bash scripting language.

2nd step : Maximum Likelihood Solution:

In the second step we enumerate all possible subsets of candidate transcripts of size N ,

where N is determined by solving transcriptome reconstruction IP , that satisfy the following

condition: every spliced junction and PAS to be present in the subset of transcripts at least

once. Further, for every such subset we estimate the most likely transcript frequencies and

corresponding expected read frequencies. The algorithm chooses subset with the smallest

deviation between observed and expected read frequencies.
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The model is represented by bipartite graph G = {T
⋃
R,E} in which each transcript

is represented as a vertex t ∈ T , and each read is represented as a vertex r ∈ R. With each

vertex t ∈ T , we associate frequency f of the transcript. And with each vertex r ∈ R, we

associate observed read frequency or. Then for each pair t, r, we add an edge (t, r) weighted

by probability of transcript t to emit read r.

Given the model we will estimate maximum likelihood frequencies of the transcripts

using our previous approach, refer as IsoEM [9]. Regardless of initial conditions IsoEM

algorithm always converge to maximum likelihood solution (see [43]).The algorithm starts

with the set of T transcripts. After uniform initialization of frequencies ft, t ∈ T , the

algorithm repeatedly performs the next two steps until convergence:

• E-step: Compute the expected number n(tk) of reads that come from transcript tk

under the assumption that transcript frequencies f(t) are correct, based on weights

htk,rj

• M-step: For each tk, set the new value of ft to the portion of reads being originated

by transcript t among all observed reads in the sample

We suggest to measure the model quality, i.e. how well the model explains the reads,

by the deviation between expected and observed read frequencies as follows:

D =

∑
j |oj − ej|
|R|

, (3.2)

where |R| is number of reads, oj is the observed read frequency of the read rj and ej is the

expected read frequencies of the read rj calculated as follows:

ej =
∑
rj

htk,rj∑
rj
htk,rj

fML
t (3.3)

where htk,rj is weighted match based on mapping of read rj to the transcript tk and fML
t is

the maximum-likelihood frequency of the transcript tk.
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The flowchart of MLIP is depicted in figure 3.8.
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Figure 3.8 Flowchart for MLIP. Input : Splice graph. Output: subset of candidate

transcripts with the smallest deviation between observed and expected read frequencies.

Figure 3.9 illustrates how MLIP works on a given synthetic gene with 3 transcripts and

7 different exons (see figure 3.9-A). First we use mapped reads to construct the splice graph

from which we generate T possible candidate transcripts, as shown in figure 3.9-B. Further

we run our IP approach to obtain N minimum number of transcripts that explain all reads.

We enumerate N feasible subsets of candidate transcripts.The subsets which doesn’t cover

all junctions will be excluded from consideration. The subset with the smallest deviation

between expected and observed read frequencies is selected by the MLIP algorithm.
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Figure 3.9 A. Synthetic gene with 3 transcripts and 7 different exons. B. Mapped reads are

used to construct the splice graph from which we generate T possible candidate transcripts.

C. MLIP. Run IP approach to obtain N minimum number of transcripts that explain all

reads. We enumerate N feasible subsets of candidate transcripts.The subsets which doesn’t

cover all junctions and MLIP will be excluded from consideration. The subset with the

smallest deviation between expected and observed read frequencies is selected by the MLIP

algorithm.

Stringency of Reconstruction. Different level of stringency corresponds to different

strategies of transcriptome reconstruction. High stringency has the goal to optimize

precision of reconstruction, with some loss in sensitivity. On the other hand, low stringency

corresponds to increase in sensitivity and some decrease in prediction. Medium stringency

strikes balance between sensitivity and precision of reconstruction. The medium stringency
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is chosen as a default setting for the proposed MLIP method.

Below, we will describe how different stringency levels are computed. For the default

medium level we will use the subset of candidate transcripts selected based on the smallest

deviation between observed and expected read frequency. For the low stringency level, our

method selects the subset of transcripts that will correspond to the union of the solution

obtained by solving the IP and the solution supported by the smallest deviation. High

stringency level will correspond to the intersection of above solutions.

3.3.5 Experimental Results

Simulation Setup. We first evaluated performance of TRIP and MLIP methods on

simulated human RNA-Seq data. The human genome sequence (hg18, NCBI build 36)

was downloaded from UCSC together with the KnownGenes transcripts annotation table.

Genes were defined as clusters of known transcripts defined by the GNFAtlas2 table.

In our simulation experiment, we simulate reads together with splice read alignment

to the genome, splice read alignment is provided for all methods. We varied the length

of single-end and paired-end reads, which were randomly generated per gene by sampling

fragments from known transcripts maintaining 100x coverage per transcript. In order to

compare different next generation sequencing (NGS) platforms, including the most recent

one able to produce longer reads, all the methods were run on datasets with various read

length, i.e. 50bp, 100bp, 200bp, and 400bp. Expression levels of transcripts inside gene

cluster follows uniform and geometric distribution. To address library preparation process

for RNA-Seq experiment we simulate fragment lengths from a normal probability distribution

with different mean and 10% standard deviation.
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Figure 3.10 Distribution of transcript lengths (a) and gene cluster sizes (b) in the UCSC

dataset

We also include in the comparison variants of our methods that are given the

transcription start sites (TSS) and transcription end sites (TES) to assess the benefits of

complementing RNA-Seq data with TSS/TES data generated by specialized protocols such

as the PolyA-Seq protocol in [62].

Matching Criteria. All reconstructed transcripts are matched against annotated

transcripts. Two transcripts match iff internal pseudo-exon boundaries coordinates (i.e., all

pseudo-exons coordinates except the beginning of the first pseudo-exon and the end of the

last pseudo-exon) are identical. Similar matching criteria is suggested in [3] and [60].

We use Sensitivity, Precision and F-Score to evaluate the performance of different

methods. Sensitivity is defined as the proportion of reconstructed sequences that match

annotated transcript sequences, i.e.,

Sens =
TP

TP + FN

Precision is defined the proportion of annotated transcript sequences among reconstructed

sequences, i.e.,

Prec =
TP

TP + FP
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and the F-Score is defined as the harmonic mean of Sensitivity and Precision, i.e.,

F-Score = 2× Prec× Sens
Prec+ Sens

Comparison Between TRIP and Cufflinks on Paired-End RNA-Seq Reads.

In this section, we use the sensitivity, PPV, and F-score defined above to compare the TRIP

method to the most recent version of Cufflinks (version 2.0.0 downloaded from website:

http://cufflinks.cbcb.umd.edu/). We run Cufflinks with the following options: -m (the

expected (mean) fragment length) and -s (the standard deviation for the distribution on

fragment lengths). For this study, comparison with IsoLasso [60] was omitted. Due to

technical problems, results were consistently incomparable to other methods. The integer

program for TRIP is solved by IBM ILOG CPLEX (version 12.2.0.0). We also add a

method that reports all candidate transcripts in order to illustrate the effectiveness of

selection produced by the integer program (IP) in TRIP. It is also very important how

much information is used when candidate transcripts are identified.

If annotated alternative transcription start sites (TSS) and transcription end sites (TES)

can be used (these can be computationally inferred using read statistics and motifs or

generated by specialized protocols such as the PolyA-Seq protocol in [62]) then the candidate

transcript set is more accurate and the resulted method is referred as TRIP with TSS/TES.

Otherwise, when TRIP does not rely on this information, the method is referred as TRIP.

Figures 3.11(a)-3.11(c) compare the performance of 4 methods (Cufflinks, Candidate

Transcripts, TRIP with and without TSS/TES) on simulated data with respect to number

of transcripts per gene. Note that sensitivity (see Fig. 3.11(a)) for single-transcript genes

is 100% for all methods and with the growth in number of transcripts per gene, TRIP’s

sensitivity gradually improves over Cufflinks while sensitivity of Candidate Transcripts stays

almost 100%. The advantage of TRIP over Cufflinks can be explained by extra statistical

constraints in the IP that are not taken into account by Cufflinks.

Fig. 3.11(b) shows that Cufflinks has an advantage over TRIP in the portion of correctly
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predicted transcripts but overall comparison using F-score (see Fig. 3.11(c)) shows that

TRIP improves over Cufflinks. Comparison of TRIP using known fragment length in the

ILP formulation is represented by TRIP − L.

Influence of Sequencing Parameters. Although high-throughput technologies allow users

to make trade-offs between read length and the number of generated reads, very little has

been done to determine optimal parameters for fragment length. Additionally, novel Next

Generation Sequencing (NGS) technologies such as Ion Torrent may allow to learn exact

fragment length. For the case when fragment length is known, we have modified TRIP’s IP

referring to this new method as TRIP-L.

In this section we compare methods TRIP-L, TRIP and Cufflinks for the mean fragment

length 500bp and variance of either 50bp or 500bp, to check how the variance affects

the prediction quality. Figures 3.12(a)-3.12(c) compare sensitivity, PPV and F-score of

five methods (TRIP-L 500,500; TRIP-L 500,50; TRIP 500,50; Cufflinks 500,500; Cufflinks

500,50) on simulated data. The results show that as before TRIP has a better sensitivity

and F-score while TRIP-L further improves them. Also higher variation in fragment length

actually improves performance of all methods.

Results on Real RNA-Seq Data. We tested TRIP on real RNA-Seq data that we

sequenced from a CD1 mouse retina RNA samples. We selected a specific gene that has

33 annotated transcripts in Ensembl. The gene was picked and validated experimentally due

to interest in its biological function. We plan to have experimental validation at a larger

scale in the future. The read alignments falling within the genomic locus of the selected

gene were used to construct a splicing graph; then candidate transcripts were selected using

TRIP. The dataset used consists of 46906 alignments for 22346 read pairs with read length

of 68. TRIP was able to infer 5 out of 10 transcripts that we confirmed using qPCR. For

comparison, we ran the same experiment using cufflinks, and it was able to infer 3 out of 10.
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Figure 3.11 Comparison between methods for groups of genes with n transcripts (n=1,...,7)

on simulated dataset with mean fragment length 500, standard deviation 50 and read length

of 100x2: (a) Sensitivity (b) Positive Predictive Value (PPV) and (c) F-Score.
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Figure 3.12 Comparison between methods for groups of genes with n transcripts (n=1,...,7)

on simulated dataset with different sequencing parameters and distribution assumptions: (a)

Sensitivity (b) Positive Predictive Value (PPV) and (c) F-Score.
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Figure 3.13 Overall Sensitivity, PPV and F-Score on simulated dataset with different

sequencing parameters and distribution assumptions.

Comparison between MLIP, IsoLasso and Cufflinks on Single-End RNA-Seq

Reads. In this section, we use sensitivity, precision, and F-score defined above to compare

the MLIP method to the other genome guided transcriptome reconstruction tools. The most

recent versions of Cufflinks (version 2.0.0) from [3] and IsoLasso (v 2.6.0) from [60] are used

for comparison. We explore the influence of read length, fragment length, and coverage on

reconstruction accuracy.

Table 3.2 reports the transcriptome reconstruction accuracy for reads of length 400bp,

simulated assuming both uniform and geometric distribution for transcript expression levels.

MLIP significantly overperforms the other methods, achieving an F-score over 79% for all

datasets. For all methods the accuracy difference between datasets generated assuming

uniform and geometric distribution of transcript expression levels is small, with the latter

one typically having a slightly worse accuracy. Thus, in the interest of space we present

remaining results for datasets generated using uniform distribution.

Intuitively, it seems more difficult to reconstruct the alternative splicing transcripts in

genes with higher number of alternative variants. There is a strong correlation between

number of alternative variants and number of annotated transcripts. Also high number of
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Table 3.2 Transcriptome reconstruction results for uniform and geometric fragment length
distribution. Sensitivity, precision and F-Score for transcriptome reconstruction from reads of
length 400bp, mean fragment length 450bp and standard deviation 45bp simulated assuming
uniform, respectively geometric expression of transcripts.

Isoform 

Distribution
Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%) Precision (%) F-Score (%)

Cufflinks 18582 12909 51.06 69.47 58.86

 !IP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

Cufflinks 17377 12449 50.21 71.64 59.04

 !IP 22931 18293 76.05 79.77 77.86

IsoLasso 20816 15308 62.83 73.54 67.76

Uniform

Geometric

alternative variants leads to high number of candidate transcripts, which make difficult the

selection process. To explore the behavior of the methods depending on number of annotated

transcripts we divided all genes into categories according to the number of annotated

transcripts and calculated the sensitivity, precision and F-Score of the methods for every

such category.

Figures 5(A)-5(C) compare the performance of 5 methods (Cufflinks, IsoLasso, MLIP

- medium stringency settings, MLIP − L - low stringency settings, MLIP − H - high

stringency settings) for read length 100bp and fragment length 250bp. Genes are divided

into 4 categories according to number of annotated transcripts per gene. In this experiment,

we present results for the three different stringency settings for MLIP i.e. low, medium, and

high. For the medium stringency (default settings), MLIP achieves better results in both

sensitivity and precision. As for F-score, the best results are produced by low and medium

stringency versions of MLIP, with different trade-off between sensitivity and precision.

Table 3.3 compares sensitivity, precision and F-score of Cufflinks, IsoLasso, and MLIP

for different combinations of read and fragment lengths: (50bp,250bp), (100bp,250bp),
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Table 3.3 Transcriptome reconstruction results for various read and fragment lengths.
Sensitivity, precision and F-score for different combinations of read and fragment lengths:
(50bp,250bp), (100bp,250bp), (100bp,500bp), (200bp,250bp), (400bp,450bp).

Cufflinks 18483 14179 67.36 76.71 71.73

 !IP 20036 15894 75.53 79.33 77.38

IsoLasso 19422 15287 70.66 78.71 74.47

Cufflinks 17981 14073 69.30 78.27 73.51

 !IP 19405 15539 76.72 80.08 78.36

IsoLasso 16864 12802 62.60 75.91 68.62

Cufflinks 18958 14757 67.19 77.84 72.12

 !IP 20481 16326 74.73 79.71 77.14

IsoLasso 17979 13428 60.29 74.69 66.72

Cufflinks 20435 15637 66.57 76.52 71.20

 !IP 21823 17265 74.89 79.11 76.95

IsoLasso 19846 13654 58.88 68.80 63.46

Cufflinks 18582 12909 51.06 69.47 58.86

 !IP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

Read 

Length

Fragment 

Length
Precision (%) F-Score (%)Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%)

400

250

250

500

250

450

50

200

100

(100bp,500bp), (200bp,250bp), (400bp,450bp). The results show that MLIP provide 5-15%

improvement in sensitivity and 1-10% improvement in precision.

In order to explore influence of coverage on precision and sensitivity of reconstruction

we simulated 2 datasets with 100X and 20X coverage. Table 3.4 shows how accuracy of

transcriptome reconstruction depends on the coverage. For all methods higher coverage

(100X vs. 20X) doesn’t provide significant improvement in precision and sensitivity.

Results on Real RNA-Seq Data. We tested MLIP on real RNA-Seq data that we

sequenced from a CD1 mouse retina RNA samples. We selected a specific gene that has

33 annotated transcripts in Ensembl. The dataset used consists of 46906 alignments for

44692 single reads of length 68 bp. The read alignments falling within the genomic locus

of the selected gene were used to construct a splicing graph; then MLIP with default
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Table 3.4 Transcriptome reconstruction results with respect to different coverage. Sensitivity,
precision and F-Score for transcriptome reconstruction from reads of length 100bp and 400bp
simulated assuming 20X coverage, respectively 100X coverage per transcript. For read
length 100bp fragment length of 250 with 10% standard deviation was used. For read length
400bp fragment length of 450 with 10% standard deviation was used.

Coverage
Read 

Length

Fragment 

Length
Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%) Precision (%) F!Score (%)

Cufflinks 21803 16519 66.77 75.76 70.98

MLIP 23351 18412 74.46 78.85 76.59

IsoLasso 21021 15209 60.66 72.35 65.99

Cufflinks 20958 16443 59.78 78.46 67.86

MLIP 25592 20069 75.39 78.42 76.88

IsoLasso 13241 9684 37.32 73.14 49.42

Cufflinks 17981 14073 69.30 78.27 73.51

MLIP 19405 15539 76.72 80.08 78.36

IsoLasso 16864 12802 62.60 75.91 68.62

Cufflinks 18582 12909 51.06 69.47 58.86

MLIP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

Figure 7

100X

100 250

400 450

20X

100 250

400 450

settings(medium stringency) was used to select candidate transcripts. MLIP method was

able to infer 5 out of 10 transcripts confirmed by qPCR while cufflinks reconstructed 3 out

of 10 and IsoLasso 1 out of 10 transcripts.

3.4 Conclusion

Here we have proposed two versions of DRUT, a novel annotation-guided method for

transcriptome discovery, reconstruction and quantification in partially annotated genomes.

Experiments on in silico RNA-Seq datasets confirm that DRUT overperforms existing

genome-guided transcriptome assemblers and show similar or better performance with

existing annotation-guided assemblers. We also tested DRUT as stand-alone method for

transcriptome quantification in partially annotated data sets. Our experimental studies

show that DRUT significantly improves the quality of the transcriptome quantification
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comparative to our previous approach IsoEM.

To address transcriptome reconstruction problem assisted by genome annotation we

introduced novel genome-guided method for paired-end RNA-Seq read. Our method

critically exploits the distribution of fragment lengths, and can take advantage of additional

experimental data such as TSS/TES and individual fragment lengths estimated, e.g., from

ION Torrent [64] flowgram data. Preliminary experimental results on both real and synthetic

datasets generated with various sequencing parameters and distribution assumptions show

that our IP approach is scalable and has increased transcriptome reconstruction accuracy

compared to previous methods that ignore information about fragment length distribution.

Also we introduce MLIP method for genome-guided transcriptome reconstruction from

single-end RNA-Seq reads. Our method has the advantage of offering different levels

of stringency that would gear the results towards higher precision or higher sensitivity,

according to the user preference. Experimental results on both real and synthetic datasets

generated with various sequencing parameters and distribution assumptions show that

both genome-guided methods are scalable and has increased transcriptome reconstruction

accuracy compared to previous approaches.
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Figure 3.3 Error fraction at different thresholds for isoform expression levels inferred from
30 millions reads of length 25bp simulated assuming geometric isoform expression. Black line
corresponds to IsoEM/VTEM with the complete panel, red line is IsoEM with the incomplete
panel, blue line is rVTEM and the green line is eVTEM.
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Figure 3.14 Transcriptome reconstruction results with respect to number of transcripts
per gene. Comparison between 5 methods (Cufflinks, IsoLasso, MLIP - medium stringency
settings, MLIP − L - low stringency settings, MLIP − H - high stringency settings) for
groups of genes with n transcripts(n=1,..., ≥ 5) on simulated dataset with mean fragment
length 250bp, standard deviation 25bp and read length of 100bp.
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PART 4

DE NOVO ASSEMBLY AND ANNOTATION OF REAL DATA SETS.

Functional genomic studies of the molecular mechanisms requires solid genome and

transcriptome annotations. Poor or missing annotations are common for many model

organisms that could be useful for development and understanding of many biological reasons

as well as pharmaceutical research and drug development. In this part we present assembly

and annotation of Bugula neritina transcriptome (a colonial animal), and Tallapoosa Darter

genome (a species-rich radiation freshwater shes in North America).

4.1 Assembly of Illumina RNA-Seq Reads and Contig Annotation for Bugula

neritina

4.1.1 Background

Studying the interactions between eukaryotic organisms and microbial pathogens

provides insight into potential treatments for devastating diseases. Researchers, however,

are increasingly recognizing the importance of beneficial microbes to the health and ecology

of their hosts, and that understanding the interactions between partners in mutualistic

symbiosis may also contribute to knowledge of pathogenesis.

Mutualistic symbiosis is a beneficial interaction between two partners, which usually

results in enhanced nutrition or defense for one or both partners [65, 66]. In one type of

defensive symbiosis, the symbiont provides protection to the host by synthesizing small

molecules with bioactivity against pathogens, parasites, and predators [67, 68]. These small

molecules are generally toxic to the hosts adversary by affecting its cellular processes.

However, knowledge about the interaction of the host itself with these symbiont-produced

bioactive compounds is limited. The marine bryozoan, Bugula neritina, has an uncultured

bacterial symbiont that produces the bioactive compounds, the bryostatins, which have
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activity against cancer, Alzheimers and other neurological diseases, and HIV [69]. Bryostatins

are activators of protein kinase C (PKC), which is an eukaryotic signaling protein in a

variety of cellular processes, which accounts for its diverse pharmacological activity. In this

study, we investigated the response and adaptation of the host bryozoan, B. neritina, to

symbiont-produced bryostatins through a variety of approaches.

Despite the abundance of microbial symbiont-produced compounds [70] and their

activity in eukaryotic cellular processes, very few studies have investigated host adaptation

or response to these compounds.

4.1.2 Methods

Collection of Bugula neritina larvae and antibiotic treatment. Bugula

neritina colonies can be found in three different parts of the Atlantic coast. Arborescent

colonies of B. neritina growing on floating docks in Beaufort, NC, USA were collected in

November 2010 and maintained overnight in the dark in flowing seawater tables in wet

laboratory facilities at UNC-Chapel Hills Institute of Marine Sciences in Morehead City,

NC, USA. In the morning, the colonies were placed into large glass jars filled with seawater

and exposed to sunlight to stimulate larval release. The released larvae swam to the top of

the jar and were collected with a wide tip glass pipette into a collection vial. The larvae

( 100 larvae) were pipetted into six-well polystyrene plates (n= 6 replicate plates) containing

filter-sterilized seawater with either an antibiotic, gentamicin (treatment) or seawater with

a small volume of distilled water (control). The larvae in the plates were allowed to settle

and metamorphose.

Adult colonies of B. neritina were also collected from Radio Island Marina, Beaufort,

NC, USA and Morehead City Yacht Basin, Morehead City, NC, USA in March 2012, as well

as from Oyster public docks (Oyster, VA, USA), and Indian River Inlet, DE, USA in June

2012.
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Sequence analysis of PKCs in Bugula species. Total RNA was extracted from

environmental adult symbiotic and aposymbiotic Type S B. neritina colonies, it was purified

and treated to remove any contaminating DNA molecules. The purified total RNA was

processed according to standard operating procedure for preparation of mRNA library

for sequencing (TruSeq RNA Sample Preparation Kit, Illumina, San Diego, CA, USA).

Briefly, RNA quality and quantity was assessed using the Agilent 2100 BioAnalyzer (Agilent

Technologies, Santa Clara, CA, USA). Poly-A containing mRNA molecules were purified

using poly-T oligo-attached magnetic beads. The purified mRNA were fragmented (120-200

bp) using 558 divalent cations at 94 ◦C. First strand cDNA was synthesized using reverse

transcriptase (SuperScript II, Invitrogen, Carlsbad, CA, USA). The RNA template was

digested with RNase H, and the second strand of cDNA was synthesized using DNA

polymerase I. The adapter-ligated cDNA fragments were purified and selectively enriched by

PCR using a primer cocktail complementary to the ends of the adapters. The adapter-ligated

cDNA library was hybridized to the surface of an Illumina flow cell and sequenced on an

Illumina sequencing platform (Illumina HiSeq 2500, San Diego, CA, USA) at the Integrated

Genomics Facility, Georgia Regents University Cancer Center, Augusta, GA, USA.

The paired-end reads were assembled de novo using Trinity software (version r2013-02-25)

, and the assembled contigs were annotated by 570 performing blastx searches (Translated

Query-Protein Subject BLAST 2.2.26+) against the Swiss-Prot database. Sequences

identified as PKCs were further analyzed by MotifScan (ExPASy, http : //myhits.isb −

sib.ch/cgi− bin/motif scan) to identify relevant domains.

4.1.3 Assembly and annotation of B. neritina transcriptome sequences

The Bugula RNA-Seq Illumina reads analyzed were paired-end reads of length 50bp

with 200bp mean fragment length. The reads were assembled into contigs by Trinity. We

BLASTed the Trinity contigs on Swissprot database and got 12067 matches, 59.37% ORFs

hits, 63.35% Contigs hits and 7,846 Proteins hits. Using IsoDE, we were able to identify

1485 differential expressed genes between two different conditions, namely the Bugula from
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Eastern coast which has the Symbiont bacteria against the Bugula from the Northern coast

missing the bacteria. Finally we found some Bugula orthologs of the Protein kinase C (PKC).

A summary description of the location and type of all six samples of Illumina paired-end

reads is presented below:

L1. Shallow with symbiont (NC)

L2. Shallow without symbiont (VA)

L3. Northern with symbiont (NC)

L4. Northern without symbiont (DE)

L5. Shallow symbiotic, ovicell-bearing tissue (NC)

L6. Shallow symbiotic, ovicell-free tissue (NC)

The chart presented in figure 4.1 was obtained by inputting sample 1 (L1) and sample 2

(L2) reads into the online tool metagenomics RAST server [2]: http : //metagenomics.anl.gov/.

Metagenomics problems for assembling illumine reads occur due to reads contamination.

Note that around half of those reads comes from the bacteria. Samples L3 and L4 include

more errors and therefore we have excluded them from analysis.

In addition to those six reads samples we have used:

• 968 contigs assembled and filtered using the standard default assembly in the 454

software by Selah Clinical Genomic Center at Innovista, Columbia, South Carolina

(www.engencore.sc.edu).

And three sets of NCBI 454 Bugula neritina reads that we will assemble into contigs

(using Newbler [71]):

• 24 mRNA (from which 14 are complete genes ESTs)

• 3360 Sanger ESTs Source: http : //sra.dnanexus.com/runs/SRR034781

Newbler is a software package for de novo DNA sequence assembly. It is designed specifically

for assembling sequence data generated by the 454 platforms.

Next we merged the resulting contigs with the 968 contings using the Minimus2

assembler from the AMOS package [72]. Merging the assembled contigs resulted in a much
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Figure 4.1 Screenshot from Metagenomics [2]

better assembly. Finally we run the scaffolding. In addition we use Illumina reads to fill the

gaps (after scaffolds).

Table 4.1 presents the number of contigs that are shared between all shallow species

and the other northern ones.

4.1.4 Bugula neritina Flows

• Newbler: Run on 454 reads (N=139,131, avg. length=347.5bp, 48Mb total)

◦ Number of contigs: 7,582

◦ Number of best ORFs: 3,495

◦ Number of Hits: 2,206

◦ Number of Proteins: 1,556

• Trinity: Run on all Illumina reads (all samples combined N=221,818,850 2x50bp pairs,

22Gb total)

◦ Number of contigs: 166,951 (after filtering with RSEM isopct cutoff = 1.00)
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Table 4.1 Sharring Shallow

◦ Number of best ORFs: 76,769

◦ Number of Hits: 37,026

◦ Number of Proteins: 12,748

• Minimus: Merge filtered Trinity contigs, Newbler contigs, and NCBI ESTs:

◦ Number of contigs: 133,470

◦ Number of best ORFs: 52,766

◦ Number of hits: 24,130

◦ Number of proteins: 12,336

• Binning.

Input: Illumina for K samples (required) + 454 + ESTs (if available)

1) Contig assembly
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a) Assemble Illumina reads (COMBINED from all samples) using Trinity

b) (optional) assemble 454 reads using Newbler (if 454 available, combine reads from

all samples if needed)

c) (optional) combine contigs from 1) and 2) with ESTs (if available) using minimus

2) Compute coverage (fpkms) for all contigs from step 3, for each sample separately,

using Illumina reads, this gives a K-dimensional vector of fpkms for each contig

3) Coverage- and PE based clustering of contigs

- based on euclidean distance of K-vectors of fpkm

- correlation of K-vectors of fpkm

- PE with one read in one contig and the other in second contig

4) Assign read pairs to contig clusters (if one read maps to a contig in a cluster the

pair gets assigned to the cluster)

5) Assemble independently read pairs assigned to each contig cluster (plus Newbler

contigs and ESTs, if any) using accurate assembler (this gives new set of contigs).

6) Assemble read pairs that are not assigned to any cluster and add to current set of

contigs

7) Repeat steps 2-6 until no more contig changes

8) Independently scaffold each contig cluster using:

a) assigned PEs and SILP algorithm, or

b) comparative scaffolding (if related genome is available)

Output:

- contig scaffolds

- final contig fpkm K-vectors

4.1.5 Analysis of results of each flow

Table 4.2 presents a comparison of several assemblies. Newbler merged reads into longer

contigs, while Oases [73] produced the overall shortest assembly. The Oases assembly gives
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about half the protein hits that Trinity gives, most likely due to the overly stringent coverage

filter. The results obtained by assembling each Illumina lane separately with Trinity.

Table 4.2 BlastX Results

Assembly Newbler Oases Oases Minimus

Trinity 

Shallow 

L1L2L5L6

Trinity 

Shallow 

L1L2L5L6

Trinity 

Shallow

Trinity 

All 

Filtered

Trinity-

All

Trinity-

L1

Trinity-

L2

Trinity-

L3

Trinity-

L4

Trinity-

L5

Trinity-

L6

min. 

coverage 

50

defaults

filtered Trinity 

contigs + 

Newbler 

contigs + 

NCBI ESTs

L1,2,5,6 

no filtering

RSEM_i

sopct_c

utoff = 

1.00

no 

filtering

no 

filtering

no 

filtering

no 

filtering

no 

filtering

no 

filtering

no 

filtering

# Contigs 7,582 45,311 290,046 133,470 19,048 19,048 126,916 166,951 207,507 58,819 57,268 60,343 58,607 57,121 51,889

# best ORFs 3,495 25,964 117,102 52,766 20,325 20,325 69,937 76,769 103,976 32,872 33,416 40,489 33,755 32,019 33,966

Contigs w/ 

ORFs 46.10% 57.30% 40.37% 39.53% 106.70% 106.70% 55.10% 45.98% 50.11% 55.89% 58.35% 67.10% 57.60% 56.05% 65.46%

Protein 

database
swiss-p swiss-p swiss-p swiss-prot swiss-p nr swiss-p swiss-p swiss-p swiss-p swiss-p swiss-p swiss-p swiss-p swiss-p

# BLASTX hits 2,206 14,033 61,182 24,130 12,067 13,883 37,963 37,026 50,828 18,906 19,068 17,150 19,194 18,575 19,343

ORFs w/ hits 63.12% 54.05% 52.25% 45.73% 59.37% 68.31% 54.28% 48.23% 48.88% 57.51% 57.06% 42.36% 56.86% 58.01% 56.95%

Contigs w/ hits 29.10% 30.97% 21.09% 18.08% 63.35% 72.88% 29.91% 22.18% 24.49% 32.14% 33.30% 28.42% 32.75% 32.52% 37.28%

# Proteins w/ 

hits
1,556 6,820 12,846 12,336 7,846 9,972 10,437 12,748 12,578 8,397 8,316 8,661 8,439 8,084 7,961

BLASTX hits / 

Protein
1.42 2.06 4.76 1.96 1.54 1.39 3.64 2.90 4.04 2.25 2.29 1.98 2.27 2.30 2.43

Hit distribution

90-100% 196 1,996 3,169 3,848 3,151 4,612 3,654 3,948 3,872 2,922 3,042 2,892 2,988 2,963 2,804

80-90% 112 892 1,584 1,680 1,303 1,639 1,552 1,697 1,657 1,213 1,216 1,237 1,229 1,210 1,176

70-80% 95 593 1,280 1,184 817 937 1,034 1,215 1,197 798 807 792 780 792 750

60-70% 107 524 1,162 1,005 595 694 828 1,029 1,027 625 629 661 664 641 617

50-70% 114 471 1,149 974 482 588 760 1,001 999 603 564 645 592 541 553

40-50% 166 555 1,208 979 480 498 742 1,016 1,018 611 568 641 647 546 577

30-40% 234 596 1,298 1,055 440 467 720 1,140 1,130 615 580 625 594 539 562

20-30% 274 650 1,209 970 382 324 713 1,030 1,018 609 545 659 544 515 535

10-20% 258 543 786 641 196 213 434 672 660 401 365 509 401 337 387

0-10% 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A large number of protein hits were recovered from all assemblies:

4637 All L1 L2 L3 L4 L5 L6

As expected, there is also a large number of proteins that were found in the combined

assembly (called ”All”) but not found in any of the individual lane assemblies: 2170 All

However, each lane has a fairly large number of protein hits that were not recovered in

the combined assembly (some protein hits even apear in all individual samples but not in

the combined one), here are the numbers for the most abundant combinations that do not

include presence in the combined assembly: 582 L3

489 L4
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427 L3 L4

361 L1

306 L2

255 L6

241 L5

61 L1 L2 L3 L4 L5 L6

56 L1 L2

...

This may be due to BLASTX picking different best hits, and we should repeat differential

analysis based on expression levels once we stabilize on a list of transcripts.

In addition to Swiss-Prot database, we have also performed BlastX searches against the

”non-redundant protein sequences” (nr) database, because initial tests against this database

proteins from marine invertebrates in the top hits. For this experiment we have used an

e-value cutoff of 1e-20 and save only the top hit for each ORF.

4.1.6 Sequence analysis of genes and C1b domains from Bugula species

After assembly and annotation of B. neritina transcriptome sequences, 5 contigs with

homology to PKC isoenzymes were identified (Table 4.3) using blastx. Two contigs were

homologous to cPKCs, two to nPKCs, and one to aPKCs.

Bioinformatic analysis of the PKC homologs revealed that the two cPKCs from B.

neritina are -types (57.0% similarity between the two). One of the nPKCs is a -type, and

the other is an -type. The aPKC appears to be an -type. Expression of these PKCs was

confirmed in independently collected B. neritina cDNA using primers specific for each of the

isoenzymes.

4.1.7 Results

The results from this study suggest that this symbiotic association may be more than

just defense: the symbiont, symbiont-derived bryostatins, or both, potentially affect B.
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Table 4.3 PKC homologs identified by Bugula neritina transcriptome sequencing.

neritina reproduction. We hypothesize that the bryozoan host has evolved to the presence

of bryostatins such that the activation of the host PKC by the bryostatins triggers cellular

mechanisms for reproduction. This interaction facilitates maintenance of the symbiosis

by transmission of the symbiont to subsequent generations of the host and ensures host

fitness by passing down the bryostatin-producing symbiont for protection against predation.

This study extends our understanding of host-symbiont interactions that are important for

the establishment and maintenance of diverse mutualistic partnerships. The difference in

adaptive interaction of bryostatins with the host PKC compared to non-host PKC could

impact pharmaceutical research and drug development of the bryostatins, and unlock new

ways of increasing its efficiency for the treatment of a variety of human diseases.

Both the symbiotic and symbiont-reduced (via antibiotic treatment) B. neritina colonies

were healthy and grew at statistically similar rates, indicating that the symbiont does not

contribute significantly to host nutrition. The fecundity of the symbiont-reduced colonies,

however, was significantly decreased as indicated by fewer reproductive structures in the

colonies. Western blot analysis of bryostatin-activated conventional PKCs demonstrated a

different banding pattern for the control colonies, suggesting that the presence of bryostatins
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associated with the symbiont affected the native PKCs, whereas no such differences were

noted for bryostatin-independent PKCs. Similar results were also observed for the PKCs in

symbiotic and naturally-occurring aposymbiotic colonies. In addition, bryostatins affected

fecundity and PKC expression in the model invertebrate, Caenorhabditis elegans. Analysis

of transcriptome sequencing data revealed the presence of at least 5 PKC isoforms expressed

in B. neritina.

4.1.8 Conclusions and Future work

The reduction in host fecundity upon loss of the symbiont suggests that host

reproduction has evolved to be dependent on the symbiont, the bryostatins, or both, to

enhance host fitness by increasing the frequency of symbiont-infected, defended host larvae.

Our results indicate that the presence of bryostatins modulates PKC activity in symbiotic

B. neritina and bryostatin-exposed C. elegans. These findings lead us to hypothesize that

the symbiont-produced bryostatins are an important cue for reproduction in B. neritina via

PKC activation.

Future work includes metabolic pathways from proteins, differential expression of

contigsscaffolds,

and identification of symbiont transcripts
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4.2 Assembly and Annotation of the Etheostoma tallapoosae Genome

The family Percidae contains over 200 species, most of which are within the subfamily

Etheostomatinae. This subfamily (the darters) represents a species rich radiation of

freshwater fishes in North America. Evolutionary relationships between the various darter

species have been deduced from morphological, mitochondrial DNA sequence and limited

nuclear DNA sequence comparisons. However, a thorough understanding of the evolution of

the darter species will require comparisons at the whole genome level.

As a first step, the genome of the Tallapoosa darter (Etheostoma tallapoosae) has been

sequenced utilizing two Illumina MiSeq 250-PE runs generating 52 million reads. This

provided an average 12 fold coverage of the estimated 1 billion nucleotide genome. The

sequences were assembled with Minia into contigs and these were assembled into scaffolds

with SSPACE.

A BLAST server has been set up to allow for the identification of Tallapoosa darter

scaffolds homologous to sequences of interest. The scaffolds were also imported into an

instance of WebApollo along with gene evidence tracks generated by fgenesh. A set of

scripts were developed to facilitate the formatting and import of these tracks and scaffold

sequences into WebApollo that will make it simple for labs to set up WebApollo instances

for their own genome data without extensive computer system experience. A web site has

been developed that gives access to both the BLAST and WebApollo servers to the public to

spur interest in darter genomics and to enable annotation of the Tallapoosa darter genome

by a community of darter researchers.

4.2.1 Introduction

So far, the study of darter evolution has utilized morphological, behavioral and limited

DNA sequence analysis. While much of darter phylogeny has been elucidated from these

studies, there are still many unresolved questions. For example, to what extent do related

species share alleles due to incomplete lineage sorting or hybridization during evolution.
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What are the actual adaptive genetic changes that define darter species? To what extent,

if any, do allopatrically distributed and genetically differentiated populations of the same

species show adaptive genetic differentiation?

A complete understanding of darter evolution must utilize the analysis of complete

genomes. While this approach was not financially feasible in the past, the cost of genomic

analysis is about to cross a threshold where sequencing of darter genomes of individual

species and, soon, populations within species will become affordable.

As a starting point, it will be necessary to have a fully annotated reference darter genome

sequence to which the genomic sequences of other darter species can be compared. As a first

step in this direction I have recently obtained the genomic sequence of the Tallapoosa darter

(E. tallapoosae).

4.2.2 Sequencing

This sequence was obtained as a result of two 250 nucleotide PE runs on an Illumina

MiSeq. A total of 13 billion nucleotides of sequence was obtained from 52 million such 250

nucleotide sequence reads. This represents, on average, about a 12 fold coverage of the darter

genome. Figure 4.2 shows that alignment of reads to previously cloned genomic fragments

shows that coverage ranges from 2 to 3 fold to as high as 28 fold.

4.2.3 Assembly

The 250-PE sequences were assembled into contigs utilizing the Minia assembler. This

assembler was chosen because of its low memory requirements. The sequences were assembled

with most of the combinations of k-mer = 31 to k-mer = 80 settings and minimum abundance

= 2 or 3 settings. The best assembly in terms of total number of nucleotides assembled

and the maximum contig length was achieved with the settings k-mer = 73 and minimum

abundance = 2:

• Total number of contigs = 539616

• Sum (bp) = 660984269
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Figure 4.2 Alignment of reads to previously cloned genomic fragments

• Total number of N’s = 0

• Sum (bp) no N’s = 660984269

• Max contig size = 35431

• Min contig size = 222

• Average contig size = 1224

• N50 = 2197

Because of the paired end nature of the reads, it was possible to further assemble some

of these contigs into scaffolds with SSPACE. The following results were obtained:

• Total number of scaffolds = 470492

• Sum (bp) = 660664090

• Max scaffold size = 57949

• Min scaffold size = 222

• Average scaffold size = 1404

• N50 = 2913
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4.2.4 Utility of Assembly for Annotation

In general, the lengths of the scaffolds are relatively short. While a subsequent phase

of this genomic sequencing effort will address the issue of scaffold length, can this current

version of the Tallapoosa darter genome assembly be utilized to begin an annotation of the

genome? Obviously, those scaffolds that are above 5,000 nucleotides in length likely contain

a gene or a significant part of a gene.

To check accuracy of assembly, the scaffolds were aligned to previously cloned Tallapoosa

darter genomic fragments. In all cases the scaffolds aligned precisely to those genomic

sequences.

To further check accuracy of assembly and the utility of scaffolds for annotation, the

scaffolds were searched by blastn with several full length Perca flavescens mRNA sequences

(closest related species to darters).

The examples below show two instances where genes were identified within the scaffolds.

In the first example, depicted in figure 4.3(a), the Urate Oxidase gene was found to be

contained within one scaffold. In the second example, shown in figures 4.3(b) and 4.3(c), we

can see that the neprilysin (NEP1) gene actually spanned many scaffolds. These scaffolds

were identified by a high degree of homology to different portions of the NEP1 mRNA

sequence. These scaffolds were then concatenated in the order corresponding to NEP1 mRNA

homology.

While the current assembly of the Tallapoosa darter genome based on a 12 fold coverage

of PE250 reads produced scaffolds that are relatively short, it appears that the assembly is

of sufficiently high quality to facilitate the start of darter genome annotation. WebApollo

was chosen as the tool to carry out the annotation process of the Tallapoosa darter genome

assembly.

4.2.5 Setting up WebApollo

Initial attempts to annotate some of the Tallapoosa darter scaffolds were carried out

utilizing the red line workflow on the DNA Subway website (dnasubway.iplantcollaborative.org).
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(a)

(b)

(c)

Figure 4.3 Examples of instances where genes were identified within the scaffolds: (a) Urate
Oxidase contained within one scaffold. (b) - (c) Neprilysin (NEP1) gene spanning several
scaffolds

The annotation workflow that proved highly successful was to begin with fgenesh derived

gene models in Apollo, determine with blastp against the GenBank nr database if the gene

model codes for a known protein and if a homolog exists, use the homologous protein as input

for fgenesh+ determination of the exon/intron structure of the gene within the scaffold. The

gene model was then adjusted according to the fgensh+ derived model. It was decided,

therefore, to enable the implementation of this workflow in WebApollo.

WebApollo is a fairly complex server side application to set up. However, a virtual

machine implementation of WebApollo has been made available that is preconfigured and

was easily incorporated into a VirtualBox running on a MacMini server. This makes it

relatively easy to implement WebApollo by research groups lacking sever administration

expertise.

Once the WebApollo instance was installed, the longer Tallapoosa darter scaffolds were

imported into WebApollo along with fgenesh derived gene models as evidence tracks. The
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WebApollo virtual machine includes a script (setupwebapollo.sh) that makes it simple for

individuals with little computer system experience to create a database of scaffolds and to

then add individual scaffolds with evidence tracks one at a time. A modified version of

this script was utilized in setting up the Tallapoosa darter WebApollo instance along with

additional scripts that were written to make the necessary file format conversions and enable

an unattended import of all the desired scaffolds and evidence tracks into WebApollo.

The diagram presented in figure 4.4 shows the workflow that was implemented.

It is anticipated that as other research groups sequence the genomes of other darter

species that these research groups will want to set up their own instances of WebApollo.

Since many such research groups will likely not have the necessary server administration and

unix expertise, a number of scripts were written that make it possible for individuals with

very minimal unix experience to import scaffolds and fgenesh generated evidence tracks into

WebApollo. These scripts are:

• fgenesh− splitter.sh

• fgenesh− converter.sh

• add to webapollo.sh

The purpose and use of these scripts is summarized in the previous workflow diagram.

Of course, the use of these scripts and the associated workflow is not limited to setting up

WebApollo instances of just darter genomes. These may also be of utility to other groups

setting up WebApollo instances for annotation of genomes of other species.

4.2.6 Tallapoosa Darter Genome Annotation with WebApollo

To begin annotation of a scaffold, a scaffold is selected from a list (figure 4.5).

Once the scaffold opens in the viewer, the fgenesh derived ab initio gene model(s) is/are

displayed in an evidence track (see figure 4.6).

The gene model is slid up to the user area and the predicted amino acid sequence is

obtained.

If a blastp search of GenBank shows a homologous protein (figure 4.8(a)), that protein
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	  1University	  of	  West	  Georgia,	  Carrollton,	  GA,	  2Georgia	  State	  University,	  Atlanta,	  GA	  

Abstract	  
The	  family	  Percidae	  contains	  over	  200	  species,	  most	  
of	  which	  are	  within	  the	  subfamily	  EtheostomaLnae.	  
This	  subfamily	  (the	  darters)	  represents	  a	  species	  rich	  
radiaLon	  of	  freshwater	  fishes	  in	  North	  America.	  
EvoluLonary	  relaLonships	  between	  the	  various	  darter	  
species	  have	  been	  deduced	  from	  morphological,	  
mitochondrial	  DNA	  sequence	  and	  limited	  nuclear	  
DNA	  sequence	  comparisons.	  However,	  a	  thorough	  
understanding	  of	  the	  evoluLon	  of	  the	  darter	  species	  
will	  require	  comparisons	  at	  the	  whole	  genome	  level.	  
As	  a	  first	  step,	  the	  genome	  of	  the	  Tallapoosa	  darter	  
(Etheostoma	  tallapoosae)	  has	  been	  sequenced	  
uLlizing	  two	  Illumina	  MiSeq	  250-‐PE	  runs	  generaLng	  
52	  million	  reads.	  This	  provided	  an	  average	  12	  fold	  
coverage	  of	  the	  esLmated	  1	  billion	  nucleoLde	  
genome.	  The	  sequences	  were	  assembled	  with	  Minia	  
into	  conLgs	  and	  these	  were	  assembled	  into	  scaffolds	  
with	  SSPACE.	  A	  BLAST	  server	  has	  been	  set	  up	  to	  allow	  
for	  the	  idenLficaLon	  of	  Tallapoosa	  darter	  scaffolds	  
homologous	  to	  sequences	  of	  interest.	  The	  scaffolds	  
were	  also	  imported	  into	  an	  instance	  of	  WebApollo	  
along	  with	  gene	  evidence	  tracks	  generated	  by	  
fgenesh.	  A	  set	  of	  scripts	  were	  developed	  to	  facilitate	  
the	  forma[ng	  and	  import	  of	  these	  tracks	  and	  
scaffold	  sequences	  into	  WebApollo	  that	  will	  make	  it	  
simple	  for	  labs	  to	  set	  up	  WebApollo	  instances	  for	  
their	  own	  genome	  data	  without	  extensive	  computer	  
system	  experience.	  A	  web	  site	  has	  been	  developed	  
that	  gives	  access	  to	  both	  the	  BLAST	  and	  WebApollo	  
servers	  to	  the	  public	  to	  spur	  interest	  in	  darter	  
genomics	  and	  to	  enable	  annotaLon	  of	  the	  Tallapoosa	  
darter	  genome	  by	  a	  community	  of	  darter	  researchers.	  
	  

Introduc.on	  
So	  far,	  the	  study	  of	  darter	  evoluLon	  has	  uLlized	  
morphological,	  behavioral	  and	  limited	  DNA	  sequence	  
analysis.	  While	  much	  of	  darter	  phylogeny	  has	  been	  
elucidated	  from	  these	  studies,	  there	  are	  sLll	  many	  
unresolved	  quesLons.	  For	  example,	  to	  what	  extent	  
do	  related	  species	  share	  alleles	  due	  to	  incomplete	  
lineage	  sorLng	  or	  hybridizaLon	  during	  evoluLon.	  
What	  are	  the	  actual	  adapLve	  geneLc	  changes	  that	  
define	  darter	  species?	  To	  what	  extent,	  if	  any,	  do	  
allopatrically	  distributed	  and	  geneLcally	  
differenLated	  populaLons	  of	  the	  same	  species	  show	  
adapLve	  geneLc	  differenLaLon?	  
	  

A	  complete	  understanding	  of	  darter	  evoluLon	  must	  
uLlize	  the	  analysis	  of	  complete	  genomes.	  While	  this	  
approach	  was	  not	  financially	  feasible	  in	  the	  past,	  the	  
cost	  of	  genomic	  analysis	  is	  about	  to	  cross	  a	  threshold	  
where	  sequencing	  of	  darter	  genomes	  of	  individual	  
species	  and,	  soon,	  populaLons	  within	  species	  will	  
become	  affordable.	  	  
	  

As	  a	  starLng	  point,	  it	  will	  be	  necessary	  to	  have	  a	  fully	  
annotated	  reference	  darter	  genome	  sequence	  to	  
which	  the	  genomic	  sequences	  of	  other	  darter	  species	  
can	  be	  compared.	  As	  a	  first	  step	  in	  this	  direcLon	  I	  
have	  recently	  obtained	  the	  genomic	  sequence	  of	  the	  
Tallapoosa	  darter	  (E.	  tallapoosae).	  	  
	  

Sequencing	  
This	  sequence	  was	  obtained	  as	  a	  result	  of	  two	  250	  
nucleoLde	  PE	  runs	  on	  an	  Illumina	  MiSeq.	  A	  total	  of	  13	  
billion	  nucleoLdes	  of	  sequence	  was	  obtained	  from	  52	  
million	  such	  250	  nucleoLde	  sequence	  reads.	  This	  
represents,	  on	  average,	  about	  a	  12	  fold	  coverage	  of	  
the	  darter	  genome.	  	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Alignment	  of	  reads	  to	  previously	  cloned	  genomic	  
fragments	  shows	  that	  coverage	  ranges	  from	  2	  to	  3	  
fold	  to	  as	  high	  as	  28	  fold.	  

Assembly	  
The	  250-‐PE	  sequences	  were	  assembled	  into	  conLgs	  
uLlizing	  the	  Minia	  assembler.	  This	  assembler	  was	  
chosen	  because	  of	  it’s	  low	  memory	  requirements.	  
The	  sequences	  were	  assembled	  with	  most	  of	  the	  
combinaLons	  of	  k-‐mer	  =	  31	  to	  k-‐mer	  =	  80	  se[ngs	  
and	  minimum	  abundance	  =	  2	  or	  3	  se[ngs.	  The	  best	  
assembly	  in	  terms	  of	  total	  number	  of	  nucleoLdes	  
assembled	  and	  the	  maximum	  conLg	  length	  was	  
achieved	  with	  the	  se[ngs	  	  k-‐mer	  =	  	  73	  and	  
minimum	  abundance	  =	  2:	  
	  
Total	  number	  of	  con.gs	  =	  539616	  
Sum	  (bp)	  =	  660984269	  
Total	  number	  of	  N's	  =	  0	  
Sum	  (bp)	  no	  N's	  =	  660984269	  
Max	  conLg	  size	  =	  35431	  
Min	  conLg	  size	  =	  222	  
Average	  conLg	  size	  =	  1224	  
N50	  =	  2197	  
	  
Because	  of	  the	  paired	  end	  nature	  of	  the	  reads,	  it	  was	  
possible	  to	  further	  assemble	  some	  of	  these	  conLgs	  
into	  scaffolds	  with	  SSPACE.	  The	  following	  results	  
were	  obtained:	  
	  

Total	  number	  of	  scaffolds	  =	  470492	  
Sum	  (bp)	  =	  660664090	  
Max	  scaffold	  size	  =	  57949	  
Min	  scaffold	  size	  =	  222	  
Average	  scaffold	  size	  =	  1404	  
N50	  =	  2913	  
	  

	  

U.lity	  of	  Assembly	  for	  Annota.on	  
In	  general,	  the	  lengths	  of	  the	  scaffolds	  are	  relaLvely	  
short.	  While	  a	  subsequent	  phase	  of	  this	  genomic	  
sequencing	  effort	  will	  address	  the	  issue	  of	  scaffold	  
length,	  can	  this	  current	  version	  of	  the	  Tallapoosa	  
darter	  genome	  assembly	  be	  uLlized	  to	  begin	  an	  
annotaLon	  of	  the	  genome?	  Obviously,	  those	  scaffolds	  
that	  are	  above	  5,000	  nucleoLdes	  in	  length	  likely	  
contain	  a	  gene	  or	  a	  significant	  part	  of	  a	  gene.	  	  
	  
To	  check	  accuracy	  of	  assembly,	  the	  scaffolds	  were	  
aligned	  to	  previously	  cloned	  Tallapoosa	  darter	  
genomic	  fragments.	  I	  all	  cases	  the	  scaffolds	  aligned	  
precisely	  to	  those	  genomic	  sequences.	  
	  
To	  further	  check	  accuracy	  of	  assembly	  and	  the	  uLlity	  
of	  scaffolds	  for	  annotaLon,	  the	  scaffolds	  were	  
searched	  by	  blastn	  with	  several	  full	  length	  Perca	  
flavescens	  mRNA	  sequences	  (closest	  related	  species	  
to	  darters).	  
	  

The	  examples	  below	  show	  two	  instances	  where	  
genes	  were	  idenLfied	  within	  the	  scaffolds.	  
	  
In	  the	  first	  example,	  the	  Urate	  Oxidase	  gene	  was	  
found	  to	  be	  contained	  within	  one	  scaffold.	  
	  
	  
	  
In	  the	  second	  example,	  the	  neprilysin	  (NEP1)	  gene	  
actually	  spanned	  many	  scaffolds.	  These	  scaffolds	  
were	  idenLfied	  by	  a	  high	  degree	  of	  homology	  to	  
different	  porLons	  of	  the	  NEP1	  mRNA	  sequence.	  
These	  scaffolds	  were	  then	  concatenated	  in	  the	  order	  
corresponding	  to	  NEP1	  mRNA	  homology.	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

While	  the	  current	  assembly	  of	  the	  Tallapoosa	  darter	  
genome	  based	  on	  a	  12	  fold	  coverage	  of	  PE250	  reads	  
produced	  scaffolds	  that	  are	  relaLvely	  short,	  it	  
appears	  that	  the	  assembly	  is	  of	  sufficiently	  high	  
quality	  to	  facilitate	  the	  start	  of	  darter	  genome	  
annotaLon.	  WebApollo	  was	  chosen	  as	  the	  tool	  to	  
carry	  out	  the	  annotaLon	  process	  of	  the	  Tallapoosa	  
darter	  genome	  assembly.	  

Se@ng	  up	  WebApollo	  
IniLal	  a8empts	  to	  annotate	  some	  of	  the	  Tallapoosa	  
darter	  scaffolds	  were	  carried	  out	  uLlizing	  the	  red	  line	  
workflow	  on	  the	  DNA	  Subway	  website	  
(dnasubway.iplantcollaboraLve.org).	  The	  annotaLon	  
workflow	  that	  proved	  highly	  successful	  was	  to	  begin	  
with	  fgenesh	  derived	  gene	  models	  in	  Apollo,	  
determine	  with	  blastp	  against	  the	  GenBank	  nr	  
database	  if	  the	  gene	  model	  codes	  for	  a	  known	  
protein	  and	  if	  a	  homolog	  exists,	  use	  the	  homologous	  
protein	  as	  input	  for	  fgenesh+	  determinaLon	  of	  the	  
exon/intron	  structure	  of	  the	  gene	  within	  the	  scaffold.	  
The	  gene	  model	  was	  then	  adjusted	  according	  to	  the	  
fgensh+	  derived	  model.	  It	  was	  decided,	  therefore,	  to	  
enable	  the	  implementaLon	  of	  this	  workflow	  in	  
WebApollo.	  
	  
WebApollo	  is	  a	  fairly	  complex	  server	  side	  applicaLon	  
to	  set	  up.	  However,	  a	  virtual	  machine	  
implementaLon	  of	  WebApollo	  has	  been	  made	  
available	  that	  is	  preconfigured	  and	  was	  easily	  
incorporated	  into	  a	  VirtualBox	  running	  on	  a	  MacMini	  
server.	  This	  makes	  it	  relaLvely	  easy	  to	  implement	  
WebApollo	  by	  research	  groups	  lacking	  sever	  
administraLon	  experLse.	  
	  
Once	  the	  WebApollo	  instance	  was	  installed,	  the	  
longer	  Tallapoosa	  darter	  scaffolds	  were	  imported	  into	  
WebApollo	  along	  with	  fgenesh	  derived	  gene	  models	  
as	  evidence	  tracks.	  The	  WebApollo	  virtual	  machine	  
includes	  a	  script	  (setup_webapollo.sh)	  that	  makes	  it	  
simple	  for	  individuals	  with	  li8le	  computer	  system	  
experience	  to	  create	  a	  database	  of	  scaffolds	  and	  to	  
then	  add	  individual	  scaffolds	  with	  evidence	  tracks	  
one	  at	  a	  Lme.	  A	  modified	  version	  of	  this	  script	  was	  
uLlized	  in	  se[ng	  up	  the	  Tallapoosa	  darter	  WebApollo	  
instance	  along	  with	  addiLonal	  scripts	  that	  were	  
wri8en	  to	  make	  the	  necessary	  file	  format	  conversions	  
and	  enable	  an	  una8ended	  import	  of	  all	  the	  desired	  
scaffolds	  and	  evidence	  tracks	  into	  WebApollo.	  The	  
following	  diagram	  shows	  the	  workflow	  that	  was	  
implemented.	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

It	  is	  anLcipated	  that	  as	  other	  research	  groups	  
sequence	  the	  genomes	  of	  other	  darter	  species	  that	  
these	  research	  groups	  will	  want	  to	  set	  up	  their	  own	  
instances	  of	  WebApollo.	  Since	  many	  such	  research	  
groups	  will	  likely	  not	  have	  the	  necessary	  server	  
administraLon	  and	  unix	  experLse,	  a	  number	  of	  
scripts	  were	  wri8en	  that	  make	  it	  possible	  for	  
individuals	  with	  very	  minimal	  unix	  experience	  to	  
import	  scaffolds	  and	  fgenesh	  generated	  evidence	  
tracks	  into	  WebApollo.	  These	  scripts	  are:	  
	  

fgenesh-‐spliGer.sh	  
fgenesh-‐converter.sh	  
add_to_webapollo.sh	  
	  

The	  purpose	  and	  use	  of	  these	  scripts	  is	  summarized	  
in	  the	  previous	  workflow	  diagram.	  Of	  course,	  the	  use	  
of	  these	  scripts	  and	  the	  associated	  workflow	  is	  not	  
limited	  to	  se[ng	  up	  WebApollo	  instances	  of	  just	  
darter	  genomes.	  These	  may	  also	  be	  of	  uLlity	  to	  other	  
groups	  se[ng	  up	  WebApollo	  instances	  for	  
annotaLon	  of	  genomes	  of	  other	  species.	  
	  

Tallapoosa	  Darter	  Genome	  
Annota.on	  with	  WebApollo	  
To	  begin	  annotaLon	  of	  a	  scaffold,	  a	  scaffold	  is	  
selected	  from	  a	  list.	  
	  
	  
	  
	  
	  
	  
Once	  the	  scaffold	  opens	  in	  the	  viewer,	  the	  fgenesh	  
derived	  ab	  ini5o	  gene	  model(s)	  is/are	  displayed	  in	  an	  
evidence	  track.	  	  
	  
	  
	  
	  
	  
	  
	  
The	  gene	  model	  is	  slid	  up	  to	  the	  user	  area	  and	  the	  
predicted	  amino	  acid	  sequence	  is	  obtained.	  
	  
	  
	  
	  
	  
	  
	  
	  

If	  a	  blastp	  search	  of	  GenBank	  shows	  a	  homologous	  
protein,	  
	  
	  
	  
	  
	  
	  
	  
that	  protein	  sequence	  along	  with	  the	  scaffold	  DNA	  
sequence	  is	  subject	  to	  fgenesh+	  (SopBerry)	  gene	  
predicLon	  analysis	  
	  
	  
	  
	  
	  
	  
	  
	  
and	  the	  gene	  model	  in	  WebApollo	  is	  adjusted	  
accordingly	  and	  with	  addiLonal	  manual	  adjustments	  
as	  necessary.	  
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The	  program	  fgenesh	  (SopBerry)	  was	  used	  to	  
generate	  ab	  ini5o	  gene	  models	  file	  from	  a	  file	  

containing	  the	  Tallapoosa	  darter	  scaffolds	  in	  fasta	  
format.	  

The	  script	  fgenesh-‐spliGer.sh	  was	  used	  to	  extract	  
the	  fgenesh	  derived	  gene	  model	  sets	  for	  each	  of	  
the	  scaffolds	  into	  a	  separate	  text	  file.	  These	  gene	  

models	  are	  in	  a	  fgenesh	  file	  format.	  

The	  script	  fgenesh-‐converter.sh	  was	  used	  to	  
convert	  each	  of	  the	  fgenesh	  forma8ed	  gene	  

model	  text	  files	  into	  a	  gff3	  forma8ed	  file	  and	  this	  
script	  also	  appends	  the	  relevant	  fasta	  forma8ed	  
scaffold	  sequence	  into	  each	  of	  the	  gff3	  files.	  	  

The	  standard	  script	  setup_webapollo.sh	  as	  
supplied	  in	  the	  WebApollo	  virtual	  machine	  was	  
used	  with	  one	  of	  the	  gff3	  files	  from	  the	  above	  
step	  to	  iniLalize	  the	  Tallapoosa	  darter	  scaffold	  

database.	  

The	  script	  add_to_webapollo.sh	  was	  used	  to	  
repeatedly	  call	  a	  modified	  version	  of	  the	  

setup_webapollo.sh	  script	  to	  sequenLally	  add	  
each	  of	  the	  gff3	  files	  from	  within	  a	  specific	  

directory.	  For	  this	  step	  the	  setup_webapollo.sh	  
script	  was	  modified	  so	  that	  indexing	  and	  server	  

restarts	  were	  omi8ed.	  

The	  standard	  script	  setup_webapollo.sh	  as	  
supplied	  in	  the	  WebApollo	  virtual	  machine	  was	  
used	  to	  add	  the	  last	  gff3	  file	  to	  the	  Tallapoosa	  
darter	  scaffold	  database	  thus	  also	  enabling	  the	  
indexing	  of	  the	  database	  as	  well	  as	  restarLng	  of	  

the	  web	  server.	  

The	  Tallapoosa	  darter	  scaffolds	  can	  be	  searched	  by	  BLAST	  and	  annotated	  in	  WebApollo	  at	  www.dartergenomics.org.	  
Figure 4.4 WebApollo Work Flow
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Figure 4.5 Scaffold selection

Figure 4.6 Gene model

sequence along with the scaffold DNA sequence is subject to fgenesh+ (SoftBerry) gene

prediction analysis (figure 4.8(b)) and the gene model in WebApollo is adjusted accordingly

and with additional manual adjustments as necessary (figure 4.8(c)).

The Tallapoosa darter scaffolds can be searched by BLAST and annotated in WebApollo

at www.dartergenomics.org.
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(c)

Figure 4.8 Annotation with WebApollo: (a) Homologous protein. (b) Gene prediction
analysis (c) Gene adjustment
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PART 5

SOFTWARE PACKAGES

5.1 Transcriptome Quantification

5.1.1 SimReg

SimReg Soruce code: http://alan.cs.gsu.edu/NGS/?q=adrian/simreg

5.2 Transcriptome Reconstruction

5.2.1 MaLTA

The open source C++ implementation of MaLTA is freely available for download.

http://alan.cs.gsu.edu/NGS/?q=malta

• TRIP - Novel Transcript Reconstruction from Paired-End RNA-Seq Reads.

http : //www.cs.gsu.edu/ serghei/?q = trip

• DRUT - Discovery and Reconstruction of Unannotated Transcripts in Partially Annotated

Genomes from High-Throughput RNA-Seq Data. http : //www.cs.gsu.edu/ serghei/?q =

drut

5.3 Genome Assembly and Annotation

5.3.1 Etheostoma tallapoosae Genome

The Tallapoosa darter scaffolds can be searched by BLAST and annotated in WebApollo

at www.dartergenomics.org.
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PART 6

DISCUSSION AND FUTURE WORK

In ongoing work we are exploring possibility of integrating transcriptome quantification

and transcriptome reconstruction that will possibly lead to quantification based reconstruction

method. Currently, Next Generation Sequencing technologies allow to run library preparation

step multiple times varying the fragment length distribution for every step. Additionally,

it is possible to perform read barcoding for every library preparation step, which will

produce reads with different fragment lengths. To take adventure of this technology we

plan to develop the method able to handle reads from multiple libraries. We expect to

improve reconstruction accuracy by integrating different fragment length distributions into

transcriptome reconstruction algorithm. Also we are planning to release software tool for

transcriptome quantification and reconstruction that will include all our methods.
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[13] J. Duitama, P. Srivastava, and I. Măndoiu, “Towards accurate detection and genotyping

of expressed variants from whole transcriptome sequencing data,” BMC genomics,

vol. 13, no. Suppl 2, p. S6, 2012.



88

[14] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for

transcriptomics.” Nat. Rev. Genet., vol. 10, no. 1, pp. 57–63, 2009. [Online]. Available:

http://dx.doi.org/10.1038/nrg2484

[15] T. R. Mercer, D. J. Gerhardt, M. E. Dinger, J. Crawford, C. Trapnell, J. A. Jeddeloh,

J. S. Mattick, and J. L. Rinn, “Targeted RNA sequencing reveals the deep complexity

of the human transcriptome.” Nature Biotechnology, vol. 30, no. 1, pp. 99–104, 2012.

[16] B. Li, V. Ruotti, R. Stewart, J. Thomson, and C. Dewey, “Rna-seq gene expression

estimation with read mapping uncertainty,” Bioinformatics, vol. 26, no. 4, pp. 493–500,

2010.

[17] V. Pandey, R. Nutter, and E. Prediger, “Applied biosystems solid? system:

Ligation-based sequencing,” Next Generation Genome Sequencing: Towards

Personalized Medicine, pp. 29–42, 2008.

[18] R. Thomas, E. Nickerson, J. Simons, P. Jänne, T. Tengs, Y. Yuza, L. Garraway,

T. LaFramboise, J. Lee, K. Shah et al., “Sensitive mutation detection in heterogeneous

cancer specimens by massively parallel picoliter reactor sequencing,” Nature medicine,

vol. 12, no. 7, pp. 852–855, 2006.

[19] D. Bentley, S. Balasubramanian, H. Swerdlow, G. Smith, J. Milton, C. Brown, K. Hall,

D. Evers, C. Barnes, H. Bignell et al., “Accurate whole human genome sequencing using

reversible terminator chemistry,” Nature, vol. 456, no. 7218, pp. 53–59, 2008.

[20] J. M. Rothberg, W. Hinz, T. M. Rearick, J. Schultz, W. Mileski, M. Davey,

J. H. Leamon, K. Johnson, M. J. Milgrew, M. Edwards, and et al.,

“An integrated semiconductor device enabling non-optical genome sequencing.”

Nature, vol. 475, no. 7356, pp. 348–352, 2011. [Online]. Available: http:

//www.nature.com/doifinder/10.1038/nature10242

[21] M. Griffith et al., “Alternative expression analysis by RNA sequencing,” Nature



89

Methods, vol. 7, no. 10, pp. 843–847, 2010. [Online]. Available: http://dx.doi.org/10.

1038/nmeth.1503

[22] C. Ponting and T. Belgard, “Transcribed dark matter: meaning or myth?” Human

Molecular Genetics, August 2010. [Online]. Available: http://dx.doi.org/10.1093/hmg/

ddq362

[23] M. Garber, M. G. Grabherr, M. Guttman, and C. Trapnell, “Computational

methods for transcriptome annotation and quantification using RNA-seq,” Nature

Methods, vol. 8, no. 6, pp. 469–477, May 2011. [Online]. Available: http:

//dx.doi.org/10.1038/nmeth.1613

[24] M. Grabherr, “Full-length transcriptome assembly from rna-seq data without a

reference genome.” Nature biotechnology, vol. 29, no. 7, pp. 644–652, 2011. [Online].

Available: http://dx.doi.org/10.1038/nbt.1883

[25] G. Robertson, J. Schein, R. Chiu, R. Corbett, M. Field, S. D. Jackman, K. Mungall,

S. Lee, H. M. Okada, J. Q. Qian, and et al., “De novo assembly and analysis of

rna-seq data.” Nature Methods, vol. 7, no. 11, pp. 909–912, 2010. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/20935650

[26] P. A. Pevzner, “1-Tuple DNA sequencing: computer analysis.” J Biomol Struct Dyn,

vol. 7, no. 1, pp. 63–73, Aug. 1989.

[27] A. Roberts, H. Pimentel, C. Trapnell, and L. Pachter, “Identification of

novel transcripts in annotated genomes using rna-seq,” Bioinformatics, 2011.

[Online]. Available: http://bioinformatics.oxfordjournals.org/content/early/2011/06/

21/bioinformatics.btr355.abstract

[28] J. Feng, W. Li, and T. Jiang, “Inference of isoforms from short sequence reads,” in Proc.

RECOMB, 2010, pp. 138–157.



90

[29] S. Mangul, A. Caciula, I. Mandoiu, and A. Zelikovsky, “Rna-seq based discovery

and reconstruction of unannotated transcripts in partially annotated genomes,” in

Bioinformatics and Biomedicine Workshops (BIBMW), 2011 IEEE International

Conference on, nov. 2011, pp. 118 –123.

[30] M. Anton, D. Gorostiaga, E. Guruceaga, V. Segura, P. Carmona-Saez,

A. Pascual-Montano, R. Pio, L. Montuenga, and A. Rubio, “SPACE:

an algorithm to predict and quantify alternatively spliced isoforms using

microarrays,” Genome Biology, vol. 9, no. 2, p. R46, 2008. [Online]. Available:

http://genomebiology.com/2008/9/2/R46

[31] Y. She, E. Hubbell, and H. Wang, “Resolving deconvolution ambiguity in gene

alternative splicing,” BMC Bioinformatics, vol. 10, no. 1, p. 237, 2009. [Online].

Available: http://www.biomedcentral.com/1471-2105/10/237

[32] D. Hiller, H. Jiang, W. Xu, and W. Wong, “Identifiability of isoform deconvolution from

junction arrays and RNA-Seq,” Bioinformatics, vol. 25, no. 23, pp. 3056–3059, 2009.

[33] V. Lacroix, M. Sammeth, R. Guigo, and A. Bergeron, “Exact transcriptome

reconstruction from short sequence reads,” in Proc. WABI, 2008, pp. 50–63.

[34] T. Steijger, J. F. Abril, P. G. Engstrm, F. Kokocinski, T. J. H. The RGASP Consortium,

R. Guig, J. Harrow, and P. Bertone, “Assessment of transcript reconstruction methods

for RNA-Seq.” Nature Methods, vol. 10, pp. 1177–1184, 2013.

[35] B. Li and C. Dewey, “Rsem: accurate transcript quantification from rna-seq data with

or without a reference genome,” BMC bioinformatics, vol. 12, no. 1, p. 323, 2011.

[36] W. Li and T. Jiang, “Transcriptome assembly and isoform expression level estimation

from biased RNA-Seq reads.” Bioinformatics, vol. 28, no. 22, pp. 2914–2921, 2012.

[37] Y. Y. Lin, P. Dao, F. Hach, M. Bakhshi, F. Mo, A. Lapuk, C. Collins, and S. C. Sahinalp,



91

“Cliiq: Accurate comparative detection and quantification of expressed isoforms in a

population,” Proc. 12th Workshop on Algorithms in Bioinformatics, 2012.

[38] A. I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mkinen, “A novel min-cost flow method

for estimating transcript expression with rna-seq,” in Proc. RECOMB-seq 2013, 2013.

[39] W. Li, J. Feng, and T. Jiang, “IsoLasso: A LASSO Regression Approach to RNA-Seq

Based Transcriptome Assembly,” Journal of Computational Biology, vol. 18, pp.

1693–1707, 2011.

[40] A. I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen, “A novel min-cost flow method
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