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ALGORITHMS FOR TRANSCRIPTOME QUANTIFICATION AND

RECONSTRUCTION FROM RNA-SEQ DATA

by

SERGHEI MANGUL

Under the Direction of Dr. Alexander Zelikovsky

ABSTRACT

Massively parallel whole transcriptome sequencing and its ability to generate full tran-

scriptome data at the single transcript level provides a powerful tool with multiple inter-

related applications, including transcriptome reconstruction, gene/isoform expression esti-

mation, also known as transcriptome quantification. As a result, whole transcriptome se-

quencing has become the technology of choice for performing transcriptome analysis, rapidly

replacing array-based technologies. The most commonly used transcriptome sequencing pro-



tocol, referred to as RNA-Seq, generates short (single or paired) sequencing tags from the

ends of randomly generated cDNA fragments. RNA-Seq protocol reduces the sequencing

cost and significantly increases data throughput, but is computationally challenging to re-

construct full-length transcripts and accurately estimate their abundances across all cell

types.

We focus on two main problems in transcriptome data analysis, namely, transcriptome

reconstruction and quantification. Transcriptome reconstruction, also referred to as novel

isoform discovery, is the problem of reconstructing the transcript sequences from the sequenc-

ing data. Reconstruction can be done de novo or it can be assisted by existing genome and

transcriptome annotations. Transcriptome quantification refers to the problem of estimating

the expression level of each transcript. We present a genome-guided and annotation-guided

transcriptome reconstruction methods as well as methods for transcript and gene expression

level estimation. Empirical results on both synthetic and real RNA-seq datasets show that

the proposed methods improve transcriptome quantification and reconstruction accuracy

compared to previous methods.

INDEX WORDS: Algorithm, transcriptome reconstruction, transcriptome quantification,
alternative splicing, RNA-Seq, assembly, isoform expression level, gene
expression level, splicing graph, integer programming, expectation max-
imization, fragment length distribution
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PART 1

INTRODUCTION

Massively parallel whole transcriptome sequencing and its ability to generate full tran-

scriptome data at the single transcript level provides a powerful tool with multiple inter-

related applications, including transcriptome reconstruction ([3], [4], [5], [6]), gene/isoform

expression estimation ([7], [8], [5], [9], also known as transcriptome quantification, studying

trans- and cis-regulatory effect [10], studying parent-of origin effect [10], [11], [12], and call-

ing expressed variants ([13]). As a result, whole transcriptome sequencing has become the

technology of choice for performing transcriptome analysis, rapidly replacing array-based

technologies ([14]).

The most commonly used transcriptome sequencing protocol, referred to as RNA-Seq,

generates short (single or paired) sequencing tags from the ends of randomly generated cDNA

fragments. Using transcriptome sequencing data, most current research employs methods

that depend on existing transcriptome annotations. Unfortunately, as shown by recent stud-

ies ([15]), existing transcript libraries still miss large numbers of transcripts. The incomplete-

ness of annotation libraries poses a serious limitation to using this powerful technology since

accurate normalization of data critically requires knowledge of expressed transcript sequences

([7], [8], [16]. [9]. Another challenge in transcriptomic analysis comes from the ambiguities in

read/tag mapping to the reference. My dissertation research focuses on two main problems

in transcriptome data analysis, namely, transcriptome reconstruction and quantification, and

we show how these challenges are handled. Transcriptome reconstruction, also referred to

as novel isoform discovery, is the problem of reconstructing the transcript sequences from

the sequencing data. Reconstruction can be done de novo or it can be assisted by existing

genome and transcriptome annotations. Transcriptome quantification refers to the problem

of estimating the expression level of each transcript.
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1.1 RNA-Seq protocol

History of DNA sequencing is rich and diverse. The majority of DNA protocols relied on

Sanger capillary-based semi-automated sequencing technology. Sanger biochemistry allows

to achieve up to 1,000 bp read length, and per-base “raw” accuracies as high as 99.999%.

Due to high accuracy, genomes sequenced by Sanger technology currently are used in modern

databases.

Second-generation of DNA sequencing technologies are more parallelizable and have

higher throughput compared to Sanger protocol. These technologies are collectively called

Next Generation Sequencing (NGS). Many NGS technologies have been realised as a commer-

cial product (e.g., the Illumina HiSeq Systems (marketed by Illumina, San Diego, CA, USA),

the SOLiD Systems (marketed by Applied Biosystems by Life Technologies; San Diego, CA,

USA), 454 Genome Sequencers (Roche Applied Science; Penzberg, Upper Bavaria, Ger-

many), the HeliScope Single Molecule Sequencer technology (Helicos; Cambridge, MA, USA),

Ion Personal Genome Machine Sequencer(marketed by Ion Torrent by Life Technologies, San

Diego, CA, USA). These technologies produce reads of length 50 - 500bp and up to 600 Gb

of throughput.

Recent advances in DNA sequencing have made it possible to sequence the whole tran-

scriptome by massively parallel sequencing, commonly referred as RNA-Seq [7]. RNA-Seq

is quickly becoming the technology of choice for transcriptome research and analyses [14].

RNA-Seq allows reduction of the sequencing cost and significantly increases data through-

put, but it is computationally challenging to use such RNA-Seq data for reconstructing of

full length transcripts and accurately estimate their abundances across all cell types.

RNA-Seq, uses next generation sequencing technologies, such as SOLiD ([17]), 454 ([18]),

Illumina ([19]), or Ion Torrent ([20]). Figure 1.1 depicts the steps in an RNA-Sequencing

experiment, including the first step of analysis which is typically mapping the data to a

reference. After extracting the RNA sample, it is converted to cDNA fragments. The

distribution of the fragment lengths is determined during the RNA-Seq experiment and can
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Figure 1.1 A schematic representation of the RNA-Seq protocol.

be useful in downstream analysis. This is usually followed by an amplification step; then

one or both ends of the cDNA fragments are sequenced producing either single or paired-

end reads. Sequencing can be either directional, meaning that all reads come from the

coding strand for single reads. For paired end read, directional sequencing implied that

the first read in the pair comes from the coding strand, while the second comes from the

non-coding strands. This strand specificity is not maintained in non-directional sequencing.

The specifics of the sequencing protocols vary from one technology to the other. Similarly,

the length of produced reads varies depending on the technology with newer technologies

producing longer reads.

1.2 Applications of RNA-Seq

Ubiquitous regulatory mechanisms such as the use of alternative transcription start and

polyadenylation sites, alternative splicing, and RNA editing result in multiple messenger

RNA (mRNA) isoforms being generated from a single genomic locus. Most prevalently,

alternative splicing is estimated to take place for over 90% of the multi-exon human genes

across diverse cell types [8], with as much as 68% of multi-exon genes expressing multiple

isoforms in a clonal cell line of colorectal cancer origin [21]. Not surprisingly, the ability to
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reconstruct full length transcript sequences and accurately estimate their expression levels

is widely believed to be critical for unraveling gene functions and transcription regulation

mechanisms [22].

The common applications of RNA-seq are gene expression level estimation, isoform

expression level estimation, novel transcript discovery, and transcriptome reconstruction. A

variety of new methods and tools have been recently developed to tackle these problems.

Estimating transcript and gene expression levels has long been an important application

for RNA-Seq analyses. Estimation of isoform expression level is not a trivial task .There

is yet no standard protocol for measuring isoforms abundances from RNA-Seq data. The

key challenge in transcriptome quantification is accurate assignment of ambiguous reads to

isoforms. Most RNA-Seq studies to date still ignore alternative splicing or, similar to splicing

array studies, restrict themselves to surveying the expression levels of exons and exon-exon

junctions. The main difficulty in inferring expression levels for full-length transcripts lies in

the fact that current sequencing technologies generate short reads (from few tens to hundreds

of bases), many of which cannot be unambiguously assigned to individual transcripts.

Inferring expression at isoform level provides information for finer-resolution biological

studies, and also leads to more accurate estimates of expression at the gene level by allowing

rigorous length normalization. Genome-wide gene expression level estimates derived from

isoform level estimates are significantly more accurate than those obtained directly from

RNA-Seq data using isoform-oblivious GE methods such as the widely used counting of

unique reads, the rescue method of [7], or the EM algorithm of [23].

Identifying of all transcripts expressed in a particular sample require the assembly of

reads into transcription units. This process is collectively called transcriptome reconstruc-

tion. A number of recent works have addressed the problem of transcriptome reconstruction

from RNA-Seq reads. These methods fall into three categories: “genome-guided”, “genome-

independent” and “annotation-guided” methods [24]. Genome-independent methods such

as Trinity [25] or transAbyss [26] directly assemble reads into transcripts. A commonly used

approach for such methods is de Brujin graph [27] utilizing ”k-mers”. The use of genome-
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independent methods becomes essential when there is no trusted genome reference that can

be used to guide reconstruction. On the other end of the spectrum, annotation guided meth-

ods [28, 29] make use of available information in existing transcript annotations to aid in the

discovery of novel transcripts. RNA-Seq reads can be mapped onto reference genome, ref-

erence annotations, exon-exon junction libraries, or combinations thereof, and the resulting

alignments are used to reconstruct transcripts.

Many transcriptome reconstruction methods fall in the genome-guided category. They

typically start by mapping sequencing reads onto the reference genome,using spliced align-

ment tools, such as TopHat [30] or SpliceMap [31]. The spliced alignments are used to identify

exons and transcripts that explain the alignments. While some methods aim to achieve the

highest sensitivity, others work to predict the smallest set of transcripts explaining the given

input reads. Furthermore, some methods aim to reconstruct the set of transcripts that would

insure the highest quantification accuracy. Scripture [4] construct a splicing graph from the

mapped reads and reconstructs isoforms corresponding to all possible paths in this graph. It

then uses paired-end information to filter out some transcripts. Although scripture achieves

very high sensitivity, it may predict a lot of incorrect isoforms. The method of Trapnell et

al. [3, 32], referred to as Cufflinks, constructs a read overlap graph and generates candidate

transcripts by finding a minimal size path cover via a reduction to maximum matching in

a weighted bipartite graph. Cufflinks and Scripture do not target the quantification accu-

racy. IsoLasso [5] uses the LASSO [33] algorithm, and it aims to achieve a balance between

quantification accuracy and predicting the minimum number of isoforms. It formulates the

problem as a quadratic programming one, with additional constraints to ensure that all ex-

ons and junctions supported by the reads are included in the predicted isoforms. CLIIQ

[34] uses an integer linear programming solution that minimizes the number of predicted

isoforms explaining the RNA-Seq reads while minimizing the difference between estimated

and observed expression levels of exons and junctions within the predicted isoforms.

Table 3.1 includes classification of the available methods for genome-guided transcrip-

tome reconstruction based on supported parameters and underlying algorithms.
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Table 1.1 Classification of transcriptome reconstruction methods

Method Support paired-end Consider fragment Require
reads lenght distribution annotation

TRIP Yes Yes No
IsoLasso Yes No No
IsoInfer No No TES/TSS
Cufflinks Yes Yes No

CLIQ No No No
Scripture Yes No No
SLIDE Yes No gene/exon boundaries

1.3 Contributions and Future Work

We present a general framework that includes the genome-guided and annotation-guided

transcriptome reconstruction methods as well as methods for transcript and gene expression

level estimation.

We propose a novel expectation-maximization algorithm to solve the problem of tran-

script and gene expression level estimation from RNA-Seq data. Our algorithm, referred

to as IsoEM [9], is based on disambiguating of information provided by the distribution of

insert sizes generated during sequencing library preparation, and takes advantage of base

quality scores, strand and read pairing information when available. To solve the problem

of transcriptome quantification in the context of partially annotated genomes we propose

enhancement of EM algorithm, “Virtual Transcript Expectation Maximization(VTEM)”

[35]. VTEM detects overexpressed reads and/or exons corresponding to the unannotated

transcripts and estimates annotated transcript frequencies.

To address the problem of transcriptome reconstruction we suggest genome-guided and

annotation-guided methods. We present a novel annotation-guided method for transcriptome

discovery and reconstruction in partially annotated genomes and compare it with existing

annotation-guided and genome-guided transcriptome assembly methods. Our method, re-

ferred as “Discovery and Reconstruction of Unannotated Transcripts” (DRUT) [36], can be

used to enhance existing transcriptome assemblers, such as Cufflinks [3]. It was shown that
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Cufflinks enhanced by DRUT has superior quality of reconstruction and frequency estimation

of transcripts.

To solve transcitome reconstruction problem assisted by existing genome annotations

we propose a novel method called “Transciptome Reconstruction using Integer Programing”

(TRIP [6] ). The method incorporates information about fragment length distribution of

RNA-Seq paired-end reads to reconstruct novel transcripts. The first step is to infer exon

boundaries from spliced genome alignments of the reads. Then, create a splice graph based

on inferred exon boundaries. Third step enumerates all maximal paths in the splice graph

corresponding to putative transcripts. The problem of selecting true transcripts is formulated

as an integer program (IP) which minimizes the set of selected transcripts subject to a good

statistical fit between the fragment length distribution (empirically determined during library

preparation) and fragment lengths implied by mapped read pairs.

Recent advances in sequencing technologies made it possible to produce longer single-end

reads with the length comparable to length of fragment for paired-end technology[20] . Novel

method was developed to address transcriptome reconstruction problem from single RNA-

Seq reads. This method, called “ Maximum Likelihood Integer Programming ” (MLIP),

aims is to predict the minimum number of transcripts explaining the set of input reads with

the highest quantification accuracy. This is achieved by coupling a integer programming

formulation with an expectation maximization model for isoform expression estimation.

Empirical results on both synthetic and real RNA-seq datasets show that the proposed

methods improve transcriptome quantification and reconstruction accuracy compared to

previous methods.

In ongoing work we are exploring possibility of integrating transcriptome quantifica-

tion and transcriptome reconstruction that will possibly lead to quantification based recon-

struction method. Currently, Next Generation Sequencing technologies allow to run library

preparation step multiple times varying the fragment length distribution for every step. Ad-

ditionally, it is possible to perform read barcoding for every library preparation step, which

will produce reads with different fragment lengths. To take adventure of this technology
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we plan to develop the method able to handle reads from multiple libraries. We expect to

improve reconstruction accuracy by integrating different fragment length distributions into

transcriptome reconstruction algorithm. Also we are planning to release software tool for

transcriptome quantification and reconstruction that will include all our methods.

1.4 Organization

Dissertation is organized as follows. Chapter 1 gives a brief description of the RNA-

Seq technology and discuss application of this technology for transcriptome quantification

and reconstruction problems. Chapter 2 presents the transcriptome quantification problem

and motivation behind it. Then two approaches are described: first approach for completely

annotated genomes and second one for partially annotated genomes. We finalize this chapter

with application of our method to human RNA-Seq data.

Chapter 3 introduces transcriptome reconstruction problem and gives classification of

existing methods. Transcriptome reconstruction, also referred to as novel isoform discovery,

can be done de novo or it can be assisted by existing genome and transcriptome annotations.

We present algorithms for reconstruction of organisms transcriptome from RNA-Seq data

assisted by existing genome and transcriptome annotations. Discussion and future directions

are provided in the Chapter 4.

1.5 Software Packages

• IsoEM - Inferring Alternative Splicing Isoform Frequencies from High-Throughput RNA-

Seq Data http : //dna.engr.uconn.edu/?pageid = 105

• VSEM - Inferring Unannotated Haplotypes Frequencies in Partially Annotated Genomes.

Enhacement Tool for IsoEM and ViSpA. http : //www.cs.gsu.edu/ serghei/?q = vsem

• DRUT - Discovery and Reconstruction of Unannotated Transcripts in Partially Anno-

tated Genomes from High-Throughput RNA-Seq Data. http : //www.cs.gsu.edu/ serghei/?q =

drut
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• TRIP - Novel Transcript Reconstruction from Paired-End RNA-Seq Reads.

http : //www.cs.gsu.edu/ serghei/?q = trip

1.6 Related Publications

Refereed Journal Articles and Book Chapters

• S. Al Seesi, S. Mangul, A. Caciula, I. Mandoiu and A. Zelikovsky ”Transcriptome re-

construction and quantification from RNA sequencing data”(to appear), book chapter,

Genome Analysis: Current Procedures and Applications, 2013

• S. Mangul, A. Caciula, O. Glebova, I. Mandoiu and A. Zelikovsky, ”Improved Tran-

scriptome Quantication and Reconstruction from RNA-Seq Reads using Partial Annota-

tions”(to appear), In Silico Biology(ISB) : An International Journal on Computational

Molecular Biology, 2012

• S. Mangul, A. Caciula, I. Mandoiu and A. Zelikovsky ”RNA-Seq based transcriptome

quantification and reconstruction guided by protein coding gene annotation”(to appear),

book chapter, Algorithmic and AI Methods for Protein Bioinformatics, 2012

• M. Nicolae, S. Mangul, I. Mandoiu and A. Zelikovsky, ”Estimation of alternative splicing

isoform frequencies from RNA-Seq data”, Algorithms for Molecular Biology, 2011

• I. Astrovskaya, B. Tork, S. Mangul, K. Westbrooks, I. Mandoiu, P. Balfe and A. Ze-

likovsky, ”Inferring Viral Spectrum from 454 Pyrosequencing Reads”, BMC Bioinformat-

ics, 2011

Refereed Conference Articles

• S. Mangul, A. Caciula, S. Al Seesi, D. Brinza, A. Banday, R. Kanadia, I. Mandoiu and A.

Zelikovsky, ”Flexible Approach for Novel Transcript Reconstruction from RNA-Seq Data

using Maximum Likelihood Integer Programming”(submitted), Proc. 5th International

Conference on Bioinformatics and Computational Biology (BICoB 2013)

• S. Mangul, A. Caciula, S. Al Seesi, D. Brinza, A. Banday, R. Kanadia, I. Mandoiu

and A. Zelikovsky, ”An Integer Programming Approach to Novel Transcript Reconstruc-

tion from Paired-End RNA-Seq Reads”, Proc. 3rd ACM Conference on Bioinformatics,
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(ICCABS 2012)
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imum Likelihood Estimation of Incomplete Genomic Spectrum from HTS Data”, Proc.
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formatics, pp.
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PART 2

TRANSCRIPTOME QUANTIFICATION

2.1 Introduction

Massively parallel whole transcriptome sequencing, commonly referred as RNA-Seq, is

quickly becoming the technology of choice for gene expression profiling. However, due to the

short read length delivered by sequencing technologies, estimation of expression levels for

alternative splicing gene isoforms remains challenging.

2.1.1 Background

Ubiquitous regulatory mechanisms such as the use of alternative transcription start and

polyadenylation sites, alternative splicing, and RNA editing result in multiple messenger

RNA (mRNA) isoforms being generated from a single genomic locus. Most prevalently,

alternative splicing is estimated to take place for over 90% of the multi-exon human genes

across diverse cell types [8], with as much as 68% of multi-exon genes expressing multiple

isoforms in a clonal cell line of colorectal cancer origin [21]. Not surprisingly, the ability

to reconstruct full length isoform sequences and accurately estimate their expression levels

is widely believed to be critical for unraveling gene functions and transcription regulation

mechanisms [22].

Two key interrelated computational problems arise in the context of transcriptome

quantification: gene expression level estimation (GE), and isoform expression level estima-

tion (IE). Targeted GE using methods such as quantitative PCR has long been a staple of

genetic studies. The completion of the human genome has been a key enabler for genome-

wide GE performed using expression microarrays. Since expression microarrays have limited

capability of detecting alternative splicing events, specialized splicing arrays have been de-

veloped for genome-wide interrogation of both annotated exons and exon-exon junctions.
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However, despite sophisticated deconvolution algorithms [37, 38], the fragmentary informa-

tion provided by splicing arrays is typically insufficient for unambiguous identification of

full-length transcripts [39, 40]. Massively parallel whole transcriptome sequencing, com-

monly referred to as RNA-Seq, is quickly replacing microarrays as the technology of choice

for performing GE due to their wider dynamic range and digital quantitation capabilities

[14]. Unfortunately, most RNA-Seq studies to date still ignore alternative splicing or, similar

to splicing array studies, restrict themselves to surveying the expression levels of exons and

exon-exon junctions. The main difficulty in inferring expression levels for full-length isoforms

lies in the fact that current sequencing technologies generate short reads (from few tens to

hundreds of bases), many of which cannot be unambiguously assigned to individual isoforms.

2.1.2 Previous Work

RNA-Seq analyses typically start by mapping sequencing reads onto the reference

genome, transcript libraries, exon-exon junction libraries, or combinations thereof. Early

RNA-Seq studies have recognized that limited read lengths result in a significant percent-

age of so called multireads, i.e., reads that map equally well at multiple locations in the

genome. A simple (and still commonly used) approach is to discard multireads, and esti-

mate expression levels using only the so called unique reads. Mortazavi et al. [7] proposed a

multiread “rescue” method whereby initial gene expression levels are estimated from unique

reads and used to fractionally allocate multireads, with final expression levels obtained by

re-estimation based on total counts obtained after multiread allocation. An expectation-

maximization (EM) algorithm that extends this scheme by repeatedly alternating between

fractional read allocation and re-estimation of gene expression levels was recently proposed

in [23].

A number of recent works have addressed the IE problem, namely isoform expression

level estimation from RNA-Seq reads. Under a simplified “exact information” model, [40]

showed that neither single nor paired read RNA-Seq data can theoretically guarantee un-

ambiguous inference of isoform expression levels, although paired reads may be sufficient to
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deconvolute expression levels for the majority of annotated isoforms. The key challenge in

IE is accurate assignment of ambiguous reads to isoforms. Compared to the GE context,

read ambiguity is much more significant, since it affects not only multireads, but also reads

that map at a unique genome location expressed in multiple isoforms. Estimating isoform

expression levels based solely on unambiguous reads, as suggested, e.g., in [21], results in

splicing-dependent biases similar to the transcript-length bias noted in [41], further com-

plicating the design of unbiased differential expression tests based on RNA-Seq data. To

overcome this difficulty, [42] proposed a Poisson model of single-read RNA-Seq data ex-

plicitly modeling isoform frequencies. Under their model, maximum likelihood estimates

are obtained by solving a convex optimization problem, and uncertainty of estimates is ob-

tained by importance sampling from the posterior distribution. Li et al. [43] introduced

an expectation-maximization (EM) algorithm similar to that of [23] but applied to isoforms

instead of genes. Unlike the method of [42], which estimates isoform frequencies only from

reads that map to a unique location in the genome, the algorithm of [43] incorporates mul-

tireads as well. The IE problem for single reads is also tackled in [1], who propose an

EM algorithm for inferring isoform expression levels from the read coverage of exons (reads

spanning exon junctions are ignored).

2.1.3 Our contributions

In this section we focus on the IE problem, namely estimating isoform expression levels

(interchangeably referred to as frequencies) from RNA-Seq reads, under the assumption

that a complete list of candidate isoforms is available. Projects such as [44] and [45] have

already assembled large libraries of full-length cDNA sequences for humans and other model

organisms, and the coverage of these libraries is expected to continue to increase rapidly

following ultra-deep paired-end transcriptome sequencing projects such as [3, 4] and the

widely anticipated deployment of third-generation sequencing technologies such as [46, 47],

which deliver reads with significantly increased length. Inferring expression at isoform level

provides information for finer-resolution biological studies, and also leads to more accurate
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estimates of expression at the gene level by allowing rigorous length normalization. Indeed,

as shown in the ‘Experimental results’ section, genome-wide gene expression level estimates

derived from isoform level estimates are significantly more accurate than those obtained

directly from RNA-Seq data using isoform-oblivious GE methods such as the widely used

counting of unique reads, the rescue method of [7], or the EM algorithm of [23].

Our main contribution is a novel expectation-maximization algorithm for isoform fre-

quency estimation from any mixture of single and paired RNA-Seq reads. A key feature of

our algorithm, referred to as IsoEM, is that it exploits information provided by the distribu-

tion of insert sizes, which is tightly controlled during sequencing library preparation under

current RNA-Seq protocols. Such information is not modeled in the “exact” information

models of [39, 40], challenging the validity of their negative results. Guttman et al. [4] take

into account insert lengths derived from paired read data, but only for filtering candidate

isoforms in ID. Trapnell et al. [3] is the only other work we are aware of that exploits this

information for IE, in conjunction with paired read data. We show that modeling insert

sizes is highly beneficial for IE even for RNA-Seq data consisting of single reads. Insert

sizes contribute to increased estimation accuracy in two different ways. On one hand, they

can help disambiguating the isoform of origin for the reads. In IsoEM, insert lengths are

combined with base quality scores, and, if available, read pairing and strand information

to probabilistically allocate reads to isoforms during the expectation step of the algorithm.

As in [43], the genomic locations of multireads are also resolved probabilistically in this

step, further contributing to improved overall accuracy compared to methods that ignore or

fractionally pre-allocate multireads. On the other hand, insert size distribution is used to

accurately adjust isoform lengths during frequency re-estimation in the maximization step

of the IsoEM algorithm.

We also present the results of comprehensive experiments conducted to assess the per-

formance of IsoEM on both synthetic and real RNA-Seq datasets. These results show that

IsoEM consistently outperforms existing methods under a wide range of sequencing pa-

rameters and distribution assumptions. We also report results of experiments empirically
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evaluating the effect of sequencing parameters such as read length, read pairing, and strand

information on estimation accuracy. Our experiments confirm the surprising finding of [43]

that, for a fixed total number of sequenced bases, longer reads do not necessarily lead to

better accuracy for estimation of isoform and gene expression levels.

2.2 Transcriptome Quantification Algorithms

2.2.1 Mapping RNA-Seq Reads

As with many RNA-Seq analyses, the first step of IsoEM is to map the reads. Our ap-

proach is to map them onto the library of known isoforms using any one of the many available

ungapped aligners (we used Bowtie [48] with default parameters in our experiments). An al-

ternative strategy is to map the reads onto the genome using a spliced alignment tool such as

TopHat [30], as done, e.g., in [3, 4]. However, preliminary experiments with TopHat resulted

in fewer mapped reads and significantly increased mapping uncertainty, despite providing

TopHat with a complete set of annotated junctions. Since further increases in read length

coupled with improvements in spliced alignment algorithms could make mapping onto the

genome more attractive in the future, we made our IsoEM implementation compatible with

both mapping approaches by always converting read alignments to genome coordinates and

performing all IsoEM read-isoform compatibility calculations in genome space.

2.2.2 Finding read-isoform compatibilities

The candidate set of isoforms for each read is obtained by combining all genome co-

ordinates of reads and isoforms, sorting them and using a line sweep technique to detect

read-isoform compatibilities (see Algorithm 1). As detailed below, during the line sweep

reads are grouped into equivalence classes defined by their isoform compatibility sets; this

speeds up the E-step of the IsoEM algorithm by allowing the processing of an entire read

class at once.

Some of the reads match multiple positions in the genome, which we refer to as align-

ments (for paired end reads, an alignment consists of the positions where the two reads in
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the pair align with the genome). Each alignment a can in turn be compatible with multiple

isoforms that overlap at that position of the genome. During the line sweep, we compute

the relative “weight” of assigning a given read/pair r to isoform j as wr,j =
∑

aQaFaOa,

where the sum is over all alignments of r compatible with j, and the factors of the summed

products are defined as follows:

• Qa represents the probability of observing the read from the genome locations described

by the alignment. This is computed from the base quality scores as Qa =
∏|r|

k=1[(1 −

εk)Mak + εk
3

(1−Mak)], where Mak = 1 if position k of alignment a matches the reference

genome sequence and 0 otherwise, while εk denotes the error probability of k-th base

of r.

• For paired end reads, Fa represents the probability of the fragment length needed

to produce alignment a from isoform j; note that the length of this fragment can be

inferred from the genome coordinates of the two aligned reads and the available isoform

annotation. For single reads, we can only estimate an upperbound u on the fragment

length: if the alignment is on the same strand as the isoform then u is the number

of isoform annotated bases between the 5′ end of the aligned read and the 3′ end of

the isoform, otherwise u is the number of isoform annotated bases between the 5′ end

of the aligned read and the 5′ end of the isoform. In this case Fa is defined as the

probability of observing a fragment with length of u bases or fewer.

• Oa is 1 if alignment a of r is consistent with the orientation of isoform j, and 0 otherwise.

Consistency between the orientations of r and j depends on whether or not the library

preparation protocol preserves the strand information. For single reads Oa = 1 when

reads are generated from fragment ends randomly or, for directional RNA-Seq, when

they match the known isoform orientation. For paired-end reads, Oa = 1 if the two

reads come from different strands, point to each other, and, in the case of directional

RNA-Seq, the orientation of first read matches the known isoform orientation.
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Algorithm 1 The algorithm for identifying isoforms compatible with reads.

X = all the coordinates of all the entities (isoforms and reads)
sort X (radix sort; for equal values, isoform coordinates come first)
for x in X do
e = entityFor(x)
if x is an entity end then

sig = signature[e]
gap = getLastGap(sig)
if x is an isoform end then

currentIsoformsForGap[gap].remove(e)
else if x is a read end then

isoforms = currentIsoformsForGap[gap].keepOnlyMatching(sig)
if read e is the second read in the pair then

isoformsForRead[e] = isoformsForRead[e]∩ isoforms
else

isoformsForRead[e] = isoforms
end if
readClasses[isoformsForRead[e]].add(e)

end if
signature.remove(e)

else
signature[e].add(x)

end if
if x is an exon start then

sig = signature[e]
lastButOneGap = getLastButOneGap(sig)
currentIsoformsForGap[lastButOneGap].remove(e)
lastGap = getLastGap(sig)
currentIsoformsForGap[lastGap].add(e, sig)

end if
end for

2.2.3 IsoEM : Expectation Maximization Algorithm for Estimation Isoform Frequen-

cies

The IsoEM algorithm starts with the set of N known isoforms. For each isoform we

denote by l(j) its length and by f(j) its (unknown) frequency. If we denote by n(j) the

number of reads coming from isoform j and let p(k) denote the probability of a fragment of
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length k, then

E[n(j)] ∝
∑
k≤l(j)

p(k)(l(j)− k + 1) (2.1)

since, the number of fragments of length k is expected to be proportional to the number of

valid starting positions for a fragment of that length in the isoform. Thus, if the isoform

of origin is known for each read, the maximum likelihood estimator for f(j) is given by

c(j)/(c(1) + . . . + c(N)), where c(j) = n(j)/
∑

k≤l(j) p(k)(l(j) − k + 1) denotes the length-

normalized fragment coverage. Note that the length of most isoforms is significantly larger

than the mean fragment length µ typical of current sequencing libraries; for such isoforms∑
k≤l(j) p(k)(l(j)−k+1) ≈ l(j)−µ+1 and c(j) can be approximated by n(j)/(l(j)−µ+1).

Since some reads match multiple isoforms, their isoform of origin cannot be established

unambiguously. The IsoEM algorithm (see Algorithm 2) overcomes this difficulty by simul-

taneously estimating the frequencies and imputing the missing read origin within an iterative

framework. After initializing frequencies f(j) at random, the algorithm repeatedly performs

the next two steps until convergence:

• E-step: Compute the expected number n(j) of reads that come from isoform j under the

assumption that isoform frequencies f(j) are correct, based on weights wr,j computed

as described in the previous section

• M-step: For each j, set the new value of f(j) to c(j)/(c(1) + . . . + c(N)), where

normalized coverages c(j) are based on expected counts computed in the prior E-step

2.2.4 IsoEM optimizations

Below we describe two implementation optimizations that significantly improve the

performance of IsoEM by reducing both runtime and memory usage.

The first optimization consists of partitioning the input into compatibility components.

The compatibility between reads and isoforms naturally induces a bipartite read-isoform

compatibility graph, with edges connecting each isoform with all reads that can possibly
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Algorithm 2 The expectation-maximization algorithm used by IsoEM.

assign random values to all f(i)
while not converged do
E-step:
initialize all n(j) to 0
for each read r do

sum =
∑

j:wr,j>0wr,jf(j)
for each isoform j with wr,j > 0 do
n(j)+ = wr,jf(j)/sum

end for
end for
M-step:
s =

∑
j n(j)/(l(j)− µ+ 1)

for each isoform j do
f(j) = n(j)/(l(j)−µ+1)

s

end for
end while

originate from it. Connected components of the compatibility graph can be processed in-

dependently in IsoEM since the frequencies of isoforms in one connected component do not

affect the frequencies of isoforms in any other connected component. Although this opti-

mization can be applied to any EM algorithm, its impact is particularly significant in IsoEM.

Indeed, in this context the compatibility graph decomposes in numerous small components

(see Figure 2.1(a) for a typical distribution of component sizes ). The resulting speed-up

comes from the fact that in each iteration of IsoEM we update frequencies of isoforms in a

single compatibility component, avoiding needless updates for other isoforms.

The second IsoEM optimization consists of partitioning the set of reads within each

compatibility component into equivalence classes. Two reads are equivalent for IsoEM if

they are compatible with the same set of isoforms and their compatibility weights to the

isoforms are proportional. Keeping only a single representative from each read class (with

appropriately adjusted frequency) drastically reduces the number of reads kept in memory

(see Figure 2.1(b)). As the number of reads increases, the number of read classes increases

much slower. Eventually this reaches saturation and no new read classes appear – at which

point the runtime of IsoEM becomes virtually independent of the number of reads. Indeed,



24

10,000

1,000

10,000

100

1,000

10,000
C
o
m
p
o
n
e
ts

100

1,000

10,000
N
u
m
b
e
r 
o
f 
C
o
m
p
o
n
e
ts

10

100

1,000

10,000
N
u
m
b
e
r 
o
f 
C
o
m
p
o
n
e
ts

1

10

100

1,000

10,000

0 20 40 60 80 100 120 140 160 180

N
u
m
b
e
r 
o
f 
C
o
m
p
o
n
e
ts

Component Size (# isoforms)

1

10

100

1,000

10,000

0 20 40 60 80 100 120 140 160 180

N
u
m
b
e
r 
o
f 
C
o
m
p
o
n
e
ts

Component Size (# isoforms)

1

10

100

1,000

10,000

0 20 40 60 80 100 120 140 160 180

N
u
m
b
e
r 
o
f 
C
o
m
p
o
n
e
ts

Component Size (# isoforms)

(a)

0.4

0.6

0.8

1

1.2

C
la
ss
e
s 
(M

il
li
o
n
s)

RandomStrand Single

CodingStrand Single

CodingStrand Pairs

RandomStrand Pairs

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

#
 C
la
ss
e
s 
(M

il
li
o
n
s)

# Reads/Pairs (Millions)

RandomStrand Single

CodingStrand Single

CodingStrand Pairs

RandomStrand Pairs

(b)

Figure 2.1 Distribution of compatibility component sizes (defined as the number of isoforms)
for 10 million single reads of length 75 (a) and number of read classes for 1 to 30 million
single reads or pairs of reads of length 75 (b).

E-step for read classes:
initialize all n(j) to 0
for each read class R do

sum =
∑

j:wR,j>0wR,jf(j)
for each isoform j with wR,j > 0 do
n(j)+ = m(R) ∗ wR,jf(j)/sum

end for
end for

Figure 2.2 The E-Step of IsoEM algorithm based on read classes.

in practice the runtime bottlenecks are parsing the reads, computing the compatibility graph

and detecting equivalent reads.

Once read classes are constructed, we only need a small modification of the E-step of

IsoEM to use read classes instead of reads (Figure 2.2). Next we describe the union-find

algorithm used for efficiently finding compatibility components and read classes in IsoEM.

A read class is defined as 〈m, {(i, w)|i = isoform, w = weight}〉, where m is called the

multiplicity of the read class. Given a collection of reads, we want to:

• Find the connected components of the compatibility graph induced by the reads, and
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• Collapse equivalent reads into read classes with multiplicity indicating the number of

reads in each class.

A straightforward approach is to solve the first problem using a union-find algorithm, then

to take the reads corresponding to each connected component and remove equivalent reads,

e.g., using hashing. However, there are two drawbacks to this approach:

• First, all reads need to be kept in memory until all connected components have been

computed.

• Second, when the number of reads in a connected component is very large the number

of collisions increases, which leads to poor performance.

We overcome the two problems presented above using an online version of the union-find

algorithm which computes connected components and eliminates equivalent reads on the

fly. This way, equivalent reads will never reside too long in memory. Also, we avoid the

problem of large hash tables by using multiple smaller hash tables which are guaranteed to

be disjoint.

We start our modified version of union-find with an empty set of trees. A new single-

node tree is initialized every time a new isoform is found in a read class. In each node we

store a hash-table of read classes. Each read is processed as follows:

• If the isoforms compatible with the read correspond to nodes in more than one tree

unite the corresponding trees. The root of the tallest tree becomes the root of the

union tree. Then create a new read class for this read (we can be sure it was not seen

before, otherwise the isoforms would have been in the same tree) and add it to the

hash table of the root node. Notice that at this point the root node is also (trivially)

the Lowest Common Ancestor (LCA) of the nodes corresponding to the isoforms in

the read class

• If the isoforms correspond to nodes in the same tree find the LCA of all these nodes. If

the class of the read is present in the hash table of the LCA, increment its multiplicity
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and then drop the read. Otherwise, create a new read class and add it to the LCA’s

hash table.

Notice that in the second case it suffices to look only in the LCA of the isoforms for

an already existing read class. This follows immediately from the fact that we always add

reads to the LCA of the nodes (isoforms) compatible with the read. Note that we cannot use

path compression to speed up ‘find’ operations because this would be altering the structure

of existing trees. Thus, ‘find’ operations will take logarithmic (amortized) time. At the end

of the algorithm, each tree in the union-find forest corresponds to a connected component.

The read classes in each connected component are obtained by traversing the corresponding

tree and collecting all the read classes present in the nodes. At this point we are sure that

all the read classes are distinct, so the collection process performs simple concatenations. To

further speed up the collection process, we can safely use path compression as we traverse

the trees, since we no longer care about the exact topology of the subtrees.

Runtime analysis. Each union operation takes O(1) time, so for a read with k compatible

isoforms we spend at most O(k) time doing unions. By always making the root of the taller

tree to be the root of a union, we ensure that the height of any tree is not bigger than

O(log n) where n is the number of nodes in the tree. Thus, finding the root of a node’s

tree takes O(log n). For a read with k compatible isoforms we spend at most O(k log n)

time processing it. The LCA of two nodes can be computed at constant overhead when

performing find operations (by marking the nodes on the paths from isoforms to root).

Collecting all the read classes is sped-up by using path compression. The whole collecting

phase takes O(nα(n)) time where n is the total number of isoforms and α(n) is the inverse

of the Ackermann function. Overall, for q reads with an average of k isoforms per read and

n total distinct isoforms, computing read classes and compatibility components using the

modified union-find algorithm takes O(qk log n+ nα(n)) time.
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2.2.5 Hexamer and repeat bias corrections

As noted in [49], some commonly used library preparation protocols result in biased

sampling of fragments from isoforms due to the random hexamers used to prime reverse

transcription. To correct for possible hexamer bias, we implemented a simple re-weighting

scheme similar to that proposed in [49]. Each read is assigned a weight b(h) based on its

first six bases and computed as follows. Given a set of mapped reads, let p̂i be the observed

distribution of hexamers starting at position i (spanning positions i to i+ 5) of all the reads.

Thus, p̂i(h) is the proportion of reads which have hexamer h at position i and p̂1(h) is the

proportion of reads starting with hexamer h. Let l be the read length. We define the weights

b by:

b(h) =

1
6

∑l/2+3
i=l/2−2 p̂i(h)

1
2
(p̂1(h) + p̂2(h))

Since we already collapse equivalent reads into read classes, we can seamlessly incorporate

hexamer weights in the algorithm by slightly changing the definition of a read class’ multi-

plicity to m(R) =
∑

r∈R b(h(r)), where h(r) denotes the starting hexamer of r. The effect

of this correction procedure is to reduce (respectively increase) the multiplicity of reads

with starting hexamers that are overrepresented (respectively under-represented) at the be-

ginning of reads compared to the middle of reads. The underlying assumption is that the

average frequency with which a hexamer appears in the middle of reads is not affected by

library preparation biases. Recent methods further target biases in the bases surrounding

the sequenced fragments in addition to those at read ends.

To avoid biases from incorrectly mapped reads originating from repetitive regions,

IsoEM will also discard reads that overlap annotated repeats. When applying this cor-

rection, isoform lengths are automatically adjusted by subtracting the number of positions

resulting in reads that would be discarded.
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Figure 2.3 Distribution of isoform lengths (a) and gene cluster sizes (b) in the UCSC dataset.

2.3 Experimental results

2.3.1 Comparison of methods on simulated datasets

We tested IsoEM on simulated human RNA-Seq data. The human genome sequence

(hg18, NCBI build 36) was downloaded from UCSC together with the coordinates of the

isoforms in the KnownGenes table. Genes were defined as clusters of known isoforms defined

by the GNFAtlas2 table. The dataset contains a total of 66, 803 isoforms pertaining to 19, 372

genes. The isoform length distribution and the number of isoforms per genes are shown in

Figure 3.10.
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Single and paired-end reads were randomly generated by sampling fragments from the

known isoforms. Each isoform was assigned a true frequency based on the abundance re-

ported for the corresponding gene in the first human tissue of the GNFAtlas2 table, and a

probability distribution over the isoforms inside a gene cluster. Thus, the true frequency of

isoform j is a(g)p(j), where a(g) is the abundance of the gene g for which j is an isoform and

p(j) is the probability of isoform j among all the isoforms of g. We simulated datasets with

uniform, respectively truncated geometric distribution with ratio r = 1/2 for the isoforms

of each gene. For a gene with k isoforms p(j) = 1/k, j = 1, . . . , k, under the uniform distri-

bution. Under the truncated geometric distribution, the respective isoform probabilities are

p(j) = 1/2j for j = 1, . . . , k − 1 and p(k) = 1/2k−1. Fragment lengths were simulated from

a normal probability distribution with mean 250 and standard deviation 25.

We compared IsoEM to several existing algorithms for solving the IE and GE problems.

For IE we included in the comparison the isoform analogs of the Uniq and Rescue methods

used for GE [7], an improved version of Uniq (UniqLN) that estimates isoform frequencies

from unique read counts but normalizes them using adjusted isoform lengths that exclude

ambiguous positions, the Cufflinks algorithm of [3] (version 0.8.2), and the RSEM algorithm

of [43] (version 0.6). For the GE problem, the comparison included the Uniq and Rescue

methods, our implementation of the GeneEM algorithm described in [23], and estimates

obtained by summing isoform expression levels inferred by Cufflinks, RSEM, and IsoEM.

All methods use alignments obtained by mapping reads onto the library of isoforms with

Bowtie [48] and then converting them to genome coordinates, except for Cufflinks which uses

alignments obtained by directly mapping the reads onto the genome with TopHat [30], as

suggested in [3].

Frequency estimation accuracy was assessed using the coefficient of determination, r2,

along with the error fraction (EF) and median percent error (MPE) measures used in [43].

However, accuracy was computed against true frequencies, not against estimates derived

from true counts as in [43]. If f̂i is the frequency estimate for an isoform with true frequency

fi, the relative error is defined as |f̂i− fi|/fi if fi 6= 0, 0 if f̂i = fi = 0, and ∞ if f̂i > fi = 0.
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Table 2.1 r2 for isoform and gene expression levels inferred from 30M reads of length 25 from
reads simulated assuming uniform, respectively geometric expression of gene isoforms.

Isoform Expression Gene Expression
Algorithm Uniform Geometric Algorithm Uniform Geometric

Uniq 0.466 0.447 Uniq 0.579 0.586
Rescue 0.693 0.675 Rescue 0.724 0.724
UniqLN 0.856 0.838 GeneEM 0.636 0.637
Cufflinks 0.661 0.618 Cufflinks 0.778 0.757
RSEM 0.919 0.911 RSEM 0.939 0.934
IsoEM 0.980 0.971 IsoEM 0.991 0.981

The error fraction with threshold τ , denoted EFτ is defined as the percentage of isoforms

with relative error greater or equal to τ . The median percent error, denoted MPE, is defined

as the threshold τ for which EFτ = 50%.

Since not all compared methods could handle paired reads or strand information we fo-

cused our comparisons on single read data. Table 1 gives r2 values for isoform, respectively

gene expression levels inferred from 30M reads of length 25, simulated assuming both uni-

form and geometric isoform expression. IsoEM significantly outperforms the other methods,

achieving an r2 values of over .96 for all datasets. For all methods the accuracy difference be-

tween datasets generated assuming uniform and geometric distribution of isoform expression

levels is small, with the latter one typically having a slightly worse accuracy. Thus, in the

interest of space we present remaining results only for datasets generated using geometric

isoform expression.

For a more detailed view of the relative performance of compared IE and GE algorithms,

Figure 6 3.3 gives the error fraction at different thresholds ranging between 0 and 1. The

variety of methods included in the comparison allows us to tease out the contribution of

various algorithmic ideas to overall estimation accuracy. The importance of rigorous length

normalization is illustrated by the significant IE accuracy gain of UniqLN over Uniq – clearly

larger than that achieved by ambiguous read reallocation as implemented in the IE version

of Rescue. Proper length normalization is also explaining the accuracy gain of isoform-aware
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Figure 2.4 Error fraction at different thresholds for isoform (a) and gene (b) expression levels
inferred from 30M reads of length 25 simulated assuming geometric isoform expression.

GE methods (Cufflinks, RSEM, and IsoEM) over isoform oblivious GE methods. Similarly,

the importance of modeling insert sizes even for single read data is underscored by the

significant IE and GE accuracy gains of IsoEM over RSEM. Indeed, the latest version of the

RSEM package, released as this article goes to print, has been updated to include modeling

of insert sizes and appears to have accuracy matching that of IsoEM.

For yet another view, Tables 2 and 3 report the MSE and EF.15 measures for isoform,

respectively gene expression levels inferred from 30M reads of length 25, computed over

groups of isoforms with various expression levels. IsoEM consistently outperforms the other
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Table 2.2 Median percent error (MPE) and 15% error fraction (EF.15) for isoform expression
levels inferred from 30M reads of length 25 simulated assuming geometric isoform expression.

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# isoforms 13,290 10,024 23,882 18,359 1,182 66 66,803

Uniq 0.0 100.0 98.4 97.1 98.5 96.6 95.4
Rescue 0.0 294.7 75.5 49.2 30.4 28.3 71.9

MPE UniqLN 0.0 100.0 80.8 30.3 26.4 24.8 36.0
Cufflinks 0.0 100.0 49.7 25.5 27.2 44.6 34.1
RSEM 0.0 100.0 31.9 13.5 11.4 13.0 21.2
IsoEM 0.0 100.0 25.3 7.3 3.2 2.2 12.0
Uniq 0.2 98.4 97.2 96.9 97.0 95.5 78.0

Rescue 48.4 95.5 86.2 73.1 61.5 56.1 76.0
EF.15 UniqLN 0.2 97.2 86.2 82.8 83.3 77.3 69.8

Cufflinks 17.6 96.4 81.3 71.0 74.7 80.3 67.9
RSEM 19.9 93.7 71.1 46.4 39.8 47.0 56.9
IsoEM 3.4 93.1 65.1 29.1 11.1 7.6 46.1

IE and GE methods at all expression levels except for isoforms with zero true frequency,

where it is dominated by the more conservative Uniq algorithm and its UniqLN variant.

2.3.2 Comparison of methods on two real RNA-Seq datasets

In addition to simulation experiments, we validated IsoEM on two real RNA-Seq

datasets. The first dataset consists of two samples with approximately 8 million 27bp Il-

lumina reads each, generated from two human cell lines (embryonic kidney and B cells) as

described in [50]. Estimation accuracy was assessed by comparison with quantitative PCR

(qPCR) expression levels determined in [1] for 47 genes with evidence of alternative isoform

expression. To facilitate comparison with these qPCR results, expression levels were deter-

mined using transcript annotations in ENSEMBL version 46. The second dataset consists

of approximately 5 million 32bp Illumina reads per sample, generated from the RM11-1a

strain of S. cerevisiae under two different nutrient conditions [2]. Expression levels were

determined using transcript annotations for the reference strain (June 2008 SGD/sacCer2)

and compared against qPCR expression levels measured for 192 genes (for a total of 394

datapoints).
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Table 2.3 Median percent error (MPE) and 15% error fraction (EF.15) for gene expression
levels inferred from 30M reads of length 25 simulated assuming geometric isoform expression.

Expression range (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# genes 120 5,610 11,907 1,632 102 19,372

Uniq 37.4 43.6 42.7 43.0 48.2 43.0
Rescue 32.8 28.7 26.0 25.1 28.8 26.7

MPE GeneEM 30.6 28.2 25.7 25.1 28.0 26.3
Cufflinks 33.0 21.1 19.0 20.2 40.2 19.7
RSEM 23.6 11.0 7.2 7.9 11.4 8.1
IsoEM 18.2 8.4 3.2 2.0 1.9 3.9
Uniq 77.5 82.4 81.7 79.7 82.4 81.7

Rescue 74.2 74.0 71.6 72.8 76.5 72.4
EF.15 GeneEM 72.5 73.8 71.5 73.0 74.5 72.3

Cufflinks 73.3 64.7 62.3 66.2 82.3 63.5
RSEM 64.2 37.3 17.4 16.3 41.2 23.5
IsoEM 57.5 28.1 6.7 6.1 4.9 13.2

Since the available implementation of RSEM could not be run on transcript sets other

than UCSC known genes, in Figures 7 2.5 and 8 2.6 we only compare Cufflinks and IsoEM

estimates against qPCR values in [1], respectively [2]. Estimation accuracy of both Cufflinks

and IsoEM is significantly lower than that observed in simulations. Likely explanations

include poor quality of the transcript libraries used to perform the inference, sequencing

library preparation biases not corrected for by the algorithms, and possible inaccuracies in

qPCR estimates. Nevertheless, the relative performance of the two algorithms is consistent

with simulation results, with IsoEM outperforming Cufflinks on both datasets.

2.3.3 Influence of sequencing parameters and scalability

Although high-throughput technologies allow users to make tradeoffs between read

length and the number of generated reads, very little has been done to determine optimal

parameters even for common applications such as RNA-Seq. The intuition that longer reads

are better certainly holds true for many applications such as de novo genome and transcrip-

tome assembly. Surprisingly, [43] found that shorter reads are better for IE when the total

number of sequenced bases (as a rough approximation for sequencing cost) is fixed. Figure

9 2.7 plots IE estimation accuracy for reads of length between 10 and 100 when the total
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Figure 2.5 Comparison of Cufflinks (a) and IsoEM (b) estimates to qPCR expression levels
reported in [1].

amount of sequence data is kept constant at 750M bases. Our results confirm the finding of

[43], although the optimal read length is somewhat sensitive to the accuracy measure used

and to the availability of pairing information. While 25bp reads minimize MPE regardless

of the availability of paired reads, the read length that maximizes r2 is 25 for paired reads

and 50 for single reads. Although further experiments are needed to determine how the

optimum length depends on the amount of sequence data and transcriptome complexity, our

simulations do suggest that for isoform and gene expression analysis, increasing the number

of reads may be more useful than increasing read length beyond 50 bases.

Figure 2.8(a) shows, for reads of length 75, the effects of paired reads and strand infor-

mation on estimation accuracy as measured by r2. Not surprisingly, for a fixed number of

reads, paired reads yield better accuracy than single reads. Also not very surprisingly, adding

strand information to paired sequencing yields no benefits to genome-wide IE accuracy (al-

though it may be helpful, e.g., in identification of novel transcripts). Quite surprisingly,

performing strand-specific single read sequencing is actually detrimental to IsoEM IE (and

hence GE) accuracy under the simulated scenario, most likely due to the reduction in sam-

pled transcript length.
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Figure 2.6 Comparison of Cufflinks (a) and IsoEM (b) estimates to qPCR expression levels
reported in [2].
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Figure 2.8 IsoEM r2 (a) and CPU time (b) for 1-60 million single/paired reads of length 75,

with or without strand information.

In practice, many RNA-Seq data sets are generated from transcripts with poly(A) tails,

and some of the sequenced fragments will contain parts the poly(A) tails. We have added to

IsoEM the option to automatically extend annotated transcripts with a poly(A) tail, thus

allowing it to use reads coming from such fragments. Table 4 shows the accuracy of isoform

and gene expression levels inferred by IsoEM using 30M reads of length 25 simulated from
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Figure 2.7 IsoEM MPE (a) and r2 values (b) for 750Mb of simulated data generated using
single and paired-end reads of length varying between 10 and 100.

transcripts with and without poly(A) tails assuming geometric expression of gene isoforms.

The accuracy of IsoEM is practically the same under the two simulation scenarios for paired

read data, and decreases only slightly for single reads simulated taking poly(A) tails into

account, likely due to the fact that reads overlapping poly(A) tails are more ambiguous.

As shown in Figure 2.8(b), the runtime of IsoEM scales roughly linearly with the number

of fragments, and is practically insensitive to the type of sequencing data (single or paired

reads, directional or non-directional). IsoEM was tested on a Dell PowerEdge R900 server

with 4 Six Core E7450Xeon Processors at 2.4Ghz (64 bits) and 128Gb of internal memory.

None of the datasets required more than 16GB of memory to complete. It is also true

that increasing the available memory significantly decreases runtime by keeping the garbage

collection overhead to a minimum. The runtimes in Figure 2.8 were obtained by allowing

IsoEM to use up to 32GB of memory, in which case none of the datasets took more than 3

minutes to solve.

2.4 Conclusions

We have introduced an expectation-maximization algorithm for isoform frequency esti-

mation assuming a known set of isoforms. Our algorithm, called IsoEM, explicitly models in-
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sert size distribution, base quality scores, strand and read pairing information. Experiments

on both real and synthetic RNA-Seq datasets generated using two different assumptions on

the isoform distribution show that IsoEM consistently outperforms existing algorithms for

isoform and gene expression level estimation with respect to a variety of quality metrics.
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PART 3

TRANSCRIPTOME RECONSTRUCTION

3.1 Introduction

Massively parallel whole transcriptome sequencing, commonly referred to as RNA-Seq,

has become the technology of choice for performing gene and isoform specific expression pro-

filing. However, accurate normalization of RNA-Seq data critically requires knowledge of ex-

pressed transcript sequences [7–9, 43]. Unfortunately, as shown by recent targeted RNA-Seq

studies [15], existing transcript libraries still miss large numbers of transcripts. The sequences

of novel transcripts can be reconstructed from deep RNA-Seq data, but this is computation-

ally challenging due to sequencing errors, uneven coverage of expressed transcripts, and the

need to distinguish between highly similar transcripts produced by alternative splicing.

3.1.1 Background

RNA-Seq is quickly becoming the technology of choice for transcriptome research and

analyses [14]. RNA-Seq allows reduction of the sequencing cost and significantly increases

data throughput, but it is computationally challenging to use such RNA-Seq data for re-

constructing of full length transcripts and accurately estimate their abundances across all

cell types. The common computational problems include: gene and isoform expression level

estimation, transcriptome quantification, transcriptome discovery and reconstruction. To

solve these problems requires scalable computational tools [24]. A variety of new methods

and tools have been recently developed to tackle these problems.

3.1.2 Related Work

RNA-Seq analyses typically start by mapping sequencing reads onto the reference

genome, reference annotations, exon-exon junction libraries, or combinations thereof. In
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case of mapping reads onto the reference genome one needs to use spliced alignment tools,

such as TopHat [30] or SpliceMap [31].

Identifying of all transcripts expressed in a particular sample require the assembly of

reads into transcription units. This process is collectively called transcriptome reconstruc-

tion. A number of recent works have addressed the problem of transcriptome reconstruction

from RNA-Seq reads. These methods fall into three categories: “genome-guided”, “genome-

independent” and “annotation-guided” methods [24]. Genome-independent methods such

as Trinity [25] or transAbyss [26] directly assemble reads into transcripts. A commonly used

approach for such methods is de Brujin graph [27] utilizing ”k-mers”. The use of genome-

independent methods becomes essential when there is no trusted genome reference that can

be used to guide reconstruction. On the other end of the spectrum, annotation guided meth-

ods [28] make use of available information in existing transcript annotations to aid in the

discovery of novel transcripts. RNA-Seq reads can be mapped onto reference genome, ref-

erence annotations, exon-exon junction libraries, or combinations thereof, and the resulting

alignments are used to reconstruct transcripts.

Many transcriptome reconstruction methods fall in the genome-guided category. They

typically start by mapping sequencing reads onto the reference genome,using spliced align-

ment tools, such as TopHat [30] or SpliceMap [31]. The spliced alignments are used to identify

exons and transcripts that explain the alignments. While some methods aim to achieve the

highest sensitivity, others work to predict the smallest set of transcripts explaining the given

input reads. Furthermore, some methods aim to reconstruct the set of transcripts that would

insure the highest quantification accuracy. Scripture [4] construct a splicing graph from the

mapped reads and reconstructs isoforms corresponding to all possible paths in this graph. It

then uses paired-end information to filter out some transcripts. Although scripture achieves

very high sensitivity, it may predict a lot of incorrect isoforms. The method of Trapnell et

al. [3, 32], referred to as Cufflinks, constructs a read overlap graph and generates candidate

transcripts by finding a minimal size path cover via a reduction to maximum matching in

a weighted bipartite graph. Cufflinks and Scripture do not target the quantification accu-
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Table 3.1 Classification of transcriptome reconstruction methods

Method Support paired-end Consider fragment Require
reads lenght distribution annotation

TRIP Yes Yes No
IsoLasso Yes No No
IsoInfer No No TES/TSS
Cufflinks Yes Yes No

CLIQ No No No
Scripture Yes No No
SLIDE Yes No gene/exon boundaries

racy. IsoLasso [5] uses the LASSO [33] algorithm, and it aims to achieve a balance between

quantification accuracy and predicting the minimum number of isoforms. It formulates the

problem as a quadratic programming one, with additional constraints to ensure that all ex-

ons and junctions supported by the reads are included in the predicted isoforms. CLIIQ

[34] uses an integer linear programming solution that minimizes the number of predicted

isoforms explaining the RNA-Seq reads while minimizing the difference between estimated

and observed expression levels of exons and junctions within the predicted isoforms.

Table 3.1 includes classification of the available methods for genome-guided transcrip-

tome reconstruction based on supported parameters and underlying algorithms.

3.1.3 Our Contribution

We focus on the problem of transcriptome reconstruction from RNA-Seq data assisted

by existing genome and transcriptome annotations. To address transcriptome reconstruction

problem we developed annotation-guided and genome-guided methods.

In section 3.2 we propose a novel annotation-guided general framework for transcrip-

tome discovery, reconstruction and quantification in partially annotated genomes, referred as

Discovery and Reconstruction of Unannotated Transcripts (DRUT). DRUT framework in-

corporates an enhancement of EM algorithm,VTEM [35] [36], to detect overexpressed reads

and/or exons corresponding to the unannotated transcripts and to estimate annotated tran-

script frequencies. Our main contribution is an expectation-maximization based method for
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discovery of unannotated transcripts when partial information about genome annotation is

given. A key feature of our algorithm is its usage of the existing genome annotation in-

formation to detect reads from unannotated transcripts and accurately estimate annotated

transcripts abundances. Moreover, the algorithm applies transcriptome assembler on subset

of reads to improve the quality of the transcriptome reconstruction. The recently published

paper [28] is the only related work that we are aware of, which exploits information about

genome annotations. RABT is an annotation-guided assembler built upon Cufflinks assem-

bler [3] that determines the minimum number of transcripts needed to explain reads mapped

to the reference genome.

We also present experimental results on in silico datasets generated with various se-

quencing parameters and distribution assumptions. The results show that DRUT overper-

forms existing genome-guided transcriptome assemblers and show similar or better perfor-

mance with existing annotation-guided assemblers. Testing DRUT for transcriptome quan-

tification implies usage of VTEM [35] algorithm for partially annotated transcripts. Our

experimental studies show that DRUT significantly improves estimation of transcipts fre-

quencies in comparison to our previous method IsoEM [9] for partially annotated genomes.

In section 3.3 a novel “genome-guided” method called “Transcriptome Reconstruction

using Integer Programming” (TRIP) is proposed. The method incorporates information

about fragment length distribution of RNA-Seq paired end reads to reconstruct novel tran-

scripts. First, we infer exon boundaries from spliced genome alignments of the reads. Then,

we create a splice graph based on inferred exon boundaries. We enumerate all maximal

paths in the splice graph corresponding to putative transcripts. The problem of selecting

true transcripts is formulated as an integer program (IP) which minimizes the set of selected

transcripts subject to a good statistical fit between the fragment length distribution (empir-

ically determined during library preparation) and fragment lengths implied by mapped read

pairs.

Experimental results on both real and synthetic datasets generated with various se-

quencing parameters and distribution assumptions show that TRIP has increased transcrip-
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tome reconstruction accuracy compared to previous methods that ignore information about

fragment length distribution.

3.2 Annotation-guided Transcriptome Reconstruction Algorithms

3.2.1 Mapping RNA-Seq Reads and Exon Counts

As with many RNA-Seq analyses, the first step of DRUT is to map reads (see Fig.

3.2a). Our approach maps reads onto the library of annotated transcripts using any one of

the many available ungapped aligners (we used Bowtie [48] with default parameters in our

experiments). An alternative strategy is to map the reads onto the genome using a spliced

alignment tool such as TopHat [30], as done in [3, 4].

Based on the reads mapped to the set of annotated transcripts it is possible to calculate

observed exon counts. Exon counts are calculated based both on the spliced and unspliced

reads. For the spliced reads the contribution of the read is equal to the part of the read

mapped to particular exon.

3.2.2 VTEM : Virtual Transcript Expectation Maximization Algorithm

In this section we first formally define the panel and describe expectation - maximization

(EM) algorithm for transcriptome quantification, referred as IsoEM [9]. Then we show how

to estimate the quality of the model based on EM algorithm and introduce enhancement of

IsoEM algorithm with the virtual transcript.

IsoEM is a novel expectation-maximization algorithm for inference of alternative splic-

ing isoform frequencies from high-throughput transcriptome sequencing (RNA-Seq) data

proposed in [9]. IsoEM takes advantage of base quality scores, strand information and ex-

ploits unambiguous information provided by the distribution of insert sizes generated during

sequencing library preparation.

The input data for IsoEM consists of a panel, i.e. a bipartite graph G = (T
⋃
R), such

that each transcript is represented as a vertex t ∈ T , and each read is represented as a vertex

r ∈ R. With each vertex t ∈ T we associate unknown frequency fs of the transcript, and
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with each vertex r ∈ R we associate observed read frequency or. Then for the each pair

ti, rj, we add an edge (ti, rj) weighted by the probability of the transcript ti to emit a read

rj.

Regardless of initial conditions, EM algorithm always converges to a maximum likeli-

hood solution (see [23]). The algorithm starts with the set of N transcripts. After uniform

initialization of the frequencies ft, t ∈ T , the algorithm repeatedly performs the next two

steps until convergence:

• E-step: Compute the expected number n(j) of reads that come from the transcript i

under the assumption that transcript frequencies f(j) are correct, based on weights

hti,j ;

• M-step: For each i, set the new value of ft to the portion of reads being originating

from by transcript t among all observed reads in the sample.

We propose an enhancement of the IsoEM algorithm with the virtual transcript, referred

as Virtual Transcript Expectation Maximization (VTEM). We consider two modification

of the panel:

• bipartite graph G = (T
⋃
R), such that each transcript is represented as a vertex t ∈ T ,

and each read is represented as a vertex r ∈ R.

• bipartite graph G = (T
⋃
E), such that each transcript is represented as a vertex t ∈ T ,

and each exon is represented as a vertex e ∈ E.

This leads to two new versions of VTEM algorithm. First version, referred as read

Virtual Transcript Expectation Maximization (rVTEM) algorithm, uses the panel con-

sisting of the set of transcripts and reads with observed counts, similar to IsoEM([9]) algo-

rithm. In the second version, referred as exon Virtual Transcript Expectation Maximization

(eVTEM) algorithm, we replace the reads in the panel by the corresponding exons with the

observed counts (calculated as described in 3.2.1). Further we will refer to the reads and
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exons as segments emitted by transcripts; both read frequencies and exon counts will be

referred as segment frequencies.

In order to decide weather the panel is incomplete we need to measure how well maxi-

mum likelihood model explains the segment frequencies. We suggest to measure the model

quality by the deviation between expected and observed segment frequencies:

D =

∑
j |oj − ej|
|S|

,

where |S| is the number of segments, oj is the observed segment frequencies sj, and ej is the

expected segment frequencies sj, calculated as follows:

sj =
∑
i

hti,j∑
l hti,l

fML
i , (3.1)

where hti,j is weighted match between segment sj and transcript ti and fML
j is the maximum-

likelihood frequency of the transcript ti.
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Figure 3.1 Flowchart for VTEM.
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The main idea of the VTEM algorithm (see Algorithm 3) is to add a virtual transcript vt

to the set of known transcripts. This way virtual transcript vt emits segments that do not fit

well to annotated transcripts. The flowchart of VSEM, shown in Fig. 3.1, can be explained

as follows: initially, all segments are connected to the virtual transcript with weight hti,j =

0. The first iteration finds the maximum likelihood frequency estimations of candidates

transcripts; maximum likelihood frequency estimations of virtual transcript will be equal to

0, since all the edges between the virtual transcript and segments hvt,j = 0. Then these

estimations are used to compute the expected frequencies of the segments according to (3.3).

If the expected segment frequency is less than the observed one (i.e., ”underexpressed”),

then the lack of the segment expression is added to the weight of the edge between this

segment and the virtual transcript. For ”overexpressed” segments the excess of segment’s

expression is subtracted from the corresponding weight (but keeping it non-negative). The

iterations are continued while the virtual transcript frequency change is decreasing by more

than ε.

The frequency fi of the virtual transcript estimates the total frequency of unannotated

transcripts. Therefore, based on the frequency of the virtual transcript, we can decide if the

panel is likely to be incomplete, i.e., genome is partially annotated. Furthermore, the output

of VTEM contains both the estimated frequency of the virtual transcript and the weights of

the edges, connecting segments with the virtual transcript.

These weights can be interpreted as the probabilities of the segments to be the part of

the unannotated transcripts. In order to select segments corresponding to these transcripts,

it is enough to select fi most probable overexpressed segments (see Fig. 3.1b).

3.2.3 DRUT : Method for Discovery and Reconstruction of Unannotated Transcripts

In this section, we propose a novel annotation-guided algorithm called ”Discovery and

Reconstruction of Unannotated Transcripts”(DRUT) [36] for transcriptome discovery, re-

construction and quantification in partially annotated genomes. DRUT incorporates VTEM

algorithm to detect overexpressed segments corresponding to the unannotated transcripts
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and to estimate transcriptome frequencies. In case rVTEM algorithm is used, segments

represent reads corresponding to unannotated transcripts. eVTEM algorithm requires one

additional step, to select reads corresponding to overexpressed exons. Henceforth we will

refer to these reads as overexpressed reads. Spliced read is selected only in the case when it

entirely belongs to the “overexpressed” exons.

In this way we add the mapped reads to a new read alignment file (e.g., sam file) that

represents a subset of original reads. This subset of reads is merged with reads that failed

to map to annotated transcripts. Only reads that failed to map to annotated transcripts are

now mapped to the reference genome using spliced alignment tools, e.g. TopHat[30] (see Fig.

3.2c). Merged subsets of reads are used as an input for transcriptome assembler. For DRUT

framework we chose Cufflinks [3] as ab initio transcriptome reconstruction tool. Assembled

transcripts are merged with annotated transcripts and the resulting set of transcripts is

filtered to remove duplicates (see Fig. 3.2d). Finally DRUT reports full set of transcripts

and maximum likelihood frequencies of transcripts that the best explain reads.

Algorithm 3 VTEM algorithm

add virtual transcript vt to the set of annotated transcripts
initialize weights hvs,j = 0
while ∆vt > ε do

calculate fML
j by EM algorithm

ej =
∑

i

hti,j∑
l hti,l

fML
i

D =
∑

j |oj−ej |
|S|

δ = oj − ej
if δ > 0 then
hvt,j+ = δ

else
hvt,j = max{0, hvt,j + δ}

end if
end while
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rVTEM: 1. Find “overexpressed” reads
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Figure 3.2 Flowchart for DRUT.
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3.2.4 Experiment Results.

Our validation of DRUT includes three experiments over human RNA-seq data, two

experiments on transcriptome quantification and one experiment on transcriptome discovery

and reconstruction. Below we describe the transcriptome data and read simulation and then

give the settings for the each experiment and analyze the obtained experimental results.

Simulated human RNA-Seq data. The human genome data (hg19, NCBI build

36) was downloaded from UCSC [51] and CCDS [52], together with the coordinates of the

transcripts in the KnownGenes table. The UCSC database contains a total of 66, 803

transcripts pertaining to 19, 372 genes, and CCDS database contains 20, 829 transcripts

from 17, 373 genes. The transcript length distribution and the number of transcripts per

genes for UCSC are shown in Fig. 3.10. Genes were defined as clusters of known transcripts

as in GNFAtlas2 table, such that CCDS data set can be identified with the subset of UCSC

data set. 30 millions single reads of length 25bp were randomly generated by sampling

fragments of transcripts from UCSC data set. Each transcript was assigned a true frequency

based on the abundance reported for the corresponding gene in the first human tissue of the

GNFAtlas2 table, and a probability distribution over the transcripts inside a gene cluster [9].

We simulate datasets with geometric (p=0.5) distributions for the transcripts in each gene.

Single error-free reads of length 25bp, 50bp, 100bp and 200bp were randomly generated

by sampling fragments of transcripts from UCSC data set. As shown in the [9] for transcrip-

tome quantification purposes it is more beneficial to have shorter reads if the throughput is

fixed. At the same time, for transcriptome reconstruction is quite beneficial to have longer

reads. Read length of 100bp is the best available option for such next generation sequenc-

ing platform as IlluminaTM[19]. Current Ion TorrentTMtechnology is capable of producing

reads of length more than 200bp. Ion TorrentTMnext generation sequencing technology uti-

lizes integrated circuits capable of detection ions produced by the template-directed DNA

polymerase synthesis for sequencing genomes [20].
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Accuracy Estimation Transcriptome Quantification Accuracy was assessed using

error fraction (EF) and median percent error (MPE) measures used in [43]. However, ac-

curacy was computed against true frequencies, not against estimates derived from the true

counts as in [43]. If f̂i is the frequency estimate for an transcript with true frequency fi, the

relative error is defined as |f̂i − fi|/fi if fi 6= 0, 0 if f̂i = fi = 0, and ∞ if f̂i > fi = 0. The

error fraction with threshold τ , denoted EFτ is defined as the percentage of transcripts with

relative error greater or equal to τ . The median percent error, denoted MPE, is defined as

the threshold τ for which EFτ = 50%.

To estimate transcriptome reconstruction accuracy all assembled transcripts (referred

to as ”candidate transcripts”) are matched against annotated transcripts. Two transcripts

match if and only if they include the same set of exons. Two single-exon transcripts match

if and only if the overlapping area is at least 50% the length of each transcript.

Following [53], we use sensitivity and Positive Predictive Value (PPV) to evaluate the

performance of different methods. Sensitivity is defined as portion of the annotated transcript

sequences being captured by candidate transcript sequences as follows:

Sensitivity =
TP

TP + FN

PPV is defined portion of annotated transcript sequences among candidate sequences

as follows:

PPV =
TP

TP + FP

Comparison on partially annotated UCSC data set. We assumed that in every

gene 25% of transcripts are not annotated. In order to create such an instance we assign

to the transcripts inside the gene a geometric distribution (p=0.5), assuming a priori that

number of transcripts inside the gene is less or equal to 3, we will refer to this experiment

as Experiment 1. This way we removed transcripts with frequency 0.25. As a result 11, 339

genes were filtered out, number of transcripts was reduced to 24, 099. Note that in our data

set unannotated transcripts do not have unique exon-exon junctions that can emit reads
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indicating that certain transcripts are not annotated.

We first check how well VTEM estimates the volume of missing transcripts. Although

the frequencies of all missing transcripts are the same (25%), the volumes significantly differ

because they have different lengths. Therefore, the quality can be measured by correlation

between actual unannotated volumes and predicted missing volumes, which represent vol-

umes of virtual transcripts. In this experiment the quality is 61% which is sufficiently high

to give an idea which genes have unannotated transcripts in the database.
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Figure 3.3 Error fraction at different thresholds for isoform expression levels inferred from
30 millions reads of length 25bp simulated assuming geometric isoform expression. Black line
corresponds to IsoEM/VTEM with the complete panel, red line is IsoEM with the incomplete
panel, blue line is rVTEM and the green line is eVTEM.
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Table 3.2 reports the median percent error (MPE) and .15 error fraction EF.15 for the

isoform expression levels inferred from 30 millions reads of length 25bp, computed over

groups of isoforms with various expression levels.

Figure 3.3 gives the error fraction at different thresholds ranging between 0 and 1.

Clearly the best performance is achieved when the genome is completely annotated, in which

case IsoEM and VTEM (rVTEM and eVTEM) show similar results. This happens due to the

fact that the frequency of virtual transcript is not increasing over iterations of VTEM. In case

of partial annotated genome using virtual transcript allows rVTEM to achieve better results

comparative to IsoEM. eVTEM has worse performance than other methods, the reason is

that it uses simplified model based on exons rather than on reads, as is done in IsoEM and

rVTEM.

Table 3.2 Median percent error (MPE) and 15% error fraction (EF.15) for isoform expression
levels in Experiment 1.

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All

MPE

Complete annota-
tions:
IsoEM, rVTEM,
eVTEM

0.0 61.7 22.0 8.0 3.2 2.1 10.3

Partial annotations:
IsoEM 0.0 59.3 41.3 24.8 19.7 5.9 33.7
rVTEM 0.0 47.2 33.1 20.7 16.4 8.5 26.9
eVTEM 0.0 60.5 45.1 25.2 22.1 9.1 35.3

EF.15

Complete annota-
tions:
IsoEM, rVTEM,
eVTEM

0.0 81.9 61.3 28.7 7.5 8.5 38.8

Partial annotations:
IsoEM 0.0 81.7 72.4 61.4 56.7 42.1 67.6
rVTEM 0.0 77.2 68.2 57.6 53.0 36.8 63.6
eVTEM 0.0 82.8 75.6 64.7 59.2 44.4 70.1

Comparison on on CCDS data set. In this experiment, referred as Experiment

2, UCSC data set represents the complete set of transcripts and CCDS data set represents

the partially annotated set of transcripts. Reads were generated from UCSC annotations,
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while only frequencies of the known transcripts from the CCDS database were estimated. In

contrast to Experiment 1, we do not control the frequency of unannotated transcripts (i.e.

transcripts from UCSC which are absent in CCDS). Therefore, one cannot expect as good

improvements as in Experiment 1.

Table 3.3 reports the median percent error (MPE) and .15 error fraction EF.15 for isoform

expression levels inferred from 30 millions reads of length 25bp, computed over groups of

isoforms with various expression levels. We do not report the number of transcripts since they

are different for UCSC and CCDS panels. Anyway, one can see a reasonable improvement

in frequency estimation of rVTEM over IsoEM.

Table 3.3 Median percent error (MPE) and 15% error fraction (EF.15) for isoform expression
levels in Experiment 2.

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All

MPE

Complete annota-
tions:
IsoEM, rVTEM,
eVTEM

0.0 100 22.7 7.3 3.5 2.5 11.8

Partial annotations:
IsoEM 0.0 100 45.5 29.4 28.5 28.7 31.8
rVTEM 0.0 100 43.2 27.1 25.7 14.3 29.6
eVTEM 0.0 100 46.3 32.2 33.2 32.1 34.6

EF.15

Complete annota-
tions:
IsoEM, rVTEM,
eVTEM

5.1 91.2 62.8 29.3 15.8 7.6 45.5

Partial annotations:
IsoEM 18.6 95.6 85.6 83.3 89.2 86.7 80.0
rVTEM 17.6 91.8 81.3 77.9 80.3 75.5 75.2
eVTEM 19.5 97.4 89.2 87.7 88.3 87.9 82.3

Comparison Between DRUT, RABT and Cufflinks. In order to simulate a

partially annotated genome we removed from every gene exactly one transcript. As a result

all 19, 372 genes become partially annotated, and number of transcripts was reduced to

47, 431. In this section, we use the sensitivity and PPV defined above to compare our

DRUT method to the most recent version of Cufflinks and RABT (version 1.3.0 of Cufflinks
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and RABT downloaded from website http://cufflinks.cbcb.umd.edu/). Due to the fact that

results on 100bp and 200bp are very similar, we decided to present comparison on reads of

length 100bp. TopHap [30] is used for Cufflinks and RABT to map simulated reads to the

reference genome. For DRUT we used Bowtie [48] to map reads to the set of annotated

transcripts. For our simulation setup we assume perfect mapping of simulated reads to the

genome in case of Cufflinks and to the annotated transcripts in case of DRUT.

Intuitively, it seems more difficult to predict the transcripts in genes with more tran-

scripts. Following [54] we group all the genes by their number of transcripts and calculate the

sensitivity and PPV of the methods on genes with certain number of transcripts as shown

in Fig. 3.14.

Next we want to define the portion of known transcripts that is input for annotation-

guided methods as “existing annotations”. Please note that sensitivity of annotation-guided

methods needs to be compared to the “existing annotations” ratio unlike regular reconstruc-

tion methods that do not have any a priori information about annotated transcripts. In our

simulation setup “existing annotations” ratio increases as the number of transcripts in genes

become larger.

Fig. 3.14(a) shows that for genes with more transcripts it is more difficult to correctly

reconstruct all the transcripts. As a result Cufflinks performs better on genes with few tran-

scripts since annotations are not used in it standard settings. DRUT has higher sensitivity

on genes with 2 and 3 transcripts, but RABT is better on gene with 4 transcripts. For genes

with more than 4 transcripts performance of annotation-guided methods is equal to ”exist-

ing annotations ratio”, which means these methods are unable to reconstruct unannotated

transcripts.

We compared PPV for all 3 methods (Fig. 3.14(b)), all methods show high PPV

for genes with 2 transcripts. DRUT outperforms all methods on genes with more then

3 transcripts and shows comparable performance on gene with 2 and 3 transcripts.
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Figure 3.4 Comparison between DRUT, RABT, Cufflinks for groups of genes with n tran-

scripts (n=1,...,9) : (a) Sensitivity (b) Positive Predictive Value (PPV)
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3.3 Genome-guided Transcriptome Reconstruction Algorithms

3.3.1 Read Mapping

As with many RNA-Seq analyses, the first step of TRIP is to map the reads. We map

reads onto the genome reference using any of the available splice alignment tools (we use

TopHat [30] with default parameters in our experiments). Note that a paired read consists of

two reads flanking a fragment whose length usually follows normal distribution. The mean

and variance of fragment length distribution are usually known in advance or can be inferred

from read alignments.

3.3.2 TRIP : Transcriptome Reconstruction using Integer Programming

TRIP is a novel “genome-guided” method that incorporates fragment length distribu-

tion into novel transcript reconstruction from paired-end RNA-Seq reads. The method starts

from a set of maximal paths corresponding to putative transcripts and selects the subset of

candidate transcript with the highest support from the RNA-Seq reads. We formulate this

problem as an integer program. The objective is to select the smallest set of putative tran-

scripts that yields a good statistical fit between the fragment length distribution empirically

determined during library preparation and fragment lengths implied by mapping read pairs

to selected transcripts.

Construction of Splice Graph and Enumeration of Putative Transcripts.

Typically, alternative variants occurs due alternative transcriptional events and alterna-

tive splicing events [55] . Transcriptional events include: alternative first exon, alternative

last exon. Splicing events include: exon skipping, intron retention, alternative 5’ splice

site(A5SS), and alternative 3’ splice site (A3SS). Transcriptional events may consist only of

non-overlapping exons. If exons partially overlap and both serve as a first or last exons we

will refer to such event as A5SS or A3SS respectively.

To represent such alternative variants we suggest to process the gene as a set of so
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called “pseudo-exons” based on alternative variants obtained from aligned RNA-seq reads.

A pseudo-exon is a region of a gene between consecutive transcriptional or splicing events,

i.e. starting or ending of an exon, as shown in Figure 3.5. Hence every gene has a set

of non-overlapping pseudo-exons, from which it is possible to reconstruct a set of putative

transcripts.

e1 e
3

e
5

e2 e
4

e
6

Spse1
Epse1
Spse2

Epse2
Spse3

Epse3
Spse4

Epse4
Spse5

Epse5 Spse6
Epse6
Spse7

Epse7

Pseudo-

exons:

e1 e
5

pse1 pse2 pse3 pse4 pse5 pse6 pse7

Tr1:

Tr2:

Tr3:

Figure 3.5 Pseudo-exons(white boxes) : regions of a gene between consecutive transcriptional

or splicing events. An example of three transcripts Tri, i = 1, 2, 3 each sharing exons(blue

boxes). Spsej and Epsej represent the starting and ending position of pseudo-exon j, respec-

tively.

The notations used in Figure 3.5 represents the following:

ei : exon i ;

psej : pseudo-exon j ;

Spsej : start position of pseudo-exon j, 1 ≤ j ≤ 2n ;

Epsej : end position of pseudo-exon j, 1 ≤ j ≤ 2n ;

Tri : transcript i ;

A splice graph is a directed acyclic graph (see Fig. 3.6), whose vertices represent pseudo-

exons and edges represent pairs of pseudo-exons immediately following one another in at least

one transcript (which is witnessed by at least one (spliced) read). We enumerate all maximal

paths in the splice graph using a depth-first-search algorithm. These paths correspond to

putative transcripts and are the input for the TRIP algorithm. A gene with n pseudo-

exons may have 2n − 1 possible candidate transcripts, each composed of a subset of the n
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pseudo-exons.

Next we will introduces an integer program producing minimal number of transcripts

sufficiently well covering observed paired reads.

pse5pse1 pse2 pse3 pse4 pse6 pse7

Genome

Single

reads

1 2 43 5 6 7

Figure 3.6 Splice graph. The red horizontal lines represent single reads. Reads interrupted by

dashed lines are spliced reads. Each vertex of the splice graph corresponds to a pseudo-exon

and each directed edge corresponds to a (splice) junction between two pseudo-exons.

Integer Program Formulation. The following notations are used in the Integer

Program (IP ) formulation :
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N Total number of reads ;

Jl l-th splice junction;

pj paired-end read, 1 ≤ j ≤ N ;

tk k-th candidate transcript , 1 ≤ k ≤ K;

si Expected portion of reads mapped within i standard deviations

(s1 ≈ 68%, s2 ≈ 95%, s3 ≈ 99.7%);

ε allowed deviation from the rule (ε = 0.05)

Ti(pj) Set of candidate transcripts where p can be mapped with a fragment

length between i− 1 and i standard deviations, 1 ≤ i ≤ 3;

T4(pj) Set of candidates transcripts where pj can be mapped with a frag-

ment length within more than 3 standard deviations;

For a given instance of the transcriptome reconstruction problem, we formulate the

integer program.

∑
tk∈T

y(t)→ min

Subject to
(1)

∑
tk∈Ti(p)

y(t) ≥ xi(p),∀p, i = 1, 4

(2) N(si − ε) ≤
∑

j xi(pj) ≤ N(si + ε), i = 1, 4

(3)
∑

i xi(p) ≤ 1,∀p

(4)
∑
tk∈Jl

y(t) ≥ 1,∀Jl

where the boolean variables are:

y(tk) = 1 if candidate transcript tk is selected, and 0 otherwise;

xi(pj) = 1 if the read pj is mapped between i− 1 and i standard deviations,

and 0 otherwise;

The IP objective is to minimize the number of candidate transcripts subject to the

constraints (1) through (4).
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Constraint (1) implies that for each paired-end read p ∈ n(si), at least one transcript

t ∈ Ti(pj) is selected. Constraint (2) restricts the number of paired-end reads mapped within

every category of standard deviation. Constraint (3) ensures that each paired-end read pj

is mapped no more than with one category of standard deviation. Finally, constraint (4)

requires that every splice junction to be present in the set of selected transcripts at least

once.

3.3.3 MLIP : Maximum Likelihood Integer Programming

Here we present a genome guided method for transcriptome reconstruction from single-

end RNA-Seq reads. Our method aims is to predict the minimum number of transcripts

explaining the set of input reads with the highest quantification accuracy. This is achieved

by coupling a integer programming formulation with an expectation maximization model for

isoform expression estimation.

Recent advances in Next Generation Sequencing (NGS) technologies made it possible to

produce longer single-end reads with the length comparable to length of fragment for paired-

end technology[20] . Therefore the primary goal of our study is to developed a method for

longer single-end reads.

The maximum likelihood integer programming (MLIP) method starts from a set of

putative transcripts and selects the subset of this transcripts with the highest support from

the RNA-Seq reads. We formulate this problem as an integer program. The objective is to

select the smallest set of putative transcripts that sufficiently explain the RNA-Seq data.

Further, maximum likelihood estimator is applied to all possible combinations of putative

transcripts of minimum size determined by integer program. Our method offers different level

of stringency from low to high. Low stringency gives priority to sensitivity of reconstruction

over precision of reconstruction, high stringency gives priority to precision over sensitivity.

The default parameter of the MLIP method is medium stringency that achieves balance

between sensitivity and precision of reconstruction
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Model description. We use a splice graph (SG) to represent alternatively spliced

isoforms for every gene in a sample. A SG is a directed acyclic graph where each vertex in

the graph represents a segment of a gene. Two segments are connected by an edge if they are

adjacent in at least one transcript. To partition a gene into a set of non-overlapping segments,

information about alternative variants is used. Typically, alternative variants occurs due

alternative transcriptional events and alternative splicing events [55] . Transcriptional events

include: alternative first exon, alternative last exon. Splicing events include: exon skipping,

intron retention, alternative 5’ splice site (A5SS), and alternative 3’ splice site (A3SS).

Transcriptional events may consist only of non-overlapping exons. If exons partially overlap

and they serve as a first or last exons we will refer to such event as A5SS or A3SS respectively.

Figure 3.7-A shows an example of a gene with 4 different exons, and 3 transcripts pro-

duced by alternative splicing. To represent such alternative variants we suggest to process

the gene as a set of so called “pseudo-exons” based on alternative variants obtained from

aligned RNA-seq reads. A pseudo-exon is a region of a gene between consecutive transcrip-

tional or splicing events, i.e. starting or ending of an exon, as shown in figure 3.7-B. Hence

every gene has a set of non-overlapping pseudo-exons, from which it is possible to reconstruct

a set of putative transcripts.

SG is a directed acyclic graph (see figure 3.7-B), whose vertices represent pseudo-exons

and edges represent pairs of pseudo-exons immediately following one another in at least one

transcript (which is witnessed by at least one spliced read, as depicted in figure 3.7-B with

red lines).

First we infer exon-exon junction from mapped reads, this information is used to build

the SG. Then we enumerate all maximal paths in the SG using a depth-first-search al-

gorithm. These paths correspond to putative transcripts and are the input for the MLIP

algorithm. A gene with n pseudo-exons may have up to 2n−1 possible candidate transcripts,

each composed of a subset of the n pseudo-exons. Actual number of candidate transcripts

departments on number of exons, this way splitting exons into pseudo-exons has no effect

on number of candidate transcripts.
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Figure 3.7 Model Description. A - Pseudo-exons. Pseudo-exons(green boxes) : regions of

a gene between consecutive transcriptional or splicing events; B - Splice graph. The red

horizontal lines represent single-end reads. Reads interrupted by dashed lines are spliced

reads. Each vertex of the splice graph corresponds to a pseudo-exon and each directed edge

corresponds to a (spliced) junction between two pseudo-exons; C - Candidate Transcripts.

Candidate transcripts corresponds to maximal paths in the splice graph, which are enumer-

ated using a depth-first-search algorithm.

Information about poly-A site (PAS) can be integrated in the SG which improves

accuracy of candidate transcript set. The PAS represents transcription end site of the

transcript. Theoretically, any vertex in the splicing graph can serve as PAS, which will lead

to increased number of false candidates transcripts. For this reason we computationally infer
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PAS from the data. Alternatively, one can use existing annotation for PAS or specialized

protocols such as the PolyA-Seq protocol [56].

Maximum Likelihood Integer Programming Solution. Here we introduce 2-

step approach for novel transcript reconstruction from single-end RNA-Seq reads. First,

we introduce the integer program (IP ) formulation, which has an objective to minimize

number of transcripts sufficiently well covering observed reads. Since such formulation can

lead to many identical optimal solutions we will use the additional step to select maximum

likelihood solution based on deviation between observed and expected read frequencies. As

with many RNA-Seq analyses, the preliminary step of our approach is to map the reads. We

map reads onto the genome reference using any of the available splice alignment tools (we

use TopHat[30] with default parameters in our experiments).

1st step : Integer Program Formulation:

We will use the following notations in our IP formulation:

N total number of candidate ;

R total number of reads ;

Jl l-th spliced junction;

Pl l-th poly-A site(PAS);

r single-read, 1 ≤ j ≤ R ;

t candidate transcript , 1 ≤ k ≤ K;

T set of candidate transcripts

T (r) set of candidate transcripts where read r can be mapped

For a given instance of the transcriptome reconstruction problem, we formulate the IP .

The boolean variables used in IP formulation are:
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x(r → t) 1 iff read r is mapped into transcript t and 0 otherwise;

y(t) 1 if candidate transcript t is selected, and 0 otherwise;

x(r) 1 if the read r is mapped , and 0 otherwise;

The IP objective is to minimize the number of candidate transcripts subject to the

constraints (1)-(5): ∑
t∈T

y(t)→ min

Subject to:

(1) For any r, at least one transcript t is selected: y(t) ≥ x(r → t),∀r,∀t

(2) Read r can be mapped only to one transcript:
∑

t∈T (r)
x(r → t) = x(r),∀r

(3) Selected transcripts cover almost all reads:
∑
r∈R

x(r) ≥ N(1− ε)

(4) Each junction is covered by at least one selected transcript:
∑
t∈Jl

y(tk) ≥ 1,∀Jl

(5) Each PAS is covered by at least one selected transcript:
∑
tk∈Pl

y(tk) ≥ 1,∀Pl

We use CPLEX [57] to solve the IP , the rest of implementation is done using Boost

C++ Libraries and bash scripting language.

2nd step : Maximum Likelihood Solution:

In the second step we enumerate all possible subsets of candidate transcripts of size N ,

where N is determined by solving transcriptome reconstruction IP , that satisfy the following

condition: every spliced junction and PAS to be present in the subset of transcripts at least

once. Further, for every such subset we estimate the most likely transcript frequencies and

corresponding expected read frequencies. The algorithm chooses subset with the smallest

deviation between observed and expected read frequencies.
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The model is represented by bipartite graph G = {T
⋃
R,E} in which each transcript

is represented as a vertex t ∈ T , and each read is represented as a vertex r ∈ R. With each

vertex t ∈ T , we associate frequency f of the transcript. And with each vertex r ∈ R, we

associate observed read frequency or. Then for each pair t, r, we add an edge (t, r) weighted

by probability of transcript t to emit read r.

Given the model we will estimate maximum likelihood frequencies of the transcripts

using our previous approach, refer as IsoEM [9]. Regardless of initial conditions IsoEM algo-

rithm always converge to maximum likelihood solution (see [23]).The algorithm starts with

the set of T transcripts. After uniform initialization of frequencies ft, t ∈ T , the algorithm

repeatedly performs the next two steps until convergence:

• E-step: Compute the expected number n(tk) of reads that come from transcript tk

under the assumption that transcript frequencies f(t) are correct, based on weights

htk,rj

• M-step: For each tk, set the new value of ft to the portion of reads being originated

by transcript t among all observed reads in the sample

We suggest to measure the model quality, i.e. how well the model explains the reads,

by the deviation between expected and observed read frequencies as follows:

D =

∑
j |oj − ej|
|R|

, (3.2)

where |R| is number of reads, oj is the observed read frequency of the read rj and ej is the

expected read frequencies of the read rj calculated as follows:

ej =
∑
rj

htk,rj∑
rj
htk,rj

fML
t (3.3)

where htk,rj is weighted match based on mapping of read rj to the transcript tk and fML
t is

the maximum-likelihood frequency of the transcript tk.
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The flowchart of MLIP is depicted in figure 3.8.
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Figure 3.8 Flowchart for MLIP. Input : Splice graph. Output: subset of candidate tran-

scripts with the smallest deviation between observed and expected read frequencies.

Figure 3.9 illustrates how MLIP works on a given synthetic gene with 3 transcripts and

7 different exons (see figure 3.9-A). First we use mapped reads to construct the splice graph

from which we generate T possible candidate transcripts, as shown in figure 3.9-B. Further

we run our IP approach to obtain N minimum number of transcripts that explain all reads.

We enumerate N feasible subsets of candidate transcripts.The subsets which doesn’t cover

all junctions will be excluded from consideration. The subset with the smallest deviation

between expected and observed read frequencies is selected by the MLIP algorithm.
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Figure 3.9 A. Synthetic gene with 3 transcripts and 7 different exons. B. Mapped reads are

used to construct the splice graph from which we generate T possible candidate transcripts.

C. MLIP. Run IP approach to obtain N minimum number of transcripts that explain all

reads. We enumerate N feasible subsets of candidate transcripts.The subsets which doesn’t

cover all junctions and MLIP will be excluded from consideration. The subset with the

smallest deviation between expected and observed read frequencies is selected by the MLIP

algorithm.

Stringency of Reconstruction. Different level of stringency corresponds to differ-

ent strategies of transcriptome reconstruction. High stringency has the goal to optimize

precision of reconstruction, with some loss in sensitivity. On the other hand, low stringency

corresponds to increase in sensitivity and some decrease in prediction. Medium stringency

strikes balance between sensitivity and precision of reconstruction. The medium stringency
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is chosen as a default setting for the proposed MLIP method.

Below, we will describe how different stringency levels are computed. For the default

medium level we will use the subset of candidate transcripts selected based on the smallest

deviation between observed and expected read frequency. For the low stringency level, our

method selects the subset of transcripts that will correspond to the union of the solution

obtained by solving the IP and the solution supported by the smallest deviation. High

stringency level will correspond to the intersection of above solutions.

3.3.4 Experimental Results

Simulation Setup. We first evaluated performance of TRIP and MLIP methods on

simulated human RNA-Seq data. The human genome sequence (hg18, NCBI build 36)

was downloaded from UCSC together with the KnownGenes transcripts annotation table.

Genes were defined as clusters of known transcripts defined by the GNFAtlas2 table.

In our simulation experiment, we simulate reads together with splice read alignment

to the genome, splice read alignment is provided for all methods. We varied the length

of single-end and paired-end reads, which were randomly generated per gene by sampling

fragments from known transcripts maintaining 100x coverage per transcript. In order to

compare different next generation sequencing (NGS) platforms, including the most recent

one able to produce longer reads, all the methods were run on datasets with various read

length, i.e. 50bp, 100bp, 200bp, and 400bp. Expression levels of transcripts inside gene

cluster follows uniform and geometric distribution. To address library preparation process

for RNA-Seq experiment we simulate fragment lengths from a normal probability distribution

with different mean and 10% standard deviation.
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Figure 3.10 Distribution of transcript lengths (a) and gene cluster sizes (b) in the UCSC

dataset

We also include in the comparison variants of our methods that are given the transcrip-

tion start sites (TSS) and transcription end sites (TES) to assess the benefits of comple-

menting RNA-Seq data with TSS/TES data generated by specialized protocols such as the

PolyA-Seq protocol in [56].

Matching Criteria. All reconstructed transcripts are matched against annotated

transcripts. Two transcripts match iff internal pseudo-exon boundaries coordinates (i.e., all

pseudo-exons coordinates except the beginning of the first pseudo-exon and the end of the

last pseudo-exon) are identical. Similar matching criteria is suggested in [3] and [54].

We use Sensitivity, Precision and F-Score to evaluate the performance of different

methods. Sensitivity is defined as the proportion of reconstructed sequences that match

annotated transcript sequences, i.e.,

Sens =
TP

TP + FN

Precision is defined the proportion of annotated transcript sequences among reconstructed

sequences, i.e.,

Prec =
TP

TP + FP



69

and the F-Score is defined as the harmonic mean of Sensitivity and Precision, i.e.,

F-Score = 2× Prec× Sens
Prec+ Sens

Comparison Between TRIP and Cufflinks on Paired-End RNA-Seq Reads.

In this section, we use the sensitivity, PPV, and F-score defined above to compare the TRIP

method to the most recent version of Cufflinks (version 2.0.0 downloaded from website:

http://cufflinks.cbcb.umd.edu/). We run Cufflinks with the following options: -m (the ex-

pected (mean) fragment length) and -s (the standard deviation for the distribution on frag-

ment lengths). For this study, comparison with IsoLasso [54] was omitted. Due to technical

problems, results were consistently incomparable to other methods. The integer program for

TRIP is solved by IBM ILOG CPLEX (version 12.2.0.0). We also add a method that reports

all candidate transcripts in order to illustrate the effectiveness of selection produced by the

integer program (IP) in TRIP. It is also very important how much information is used when

candidate transcripts are identified.

If annotated alternative transcription start sites (TSS) and transcription end sites (TES)

can be used (these can be computationally inferred using read statistics and motifs or gen-

erated by specialized protocols such as the PolyA-Seq protocol in [56]) then the candidate

transcript set is more accurate and the resulted method is referred as TRIP with TSS/TES.

Otherwise, when TRIP does not rely on this information, the method is referred as TRIP.

Figures 3.11(a)-3.11(c) compare the performance of 4 methods (Cufflinks, Candidate

Transcripts, TRIP with and without TSS/TES) on simulated data with respect to number

of transcripts per gene. Note that sensitivity (see Fig. 3.11(a)) for single-transcript genes

is 100% for all methods and with the growth in number of transcripts per gene, TRIP’s

sensitivity gradually improves over Cufflinks while sensitivity of Candidate Transcripts stays

almost 100%. The advantage of TRIP over Cufflinks can be explained by extra statistical

constraints in the IP that are not taken into account by Cufflinks.

Fig. 3.11(b) shows that Cufflinks has an advantage over TRIP in the portion of correctly
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predicted transcripts but overall comparison using F-score (see Fig. 3.11(c)) shows that

TRIP improves over Cufflinks. Comparison of TRIP using known fragment length in the

ILP formulation is represented by TRIP − L.

Influence of Sequencing Parameters. Although high-throughput technologies allow users

to make trade-offs between read length and the number of generated reads, very little has

been done to determine optimal parameters for fragment length. Additionally, novel Next

Generation Sequencing (NGS) technologies such as Ion Torrent may allow to learn exact

fragment length. For the case when fragment length is known, we have modified TRIP’s IP

referring to this new method as TRIP-L.

In this section we compare methods TRIP-L, TRIP and Cufflinks for the mean fragment

length 500bp and variance of either 50bp or 500bp, to check how the variance affects the pre-

diction quality. Figures 3.12(a)-3.12(c) compare sensitivity, PPV and F-score of five methods

(TRIP-L 500,500; TRIP-L 500,50; TRIP 500,50; Cufflinks 500,500; Cufflinks 500,50) on sim-

ulated data. The results show that as before TRIP has a better sensitivity and F-score while

TRIP-L further improves them. Also higher variation in fragment length actually improves

performance of all methods.

Results on Real RNA-Seq Data. We tested TRIP on real RNA-Seq data that we se-

quenced from a CD1 mouse retina RNA samples. We selected a specific gene that has 33

annotated transcripts in Ensembl. The gene was picked and validated experimentally due to

interest in its biological function. We plan to have experimental validation at a larger scale

in the future. The read alignments falling within the genomic locus of the selected gene were

used to construct a splicing graph; then candidate transcripts were selected using TRIP. The

dataset used consists of 46906 alignments for 22346 read pairs with read length of 68. TRIP

was able to infer 5 out of 10 transcripts that we confirmed using qPCR. For comparison, we

ran the same experiment using cufflinks, and it was able to infer 3 out of 10.



71

SENS_A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

S
e

n
si

ti
v

it
y

Number of expressed transcripts

Cufflinks

TRIP with TSS/TES

TRIP

Candidate Transcripts

(a)

PPV_TRIP SENS_TRIP

1 1

0.852256 0.856408

0.707132 0.695508

0.586638 0.557081

0.485103 0.459037

0.413364 0.400224

0.349659 0.330927

0.999367

0.60953

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

P
P

V

Number of expressed transcripts

Cufflinks

TRIP with TSS/TES

TRIP

Candidate Transcripts

(b)

ALLPATHS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

F
-S

co
re

Number of expressed transcripts

Cufflinks

TRIP with TSS/TES

TRIP

Candidate Transcripts

(c)

Figure 3.11 Comparison between methods for groups of genes with n transcripts (n=1,...,7)

on simulated dataset with mean fragment length 500, standard deviation 50 and read length

of 100x2: (a) Sensitivity (b) Positive Predictive Value (PPV) and (c) F-Score.
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Figure 3.12 Comparison between methods for groups of genes with n transcripts (n=1,...,7)

on simulated dataset with different sequencing parameters and distribution assumptions: (a)

Sensitivity (b) Positive Predictive Value (PPV) and (c) F-Score.
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Figure 3.13 Overall Sensitivity, PPV and F-Score on simulated dataset with different se-

quencing parameters and distribution assumptions.

Comparison between MLIP, IsoLasso and Cufflinks on Single-End RNA-Seq

Reads. In this section, we use sensitivity, precision, and F-score defined above to compare

the MLIP method to the other genome guided transcriptome reconstruction tools. The most

recent versions of Cufflinks (version 2.0.0) from [3] and IsoLasso (v 2.6.0) from [54] are used

for comparison. We explore the influence of read length, fragment length, and coverage on

reconstruction accuracy.

Table 3.4 reports the transcriptome reconstruction accuracy for reads of length 400bp,

simulated assuming both uniform and geometric distribution for transcript expression levels.

MLIP significantly overperforms the other methods, achieving an F-score over 79% for all

datasets. For all methods the accuracy difference between datasets generated assuming

uniform and geometric distribution of transcript expression levels is small, with the latter

one typically having a slightly worse accuracy. Thus, in the interest of space we present

remaining results for datasets generated using uniform distribution.

Intuitively, it seems more difficult to reconstruct the alternative splicing transcripts in

genes with higher number of alternative variants. There is a strong correlation between

number of alternative variants and number of annotated transcripts. Also high number of
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Table 3.4 Transcriptome reconstruction results for uniform and geometric fragment length
distribution. Sensitivity, precision and F-Score for transcriptome reconstruction from reads of
length 400bp, mean fragment length 450bp and standard deviation 45bp simulated assuming
uniform, respectively geometric expression of transcripts.

Isoform 

Distribution
Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%) Precision (%) F-Score (%)

Cufflinks 18582 12909 51.06 69.47 58.86

 !IP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

Cufflinks 17377 12449 50.21 71.64 59.04

 !IP 22931 18293 76.05 79.77 77.86

IsoLasso 20816 15308 62.83 73.54 67.76

Uniform

Geometric

alternative variants leads to high number of candidate transcripts, which make difficult the

selection process. To explore the behavior of the methods depending on number of anno-

tated transcripts we divided all genes into categories according to the number of annotated

transcripts and calculated the sensitivity, precision and F-Score of the methods for every

such category.

Figures 5(A)-5(C) compare the performance of 5 methods (Cufflinks, IsoLasso, MLIP

- medium stringency settings, MLIP − L - low stringency settings, MLIP − H - high

stringency settings) for read length 100bp and fragment length 250bp. Genes are divided

into 4 categories according to number of annotated transcripts per gene. In this experiment,

we present results for the three different stringency settings for MLIP i.e. low, medium, and

high. For the medium stringency (default settings), MLIP achieves better results in both

sensitivity and precision. As for F-score, the best results are produced by low and medium

stringency versions of MLIP, with different trade-off between sensitivity and precision.

Table 3.5 compares sensitivity, precision and F-score of Cufflinks, IsoLasso, and MLIP

for different combinations of read and fragment lengths: (50bp,250bp), (100bp,250bp),
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Table 3.5 Transcriptome reconstruction results for various read and fragment lengths. Sen-
sitivity, precision and F-score for different combinations of read and fragment lengths:
(50bp,250bp), (100bp,250bp), (100bp,500bp), (200bp,250bp), (400bp,450bp).

Cufflinks 18483 14179 67.36 76.71 71.73

 !IP 20036 15894 75.53 79.33 77.38

IsoLasso 19422 15287 70.66 78.71 74.47

Cufflinks 17981 14073 69.30 78.27 73.51

 !IP 19405 15539 76.72 80.08 78.36

IsoLasso 16864 12802 62.60 75.91 68.62

Cufflinks 18958 14757 67.19 77.84 72.12

 !IP 20481 16326 74.73 79.71 77.14

IsoLasso 17979 13428 60.29 74.69 66.72

Cufflinks 20435 15637 66.57 76.52 71.20

 !IP 21823 17265 74.89 79.11 76.95

IsoLasso 19846 13654 58.88 68.80 63.46

Cufflinks 18582 12909 51.06 69.47 58.86

 !IP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

Read 

Length

Fragment 

Length
Precision (%) F-Score (%)Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%)

400

250

250

500

250

450

50

200

100

(100bp,500bp), (200bp,250bp), (400bp,450bp). The results show that MLIP provide 5-15%

improvement in sensitivity and 1-10% improvement in precision.

In order to explore influence of coverage on precision and sensitivity of reconstruction

we simulated 2 datasets with 100X and 20X coverage. Table 3.6 shows how accuracy of

transcriptome reconstruction depends on the coverage. For all methods higher coverage

(100X vs. 20X) doesn’t provide significant improvement in precision and sensitivity.

Results on Real RNA-Seq Data. We tested MLIP on real RNA-Seq data that we se-

quenced from a CD1 mouse retina RNA samples. We selected a specific gene that has 33

annotated transcripts in Ensembl. The dataset used consists of 46906 alignments for 44692

single reads of length 68 bp. The read alignments falling within the genomic locus of the se-

lected gene were used to construct a splicing graph; then MLIP with default settings(medium
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Figure 3.14 Transcriptome reconstruction results with respect to number of transcripts
per gene. Comparison between 5 methods (Cufflinks, IsoLasso, MLIP - medium stringency
settings, MLIP − L - low stringency settings, MLIP − H - high stringency settings) for
groups of genes with n transcripts(n=1,..., ≥ 5) on simulated dataset with mean fragment
length 250bp, standard deviation 25bp and read length of 100bp.
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Table 3.6 Transcriptome reconstruction results with respect to different coverage. Sensitivity,
precision and F-Score for transcriptome reconstruction from reads of length 100bp and 400bp
simulated assuming 20X coverage, respectively 100X coverage per transcript. For read
length 100bp fragment length of 250 with 10% standard deviation was used. For read length
400bp fragment length of 450 with 10% standard deviation was used.

Coverage
Read 

Length

Fragment 

Length
Methods

Number of 

reconstructed 

transcripts

Number of 

identified 

annotated 

transcripts

Sensitivity (%) Precision (%) F!Score (%)

Cufflinks 21803 16519 66.77 75.76 70.98

MLIP 23351 18412 74.46 78.85 76.59

IsoLasso 21021 15209 60.66 72.35 65.99

Cufflinks 20958 16443 59.78 78.46 67.86

MLIP 25592 20069 75.39 78.42 76.88

IsoLasso 13241 9684 37.32 73.14 49.42

Cufflinks 17981 14073 69.30 78.27 73.51

MLIP 19405 15539 76.72 80.08 78.36

IsoLasso 16864 12802 62.60 75.91 68.62

Cufflinks 18582 12909 51.06 69.47 58.86

MLIP 23706 18698 76.69 78.87 77.77

IsoLasso 21441 15693 63.52 73.19 68.02

Figure 7

100X

100 250

400 450

20X

100 250

400 450

stringency) was used to select candidate transcripts. MLIP method was able to infer 5 out

of 10 transcripts confirmed by qPCR while cufflinks reconstructed 3 out of 10 and IsoLasso

1 out of 10 transcripts.

3.4 Conclusion

Here we have proposed two versions of DRUT, a novel annotation-guided method for

transcriptome discovery, reconstruction and quantification in partially annotated genomes.

Experiments on in silico RNA-Seq datasets confirm that DRUT overperforms existing

genome-guided transcriptome assemblers and show similar or better performance with ex-

isting annotation-guided assemblers. We also tested DRUT as stand-alone method for tran-

scriptome quantification in partially annotated data sets. Our experimental studies show

that DRUT significantly improves the quality of the transcriptome quantification compara-
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tive to our previous approach IsoEM.

To address transcriptome reconstruction problem assisted by genome annotation we

introduced novel genome-guided method for paired-end RNA-Seq read. Our method crit-

ically exploits the distribution of fragment lengths, and can take advantage of additional

experimental data such as TSS/TES and individual fragment lengths estimated, e.g., from

ION Torrent [58] flowgram data. Preliminary experimental results on both real and syn-

thetic datasets generated with various sequencing parameters and distribution assumptions

show that our IP approach is scalable and has increased transcriptome reconstruction accu-

racy compared to previous methods that ignore information about fragment length distribu-

tion. Also we introduce MLIP method for genome-guided transcriptome reconstruction from

single-end RNA-Seq reads. Our method has the advantage of offering different levels of strin-

gency that would gear the results towards higher precision or higher sensitivity, according to

the user preference. Experimental results on both real and synthetic datasets generated with

various sequencing parameters and distribution assumptions show that both genome-guided

methods are scalable and has increased transcriptome reconstruction accuracy compared to

previous approaches.
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PART 4

DISCUSSION AND FUTURE WORK

In ongoing work we are exploring possibility of integrating transcriptome quantifica-

tion and transcriptome reconstruction that will possibly lead to quantification based recon-

struction method. Currently, Next Generation Sequencing technologies allow to run library

preparation step multiple times varying the fragment length distribution for every step. Ad-

ditionally, it is possible to perform read barcoding for every library preparation step, which

will produce reads with different fragment lengths. To take adventure of this technology

we plan to develop the method able to handle reads from multiple libraries. We expect to

improve reconstruction accuracy by integrating different fragment length distributions into

transcriptome reconstruction algorithm. Also we are planning to release software tool for

transcriptome quantification and reconstruction that will include all our methods.
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