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ASSEMBLY, QUANTIFICATION, AND DOWNSTREAM ANALYSIS OF HIGH

THROUGHPUT SEQUENCING DATA

by

IGOR MANDRIC

Under the Direction of Alexander Zelikovsky, PhD

ABSTRACT

Next Generation Sequencing is a set of relatively recent but already well-established

technologies with a wide range of applications in life sciences. Despite the fact that they

are constantly being improved, multiple challenging problems still exist in the analysis of

high throughput sequencing data. In particular, genome assembly still suffers from inability

of technologies to overcome issues related to such structural properties of genomes as single

nucleotide polymorphisms and repeats, not even mentioning the drawbacks of technologies



themselves like sequencing errors which also hinder the reconstruction of the true reference

genomes. Other types of issues arise in transcriptome quantification and differential gene

expression analysis. Processing millions of reads requires sophisticated algorithms which

are able to compute gene expression with high precision and in reasonable amount of time.

Following downstream analysis, the utmost computational task is to infer the activity of

biological pathways (e.g., metabolic). With many overlapping pathways challenge is to infer

the role of each gene in activity of a given pathway. Assignment products of a gene to

a wrong pathway may result in misleading differential activity analysis, and thus, wrong

scientific conclusions. In this dissertation I present several algorithmic solutions to some of

the enumerated problems above. In particular, I designed scaffolding algorithm for genome

assembly and created new tools for differential gene and biological pathways expression

analysis.

INDEX WORDS: Algorithm, Assembly, Genome scaffolding, Scaffolding evaluation, Read
overlap graph, Integer linear programming, Expectation maximization,
Maximum likelihood, RNA-Seq, Metabolic pathways



ASSEMBLY, QUANTIFICATION, AND DOWNSTREAM ANALYSIS FOR HIGH

THROUGHPUT SEQUENCING DATA

by

IGOR MANDRIC

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2018



Copyright by
Igor Mandric

2018



ASSEMBLY, QUANTIFICATION, AND DOWNSTREAM ANALYSIS FOR HIGH

THROUGHPUT SEQUENCING DATA

by

IGOR MANDRIC

Committee Chair: Alexander Zelikovsky

Committee: Robert Harrison

Pavel Skums

Ion Măndoiu
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Figure 5.4 Diversity of adaptive immune repertoire across multiple human tissues. Heatmaps

depicting the T and B cell repertoires of 8,555 samples across 544 individuals from

53 body sites obtained from Genotype-Tissue Expression study (GTEx v6). We

group the tissues by their relationship to the immune system. The first group

includes the lymphoid tissues (n=2, orange colors). The second group includes

the tissues associated with the blood (n=4, red color ). The Third group includes

the tissues that contain mucosal membrane sites (n=21, violet color). The fourth

group are the cell lines (n=3, grey color). The fifth group are the tissues not

related to the immune system (n=24, blue color). Inside each group the tissues

are sorted based on median number of CDR3 sequences per sample of each tissue.

(a) Each column report the median number of distinct CDR3 protein sequences

of immunoglobulin (IG) or T cell receptor (TCR) chains: immunoglobulin heavy

chain (IGH), immunoglobulin kappa chain (IGK, immunoglobulin lambda chain

(IGK), T cell receptor alpha chain (TCRA), T cell receptor beta chain (TCRB), T

cell receptor delta chain (TCRD), and T cell receptor gamma chain (TCRG). (a)

Each row corresponds to a tissue, and each column corresponds to a mean number

of distinct CDR3 sequences. (b) Each row corresponds to a tissue, and each column

corresponds to a mean number of receptor-derived reads per one million RNA-Seq

reads (c) Each row corresponds to a tissue, and each column corresponds to a mean

Shannon entropy per tissue. Shannon entropy incorporates total number of CDR3

clonotypes and their relative proportions. . . . . . . . . . . . . . . . . . 97
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PART 1

INTRODUCTION

One of the most important and challenging biological tasks has been discovery and

deciphering of the human genetic code [17]. To understand the process of life, one needs

to determine the sequence of the four bases - adenine, guanine, cytosine, and thymine (A,

G, C, T) which make up the human genome. One of the earliest technologies for DNA

sequencing is so-called Sanger sequencing [78] based on specific chain-terminating inhibitors

of DNA polymerase. Its main advantage is very low error rate [92], but it is not practical

due to its high costs. Thus, The Human Genome Project (HGP), used a newer technology

of shotgun sequencing (i.e. shearing DNA into multiple random pieces and then assembling

into the genome sequence) which is considerably cheaper than the Sanger sequencing but

poses challenging computational problems requiring a lot of resources.

A new era in life sciences has begun with the advent of the Next Generation Sequencing

(NGS) technologies: 454, Illumina, SOLiD, Ion Torrent. These new technologies revolution-

ized the field of bio- and medical sciences, in particularly, bioinformatics, as they allowed

generating millions of high quality reads (single- and paired-end) with a significant drop of

cost per base pair. The new technologies posed new problems, but at the same time, they

allowed expanding the range of bioinformatics applications which can leverage the massive

data produced by them: variant calling, discovery of germline and somatic mutations, etc.

After RNA-Seq (transcriptome sequencing) technology emerged, it became a routine

task for the researchers to obtain NGS read data from mRNA. Besides the arise of new

computational problems, new very important biological applications have become possible:

gene expression analysis, immune repertoire discovery, etc. Of the utmost importance for

life sciences is the study of the biochemical processes which occur in living organisms. In

this dissertation, RNA-Seq as the main tool is used to study the abundance of biological
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pathways which represent networks of biochemical reactions.

As the Central Dogma [16] of molecular biology assumes the informational flow from

DNA to proteins, most of the bioinformatics pipelines start with analyzing NGS reads and

end up with downstream analysis like differential gene expression or estimation of biological

pathway activity. This dissertation presents multiple algorithmic contributions on all three

informational levels of the Central Dogma unified into one bioinformatics pipeline for NGS

data analysis.

1.1 Background

In this section, we provide the description of most widely spread Next Generation Se-

quencing technologies and importance of their multiple applications and also highlight the

structure of the bioinformatics pipeline which serves as the skeleton unifying the contribu-

tions of this dissertation.

1.1.1 NGS technologies

The importance of Next Generation Sequencing technologies cannot be underestimated

because they allow for rapid advances in life sciences. They are used in a very large set of

applications, the most important of which are [35]:

• Resequencing of human genome for discovery of genes and regulatory elements involved

in different diseases;

• Comparative biology studies through whole-genome sequencing of multiple species;

• Sequencing of bacterial and virus species for public health and epidemiological studies;

• Gene expression studies through RNA-Seq technologies etc.

There are different NGS platforms which have their own strategies to generate reads

and therefore have different read lengths and throughput: Roche, LifeTechnologies, Illumina,

Pacific Biosciences, Helicos. In the Table 1.1 the main characteristics are provided [13].
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Table 1.1 NGS technologies and their characteristics [13].

Sequencing Platform
Sequence

by
Run
types

Run
time

Read
length

Reads per
run

Output per
run

Roche
GS FLX
Titanum XL+

Synthesis Single end 23h 700 1 M 700 Mb

GS Junior
System

Synthesis Single end 10 h 400 0.1 M 40 Mb

Life-
Technologies

Ion Torrent Synthesis Single end 4h 200-400 4 M 1.5-2 Gb
Proton Synthesis Single end 4h 125 60-80 M 8-10 Gb

Abi/solid Ligation
Single end &
paired-end

10d 75 + 35 2.7 B 300 Gb

Illumina
HiSeq Synthesis

Single end &
paired-end

12d 2 x 100 3 B 600 Gb

MiSeq Synthesis
Single end &
paired-end

65h 2 x 300 25 M 15 Gb

PacBio RSII
Single molecule
synthesis

Single end 2d 10 K 0.8 M 5 Gb

Helicos Heliscope
Single molecule
synthesis

Single end 10d 30 500 M 15 Gb

To analyze the massive datasets produced by NGS platforms researchers have to design

specialized pipelines for processing raw reads and getting particular bioinformatics results. In

this dissertation, the main focus is on the pipeline which leads from NGS reads to biological

pathways.

1.1.2 Bioinformatics Pipeline for NGS Data Analysis

The bioinformatics pipeline which is the main topic of this dissertation is presented

in Figure 1.1. It consists of 6 stages: 1) Sample preparation; 2) Sequencing; 3) Assembly;

4) Post-assembly; 5) Quantification; 6) Further downstream analyses (pathways, immune

repertoire profiling). The main contributions refer to the stages 3-6 and are depicted in red.

From a biological sample, NGS DNA and RNA-Seq reads are obtained (stages 1-2).

Then, the reads are passed through the assembly processing workflow (stage 3). As a result,

DNA reads are assembled into a set of contiguous DNA sequences called contigs and RNA-

Seq reads are assembled into so-called transcripts (i.e., units of transcription). In case if the

sample belongs to a model organism (or there is already a reference with a known set of

genes), this workflow is not necessary. Additionally, for a targeted RNA-Seq analysis when

the reads come from transcripts corresponding to a specific genomic region, a more specific

type of assembly may be carried out (for example, CDR3 clonotype assembly). The stages
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Pathways,
Immune repertoire

High
Throughput
Sequencing

Contig
assembly

DNA 
sample

RNA 
sample

CDR3
clonotype
assembly

ORF 
assembly

Immune
repertoire
profiling

Pathways
activity
levels

Scaffolding

Upstream Downstream

Sample
Preparation

Sequencing Assembly Post-assembly Quantification

Transcript
quantification

Clonotype
quantification

1 2 3 4 5 6

Part 2

Part 3

Part 4

Part 5

Contributions

Figure 1.1 The bioinformatics pipeline for NGS data analysis. Compartments drawn in red
correspond to the main contributions of this dissertation. Colored frames delimitate group
of compartments corresponding to different parts of this dissertation (for example, the main
focus of Part 2 is scaffolding).

1-3 described above are referred to as upstream analyses and are well studied.

Next three stages referred to as downstream analyses constitute the core of this disser-

tation. In the stage 4 (post-assembly), DNA contigs are joined into chains where each contig

is ordered and oriented. This process is referred to as scaffolding. Also, RNA sequences

corresponding to transcripts without a full open reading frame (ORF) are assembled further

to contain a full ORF coding for a protein. In the stage 5, transcripts and CDR3 clono-

types are undergone a quantification analysis. In this step, the relative abundance for each

transcript/clonotype is determined. In the utmost stage of our pipeline, stage 6, further

downstream analyses are performed (such as pathways activity levels or immune repertoire

profiling).

1.2 Problems

In this dissertation, several bioinformatics problems which arise in the context of the

main pipeline described in Section 1.1.2 are solved.
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Scaffolding Problem. Next Generation Sequencing (NGS) technologies (Illumina, Ion Tor-

rent) produce reads that are several hundreds of nucleotide base pairs long. It is challenging

to assemble genomes due to some drawbacks which are still characteristic of these tech-

nologies: uneven read coverage, sequencing errors, insufficient read length to span repeated

regions in genomes. All these issues hinder the genome assembly problem to be solvable in

polynomial time. Thus, overcoming technological issues to allow for better assemblies of dif-

ferent species is still crucial. Several attempts are being made by so-called Third Generation

Sequencing technologies (Pacific Biosciences, Oxford Nanopore Technologies) to increase the

read length up to several thousand base pairs, but currently they have a very high error rate

(≈ 15% for Pacific Biosciences) compared to NGS (Illumina MiSeq < 1%) and they are still

under active development. Therefore, there is still a high demand for developing efficient

and scalable assembly algorithms for the genome assembly problem.

Genome assembly pipeline has been traditionally divided into three main stages: as-

sembly, scaffolding, and gap filling. The output of the assembly stage is the set of contiguous

DNA sequences called contigs. Contig length depends on the assembly tool and the other

factors mentioned previously (read length, uniformity of coverage, etc). The set of contigs

and the paired-end reads serve as input to the scaffolding stage. The main goal is to join

contigs into chains called scaffolds to correctly determine the relative orientation, the rela-

tive ordering, and the distance between adjacent contigs in each scaffold. So the scaffolding

problem in general case can be formulated as follows:

Scaffolding Problem. Given C - the set of contigs and P - the set of paired-end

reads, build a set of scaffolds S maximizing the optimization criterion K.

Here K may, for example, be the number of correct contig joins. The last stage of genome

assembly is gap filling. Here the gaps remaining after the previous step are closed using the

reads.

ORF assembly. An mRNA transcript consists of several conventional parts: a 5’-cap, a

5’-UTR (untranslated region), an open reading frame (ORF), a 3’-UTR, and a poly-A tail



6

(see Figure 1.2). The ORF is the most interesting and important transcript part from the

biological perspective since it potentially codes for a protein. It begins with a start codon Met

(methionine, AUG nucleotide sequence) and ends with a stop codon (either UAA, or UAG, or

UGA). State-of-the-art RNA-Seq assemblers like Trinity [34] often output transcripts which

do not contain the full ORF and are either missing the 5’-prime, 3’-prime or both ends. The

portion of such non-complete transcripts may be considerable resulting in losing much of

the information contained in an RNA-Seq sample. The problem of ORF assembly is about

having a set of non-complete ORFs extracted from a set of transcripts to join them into as

many as possible full ORFs.

Open Reading Frame 3’ UTR5’ UTR Poly-A
tail

Cap

Start End

5’ 3’

Figure 1.2 The structure of a mRNA transcript. Open reading frame is depicted in green.

Gene and Isoform Quantification. Estimating gene and isoform expression levels is a

very important bioinformatics problem. Due to recent advances in sequencing technologies,

millions of paired-end high-quality RNA-Seq reads can be produced in a usual experiment.

The amount of data and the intrinsic properties of transcriptomes (e.g. human) make it

a very challenging task. In general, quantification methods are divided into two main cat-

egories: count-based (e.g. HTSeq [3]) and FPKM-based (e.g. IsoEM [68], RSEM [51]).

Although FPKM-based methods are deemed to usually outperform count-based methods

[43] in terms of accuracy, the ultimate goal of any RNA-Seq experiment is to estimate differ-

ential gene and/or isoform expression levels. The problem becomes even harder in absence

of enough number of replicates.

Pathway Activity Level Inference. Pathways can be represented as graphs that use

nodes to represent biochemical compounds, with enzymes associated with edges describ-

ing biochemical reactions. The expression of the genes coding for enzymes determines the
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amount of these enzymes participating in biochemical reactions. As a result, if some enzymes

are overrepresented/underrepresented the corresponding reactions occur with more/less in-

tensity, i.e. the activity level of the corresponding pathways increases/decreases. Therefore,

in this context, a problem of inference of pathway activity levels from RNA-Seq reads is

formulated. One of the main challenges of this problem is the fact that many enzymes work

in the context of several pathways, thus creating ambiguities of assignment.

CDR3 Sequence Assembly. The adaptive immune system is a very important biological

mechanism which eliminates and prevents the growth of pathogens in the host organism.

The immune response is carried out by the two main cell types - B cells and T cells. They

secrete antibodies known as immunoglobulins. The part of the antibody known to serve as a

binding site to antigenes is highly variable and is called Complementary Determining Region

3 (CDR3). The hypermutations and the genetic V(D)J recombination between the V, D,

and J genomic segments can code for a virtually unbounded number of antobody types.

Due to this fact, assembling the whole immune repertoire from a set of RNA-Seq reads

is a challenging task. The assembled CDR3 sequences are usually clustered into so-called

clonotypes. For a comprehensive immune repertoire profiling one also needs to quantify the

relative abundance of each clonotype.

1.3 Contributions

• A novel stand-alone scaffolding algorithm ScaffMatch which is based on the repre-

sentation of the scaffolding problem as the Maximum Weight Acyclic 2-Matching.

This approach allows to efficiently use the intrinsic DNA properties (such as self-

complementarity) to formulate and solve the scaffolding problem in a reasonable

amount of time even for whole genome-scale datasets. Approximate solutions of Max-

imum Weight Acyclic 2-Matching problem are found using a heuristic based on Maxi-

mum Weight Matching which is known to be solvable in polynomial time.

• Designing a novel scaffolding evaluation framework which is able to take into account
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repeated contig sequences. It allows to adequately measure the quality of scaffolding

assemblies produced by the current state-of-the-art tools as well as the tools adjusted

to handle repeats.

• Releasing a novel repeat-aware scaffolding tool called BATISCAF which performs an

optimal spurious contig filtering resulting in the scaffolding problem to be reduced to a

trivial case. Contigs which are repeated are re-inserted into scaffolding as many times

as it can be inferred from the scaffolding graph structure.

• Development of ImReP, a novel computational method for rapid and accurate profiling

of adaptive immune repertoire from RNA-Seq data. ImReP can efficiently extract

TCR- and BCR- derived reads from the RNA-Seq data and assemble corresponding B

and T cell receptor clonotypes.

• A novel tool DORFA for protein database guided ORF (open reading frame) assembly.

It takes as input the set of partial ORFs produced by an RNA-Seq assembler and builds

from them complete ORFs. The biological value of our tool is very important since it

complements the output of a de-novo RNA-Seq assembler. Finding the exhaustive set

of ORFs can be crucial for accurate protein activity level estimation or for pathway

reconstruction.

• New release of the IsoEM2/IsoDE2 suite for RNA-Seq gene and isoform expression

level estimation and differential expression analysis. The main feature of these tools is

the fast non-parametric computation of confidence intervals and identification of DE

genes based on bootstrapping.

• A novel tool EMPathways for inference of pathways activity levels from RNA-Seq data

was developed.
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1.4 Roadmap

This dissertation is organized as follows. Chapter 1 presents a highlight of the Next Gen-

eration Sequencing Technologies and gives a global overview of the algorithms and methods

in the context of the bioinformatics pipeline described in Section 1.1.2.

In the following chapters, novel and efficient algorithms related to different parts of

the pipeline are presented. In particular, Chapter 2 presents a novel scaffolding algorithm

ScaffMatch which outperforms many of the existing approaches. A conceptually new method-

ology for scaffolding quality assessment is proposed. Finally, a novel repeat-aware scaffolding

tool BATISCAF is described. The main focus here is on the first level of the Central dogma

flow. Chapter 3 proposes an assembly algorithms at the second level of the Central dogma.

Namely, DORFA is designed to assemble open reading frames (ORFs) from partial RNA-Seq

contigs. Chapter 4 mainly being at the third level of the Central dogma proposes a maxi-

mum likelihood approach for inferring pathways activity levels from RNA-Seq data. Along

with this, a differential bootstrap based statistical approach for inferring significant up- and

down-regulated pathways is presented. Chapter 5 is completely dedicated to the immune

profiling part of the pipeline. The new method for CDR3 sequence assembly and immune

profiling called ImReP is proposed.

1.5 Scientific Products

1.5.1 Publications

• Book Chapters

1. Igor Mandric, James Lindsay, Ion Măndoiu, Alex Zelikovsky “Scaffolding Algo-

rithms” Computational Methods for Next Generation Sequencing Data Analysis,

2016.

• Journal Papers
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1. Igor Mandric and Alex Zelikovsky. “Solving scaffolding problem with repeats”.

Bioinformatics (Submitted).

2. Igor Mandric, Sergey Knyazev, and Alex Zelikovsky. “Repeat aware evaluation

of scaffolding tools”. Bioinformatics (2018).

3. Pavel Skums, Alex Zelikovsky, Rahul Singh, Walker Gussler, Zoya Dimitrova,

Sergey Knyazev, Igor Mandric, Sumathi Ramachandran, David Campo, Deep-

tanshu Jha, Leonid Bunimovich, Elizabeth Costenbader, Connie Sexton, Siobhan

O’Connor, Guo-liang Xia, Yury Khudyakov. “QUENTIN: reconstruction of dis-

ease transmissions from viral quasispecies genomic data”. Bioinformatics (2017)

34 (1): 163-170.

4. Igor Mandric, Yvette Temate-Tiagueu, Tatiana Shcheglova, Sahar Al Seesi,

Alex Zelikovsky, Ion Măndoiu. “Fast bootstrapping-based estimation of con-

fidence intervals of expression levels and differential expression from RNA-Seq

data”. Bioinformatics (2017) 33 (20): 3302-3304.

5. Serghei Mangul, Igor Mandric, Harry Taegyun Yang, Nicolas Strauli, Dennis

Montoya, Jeremy Rotman, Will Van Der Wey, Jiem R Ronas, Benjamin Statz,

Alex Zelikovsky, Roberto Spreafico, Sagiv Shifman, Noah Zaitlen, Maura Rossetti,

K Mark Ansel, Eleazar Eskin. “Profiling adaptive immune repertoires across

multiple human tissues by RNA Sequencing”. bioRxiv 2017.

6. Yvette Temate-Tiagueu, Sahar Al Seesi, Meril Mathew, Igor Mandric, Alex

Rodriguez, Kayla Bean, Qiong Cheng, Olga Glebova, Ion Măndoiu, Nicole B

Lopanik, Alexander Zelikovsky. “Inferring metabolic pathway activity levels from

RNA-Seq data”. BMC Genomics 2016 17(Suppl 5):542.

7. Igor Mandric and Alex Zelikovsky. “ScaffMatch: scaffolding algorithm based

on maximum weight matching”. Bioinformatics (2015) 31 (16): 2632-2638.

• Referred Proceedings
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1. Igor Mandric, James Lindsay, Ion Măndoiu, Alex Zelikovsky. ‘SILP3: Maxi-

mum likelihood approach to scaffolding‘. IEEE 4th International Conference on

Computational Advances in Bio and Medical Sciences (ICCABS) (2014)

2. Yvette Temate-Tiagueu, Meril Mathew, Igor Mandric, Qiong Cheng, Olga Gle-

bova, Nicole Beth Lopanik, Ion Măndoiu, Alex Zelikovsky. “Metabolic path-

way activity estimation from RNA-Seq data”. 11th International Symposium on

Bioinformatics Research and Applications (ISBRA) (2015).

3. Igor Mandric, Sergey Knyazev, Cory Padilla, Frank Stewart, Ion Măndoiu, Alex

Zelikovsky. “Metabolic Analysis of Metatranscriptomic Data from Planktonic

Communities”. 13th International Symposium on Bioinformatics Research and

Applications (ISBRA) (2017).

4. Igor Mandric and Alex Zelikovsky. “ScaffMatch: scaffolding algorithm based

on maximum weight matching”. Research in Computational Molecular Biology

(RECOMB) 2015.

• Conference Abstracts

1. Igor Mandric, Yvette Temate-Tiagueu, Adrian Senatore, Paul Katz, and Alex

Zelikovsky. “DORFA: Database-guided ORFeome assembly from RNA-Seq data”.

IEEE 5th International Conference on Computational Advances in Bio and Med-

ical Sciences (ICCABS) (2015).

1.5.2 Presentations

1. Alexander Artyomenko, Igor Mandric, Pavel Skums, Yury Khudyakov, Alex

Zelikovsky. “QUASIM: SIMulating Viral QUAsispecies evolution under immune

response”. 12th International Symposium on Bioinformatics Research and Appli-

cations (ISBRA) (2016).
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2. Igor Mandric, Sergey Knyazev, and Alex Zelikovsky. “Repeat aware evaluation

of scaffolding tools”. The 7th RECOMB Satellite Workshop on Massively Parallel

Sequencing (RECOMB-Seq) (2017).
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4. Igor Mandric and Alex Zelikovsky. “BATISCAF: solving scaffolding problem
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1.5.3 Software Packages

• ScaffMatch - Scaffolding by Maximum Weight Matching. https://github.com/

mandricigor/ScaffMatch.

• IsoEM2 - Inferring Gene and Isoform Expression through Expectation-Maximization.

https://github.com/mandricigor/isoem2.

• DORFA - Database-guided ORFeome Assembly. https://github.com/mandricigor/

DORFA.

• ImReP - Profiling Immune Repertoire from RNA-Seq data. https://github.com/

mandricigor/imrep.

• EMPathways - Estimation of Pathways activity levels from RNA-Seq data. https:

//github.com/mandricigor/EMPathways.

• BATISCAF - BAd conTIg filtering SCAFfolding. https://github.com/

mandricigor/batiscaf.

• Repeat-aware evaluation framework. - https://github.com/mandricigor/

repeat-aware.

https://github.com/mandricigor/ScaffMatch
https://github.com/mandricigor/ScaffMatch
https://github.com/mandricigor/isoem2
https://github.com/mandricigor/DORFA
https://github.com/mandricigor/DORFA
https://github.com/mandricigor/imrep
https://github.com/mandricigor/imrep
https://github.com/mandricigor/EMPathways
https://github.com/mandricigor/EMPathways
https://github.com/mandricigor/batiscaf
https://github.com/mandricigor/batiscaf
https://github.com/mandricigor/repeat-aware
https://github.com/mandricigor/repeat-aware
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PART 2

ALGORITHMS FOR SCAFFOLDING AND SCAFFOLDING EVALUATION

2.1 Introduction

Due to rapid advances in High-Throughput Sequencing (HTS) technologies the interest

in the problem of de novo genome assembly has been renewed. These powerful technologies,

also referred to as Next-Generation Sequencing (NGS), can produce millions of short paired-

end reads covering whole genome; thus, the throughput is a magnitude higher than the

classic Sanger sequencing. It is worth noticing that the cost of producing reads keeps a

trend of decreasing making NGS a very attractive tool for a high range of applications. For

example, Illumina HiSeq platform is able to produce billions of read pairs in a single run at a

cost of cents per megabase. Although the number of reads (shotgun reads) is significant, due

to their short length, genome assembly still represents a challenging problem. Assembled

genomes are frequently highly fragmented and consist of contigs of highly variable length.

The connectivity information coming from read pairs mapped to contigs can be used to

merge them into a scaffold which is a set of chains of oriented ordered contigs with estimated

gaps between all pairs of adjacent elements.

Current assemblers (Velvet [101], ALLPATHS-LG [33]) output a set of contiguous DNA

chunks, usually referred to as contigs. Contig lengths can vary from hundreds to hundreds

of thousands of base pairs. The advantage of NGS read pairs is the possibility to use them

for joining contigs into some larger DNA chunks. Two reads coming from a read pair, which

are mapped to two different contigs, due to the constant insert size of the library (it can be

deemed as constant, although the mean insert size and its standard deviation are used), infer

a certain connectivity information between the contigs. Thus, such a read pair suggests a

certain relative order, relative orientation and an estimation of gap length between the two

contigs. A set of contigs joined into a chain, where relative order and orientation, as well as
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the estimation of the gap length between neighboring contigs is provided, is called scaffold.

Software programs, usually referred to as scaffolders, construct scaffolds based on contigs

output by an assembler and the connectivity information provided by the NGS read pairs.

Due to misassemblies in contigs, repeats and chimeric reads, the information about relative

ordering and orientation of two contigs connected with a set of read pairs can be contradictory

and not reliable. Thus, choosing a wrong subset of read pairs as an evidence for a connection

between two contigs, can result in inferring a wrong relative ordering and/or orientation as

well as the gap estimation between them. Edges that comply with the true orientation of

contigs and the distance between them are usually called concordant, otherwise discordant

edges.

In [30] it is proven that the Scaffolding Problem is an NP-hard problem. Thus, all state-

of-the-art scaffolders use different heuristic approaches. A recent comprehensive evaluation

of available software tools has shown that the scaffolding problem still does not have an

adequate solution [40]. This means that most of the available scaffolders are not able to

optimally (or at least close to an optimal solution) solve the scaffolding problem and there is

still a lot of room for further improvements. In this subsection, a brief overview of the most

important scaffolding tools is provided.

The most straightforward way of solving the scaffolding problem is implemented by

SSPACE [9]. SSPACE (SSAKE-based Scaffolding of Pre-Assembled Contigs after Extension)

is a stand-alone scaffolder of pre-assembled contigs. SSPACE is based on the short-read

assembler SSAKE [93]. It greedily builds scaffolds using contigs as seeds. It starts from the

largest contig and iteratively extends the scaffold based on the number of supporting read

pairs. If a contig has multiple alternatives, then the ratio between two best alternatives is

computed. If the ratio is less than 0.7 (default value), the scaffold is extended with the best

alternative, otherwise, the extension is stopped. The process is repeated until the scaffold

cannot be extended in either direction. Once the scaffold is constructed, SSPACE starts

building a new scaffold from the remaining contigs using exactly the same procedure. Thus,

the scaffolds are greedily built until no extension is possible.
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Figure 2.1 4 possibilities of connecting two contigs by a paired-end read [55].

OPERA implements an elegant dynamic programming scaffolding algorithm that solves the

Scaffolding Problem of maximizing the number of concordant edges in the scaffold. SOPRA

(Scaffolding algorithm for paired reads via statistical optimization) [18] solves the Scaffolding

Problem by using methods inspired from statistical physics. The SOPRA algorithm consists

of several stages. In the first stage, the problem of contig orientation is solved. For a pair

of contigs i and j a value Jij is introduced, which is equal to the signed number of contigs

supporting a certain relative orientation. The sign of Jij depends on the orientations of the

contigs i and j: if they have the same orientation, then the sign of Jij is positive, otherwise,

it is negative. SOPRA searches such a configuration of the contigs, that minimizes the sum

−
∑

(i,j)∈E(G)

JijSiSj,

where Si ∈ {−1,+1} stands for the contig orientation.

After the relative orientation is determined, the next stage is to solve the problem of relative

contig positioning. This is achieved by maximizing a joint probability distribution associated

with adjacent contigs. SOPRA provides a nice physical interpretation for the statistical

optimization problem it solves at this stage.
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SILP2 [55] and its improved version SILP3 [60] propose an Integer Linear Programming

(ILP) formulation based on the four possibilities of a paired read to join two contigs (See

Figure 2.1).

The flow of SILP3 (further, we will refer only to SILP3) consists of the following steps

(which are very similar to many other tools):

1. mapping reads onto contigs

2. scaffolding graph construction

3. maximum likelihood contig orientation via ILP

4. decomposition into paths of orientation compatible edges via bipartite matching

5. maximum likelihood gap estimation

The scaffolding graph G = (V,E) is constructed as to connect the vertices-contigs with

the edges-read pairs. Maximum likelihood contig orientation is formulated as the following

ILP [55]. Let Si be a boolean variable with value being set to 0 if the orientation of contig

i remains unchanged. The 4 states A, B, C, D (Figure 2.1) in which a pair (i, j) of contigs

can be based on their orientation and relative ordering. The 4 boolean variables Aij, Bij,

Cij, Dij = {0, 1} ∀(i, j) correspond to the 4 states. For each state a weight Awij, B
w
ij , C

w
ij , D

w
ij

using a maximum likelihood approach is calculated. The number of concordant contig pairs

is then maximized:

Max
∑

(i,j)∈E

Awij · Aij +Bw
ij ·Bij + Cw

ij · Cij +Dw
ij ·Dij

subject to constraints connecting Aij, Bij, Cij, Dij with Si. SILP3 applies the technique

of non-serial dynamic programming [82] in order to solve the optimization problem. The

output of this step is a directed graph G′ = (V,E ′, w, g) in which each contig and each edge

has the most likely orientation, w : E ′ → R+ is the weight of an edge contributing to the

ILP objective, and g : E ′ → R+ is the estimated gap between adjacent contigs.
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An ordering O is a graph consisting of a set of disjoint directed chains of contigs together

with estimations of gaps between all pairs of adjacent contigs. Note that in the ordering O

the estimation of gaps between adjacent contigs uniquely defines the gap gO(i, j) between any

pair of connected contigs i and j. SILP2 [55] extracts the maximum subgraph-ordering out

of G′. Instead, SILP3 is aimed to find an ordering with the maximum support of G′-edges.

A directed edge e = (i, j) ∈ E ′ is concordant with an ordering O if i precedes j in O and the

gap |g(e)−gO(i)| ≤ 5σ, where σ is the standard deviation of read pair fragment length. The

maximum likelihood ordering is approximated with the ordering concordant with the edges

of G′ of the maximum total w-weight.

SILP3 first runs depth-first search (DFS) on G′ recursively deleting least-weight edge

resulting in G′ being a directed acyclic graph (DAG). Any topological order of G′ is order-

concordant with all edges remaining in G′. Let C be the set of contigs between i and j in

G′. C is sorted based on their distance estimations to i and j, Csorted = {i1, i2, ..., ik}. All

edges in the graph are replaced with the directed path P0 = {i, i1, i2, ..., ik, j}. Then SILP3

determines the maximum weight bipartite matching similar to SILP2.

Contributions. In this chapter, a novel scaffolding algorithm called ScaffMatch [62] will

be presented in details. Its main advantage over all other existing algorithms is that it

formulates the Scaffolding Problem as a combinatorial optimization problem of finding the

maximum-weight acyclic 2-matching problem (in other words, a subset of edges of the graph

such that each vertex has degree at most 2). With a suitable reduction to the maximum

weight matching problem, the almost optimal scaffolding can be determined in polynomial

time (O(n3)). By using the greedy heuristic, ScaffMatch is able to solve the Scaffolding

Problem in linear time. As multiple experimental results show, ScaffMatch outperforms

most of the standard state-of-the-art scaffolding tools.

Another very important contribution of this dissertation is the result showing that not

only the Scaffolding Problem is in general computationally intractable, but such as well is the

problem of evaluation of scaffolding tools. It has been shown that the Scaffolding Evaluation

Problem (see Section 2.3) is NP-hard. The presence of multiple repeats in genomes can
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hinder significantly the process of evaluation of scaffolding results. A novel repeat aware

evaluation framework is presented in this chapter. Its advantage is that it is able to compare

scaffolding results making abstraction of whether repeats are handled by the scaffolding

tool or not. Also, it provides insight into scaffolding results by making a comprehensive

classification of incorrect joins. This can leverage further research in genome scaffolding.

Not of less importance is the contribution which relates to repeat aware scaffolding. In

this thesis, a novel repeat aware tool called BATISCAF is presented. BATISCAF tackles

the scaffolding problem differently than all previous tools. Namely, it is focused not on

finding paths corresponding to scaffolds (as most of the tools do) but on an optimal spurious

contig filtering. The two types of spurious contigs complicating the task of scaffolding are

(i) short (ii) repeated contigs. By eliminating them from the scaffolding graph BATISCAF

reduces the computationally hard problem to a trivial case. Afterward, the previously filtered

contigs are re-inserted back into the scaffolds by using a maximum likelihood approach. The

repeated contigs may be re-inserted multiple times (as many times as it can be inferred by

the algorithm from the scaffolding graph structure).

2.2 ScaffMatch: combinatorial optimization approach to genome scaffolding

We proposed a novel optimization formulation representing scaffolding as a maximum-

weight acyclic 2-matching problem. Since the Hamiltonian path problem can be reduced

to this problem, this formulation is also NP-complete. The presented algorithm ScaffMatch

efficiently finds the maximum-weight 2-matching and iteratively destroys all cycles. This

approach works very well since, usually, number of cycles is very small.

Our experimental study follows the evaluation of state-of-the-art scaffolders in [40] per-

formed on 5 scaffolding datasets (including 4 from the GAGE (Genome Assembly Gold-

standard Evaluations) project [76]). We have run the majority of up-to-date versions of

stand-alone scaffolders such as OPERA, SOPRA [18], SSPACE and MIP as well the re-

cently published ones, SILP2 and BESST. We have also included the results for scaffolding

modules of SGA [83] and SOAPdenovo2 [57] run independently of de novo assembly follow-
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ing [40]. Our matching-based tool ScaffMatch compares favorably with the state-of-the-art

tools in terms of the widely accepted N50 metric, the metrics introduced in [40], as well as

sensitivity, PPV (positive predictive value), and F-score in predicting contig junctions.

Figure 2.2 Gap estimation d is calculated in conformity with the formula: d = Lf − (L(A)−
start(r1))− (L(B)− start(r2)), where Lf is the fragment length, L(A), L(B) are lengths of
contigs A and B, start(r1) (resp. start(r2)) is the distance from the starting position of r1

(resp. r2) to the beginning of the strand A (resp. B′).

Methods. Below we describe the problem formulation and algorithmic details in the fol-

lowing main scaffolding steps:

• Preprocessing of read pairs including read mapping, handling repeats and gap estima-

tion for each read pair.

• Scaffolding graph construction with vertices corresponding to contig strands and edges

corresponding to read pairs.

• Matching scaffold finding near-maximum weight paths in the scaffolding graph and the

corresponding orientation and ordering contigs.

• Insertion of skipped contigs into the matching scaffold.

We conclude with the implementation details of ScaffMatch.

Read Preprocessing. Each contig has two reverse complement strands and each read from

a pair is mapped to one of the strands. We discard reads aligned to (suspected) repeats.

First, we filter out read pairs in which at least one read has multiple alignments. Then for

each contig, we compute its read coverage and filter out contigs with coverage greater by
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2.5σ than the average where σ is the standard deviation of contig coverage. This empirically

chosen threshold allows to remove the majority of repeats while keeping almost 99% of

correct contigs. Although assemblers may give chimeric contigs or produce two contigs for

the same genomic region (representing the two haplotypes) ScaffMatch does not attempt to

identify or modify any contigs.

Each read is mapped only to one of the two contig strands (palindromes are discarded).

For each read pair connecting two distinct contig strands, we estimate the gap according

to Figure 2.2 (for an alternative gap estimation model see [73]). Among all read pairs

connecting the same contig strands, we find a read pair p with the median gap estimation

and then bundle p with all read pairs whose gap estimation is at most 3σ away from p’s

estimation. Since we want to keep only reads that agree with each other, the reads outside

of this bundle are discarded.

Scaffolding graph. Each vertex of the scaffolding graph G = (V,E) corresponds to one of

the contig strands and each inter-contig edge corresponds to a bundle of read pairs connecting

two strands of different contigs (see Figure 2.3). The weight of an inter-contig edge is equal to

the size of the corresponding bundle. Also for each contig, we have a dummy edge connecting

its two strands.

Matching Scaffolding. Ideally, we expect that the scaffolding graph would consist of a set

of paths each corresponding to a different chromosome (see Figure 2.4(a)). Unfortunately,

repeats introduce noisy edges connecting unrelated contigs even from different chromosomes.

Additionally, the paths corresponding to chromosomes may skip short contigs (especially

contigs which are shorter than the insert length). Therefore, any set of paths passing through

all dummy edges in the scaffolding graph G corresponds to a plausible scaffold (see Figure

2.4(b)). The most likely scaffold would be supported by the largest number of read pairs.

Therefore, we can formulate the following

Scaffolding Problem. Given a scaffolding graph G, find a set of paths passing

through all dummy edges with maximum total weight of all inter-contig edges.



21

Figure 2.3 Contigs A, B, and C with connecting bundles of read pairs and the corresponding
scaffolding graph. Each contig is split into two nodes connected with a dummy edge. Each
bundle of read pairs corresponds to an inter-contig edge connecting respective strands with
the weight equal to the size of the bundle. A plausible scaffold corresponds to the path
C ′ − C − A′ − A−B′ −B supported by two inter-contig edges CA′ and AB′.

By setting the weight of each dummy edge to a large number (e.g., number of all read pairs),

we reduce the scaffolding problem to the following

Maximum-Weight Acyclic 2-Matching (MWA2M) Problem. Given a

weighted graph G = (V,E,w), find a maximum weight acyclic subset of edges

M ⊆ E such that each vertex v ∈ V is incident to at most 2 edges in M .

The MW2AM of an n-vertex graph G with all edge weights 1 has the weight n − 1 if and

only if G has a Hamiltonian path. Therefore, the MWA2M problem is NP-complete since

it includes the Hamiltonian path problem. A similar well-known problem, the Maximum

Weight 2-Matching (MW2M), allows chosen edges to form cycles. In contrast to the MWA2M

problem, the MW2M problem can be efficiently solved [70].

Maximum-Weight Matching heuristic for the MWA2M problem. We propose to

almost optimally solve the MWA2M problem with the following iterative heuristic based

on the well-known blossom algorithm [23]) for finding the maximum-weight matching in
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Figure 2.4 (a) A scaffold A − B − C −D: the connection of each pair of adjacent contigs
is supported by bundles of read pairs. (b) A path A′ − A − B′ − B − C ′ − C −D′ −D in
the scaffolding graph corresponding to the scaffold A−B−C −D. (c) The matching of the
scaffolding graph corresponding to the bunches of read pairs supporting adjacent contigs.

weighted graphs. It starts with finding the maximum-weight matching M among the inter-

contig edges. All the dummy edges also form a matching D. If the union of these two

matchings M ∪D does not contain cycles, then the heuristic reaches the optimal collection

of paths. Otherwise, a negative weight −1 is assigned to the least weight inter-contig edge

in each cycle. The above steps of finding the inter-contig matching M and destroying cycles

in M ∪D are repeated until the union M ∪D becomes a collection of paths. The output of

this heuristic will be called the Matching Scaffold.

In general, the deletion of least-weight edges may significantly reduce (as much as twice

in the worst case) the total weight of the collection of paths. Fortunately, the erroneous

heavy inter-contig edges are very rare in real data. Our experiments show that for each

scaffolding example there is no more than a single cycle in the initial union M ∪ D of the

maximum-weight matching M and the dummy edges solution and after the second iteration,

M ∪D does not contain any cycles at all.

Greedy heuristic for the the MWA2M problem. The maximum weight matching

can be computed efficiently even for larger genomes. Still, the runtime can be dramatically
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decreased using the Greedy Heuristic repeatedly choosing the heaviest feasible edge, i.e., an

edge which does not make a vertex degree higher than 2 and does not form cycles with the

previously chosen edges. Note that the Greedy Heuristic picks the globally heaviest edge

in contrast to greedy scaffolders (such as SSPACE) greedily extending existing chains. We

provide an option that allows ScaffMatch to run with the Greedy Heuristic reducing the run-

time complexity from O(n3) to O(n · log n) as we use max heap in our implementation. Our

experiments show that the Greedy Matching performs very well in practice but sacrificing

not much in quality to the Maximum-Weight Matching heuristic.

Contig ordering and orientation. The Matching Scaffold is represented by a collection

of disjoint chains of contig strands. The sequence of edges along each chain alternates: two

strands of the same contig are connected with a dummy edge, two strands of different contigs

are connected with an inter-contig edge. When traversing the strands along the paths in the

matching scaffold, the order of traversing ends of dummy edges gives us the orientation of

the corresponding contigs and the order of traversing inter-contig edges gives us the relative

order of contigs.

Insertion of skipped contigs. The Matching Scaffold can skip short contigs whose length

is less than the read pair insert size. For example, let the true scaffold contain a triple of

consecutive contigs A, B and C such that lA > lins, lC > lins, but lB � lins. Then instead

of picking both edges AB and BC, the Matching Scaffold may choose one single edge AC

since the edge weight between short contigs depends almost linearly on the length of the

contigs. Thus, even though the contig B must follow A in the final scaffold, the weight of

the edge between A and B is much smaller than the weight of the edge between A and C,

which “jumps” over B.

Below we describe the insertion of skipped contigs into the Matching Scaffold (See

Algorithm 1). A contig is identified as skipped only if it is isolated or is a part of a 2-chain in

the Matching Scaffold. Scaffolds with more than 2 contigs are kept intact. For each skipped

contig we identify the most bundle-supported slot in the matching scaffold satisfying the gap

estimations and insert it in this slot (see Figure 2.5). If several skipped contigs are assigned
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to the same slot, their relative order and orientation is decided based on the gap estimations

as follows. For each skipped contig (X ′, X), we estimate the distance to the left contig and

orient it according to the adjacent strands. Then we sort all contigs with respect to this

distance and insert them according to this order.

Figure 2.5 Insertion procedure: (a) The matching scaffold A−C −D−E is obtained with
the maximum weight matching; the contig B is connected with edges to all 4 contigs of the
matching, the contig X is connected to A and C; B should be placed between A and C
according to the consensus of connecting edges and X should be placed between C and D;
(b) Since there is a sufficient distance between contigs A and C, B is placed there, i.e., the
edge (A,C ′) from the matching is replaced with (A,B′) and (B,C ′) (the sum of weights of
(A,B′) and (B,C ′) is less than the weight of (A,C ′)); since there is no sufficient room for X
between contigs C and D, the edges (A,X ′) and (X,E ′) are removed. The resulted scaffold
is A−B − C −D.

Software implementation. The described scaffoding algorithm is implemented as a stand-

alone software tool called ScaffMatch. We separately provide a UNIX shell script for mapping

reads to contigs. As a short read aligner, bowtie2 is used [48]. The scaffolder takes as input

a fasta file containing the contigs and two SAM files produced by mapping the two read

files to the contigs. We keep a small set of mandatory parameters: the mean insert size, the

standard deviation and the orientation (forward-reverse, reverse-forward or SOLiD-style) of
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Algorithm 1 Insertion of skipped contigs

1: SLOT S ← {}
2: SKIPPED ← the set of skipped contigs
3: M = {m1,m2, ...,mn} ← the Matching Scaffold
4: G = (V,E,w)← the Scaffolding Graph
5: l← insert length
6: for all X = (X ′, X) ∈ SKIPPED do
7: for all m ∈M do
8: if ∃ contigs A = (A,A′), B = (B,B′) ∈ m

s.t. (A,X ′) ∈ E and (B′, X) ∈ E &
gap(A,X ) + l(X ) + gap(X ,B) ≤ l then

9: for each edge e = (Ci, Ci+1) ∈ m(A,B) do
10: if gap(A, Ci) ≤ gap(A,X ) and gap(Ci+1,B) ≤ gap(X ,B) then
11: SLOT S[e,X ] += w(A,X ′) + w(X,B′)
12: end if
13: end for
14: end if
15: end for
16: end for
17: for all X ∈ SKIPPED do
18: e← max{SLOT S[e,X ] | e ∈ E}
19: insert X into e
20: end for
21: return SLOT S

the paired-end reads. The program outputs a fasta file with scaffolds. We use Networkx

python library for graph computations [38].

2.2.1 Results

Datasets. We validate and compare the scaffolding tools on the collection of scaffolding

datasets used in [40] including 4 datasets from the GAGE project [76] (Staphylococcus aureus,

Rhodobacter sphaeroides and Homo sapiens (chr14)) and one additional dataset Plasmodium

falciparum following [40]. All contigs were assembled by Velvet [100]. The Table 2.9 gives

the parameters of all used scaffolding datasets.

Quality metrics. The main metric that is used for evaluation of scaffolding tools is N50

[91]. However, this metric may not be representative enough as mentioned in [40] where a

comprehensive evaluation of scaffolders was performed. In that evaluation, state-of-the-art
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Table 2.1 Scaffolding Datasets

Datasets insert size read length # contigs # reads
S. aureus 3600 37 170 3494070

R. sphaeroides 3700 101 577 2050868
H. sapiens (chr14)
(short insert size) 2865 101 19936 22669408
(long insert size) 35000 80 19936 2405064

P. falciparum
(short insert size) 645 76 9318 52542302
(long insert size) 2705 75 9318 12010344

tools were compared based on multiple criteria, such as the number of correct junctions

between two adjacent contigs, the number of junctions with incorrect relative order, relative

orientation, gap estimation and their combinations (e.g., incorrect relative order + incorrect

gap estimation). The scores assigned to the scaffolders, however, can be misleading. For

example, MIP on S. aureus (using bowtie2) got a high score despite the fact that it joined

no contigs. Thus, we introduce an F-score based metric in order to compare the results of

our tool ScaffMatch with other de-novo stand-alone scaffolding tools.

Various quality metrics have been proposed up to date. Rather than coming up with our

own metrics, we have decided to follow the most recent evaluation paper [40] which besides

N50 and corrected N50 also reports the number of correctly and erroneously predicted joins

between contigs in the reference genome. Following [40], we do not distinguish between links

connecting long and short contigs as well as contigs from different chromosomes. Let P

be the number of potential contigs that can be joined in scaffold which is the number of

contigs minus the number of chromosomes, let TP be the number of correct contig joins

in the output of the scaffolder (true positives) and FP be the number of erroneous joins

(false positives). We compute the following quality metrics: TPR = TP
P

, PPV = TP
TP+FP

,

F -score = 2·TPR·PPV
TPR+PPV

, where TPR is sensitivity, PPV is positive predictive value.

Evaluation and Comparison. ScaffMatch is compared with well established scaffolders

SSPACE, OPERA, SOPRA, MIP, SCARPA, two recently published scaffolders SILP2 and

BESST [75] scaffolding modules of SGA [83] and SOAPdenovo2 [57]. SSPACE, OPERA,
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Table 2.2 Performance of different algorithms on the scaffolding datasets from GAGE.

Dataset Scaffolder
Correct

links
Error
links

Skipped
contigs

N50
Corr.
N50

Sensitivity PPV F-score

S. aureus ScaffMatch 139 14 23 1476925 351546 0.832 0.908 0.869
SSPACE 105 13 13 332784 261710 0.629 0.890 0.737
OPERA 112 11 22 1084108 686577 0.671 0.911 0.845
SOPRA 40 2 7 112278 112083 0.240 0.952 0.383

MIP 0 0 0 46221 46221 0 0 0
SCARPA 77 16 10 112264 112083 0.461 0.828 0.592

SILP2 121 3 34 645780 284980 0.725 0.976 0.832
BESST 112 11 21 1716351 335064 0.671 0.911 0.772

SGA 83 1 10 309286 309153 0.497 0.988 0.661
SOAPdenovo2 131 12 13 643384 621109 0.784 0.916 0.845

R. sphaeroides ScaffMatch 482 18 40 2547706 2528248 0.845 0.964 0.901
SSPACE 357 7 49 109776 108410 0.626 0.981 0.764
OPERA 316 1 23 108172 108172 0.554 0.997 0.713
SOPRA 242 15 24 32232 30492 0.425 0.942 0.585

MIP 419 37 16 488095 487941 0.735 0.919 0.817
SCARPA 209 5 23 37667 37581 0.367 0.977 0.533

SILP2 425 24 87 471077 422445 0.746 0.947 0.834
BESST 367 2 15 1021151 1020921 0.644 0.995 0.782

SGA 232 1 26 42825 42722 0.407 0.996 0.578
SOAPdenovo2 468 8 26 2522483 2522482 0.821 0.983 0.895

H. sapiens (chr 14) ScaffMatch 12411 252 3480 131135 80329 0.622 0.980 0.761
short insert size SSPACE 9566 43 2754 78552 77361 0.487 0.986 0.652

OPERA 12291 112 2991 214972 207047 0.616 0.991 0.760
SOPRA 14761 381 1441 100768 96436 0.740 0.975 0.841

MIP 13899 954 2735 244064 235731 0.697 0.936 0.799
SCARPA 9938 162 1829 58330 55760 0.498 0.984 0.661

SILP2 10548 124 4918 126689 77421 0.529 0.988 0.689
BESST 7970 355 2165 146749 80218 0.400 0.957 0.564

SGA 9761 6 3214 134574 133192 0.490 0.999 0.657
SOAPdenovo2 15740 390 2378 282437 234561 0.790 0.976 0.873

H. sapiens (chr 14) ScaffMatch 5938 443 5198 148412 42523 0.298 0.933 0.452
long insert size SSPACE 2750 23 2539 77832 30449 0.138 0.992 0.242

OPERA 3687 677 3226 73477 20677 0.185 0.845 0.303
SOPRA 2938 166 2622 79517 34750 0.147 0.947 0.255

MIP 5898 1092 4861 272440 49800 0.296 0.844 0.438
SCARPA 1603 31 1466 43969 17786 0.080 0.981 0.149

SILP2 3899 65 3732 74094 38810 0.196 0.984 0.326
BESST 123 13 98 13815 8828 0.006 0.904 0.012

SGA 0 0 0 12211 12211 0 0 0
SOAPdenovo2 4516 294 3301 220644 86679 0.227 0.939 0.365

H. sapiens (chr 14) ScaffMatch 12658 348 3874 802755 195239 0.635 0.973 0.769
combined library SSPACE 9249 36 2677 66271 65222 0.464 0.996 0.633

short + long OPERA 12853 58 3409 1692782 1062031 0.645 0.996 0.783
insert size SOPRA 10418 238 3322 112239 75046 0.523 0.978 0.681

MIP 8534 696 3213 44372 31148 0.428 0.925 0.585
SCARPA 10712 161 2376 134364 106654 0.537 0.985 0.695
BESST 8287 286 2347 295976 114434 0.416 0.967 0.581

SGA 9764 3 3214 134574 133192 0.490 0.999 0.657
SOAPdenovo2 15748 382 2575 561198 447849 0.790 0.976 0.873
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Table 2.3 Performance of different algorithms on the scaffolding datasets for P. falciparum.

Dataset Scaffolder
Correct

links
Error
links

Skipped
contigs

N50
Corr.
N50

Sensitivity PPV F-score

P. falciparum ScaffMatch 5648 287 37 8626 5872 0.607 0.952 0.741
short insert size SSPACE 5746 127 12 6011 5845 0.612 0.978 0.757

OPERA 3706 116 371 5035 4824 0.398 0.967 0.565
SOPRA 4897 174 34 4954 4632 0.526 0.966 0.681

MIP 5544 359 15 6158 5485 0.596 0.939 0.730
SCARPA 4830 221 38 4912 4628 0.519 0.956 0.673

SILP2 5496 498 48 3109 2601 0.591 0.917 0.719
BESST 2632 462 84 7471 3931 0.283 0.851 0.425

SGA 4940 46 100 5324 5104 0.531 0.991 0.691
SOAPdenovo2 5540 84 47 6234 5981 0.596 0.985 0.742

P. falciparum ScaffMatch 6970 260 1751 41564 25380 0.749 0.964 0.843
long insert size SSPACE 4610 21 1235 17796 15553 0.496 0.995 0.662

OPERA 6257 97 1339 44667 40170 0.673 0.985 0.799
SOPRA 7247 181 656 49671 44158 0.779 0.976 0.866

MIP 7754 707 731 88297 78672 0.834 0.916 0.873
SCARPA 4882 117 714 14037 9708 0.525 0.977 0.683

SILP2 5996 266 2839 45407 29399 0.645 0.957 0.771
BESST 1307 46 327 4133 2813 0.141 0.966 0.245

SGA 2902 2 652 4438 4096 0.312 0.999 0.476
SOAPdenovo2 7659 351 803 167570 83851 0.635 0.869 0.734

P. falciparum ScaffMatch 8223 425 654 78627 47662 0.884 0.951 0.916
combined library SSPACE 5889 123 76 6383 5982 0.633 0.980 0.769

short + long OPERA 6434 177 1171 42450 38409 0.692 0.973 0.809
insert size SOPRA 7018 60 171 16366 15511 0.754 0.992 0.857

MIP 8082 513 75 56672 38704 0.869 0.940 0.903
SCARPA 7336 370 251 36945 23951 0.789 0.952 0.863
BESST 3929 541 384 25300 7621 0.422 0.879 0.571

SGA 4910 44 419 6606 6134 0.528 0.991 0.689
SOAPdenovo2 5977 228 254 12076 10629 0.643 0.963 0.771

and SOPRA used bowtie [48] mapping, SOAPdenovo2 used its own mapping, and all other

scaffolders used bowtie2 mapping. All software has been run with the same versions and

options as in [40] except SILP2 and BESST for which default parameters were used from the

respective websites. Results for SILP2 are not given for the combined insert size datasets

since it does not have an option to process datasets with multiple insert size.

For computing the number of correct and erroneous links we used scripts provided in

[40]. Note that MIP and SGA did not give meaningful results respectively for the S. aureus

and H. sapiens (long insert size).

We compared 3 different versions of ScaffMatch: ScaffMatch (Maximum Weight Match-

ing with insertion), ScaffMatch G (Greedy Matching with insertion), and ScaffMatch B

(Maximum Weight Matching) (The results are available in the Table S1 of Supplementary

Data [62]). ScaffMatch usually has the best F -score among all three versions. ScaffMatch G

also can be very different from ScaffMatch since it may choose to match completely differ-
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ent contigs. ScaffMatch B has usually the highest PPV and corrected N50 among all three

versions implying that insertion of skipped contigs might be erroneous. Unexpectedly, the

number of contigs skipped by ScaffMatch B is not much greater than for ScaffMatch showing

that the solution for the scaffolding/MWA2M problem does not skip over many contigs.

The results for GAGE scaffolding testcases are in Table 2.2 and results for P. falciparum

are in Table 2.3. The entries in the bold font are the best among all 10 scaffolders with respect

to the corresponding quality metric. ScaffMatch has the top F -score for 4 testcases and the

top corrected N50 for 2 testcases. Additionally, ScaffMatch B has the the top corrected

N50 for S. aureus. SOAPdenovo2 has the top F -score for 2 testcases and the top corrected

N50 for 3 testcases. MIP is a top performer once for F -score and once for corrected N50.

Finally, OPERA is the best in corrected N50 for 2 testcases (still losing to ScaffMatch B on

S. aureus) and SSPACE has the best F -score for one testcase.

The runtime of all compared scaffolders are in Table 2.10. The runtime growth rate with

respect to the dataset size is similar for all scaffolders. The fastest scaffolder is SSPACE and

the slowest is SOPRA.

Table 2.4 The wall clock runtime in seconds for the largest and the smallest datasets. All
scaffolders were run on 2.5GHz 16-core AMD Opteron 6380 processors with 256Gb RAM
running under Ubuntu 12.04 LTS. SM is ScaffMatch and SM G is ScaffMatch G.

XXXXXXXXDataset
Tool

SM SM G SSPACE OPERA SOPRA MIP SCARPA SILP2 BESST SGA SOAP2

S. aureus 60 56 20 178 676 154 111 64 68 64 40
H.sapiens (long) 754 226 248 308 8852 528 538 334 728 - 264

Although the methodology [40] we used to compare ScaffMatch with all other tools is

a widely accepted one, it can not exactly evaluate the number of correct links produced by

a scaffolding tool due to repeats in the reference genome. Namely, repeated contigs may

be aligned to multiple locations on the reference; thus, such ambiguities pose an additional

problem when comparing different tools on a benchmarking dataset. The next part of this

chapter proposes a novel approach for evaluation of scaffolding tools accounting for repeats.
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2.3 Methodologies for performance evaluation of scaffolding tools

Genome assembly is one of the oldest, yet still one of the most relevant problems in

bioinformatics even nowadays. Traditionally, any genome assembly pipeline is divided into

three stages: contig assembly, scaffold assembly, and gap filling. Scaffold assembly is the

problem of building chains of contigs from the information provided by paired-end reads.

Since early 2000s many scaffolding problem formulations and algorithms were proposed:

OPERA [30], SSPACE[9], BESST [75], ScaffMatch [62]. Most of the scaffolding formulations

imply the construction of so-called scaffolding graph G = (V,E), where V is usually the set of

contigs (or contig strands [62]) and E is the set of links obtained by grouping multiple paired-

end reads aligning to different contigs. Some scaffolding tools provide heuristics for building

paths in G (SSPACE, BESST), where each path corresponds to a scaffold. Optimization

approaches reduce scaffolding to maximizing the number of correct links or minimizing the

number of erroneous links. Such formulations are usually NP-hard [30, 62].

Finding true scaffolding is computationally challenging due to different factors: mis-

assemblies, inconsistent coverage across the genome, but the most important challenge

though is the presence of genome repeats. For example, the human genome is reported

to contain up to 50% of repeated sequences. Contig assembly tools are not able to dis-

tinguish different copies of the same repeat, therefore, all the copies of the same repeated

DNA region are usually collapsed into one contig. This creates multiple erroneous links in

the scaffolding graph. On the other hand, the reference scaffolding should split such contig

into several copies in order to correctly correspond to the reference genome. Therefore, an

accurate evaluation of an inferred scaffolding should take into account multiple locations

of the same contig on the reference scaffolding rather than matching a repeat to a single

best location. This makes mapping of an inferred scaffolding onto the reference scaffolding

a nontrivial problem.

There are numerous slightly conflicting parameters for evaluating scaffolding quality –

N50, corrected (or true) N50, number of correct and incorrect links between contigs with
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corresponding sensitivity and PPV, number of inverted contigs, number of correctly assem-

bled genes, etc. (see e.g., [40, 62, 55, 5, 60]). Notoriously, the most difficult to maximize is

true N50, which is the minimum length of inferred scaffolds which cover 50% of the genome.

Here we focus on a simpler objective of maximizing the number of correctly inferred links

between contigs:

The Scaffolding Evaluation Problem. Find a mapping of the inferred scaf-

folding onto the reference maximizing the number of correct links.

Let us view contigs as genes, repeats as gene families, inferred scaffolds and reference

scaffoldings as two genomes over the same set of gene families. Then the Scaffolding Eval-

uation (SE) problem is equivalent to finding the breakpoint distance [79, 4] between two

signed sequences corresponding to the inferred and reference scaffoldings (see Figure 2.6).

Computing the breakpoint distance is NP-hard [8] in presence of nontrivial gene families

and, therefore, the SE problem is also NP-hard in presence of repeated contigs.

Figure 2.6 Matching of contigs in the scaffolding S and in the reference R. Only the links
(2,3) and (4a,5) are mapped correctly. Contig 2 has two copies 2a and 2b in the reference
scaffolding, contig 4 is inferred to have two copies 4a and 4b. Assigning contig 2 to either of
the copy 2a or 2b, as well as assigning either 4a or 4b to the reference contig 4 affects the
number of correctly inferred contigs links. Indeed, assigning contig 2 to the reference contig
2a and contig 4b to 4 will mistakenly undercount the number of correct links. The optimal
assignment (2 to 2b, 4a to 4) allows to detect two correctly linked contig pairs.

The rest of the section is organized as follows: Subsection 2.3.1 provides background and

motivation for a new scaffolding validation framework, in Subsection 2.3.2 we give Integer
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Linear Program based formulation of the Scaffolding Evaluation Problem. Subsections 2.3.3-

2.3.3 explain the validation pipeline and provide the comparison results of most state-of-the-

art scaffolding tools.

2.3.1 Background

The traditional way of measuring the quality of a scaffold assembly used by practitioners

is N50 which is the shortest sequence length at 50% of the genome. Although this measure

is intuitively clear and allows one to estimate the contiguity of the scaffolds, it is rather

meaningless: all the contigs randomly joined together produce a scaffolding with highest

N50. An alternative way to measure contiguity of scaffolds is to apply corrected N50 metric

which is N50 computed after removing all the wrong contig connections.

One of the most recent frameworks for scaffolding evaluation [40] proposed a strategy

for evaluating the output of scaffolding tools based on a known ground truth. In [40], the

so-called “assembly” contigs (i.e., produced by an assembly tool, for example, Velvet [101])

were used to produce “perfect” contigs. The procedure for obtaining the set of perfect

contigs is to align the “assembly” contigs to the reference genome with nucmer [20], merge

all overlapping hits corresponding to one contig and removing contigs which are completely

contained inside any other contig. Then, from each perfect contig, a unique sequence tag

is extracted as an anchor for identification of mutual ordering, orientation, and distance of

contigs in the output of scaffolding by aligning the tags to them. In [40], the perfect contigs

were not assumed to be repeated ones or to have a sub-part which is repeated in the genome.

The only best nucmer hit of each assembly contig was considered. Evaluation [40] did not

take into account repeated contigs, though a solid evidence for a high number of repeats

exists.

For example, if not only the best nucmer hit was taken into account, but rather all the

nucmer hits of assembly contigs with at least 97% identity to the reference in the bench-

marks from [40] then the percentage of repeated contigs would be considerable. Thus, the

percentage of repeated contigs in the S. aureus dataset would be 14%.
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Table 2.5 The number of unique contigs and the number of repeats in three GAGE [76]
datasets (S. aureus, R. sphaeroides, H. sapiens (chr 14)) and two fungi datasets (M. fijiensis,
M. graminicola) obtained with the aid of iWGS pipeline [102]. Each contig dataset is obtained
with the scripts from [40] from Velvet assembly contigs.

Number of copies
Dataset Total Unique

2 3 ≥ 4
Avg len

S. aureus 200 172 4 5 4 16573
R. sphaeroides 601 577 12 1 3 7780
H. sapiens (chr 14) 43960 43372 490 35 8 1675
M. fijiensis 18111 17485 326 64 28 2006
M. graminicola 6442 6285 95 16 7 5188

Taking into consideration only the best hit creates the possibility of mis-calling the right

link between two contigs in a scaffolding output dataset. Consider the following example.

We ran SSPACE on the S. aureus dataset from the GAGE [76] project. All the contigs in

the ground truth answer were enumerated from 1 to 170 following framework [40]. In the

scaffolding, SSPACE placed the contig 102 (463 bp long) between contigs 19 (57049 bp long)

and 20 (132320 bp long) and this situation was classified as producing two errors, namely,

incorrect orientation and incorrect distance (see Figure 2.7). If we re-align contig 102 to

the S. aureus genome using nucmer with the parameter of similarity score set to 97%, we

notice that contig 102 has three potential placements: a) between contigs 19 and 20 with

similarity score 98.49% and it is reversed, b) between contigs 79 and 80 with similarity score

99.78%, and c) between contigs 101 and 103 with similarity score 100% - the actual “best hit”

placement chosen as a perfect contig in [40]. Thus, contig 102, in fact, has 3 copies under the

similarity level of 97%, and the decision taken by SSPACE to place 102 between 19 and 20 is

“not that wrong”. Exactly the same mis-classification of the contig links in SSPACE output

is done with contig 100 which is placed between contigs 22 and 23 by SSPACE. In fact, under

the 97% threshold, one can observe 5 copies: a) between 22 and 23 with similarity 98.23%,

b) between 94 and 95 with similarity 99.05%, c) between 97 and 98 with similarity 98.10%,

d) between 99 and 101 with similarity 100%, and e) between 130 and 131 with similarity

98.10%. Again, contig 100 added two more errors to the evaluation. Additionally, [40] may

report errors when repeated contigs are shared between different chromosomes.
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Figure 2.7 The reference scaffolding contains three copies of contig 102 (namely, 102a, 102b,
and 102c). In the reference scaffolding of Hunt et al. [40] only the best hit is considered and
two copies with a high identity level (> 97%) are discarded. As a result the contig 102 is
treated as erroneously placed by SSPACE between contigs 19 and 20 resulting in two false
negative links. Similarly, since the contig 102c is missing, the link between contigs 79 and
80 is falsely treated as correct. Finally, the missing contig 102a is correctly classified.

Table 2.6 The number of links classified as correct and incorrect by [40] when applied to the
perfect scaffoldings for three datasets S. aureus, R. sphaeroides, H. sapiens (chr14).

Dataset Correct Incorrect Missclassified
links links links

S. aureus 157 15 8.7%
R. sphaeroides 547 42 7.1%
H. sapiens (chr14) 44219 969 2.1%

As a result, the [40] framework will penalize even the “perfect” scaffolding treating

as incorrect links connecting repeated contigs. Table 2.6 gives the number of correct and

incorrect links inferred by the framework of [40]. For example, on S. aureus dataset, the

mis-classification rate is almost 9%.

Although each contig, as is shown above, may have multiple copy numbers in genomes,

most of the state-of-the-art scaffolding tools treat contigs produced by assembly tools as

having only a single copy. Thus, in order to correctly evaluate scaffolding, one needs to

consider all the possible placements of each repeated contig and do not report an error in

case when a different contig copy is selected within the defined level of tolerance (we use

97%) rather than the best hit (100%).

As far as we are aware of, OPERA-LG [29] is the only scaffolding tool which handles

repeated contigs, i.e. it outputs scaffolds where some of the contigs have multiple copies.
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As for each contig, its copy number in the scaffolding and in the reference may differ, an

additional challenge is emerging for evaluating the scaffolding. In [29], the performance of

repeat aware scaffolding was assessed by the ability of the scaffolding tool to correctly infer

the sequence of gaps where OPERA-LG placed repeats.

In this chapter, we propose a novel scaffolding evaluation framework which presents

a unified approach for assessment of scaffoldings with and without repeated contigs. Our

framework as compared to [40] provides an only quantitative measure (number of correct

contig links) which is an advantage for an easier comparison of different tools performances.

For a more detailed analysis of scaffolding results, one can use more other metrics/scores

(see Section 2.3.3).

2.3.2 Exact scaffolding evaluation

In this section we formulate Scaffolding Evaluation Problem as an Integer Linear Pro-

gram (ILP). We start with the formal definitions.

Definition. Let C = {ci}i∈I be a set of instances of contigs. Note that multiple elements

of C may represent the same contig. Sequence of contig instances S = (co11 , c
o2
2 , c

o3
3 , ..., c

on
n )

with the orientation oi ∈ {+1,−1}, i = 1, . . . , n, is called a scaffold. A link is an ordered pair

of consecutive instances of contigs together with the estimated distance di,i+1 between them

(coii , c
oi+1

i+1 , di,i+1). We say that two links li = (coii , c
oi+1

i+1 , di,i+1) and lj = (c
oj
j , c

oj+1

j+1 , dj,j+1) are

equivalent, li ≡ lj, if coii and c
oj
j (respectively, c

oi+1

i+1 and c
oj+1

j+1 ) are instances of the same contig

and |di,i+1 − dj,j+1| < δ × b, where b is the library insert size and by default δ = 1. Reverse

complement links (c
−oi+1

i+1 , c−oii , di,i+1) and (coii , c
oi+1

i+1 , di,i+1) are also defined to be equivalent.

Let scaffolding be a set of scaffolds. Consider a genome of a model organism (or any

other organism for which a reliable reference exists). Let R be the reference scaffolding

and let S be a scaffolding produced by a scaffolding tool. Ideally, a scaffolding tool should

output a scaffolding S which will be identical with R, or at least “as close as possible” to R.

Intuitively, this means that one wants to maximize the number of valid links in S, i.e., links

which are identical to links in R or shortcuts of several sequential links in R, such that each
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S-contig gets assigned to at most one R-contig and vice versa.

Let LS be the set of links of the scaffolding S. In contrast, let LR be the set of links

between all pairs of contigs in the same scaffold of the reference scaffolding R. Then an

S-link is valid if it is equivalent to an R-link with possibly skipped reference contigs.

We find optimal assignment between S and R using the following ILP:

∑
k,p

zkp → max

s.t.
∑
j

xij ≤ 1, ∀i ∈ R (a)

∑
i

xij ≤ 1, ∀j ∈ S (b)

2zkp ≤ xk1p1 + xk2p2 , ∀k = (k1, k2) ∈ LR,

∀p = (p1, p2) ∈ LS, p ≡ k (c)∑
k

zkp ≤ 1, ∀p ∈ LS, p ≡ k (d)

xij ∈ {0, 1}, ∀i ∈ R, ∀j ∈ L (e)

zkp ∈ {0, 1}, ∀k ∈ LR, ∀p ∈ LS (f)

(2.1)

Binary variables xij ∈ {0, 1} have the following meaning:

xij =


1, if R-contig i and S-contig j are instances of the same

contig and are assigned to each other

0, otherwise.

(2.2)

Conditions (a) and (b) from the ILP (2.4) guarantee that each contig j ∈ S is assigned

to at most one contig i ∈ R and vice versa.

For any links k = (k1, k2) ∈ LR and p = (p1, p2) ∈ LS, k ≡ p,
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zkp =


1, if xk1p1 = xk2p2 = 1

0, otherwise.

(2.3)

Constraints (c) correspond to the relations between the variables zkp and the variables

xk1p1 and xk2p2 . It may happen that for a given link k ∈ R there may be multiple links

p1, p2, ..., pn ∈ S identical with k. To guarantee that at most one link pi from the scaffolding

S is matched with k, constraint (d) is introduced to the problem.

Maximizing the objective
∑
k,p

zkp means to find an assignment of scaffold contigs to the

reference contigs, i.e. assignment of variables xij such that to maximize the number of contig

links k ∈ R matched with identical to them contig links from S.

2.3.3 Repeat-aware validation of scaffolders

Benchmarks with repeats In practice, it is frequently necessary to scaffold incor-

rectly assembled contigs. Since it is impossible to decide whether scaffolding of incorrect

contigs is correct, validation tools (see, [40]) change the original contigs before feeding them

to scaffolding tools. As a result, repeated contigs may interfere with validation and our first

benchmark B rep removes this interference by making repeated contigs have the same id.

Formally, following [40], we align the contigs produced by the Velvet assembler to the

reference genome using nucmer [47]. But unlike [40], we consider all the nucmer alignment

hits with α-identity (α = 97% by default) including partial alignments of at least λ base

pairs long (λ = 200 by default). The default value 97% is chosen in conformity with the

common definition of a DNA repeat [88]. We use α-threshold for assigning the same id to

two similar contigs in the reference scaffolding. The benchmark B rep consists of the same

contigs as [40] but α-similar contigs get the same id and the resulted reference scaffolding

contains contig repeats.

Assemblers may produce contigs consisting of parts having different copy numbers.

Therefore, we suggest modifying original contigs by splitting out partial repeats from contigs.

The resulted benchmark B split, on one hand, simplifies scaffolding since all mapping of
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paired reads become correct and, on the other hand, it magnifies the problem of scaffolding

repeats.

Formally, the benchmark B split splits the alignments of B rep-contigs into segments

defined by alignment endpoints (see Figure 2.9). The segments of length less than λ bp

are dropped. The remaining segments form contigs without partial repeats. Then multiple

repeated contigs get the same id. The B split contigs are at least λ bp long and no contig

contains λ-long repeats. The pseudocode for the procedure generating B split contigs is

provided in Algorithm 2. Note that the algorithm for creating B split benchmarks is stable

since it outputs similar contig datasets for input assembly contigs produced by different

tools. In Table 2.7 some basic information regarding Velvet and Allpaths-LG B split contigs

for S. aureus is presented. Figure 2.8 shows similar copy number distributions across the

Allpaths-LG and Velvet contig datasets.

Figure 2.8 Copy number distribution

We built three repeat aware benchmarks based on Velvet assembly from the GAGE

project: S. aureus, R. sphaeroides, H. sapiens (chr 14). Also, we included two novel in

silico generated (with the aid of iWGS pipeline [102]) fungi datasets: M. fijiensis and M.

graminicola. In Table 2.5 copy number distribution and the total number of contigs for the
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Algorithm 2 Construction of artificial contigs

1: λ← minimum artificial contig length
2: α← repeat similarity threshold
3: R ← {r1, r2, ..., rn}
4: C ← {c1, c2, ..., cn}
5: Cart ← ∅
6: D ← {}
7: for all r ∈ R do
8: A ← nucmer(r, C, α, λ)
9: E ← ∅

10: for all a = (start, end) ∈ A do
11: E ← E ∪ {start, end}
12: end for
13: for all c ∈ C do
14: D[c]← D[c] ∪ {e ∈ E| e lays within an alignment a ∈ A of contig c to the reference

r}
15: end for
16: end for
17: for all c ∈ C do
18: p← sort(D[C])
19: p1 ← p[1]
20: for i = 2, 3, ..., |P| do
21: p2 ← p[i]
22: if p2 − p1 ≥ λ then
23: Cart ← Cart ∪ c[p1 : p2]
24: end if
25: p1 ← p2

26: end for
27: end for
28: remove duplicate sequences from Cart

B rep dataset is presented. The same information for the B split dataset is given in Table

2.8.

Evaluation framework We implemented our evaluation framework using Python

programming language (version 2.7). We used nucmer version 3.1 for aligning contigs to

the reference. Integer Linear Program (2.4) is solved with the aid of IBM CPLEX solver

version 12.7. In order to evaluate a scaffolding S given the reference genome, we perform

the following sequence of steps:
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Table 2.7 Comparison between artificial contigs produced based on Velvet and Allpaths-LG
contigs. “# all contigs” – total number of contigs in the dataset; “# common contigs”
– in Velvet (Allpaths-LG) column, number of Velvet (Allpaths-LG) contigs which are ei-
ther identical, or contain one or more Allpaths-LG (Velvet) contigs, or are contained in an
Allpaths-LG (Velvet) contig; “total contig length” – total length of all contigs in the dataset;
“common contig length” – in Velvet (Allpaths-LG) column, total length of Velvet (Allpaths-
LG) contigs which are either identical, or contain one or more Allpaths-LG (Velvet) contigs,
or are contained in an Allpaths-LG (Velvet) contig; “reference length” – the length of the S.
aureus genome; “JS divergence between copy number profiles” – Jensen-Shannon divergence
computed between the distributions of copy numbers for the two datasets.

Velvet Allpaths-LG
# all contigs 203 108
# common contigs 176 98
common contig length (Mbp) 2.82 2.83
total contig length (Mbp) 2.83 2.84
reference length 2.94
JS divergence between copy number profiles 0.005

1. Take assembly contigs and produce perfect contigs as described in Section 4.1.

2. Build the reference scaffolding R

3. Run a scaffolding tool on the perfect contigs and a paired-end read dataset

4. Align the perfect contigs to the output scaffolding using nucmer (with exactly the same

identity level which was used for building the artificial contigs in step 1).

5. Build the output scaffolding S

6. Solve the Scaffolding Evaluation Problem with input data (S,R).

The flowchart of the evaluation tool is presented in Figure 2.10.

Validated scaffolding tools We ran the following scaffolding tools: OPERA-LG

(version 2.0.6), OPERA (version 1.4), ScaffMatch (version 0.9), SOAPdeNovo2 [58] (version

2.04), BESST (version 2.2.5), BOSS [56] (latest version from GitHub), SSPACE (version 3.0)

on the three artificial contig datasets (S. aureus, R. sphaeroides, H. sapiens (chr 14)) from
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Table 2.8 The number of unique contigs and the number of repeats in three GAGE [76]
datasets (S. aureus, R. sphaeroides, H. sapiens (chr 14)) and two fungi datasets (M. fijiensis,
M. graminicola) obtained with the aid of iWGS pipeline [102]. Each contig dataset is obtained
as described in Section 2.3.3 (α = 0.97, λ = 200).

Number of copies
Dataset Total Unique

2 3 ≥ 4
Avg len

S. aureus 244 203 12 5 5 11720
R. sphaeroides 652 612 24 4 2 6845
H. sapiens (chr 14) 45035 44350 557 45 11 1635
M. fijiensis 19357 17781 686 177 132 1818
M. graminicola 7261 6875 218 40 22 4490
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Figure 2.9 Original contigs A, B, C are aligned to the reference with nucmer. Contig A
significantly overlaps with contig B, contig B overlaps with contig C. Contig B contains a
repeated region B3 which also aligns to a different place on the reference. Overlap length of
A and B (which is A2 ≡ B1 ≡ X2) is greater than the minimum contig length parameter
λ, therefore we retain X2. Overlap of B and C (which is B5 ≡ C1) is not included in the
artificial contig dataset. Contig D has a partial alignment to X4 as well as contig B has a
partial alignment to X7. The two segments X4 and X7 are collapsed into a single artificial
contig X4. Finally, the artificial contig dataset consists of X1, X2, X3, X4, X5, X6, X8.

the GAGE project and two fungi artificial contig datasets (M. fijiensis, M. graminicola). The

following Illumina paired-end read datasets were used: S. aureus - read length 37, insert size

3600; R. sphaeroides - read length 101, insert size 3700; H. sapiens (chr 14) - read length 101,

insert size 2700, M. fijiensis - read length 100, insert size 1800; M. graminicola - read length

100, insert size 1800 (see Table 2.9 for more details). Most of the tools accept a user specified

read aligner (for example, BWA [53], Bowtie [49] or Bowtie2 [48]. As BESST is better to be

used with BWA (as per BESST documentation, https://github.com/ksahlin/BESST), we

used it for all our experiments. ScaffMatch was run with Bowtie2 alignments).

Evaluation metrics Following [40] we provide a classification of erroneous links and

report the corrected N50 and the number of correct links. Following [62, 56] we report

https://github.com/ksahlin/BESST
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Figure 2.10 The flowchart of the scaffolding evaluation tool.

Table 2.9 The main parameters of the five datasets used in the experiments.

Read length (bp) Insert size (bp) Std of insert size (bp) Library orientation
S. aureus 37 3600 300 outtie
R. sphaeroides 101 3700 200 outtie
H. sapiens (chr 14) 101 2700 400 outtie
M. fijiensis 100 1800 150 innie
M. graminicola 100 1800 150 innie

sensitivity, PPV and F-score as well as a novel metric of corrected chain N50. Below we give

details of each reported metric.

Number of correct links is the solution of the ILP (2.4) representing the number of

optimally assigned correct contigs joins.

Sensitivity, PPV, F-score. Sensitivity is the number of correctly predicted links over the

total number of reference links, positive predictive value (PPV) is the number of correctly

predicted links over the total number of predicted links. F-score is the harmonic mean of

sensitivity and PPV. Although it is widely used in the context of machine learning, it is also

one of the metrics of choice in the evaluation of scaffolding tools [62, 56].

Corrected N50. Traditionally, corrected N50 is obtained by breaking the incorrect links and

computing N50 metric on the resulting scaffolds using scripts from [76] or [36]. Unfortunately,

neither of these scripts are repeat-aware and simply drop repeated contigs. Instead, we
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Figure 2.11 Classification of incorrect links. Contig 2 in the scaffolding output is assigned
to contig 2a in the reference, contig 4a in the scaffolding output is assigned to contig 4
in the reference (marked with arrows). There are two correct links (marked with green)
and 4 wrong links (marked with red). Link (6, 1) connects contigs 6 and 1 coming from
different reference sequences. Link (2, 3) connects contigs 2 and 3 which are not in correct
order/orientation. Jumping link (3, 4a) connects contigs 3 and 4a which are not in correct
order/orientation. Link (5, 4b) connects contig 5 with an “extra” copy of contig 4 (namely
4b).

compute repeat aware corrected N50 using the optimal assignment of contigs and links

produced by the ILP (2.4). We break all the unassigned links, sort the resulting scaffolds

in descending order of their length, and output the length of the scaffold at which half of

the genome is covered. Note that gaps between correctly linked contigs are counted in the

length of the scaffold.

Corrected chain N50 is a novel metric counting the number of contigs in the smallest

corrected scaffold necessary to cover 50% of all contigs. The corrected chain N50 allows

setting apart assessments of scaffolding and assembly.

Classification of incorrect links It is of particular interest for genome assembly

practitioners to classify incorrect connections between contigs for an additional insight into

drawbacks of scaffolding algorithms. Since the framework is based on links between contigs,

we propose to classify errors exclusively in terms of incorrect links. This is in contrast to

the previous approach of [40]. We distinguish the following types of incorrect links:

1. Linking an unassigned copy (i.e., a contig copy in the output scaffolding for which

there is no contig assigned by ILP in the reference) - connecting an unassigned copy
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of a contig (see link (5, 4b) in the Figure 2.11);

2. Linking different references - connecting contigs coming from different reference se-

quences (see link (6, 1) in the Figure 2.11);

3. Linking incorrect ends of contigs that should be connected. For example, link (2, 3) in

Figure 2.11 is mapped into link (2a, 3) but the right end of 2a should be connected to the

opposite end of contig 3. In general, there are 4 possible ways to connect between two

contigs and these ways should be consistent between output and reference scaffoldings.

4. Links skipping contigs - the two linked contigs are in the correct order and orientation,

but at least one contig is skipped between them. This corresponds to the case of

“skipped” contigs in [40]. It is treated as a correct link in [40] and in our framework,

it is treated as correct if the distance in bp between the two contigs is smaller than the

library insert size δ and incorrect otherwise.

5. Links skipping contigs and linking incorrect contig ends - the combination of cases 3

and 4 (see link (3, 4a) in the Figure 2.11).

6. Links in which contigs are joined correctly, but the number of base pairs between

contigs is more than δ away from the real distance.

Validation results We applied our ILP (2.4) to obtain the number of inferred correct

contig links by each scaffolder. For the largest data set H. sapiens (chr14) the ILP was

scalable enough taking less than 40 min for the largest dataset (for H. sapiens dataset, ILP

consists of ≥ 60000 variables and ≥ 20000 constraints, most of the time spent on building

the ILP, and only about 0.1 seconds in average was enough for the solver to complete) on

2.5GHz 16-core AMD Opteron 6380 processors with 256Gb RAM running under Ubuntu

16.04 LTS (see Table 2.10).

Table 2.11 compares all scaffolding metrics for 5 B split datasets for all 8 evaluated

scaffolding tools (links skipping contigs are considered correct if the distance between two
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Table 2.10 The average wall clock runtime of the scaffolding validation and the average wall
clock time of the ILP (1) in seconds on the output scaffoldings obtained for the five datasets.
As it can be clearly seen, most of the validation time is spent on building the ILP itself and
a non-significant part is required for ILP to be solved.

Dataset S. aureus R. sphaeroides H. sapiens (chr 14) M. fijiensis M. graminicola
Runtime (s) 0.150 0.630 2180 182 54.200
Runtime ILP (s) 0.160 0.002 0.119 0.112 0.159

link contigs is within one library insert size). The best results are achieved by SOAPdeNovo2

for 3 datasets and by ScaffMatch for 2 datasets. OPERA-LG with enabled repeated scaf-

folding (OPERA-LG/Rep.) finds consistently more correct contig links than OPERA-LG

discounting repeats (OPERA-LG/No rep.). Note that the corrected N50 and the corrected

chain N50 correlate well with the number of correct links – the median correlations over 5

samples are 0.97 and 0.95 respectively. This in contrast with much weaker correlation for

the repeat unaware corrected N50.

The results on 5 B split benchmarks on a more stringent version of our framework

when all links skipping contigs are treated as incorrect can be found in Table S3 (see Sup-

plementary materials of the paper online). We also evaluated all 8 scaffolding tools on 5

B rep benchmarks (the contigs of B rep benchmarks are generated by the scripts from [40]).

The results for both versions (i.e., when links skipping contigs are treated and when they are

treated as incorrect) on B rep benchmarks are presented in Tables S5 and S6 correspondingly

(see Supplementary materials of the paper online).

Repeated and short contigs significantly complicate scaffolding. In order to assess the

performance of the scaffolding tools in presence of multiple repeat and short contigs we

use two parameters α and λ to control the complexity of the artificial datasets. When α

decreases, then more contigs are assigned the same id and the number of repeats in the

reference scaffolding grows. Similarly, when λ decreases, then more contigs get fragmented

and the number of short contigs grows. For example, artificial M. graminicola contigs for

α = 0.91 and λ = 100 contain almost 25% of repeats.

For each of the five datasets we generated 25 artificial contig datasets for different
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values of α and λ (α ∈ {0.91, 0.93, 0.95, 0.97, 0.99}, λ ∈ {100, 200, 300, 400, 500}). Figure

2.12 illustrates the performance of the scaffolders in terms of F-score as a function of α and

λ for S. aureus (see also Supplementary Figures F2-F6). Clearly, as the complexity of the

dataset grows, the performance of all the tools rapidly drops. Nonetheless, SOAPdeNovo2

and ScaffMatch handle the highly repeated datasets more efficiently starting with λ = 200.

The performance of OPERA-LG is low for λ = 100 but as λ grows it achieves a dramatically

high level of F-score. Comparing the results of OPERA-LG with and without handling

repeats, we can conclude that repeat handling is useful and it can efficiently boost up the

performance of a scaffolding tool. In Table 2.12 we provide the classification of incorrect

links for the S. aureus dataset (α = 0.97, λ = 200). The most widely spread errors for each

scaffolder are links skipping contigs and linking incorrect contig ends. It is obvious that

these types of errors are caused by short and repeated contigs. In the next part of this

chapter, we are building upon this idea. Namely, after the elimination of short and repeated

contigs the scaffolding problem becomes a trivial task. But then, the repeated contigs may

be re-inserted back into the scaffolds.

Figure 2.12 Performance (F-score) of the scaffolding tools depends both on λ and α. The x
axes of the heat maps denote the similarity level used to obtain the artificial contig datasets
and the y axes of the heat maps denote the minimum length of contig in the dataset. This
figure displays results for S. aureus.
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Table 2.11 The evaluation metrics on the five B split benchmarks (α = 0.97, λ = 200) as
obtained from solving the ILP (1). Links skipping contigs are considered correct if their gap
estimate is within one insert size. The bold font marks the best results.

OPERA-LG
Datasets

Rep. No rep.
OPERA ScaffMatch SOAP2 BESST BOSS SSPACE

S. aureus
# correct 151 134 134 180 142 124 146 135
Sensitivity 0.63 0.56 0.56 0.75 0.59 0.51 0.61 0.56
PPV 0.95 0.98 0.98 0.98 0.95 0.95 0.96 0.97
F-score 0.76 0.71 0.71 0.85 0.73 0.66 0.75 0.71
Scaffold corrected N50 (K bp) 579.4 574.4 574.4 568.9 180.0 564.4 573.9 563.8
Corrected chain N50 25 23 23 45 8 22 11 9

R. sphaeroides
# correct 371 323 325 496 470 380 246 144
Sensitivity 0.58 0.5 0.5 0.77 0.73 0.59 0.38 0.22
PPV 0.93 1.0 1.0 0.94 0.98 0.99 0.99 0.96
F-score 0.71 0.67 0.67 0.85 0.84 0.74 0.55 0.36
Scaffold corrected N50 (K bp) 108.3 102.4 108.3 2521.3 904.5 644.9 32.9 23.1
Corrected chain N50 8 7 7 55 30 22 2 1

H. sapiens (chr14)
# correct 29916 29666 29943 35672 39573 15504 10566 19943
Sensitivity 0.66 0.66 0.66 0.79 0.88 0.34 0.23 0.44
PPV 0.99 1.0 1.0 0.98 0.98 0.98 1.0 1.0
F-score 0.79 0.8 0.8 0.87 0.93 0.5 0.37 0.61
Scaffold corrected N50 (K bp) 102.1 102.2 114.5 42.0 120.0 51.1 5.9 16.8
Corrected chain N50 23 22 25 13 49 1 1 2

M. fijiensis
# correct 9450 9362 9370 11877 12938 6037 7666 6333
Sensitivity 0.49 0.48 0.49 0.61 0.67 0.31 0.4 0.33
PPV 0.98 0.99 0.99 0.96 0.99 0.99 0.98 1.0
F-score 0.65 0.65 0.66 0.75 0.8 0.47 0.57 0.5
Scaffold corrected N50 (K bp) 30.0 30.1 30.1 28.4 31.6 23.4 15.7 14.8
Corrected chain N50 4 4 4 7 9 1 2 1

M. graminicola
# correct 4996 4973 4981 5580 5762 4417 4864 3949
Sensitivity 0.69 0.69 0.69 0.77 0.8 0.61 0.67 0.55
PPV 0.99 1.0 1.0 0.99 0.99 0.99 0.99 1.0
F-score 0.81 0.82 0.82 0.87 0.88 0.75 0.8 0.71
Scaffold corrected N50 (K bp) 120.7 120.7 120.7 114.1 122.2 114.1 86.5 51.3
Corrected chain N50 13 13 13 15 17 11 9 5

Table 2.12 Classification of incorrect links on S. aureus dataset.

OPERA-LG
Datasets

Rep. No rep.
OPERA ScaffMatch SOAP2 BESST BOSS SSPACE

Linking an unassigned copy 4 0 0 0 0 0 0 0
Linking different references 1 0 0 0 0 0 0 0
Links skipping contigs 0 0 0 0 0 3 0 1
Linking incorrect ends of contigs

that should be connected
0 0 0 1 2 1 2 0

Links skipping contigs and linking
incorrect contig ends

3 3 3 2 5 3 4 3

Links are joined correctly
but distance is wrong

0 0 0 0 0 0 0 0

2.4 Repeat aware scaffolding

Increasing the length of sequencing reads allows assembling short genomes but assembly

of long genomes remains one of the most interesting and challenging problems in bioinformat-
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ics. As it was mentioned in the introduction of this dissertation, conventionally, the genome

assembly process is divided into three stages: contig assembly, scaffolding, and gap filling.

The task of scaffolding tools consists of orienting contigs, joining them into chains (called

scaffolds) and providing distance estimates between neighboring contigs. Significant portions

of long genomes are repeated confusing the assembly of the limited length reads which is

manifested in numerous contig mis-assemblies and scaffolding errors. Repeats negatively

affect scaffolding in two ways: (i) they cause fragmentation of contigs, forcing skipping short

contigs and (ii) they produce false connections between non-adjacent contigs, significantly

complicating the task of finding the neighboring contigs.

The common strategy to reduce the amount of incorrect joins caused by repeats consists

of the following steps (ScaffMatch [62] and BESST [75]):

(1) filtering out repeats before the scaffolding process based on their coverage,

(2) scaffolding the remaining contigs

(3) inserting some of the filtered contigs in the scaffolding.

Usually the most effort is devoted to step (2), i.e., identification of correct joins between

remaining contigs. There are several optimization formulations for step (2), e.g., maximiz-

ing the number of “concordant” read pairs (ScaffMatch [62], SILP3 [60], etc) or minimizing

the number of “discordant” read pairs (OPERA [30], OPERA-LG [29]). Usually these for-

mulations are NP-complete [30] and solved either heuristically by greedy-like approaches

(SSPACE [9], ScaffMatch [62]), or exactly by Integer Linear Programming (ILP) or dynamic

programming (OPERA and OPERA-LG).

The first repeat aware scaffolding tool OPERA-LG [29] instead adds as many copies of

repeated contigs as necessary. The original OPERA problem formulation of minimizing the

number of discordant read pairs is modified to include the repeated contigs in a parsimonious

fashion. Thus, OPERA-LG simultaneously scaffolds both unique and repeated contigs. The

potential repeats are determined based on the read coverage analysis which may not be

accurate enough [29].
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The previous part of this chapter showed that the state-of-the-art validation framework

in [40] does not avoid significant errors in developing scaffolding benchmarks as well as

estimating scaffolding quality [59]. One of the interesting discoveries about the first repeat-

aware scaffolder OPERA-LG was that it does not exhibit significant improvement over the

original OPERA and thus, it can not really compete with the best non-repeat-aware tools like

ScaffMatch and SOAP2. In this chapter, we propose a new scaffolding tool BATISCAF (BAd

conTIg filtering SCAFfolding) which follows the same steps (1-3) but emphasizing filtering

out repeats (step (1)) instead of step (2). More precisely, we remove suspected repeats and

short contigs which offer multiple alternatives for scaffolding chains. After removal of all

confusing contigs, the scaffolding step (2) becomes trivial since no alternatives left. In the

final step (3) of inserting removed repeat and short contigs, multiple copies of repeats are

added to the appropriate slots between scaffolded contigs.

We validated BATISCAF on 5 benchmarks: three from the GAGE project [76]: S.

aureus, R. sphaeroides, and H. sapiens (chr14) along with two fungi datasets: M. fijiensis

and M. graminicola. Our experimental results show advantage of BATISCAF over existing

scaffolding tools.

2.4.1 Repeat and Short Contig Filtering Problem

BATISCAF is a novel repeat aware scaffolding tool. The high-level idea behind it

consists of 3 steps:

1. Filtering out potential repeats via ILP

2. Constructing backbone scaffolding for potentially unique contigs

3. Insertion of multiple copies of potential repeats into backbone scaffolds

Repeat and Short Contig Filtering Problem. Let C be the set of contigs. For each

contig ci ∈ C we produce two strands – the sequence for the first strand c+
i coincides with

the contig sequence and the sequence for the second strand c−i coincides with the reverse

complement of ci. We connect the corresponding vertices c+
i and c−i with an intra-contig
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edge ed = (c+
i , c

−
i ) of weight ∞ (a big enough number) (see Figure 1(a)). The set of all

intra-contig edges is denoted as Ed. Note that each contig ci ∈ C has one and only one

corresponding intra-contig edge ed ∈ Ed.

We say that a paired-end read r (e.g., Illumina technology) connects strands csii and c
sj
j

where si, sj ∈ {+,−}, i 6= j, of two distinct contigs if the forward read of r is aligned to

csii and the reverse read of r is aligned to c
sj
j . The vertices corresponding to these strands

are connected with an inter-contig edge e = (csii , c
sj
j ) of weight ωij if and only if they are

connected with ωij paired-end reads supporting similar gap estimate (statistically inferred

value for the distance in base pairs, gap estimation in BATISCAF follows [74]) between

the contigs ci and cj. Let E denote the set of such edges e. Finally, the scaffolding graph

G = (V = C+ ∪C−, E ∪Ed, ω) consist of vertices V = C+ ∪C− corresponding to the contig

strands connected with weighted intra- and inter-contig edges.
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Figure 2.13 (a) The scaffolding graph G. Each contig is represented by two vertices (+ and
−) corresponding to forward and backward strands. The intra-contig edges are dashed, the
inter-contig edges are solid. (b) The scaffolding graph corresponding to a valid scaffold.
The graph is a chain of alternating intra- and inter-contig edges. (c) The chain of contigs
corresponding to the scaffolding graph of a scaffold. Each contig is either in the original
orientation (+) or inverted (−).

Any valid scaffold corresponds to a scaffolding graph in which each vertex (strand)

is incident to exactly one intra-contig edge and at most one inter-contig edge (see Figure
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Figure 2.14 (a) A confusion triple: the same strand of contig A is connected with two strands
of contigs B and C; The two possible scenarios causing the confusion: (b) The contig A is a
repeat and another copy of contig A is connected with C; (c) The connection from A to C
jumps over the short contig B.

2.13(b)). Therefore, if a vertex in G is incident to at least two inter-contig edges, then

either one or both of them should be disregarded. Assuming no contig mis-assemblies such

confusing edges are caused by either repeat or short contigs (see Figure 2.14). If there is no

such confusion, the scaffolding graph G is a set of valid scaffolds (with potentially missing

links). So in order to avoid confusion and keep only reliable contigs we need to delete

suspected repeat and short contigs. Usually, repeat contigs are also short (which is defined

by the repeat monomer length of 150-400 bp [64]). Thus, the problem of repeat and short

contig removal can be formulated as the following

Repeat and Short Contig Filtering (RSCF) Problem. Given a scaffolding

graph G = (V,E ∪ Ed, ω) find minimum total length subset of contigs X ⊆ V

such that in subgraph G′ induced by V \X, any vertex v is incident to at most

one inter-contig edge.

The solution of the RSCF problem represents a set of contigs whose removal from

G leaves a set of simple alternating paths and/or cycles consisting of intra-contig edges

interspersed with inter-contig ones. The paths can be easily transformed into scaffolds. If

there are no cyclic chromosomes, we need to transform them into paths. Therefore, from

each cycle, we remove the least weight edge. After the least weight edge is removed from

each cycle the resulting alternating paths can be easily transformed into a set of scaffolds
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using a procedure similar to [62] (see Figure 2.13(c)). Such scaffolds are highly reliable since

there is no confusion during their extraction. Clearly, solving the RSCF problem does not

guarantee to exhaustively remove all the repeated contigs from C. Indeed, a contig with a

high degree of its strands which is not necessarily a repeated one in the scaffolding graph

would be a candidate for removal. The objective of RSCF problem ensures that the minimal

length contigs are removed.

The RSCF problem can be viewed as a set cover problem in which elements correspond

to confusion triples of contigs, i.e., contig triples with two E-edges connecting a single strand

with two different strands of other contigs (see Figure 2.14) and sets corresponding to contigs

– each contig c covers all confusion triples containing c. Therefore, this is a set cover problem

where each element belongs to at most three sets. Although such a problem is NP-complete,

it can be 3-approximated with a primal-dual algorithm [90].

The RSCF problem can be solved efficiently if the scaffolding graph does not contain

cycles. Therefore, instead of solving this problem exactly or approximately, we also propose

a fast heuristic consisting of finding the maximum spanning tree T (G) of the scaffolding

graph G (note that edges connecting the strands of the same contig will belong to T ) and

then finding the exact solution for T (BATISCAF-MST).

ILP Formulation for the RSCF Problem. Since the RSCF problem is NP-hard, we

propose to find the exact optimal solution using an Integer Linear Programming (ILP)

approach.

Let G = (V,E ∪ Ed, ω) be the scaffolding graph, where V is the set of contig strands.
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Let the length (in bp) of contig u be denoted as lu. We formulate the following ILP:

∑
v

lvxv → min

s.t. xu + xv ≥ yuv, ∀e = (u, v) ∈ E ∪ Ed (a)

yuv ≥ xu, ∀e = (u, v) ∈ E ∪ Ed (b)

yuv ≥ xv, ∀e = (u, v) ∈ E ∪ Ed (c)∑
v:(u,v)∈E∪Ed

yuv ≥ deg(u) − 2, ∀u ∈ V (d)

(
∑

v:(u,v)∈E∪Ed

yuv)− xu ≤ deg(u)− 1, ∀u ∈ V (e)

xu − xv = 0, ∀e = (u, v) ∈ Ed (f)

xu ∈ {0, 1}, ∀u ∈ V (g)

yuv ∈ {0, 1}, ∀e = (u, v) ∈ V (h)

(2.4)

Binary variables xu ∈ {0, 1} have the following meaning:

xu =


1,

if contig u is marked as either a repeat

or a possibly skipped short contig

0, otherwise.

(2.5)

Definition. Let u be a contig belonging to the scaffolding graph G. If by solving the ILP

(2.4) we obtain xu = 1 we call such contig untrusted (otherwise, trusted). The set of all

untrusted contigs is denoted as U .

Binary variables yuv ∈ {0, 1} have the following meaning:

yuv =


1,

if the link e = (u, v) is incident to

an untrusted contig (either u or v)
.

0, otherwise.

(2.6)

Definition. Let e = (u, v) be an edge in the scaffolding graph G. We call the edge e
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untrusted if it is incident to at least one untrusted contig.

The meaning of all the constraints is the following:

• Conditions (a), (b), (c) from the ILP (2.4) ensure that edges incident to an untrusted

contig are also marked as untrusted.

• Condition (d) means that the degree of a trusted contig u is at most 2 in the resulting

scaffolds, i.e. no more than two edges which are not marked as untrusted are incident

to it.

• Condition (e) means that if all the edges incident to a node u are marked as untrusted

than u is untrusted as well.

• Condition (f) guarantees that two strands of any contig are both are either marked as

trusted or untrusted.

Finally, the objective of the ILP (2.4) is to minimize the total length of the untrusted

contigs while requesting that all the trusted contigs be connected into chains or cycles (i.e.

their degree in the graph G \ U is either 0, 1, or 2).

The solution of ILP (2.4) represents a set of untrusted contigs U . After we remove them

from the scaffolding graph we obtain a graph T = G \ U with all its connected components

being either paths or cycles. We remove the least weight edge from each cycle. As a

result, we obtain a set of alternating paths which can be translated into scaffolds following a

procedure similar to [62]. In each scaffold, S relative ordering and orientation of each contig

is established.

Most Likely Repeat and Short Contig Insertion. The second stage of our algorithm

which is constructing scaffolding corresponding to contigs left after removing confusing con-

tigs (see Figure 2.13(c)) is trivial. The third stage of our approach is to insert the removed

contigs from the set U back into the scaffolds. Potential repeats identified in the first stage

are inserted into the scaffolds as many times as it can be inferred from the scaffolding graph

structure. For each scaffold s ∈ S we create a surrounding graph GS = (S∪N,E) which is a
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subgraph of the scaffolding graph G on the set of nodes representing contig strands in S and

all their neighboring nodes N , i.e. ∀n ∈ N, ∃u ∈ S, such that e = (n, u) ∈ E(G) (see Figure

2.15a). In GS, the orientation of each contig in S is known and the relative order between

contigs in S is established. The same information is to be determined for the contigs in N .

Surrounding graphs Gsi corresponding to different scaffolds si ∈ S may share neighboring

nodes, i.e. Nk ∩Np 6= ∅ for some scaffolds sk and sp. This fact determines the copy number

of each repeated contig.

Next, we build a directed surrounding graph
−→
GS where nodes represent oriented contigs

and arcs encode the relative ordering of neighboring contigs. The orientation of each contig

in N , as well as the relative ordering between any contig n ∈ N and its neighbors from S in

GS, can be determined in the following way. Let e be an edge in the surrounding graph GS

between a strand of contig n ∈ N and a strand of a trusted contig u ∈ S. If the orientation

of u is determined to be “+” and e is incident to the negative strand of u then if e is also

incident to the positive strand of n the orientation of n is assigned to be “+” (otherwise

“–”). A new arc from n to u is added to
−→
GS. In the same manner, the direction of each arc

and the orientation of each contig is determined. For example, in the graph GS depicted in

Figure 2.15a, the positive strand of the contig X1 ∈ N is connected to the negative strand

of contig B ∈ S (which has orientation “+”). Therefore, in the graph
−→
GS depicted in Figure

2.15b, contig X1 is assigned orientation “+” and there is an outgoing arc connecting it with

B.

The directed graph
−→
GS may not be acyclic because some of the newly introduced contigs

(from the set N) into the scaffold are repeats. We have to identify the set of repeated contigs

R and for each contig r ∈ R we replace it with several copies of itself. The resulting graph

is acyclic, i.e. it represents a partial order. A minimal set of repeated contigs in
−→
GS can

be determined by solving the Minimum Feedback Vertex Set problem or any of its weighted

versions (for example, using contig lengths as weights). It is known that this problem is

APX-hard on directed graphs [26], i.e. it does not admit any polynomial time approximation

schemes (PTAS). Therefore, we apply a simple greedy heuristic to determine the feedback
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vertex set. Namely, we randomly pick a cycle C in
−→
GS, find the smallest length contig c ∈ C

and remove c from the graph. We assign a copy of c to each of its neighbors in
−→
GS. We

continue this procedure until the graph is acyclic.
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Figure 2.15 Insertion procedure. Contigs belonging to a backbone scaffold S have green color;
contigs which are candidates for insertion have blue color. a) A fragment of surrounding

graph
−→
GS with the chain of trusted contigs A, B, C and neighboring contigs X1 − X4. b)

The directed surrounding graph
−→
GS corresponding to GS. c) The scaffold S augmented with

contigs X1, X2, X3, and X4.

We refer to the transitive reduction of the directed acyclic graph (DAG)
−→
GS as spine.

The spine consists of all the nodes in the scaffold S and some or all the N nodes.

We define a slot S = (u, v) as a set of nodes between a pair of articulation nodes u and

v in the spine of
−→
GS which does not contain any other articulation point. For a slot S there

can be only two cases (or a combination of them):

1. It is composed of a set of directed paths from u to v (e.g., in the Figure 2.15b, the slot

(A, B) comprises two paths: A→ X1 → B and A→ X2 → B);

2. It contains only “dangling” nodes attached either to u or to v (e.g., in the Figure 2.15b,
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the slot (B, C) contains a dangling node X4 attached to B and another dangling node

X3 attached to C);

In the first case, for all the contigs belonging to S we identify their relative ordering by

sorting them according to the distance from either u or v. In the second case, a “dangling”

node D may not necessarily belong to S. For example, in Figure 2.15b, contig X3 may belong

to either slot (B,C) or (A,B) depending on the distance estimates between X3 and C and

between B and C. Without loss of generality, let’s consider D to be connected with a contig

Si ∈ S by an outgoing arc (e.g. contig X3 has an outgoing arc to C). Contig D may be

inserted into one of the slots (Si−1, Si), (Si−2, Si−1), etc. For all such slots Sk = (Si−k−1, Si−k),

we estimate the probability PSk = P (D ∈ Sk) defined as

PSk = F (x ≤ d(D, Si) ≤ x+ y),

where

x =
k−1∑
p=0

(d(Si−p−1, Si−p) + l(Si−p)),

y = d(Si−k−1, Si−k)− l(D),

l(z) is the length of contig z, d(z1, z2) is distance estimate between two contigs z1 and

z2, F is the normal distribution N(µ, σ2) with µ, σ2 being the mean and standard deviation

of the library insert size.

The dangling contig d is assigned to the slot Sk0 , where k0 = argmaxkPSk
. After all the

contigs in N are assigned to the corresponding slots, we get the set of scaffolds S ′ augmented

with repeated and short contigs (see Figure 2.15c).

2.4.2 Results

Datasets with repeats. We used the five B split datasets described in the previous part

of theis chapter (see Validation results in 2.3.3). The following Illumina paired-end read
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datasets were used: S. aureus - read length 37, insert size 3600; R. sphaeroides - read length

101, insert size 3700; M. fijiensis - read length 100, insert size 1800; H. sapiens (chr14) -

read length 101, insert size 2700; M. graminicola - read length 100, insert size 1800. In the

Table 2.13 the basic characteristics of the contig datasets are presented.

Table 2.13 The basic characteristics of the simulated contig datasets: “avg len”- average
contig length, “# unique” - the number of unique contigs (no copies counted), “# total” -
the total number of contigs including copies, “# repeats” - the number of repeated contigs,
“# max CN” - the maximum copy number, i.e. the number of times the most abundant
contig is encountered in the dataset.

avg len # unique # total # repeats # max CN
S. aureus 13.9 K 203 244 22 5
R. sphaeroides 7.2 K 612 652 30 5
H. sapiens (chr14) 1.7 K 44350 45035 613 5
M. graminicola 4.7 K 6875 7261 280 9
M. fijiensis 2.0 K 17781 19357 995 28

Performance metrics. We used the following evaluation metrics in our comparison:

• number of correct contig links;

• sensitivity (or recall) and PPV (positive predictive value) - two scaffolding quality

metrics introduced in [62] and used in [56]. They are defined as TPR = TP
P
, PPV =

TP
TP+FP

, where TP is the number of correct contig joins in the output of the scaffolder

(true positives), FP be the number of erroneous joins (false positives), and P is the

number of potential contigs that can be joined in scaffold (equal to the number of

contigs minus the number of reference sequences). We also report F-score equal to the

harmonic mean of TPR and PPV ;

• Corrected N50 which is the length of contigs in the smallest corrected scaffold necessary

to cover 50% of all contigs [76].

Validation results. We compared our tool with other five state-of-the-art stand-alone scaf-

folders: OPERA-LG, SSPACE, BESST, ScaffMatch, and BOSS. On each of the five datasets

BATISCAF outperforms all other tools (Table 2.15). Notably, a large gap between BATIS-

CAF and the remaining tools is observed on the GAGE datasets S. aureus, R. sphaeroides,
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and H. sapiens (chr14) in terms of both F-score and corrected N50 metrics. Indeed, on S.

aureus it identified 33 %, on R. sphaeroides 23 %, and on H. sapiens (chr14) 34 % more

correct contig links than the next top competitor (ScaffMatch on the first two datasets and

OPERA-LG on the third one) (see Table 2.15).

BATISCAF scaffolds for the fungi datasets are also of a better quality, although it did

not aggressively join contigs as on the GAGE datasets. However, a small improvement over

ScaffMatch in terms of F-score is compensated by more contiguous scaffolds as it is suggested

by the corrected N50 results (see Table 2.15).

The runtime of BATISCAF on the largest H. sapiens (chr14) dataset containing 44350

distinct contigs is reasonable (≈ 80 minutes) and comparable with runtime of other tools

and the wall clock time spent on solving the ILP (2.4) is 16 seconds. We used CPLEX

(version 12.7) for solving the ILP (2.4). All the experiments were run on 2.5GHz 16-core

AMD Opteron 6380 processors with 256Gb RAM running under Ubuntu 16.04 LTS.

Further, we also used the well-established standard evaluation framework [40] to confirm

the advantage of BATISCAF over the competitor tools. As we mentioned previously, it does

not take into account repeats and chooses only the “best” placement of each contig in the

reference ground truth scaffolding. We generated artificial contigs for the same five datasets

using the scripts from [40] (https://github.com/martinghunt/Scaffolder-evaluation).

Note, that these contigs are different from the ones we used in the repeat aware evaluation.

The results in Table 2.14 suggest that BATISCAF is a top performer even in repeat unaware

settings.

Conclusions. We presented a novel highly performing repeat-aware scaffolding tool BATIS-

CAF (and its faster version BATISCAF-MST). Our tool solves the scaffolding problem in

an innovative way. Instead of tackling it directly, BATISCAF first solves the problem of

minimal length repeat and short contig removal after which the problem of scaffolding be-

comes trivial. The remaining contigs are connected into very reliable scaffolds which are

then augmented with the previously removed contigs. The procedure for insertion of short

and repeated contigs into the scaffolds detects the necessary number of times each repeated

https://github.com/martinghunt/Scaffolder-evaluation


60

contig to be inserted. For each contig copy, it finds the most likely slot for insertion.

We validated BATISCAF on 5 benchmarking datasets and compared it to other state-

of-the-art scaffolders. Our experiments showed that BATISCAF is the top performer in

terms of F-score and corrected N50 on all the datasets.

The future work on BATISCAF will be focused on providing the users the possibility to

scaffold contigs using multiple libraries (including second and third generation sequencing).

Table 2.14 The evaluation results using the standard repeat unaware framework [40].

BATISCAF
Datasets

NO-MST MST
OPERA-LG ScaffMatch BESST BOSS SSPACE

S. aureus
# correct 147 145 119 141 105 128 107
F-score 0.90 0.89 0.81 0.88 0.75 0.85 0.75

R. sphaeroides
# correct 492 496 333 483 371 231 141
F-score 0.89 0.90 0.73 0.89 0.78 0.57 0.39

H. sapiens (chr14)
# correct 35593 34498 29172 34741 15201 27432 19397
F-score 0.88 0.86 0.80 0.88 0.52 0.77 0.62

M. fijiensis
# correct 11519 11392 9376 11373 6053 11644 6597
F-score 0.76 0.76 0.70 0.77 0.51 0.79 0.55

M. graminicola
# correct 5145 5114 4687 5126 4184 5154 3846
F-score 0.89 0.88 0.85 0.89 0.80 0.89 0.76
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Table 2.15 The evaluation metrics on the five datasets (α = 0.97, λ = 200) as obtained from
solving the ILP (2.4). The bold font marks the best results.

BATISCAF
Datasets

NO-MST MST
OPERA-LG ScaffMatch BESST BOSS SSPACE

S. aureus
# correct 172 169 109 129 87 94 105
Sensitivity 0.71 0.70 0.45 0.54 0.36 0.39 0.44
PPV 0.85 0.84 0.69 0.70 0.66 0.62 0.76
F-score 0.77 0.76 0.54 0.61 0.47 0.48 0.56
Scaffold corrected N50 (K bp) 245.3 228.4 113.3 159.8 112.2 112.2 159.4

R. sphaeroides
# correct 500 501 333 405 358 196 114
Sensitivity 0.77 0.78 0.52 0.63 0.56 0.30 0.18
PPV 0.87 0.86 0.84 0.91 0.94 0.79 0.76
F-score 0.82 0.82 0.64 0.69 0.70 0.43 0.29
Scaffold corrected N50 (K bp) 679.2 361.5 85.7 173.1 209.8 28.5 21.2

H. sapiens (chr14)
# correct 30916 30092 23168 20780 12376 5280 12096
Sensitivity 0.69 0.67 0.51 0.46 0.27 0.12 0.27
PPV 0.79 0.76 0.77 0.57 0.79 0.50 0.61
F-score 0.74 0.71 0.61 0.51 0.40 0.19 0.37
Scaffold corrected N50 (K bp) 33.4 25.1 17.4 19.4 11.0 4.3 9.9

M. fijiensis
# correct 10397 11019 7913 10095 5442 6093 5099
Sensitivity 0.54 0.57 0.41 0.52 0.28 0.32 0.26
PPV 0.84 0.85 0.82 0.82 0.89 0.78 0.80
F-score 0.66 0.68 0.55 0.64 0.43 0.45 0.39
Scaffold corrected N50 (K bp) 26.9 25.9 16.9 24.5 15.6 11.3 11.0

M. graminicola
# correct 5330 5455 4490 5237 4184 4354 3522
Sensitivity 0.74 0.75 0.62 0.72 0.58 0.60 0.49
PPV 0.93 0.93 0.89 0.93 0.94 0.89 0.89
F-score 0.82 0.83 0.73 0.81 0.72 0.72 0.63
Scaffold corrected N50 (K bp) 101.9 97.5 64.8 89.2 75.7 56.2 38.2



62

PART 3

ORF ASSEMBLY

3.1 Introduction

RNA-Seq has become one of the most popular technologies due to its broad applicability

to many biological problems. The most widespread application of RNA-Seq is transcriptome

expression estimation; however, due to the fact of being relatively cheap, it can be successfully

used for transcriptome sequencing, for example. Other emerging applications of RNA-Seq

are the estimation of protein activity levels and estimation of pathway expression (see Figure

3.1). For a more accurate estimation of protein/pathway expression, one needs to accurately

reconstruct the whole set of transcripts and their frequencies.

A study that sets the pace for transcript reconstruction using database was carried by

[97]. Their whole genome assembly tool ORFome consists of three steps: first, each read

is assessed individually and the putative open reading frames (ORFs) are annotated; then

the annotated ORFs are assembled into a collection of peptides using a modified EULER

assembly method and finally the assembled peptides are used for the database searching of

homologs. A major difference between the ORFome assembly approach and the conventional

whole genome assembly is that the former approach conducts gene annotation using all

six frame translations, followed by the assembly of identified short peptides, whereas the

latter approach conducts gene annotation after assembly of DNA sequences. The algorithm

implemented in ORFome takes a different approach compared to just clustering a set of

sequence reads like in [95]). However, the unsupervised clustering of sequence reads also has

the limitation of clustering the input reads based only on k-mer frequencies in the ‘short’

reads without assembly.

In [80], the authors take a completely new approach proposing a method to reconstruct

new mRNA transcripts from short sequencing reads with reference information of known
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transcripts in existing databases. They used some prior knowledge in the form of transcript

annotations in RefSeq database to define exon boundaries and fill in the transcript regions

not covered by sequencing data. Their approach was validated on short sequences reads data

from transcriptome and they were able to identify thousands of transcripts not previously

annotated in RefSeq. Those transcripts were much longer than the one created by methods

such as Trinity[34] which assume no prior knowledge and 73% of these new transcripts found

supports from UCSC Known Genes [39], Ensembl [27] or EST transcript annotations.

The state-of-the-art RNA-Seq assembler Trinity [34] is able to produce long contigs

which contain open reading frames (ORFs) (Trinity is bundled with Transdecoder, a script

that inputs a set of contigs and outputs a set of ORFs). However, as experiments show [14],

many ORFs produced by Trinity + Transdecoder are non-complete (see Figure 3.2). Trinity

as a De Bruijn graph-based assembler uses 25-mers for constructing contigs; therefore, it may

not join some of the reads into a connected component (see [34] for more details). Using

k-mers with k < 25 may result in much noisy output, i.e. in this case an RNA-Seq assembler

can produce a lot of non-existing contigs.
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Figure 3.1 RNA-Seq data analysis flow.

We can ask the following question: is it possible to assemble full ORFs from partial

ones? In this part of the dissertation, we propose DORFA, a tool for assembly of complete

ORFs from partial ones based on a protein database.

We applied DORFA to a mollusk dataset (Dendronotus iris) and obtained 337 new full

ORFs. Validation of the new ORFs was performed by comparison with the complete ORFs

obtained by Trinity + Transdecoder.



64

5' 3'

5'

5'

5'

3'

3'

3'

Figure 3.2 Full ORF, 3’-partial (i.e. missing 3’-end), 5’-partial (i.e. missing 5’-end), and
internal ORF.

3.2 DORFA: Database-guided ORFeome Assembly method from RNA-Seq

Data

3.2.1 Methods

Two partial ORFs with an overlap may be concatenated (joined) if mapping to a protein

database (ORF database) they correspond to the same protein (ORF of a related species).

However, if the alignment of the two overlapping partial ORFs doesn’t include significant

parts from both ORFs then it is unlikely that these two ORFs came from the same real

complete ORF. Thus, a chain of partial ORFs starting from a 3’-partial and ending with

a 5’-partial ORF (with possibly some intermediate partial internal ORFs) with overlaps

between adjacent (neighbor) partial ORFs represents a candidate complete ORF.

We must have a measure of certainty that a join of two partial ORFs is meaningful, i.e.

that there exists a protein to which potentially a newly assembled complete ORF may be

translated. We fully rely on the E-value which is a measure that assesses the significance of

a local alignment of a sequence query to a database. Recall the definition of the E-value:

E = Kmne−λS
′

(3.1)

Thus, the significance of a match linearly depends on the size of the query and the database

and it exponentially increases when a higher bit score is achieved. E-value is attributed to

a pair of segments (one is from the query and the other is from the database) whose score

cannot be increased by extension or trimming, usually referred to as high-scoring segment
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pair (HSP). We will call the query segment of an HSP matching segment.

We define a pair of partial ORFs significant if the significance EAB of their join exceeds

the significance of each of the partial ORFs EA and EB, or more formally:

EAB < min{EA, EB} (3.2)

For a significant ORF pair we additionally require the following two conditions:

1. the length of the overlap be a multiple of 3. This condition ensures that the resulting

ORF is a valid ORF (it can be translated to a protein) and both partial ORFs are

in-phase. It is very important to maintain this condition because otherwise, we lose

the initial translational information (for example, a 3’-partial ORF after shifting to a

different phase may lose the start codon).

2. the overlap between two partial ORFs be mapped to a protein in the database, i.e. it

must be a part of a matching segment. This condition is crucial for a meaningful join

because otherwise, two partial ORFs can have an overlap by chance.

Denote by α the significance threshold used for mapping ORFs to a database. A match-

ing segment is called α-significant if the E-value of its corresponding HSP is less than α. A

significant ORF pair matching to a protein P is of one of the following three types:

1. Both partial ORFs have α-significant matching segments with P that get fused after

the ORF concatenation. The formula 3.3 must hold; otherwise, we do not consider the

match as a strong evidence of joining the two ORFs.

2. Only one of the two partial ORFs has an α-significant matching segment M with P .

Without loss of generality, consider that M belongs to the ORF A and A and B have

an overlap. In this case, M is extended after the concatenation of A and B and the

ORF pair gets a higher bit score S ′ than the bit score of A. However, the condition

S ′ > S is not strong enough since we have to account for the lengths of both A and B.

Thus, if we put EB =∞, the formula 3.3 still holds.
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3. Neither of the two ORFs have α-significant matching segments with P . However,

when joined together, the two partial ORFs A and B may become an α-significant

pair. Note that in this case, the matching segment does not have a high E-value score.

Set EA = EB =∞ and the formula 3.3 is satisfied.

We call a significant ORF pair valid if it consists of either i) 3’-partial, 5’-partial; ii) 3’-

partial, internal; iii) internal, internal; iv) internal, 5’-partial. ORFs. So a significant pair of

a 3’ - partial and a 5’ - partial ORF is a candidate to be a full ORF that was not constructed

by the RNA-Seq assembler. As well, a sequence of partial ORFs, for which the first and the

last ORFs are 3’- and 5’-partial correspondingly, but all the intermediary ORFs are internal

ones (in other words, a sequence of partial ORFs for which every pair of adjacent ORFs is a

valid ORF pair) could be not assembled due to many factors, such as inconsistent coverage or

the limitations of the assembly algorithm. We propose a new method called DORFA which

improves on the top of RNA-Seq assembly algorithms. Namely, it uses non-complete ORFs

to produce new complete ORFs that were missed by assembly programs such as Trinity,

Bridger, etc.

Consider a digraph G = (V,E), where V is the set of all non-complete ORFs and the

set of edges E includes all valid ORF pairs, i.e. two vertices x and y in G are connected by

an edge e if and only if:

1. x and y are two overlapping ORFs with the length of the overlap multiple of 3;

2. (x, y) is a significant pair, i.e. there exists a protein in the database for which there

exists a matching segment of the joined ORF xy covering the overlap;

3. (x, y) is valid.

We call graph G ORF overlap graph, or OOG (see Figure 3.4).

In the OOG G we search for all valid paths, i.e we search for paths starting with a

3’-partial, ending with a 5’-partial, and possibly having one or more intermediate internal

ORFs. Note that the OOG is not a tripartite graph since we admit edges between internal
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Figure 3.3 A 3’-partial ORF has overlap of 9 nt with a 5’-partial ORF.

3'-partial ORFs internal ORFs 5'-partial ORFs

Figure 3.4 (a) Red path with 6 hops; (b) Green path with 2 hops; (c) Yellow path with 1
hop.

ORFs. Hopefully, the problem of enumeration of valid paths in an OOG is tractable, since its

main bottleneck is in finding paths between all internal ORFs and in practice the subgraph

of the OOG consisting of internal ORFs is not dense.

The set of valid paths in the OOG is then undergone a rigorous filtering procedure.

Since we aim at keeping paths corresponding to an existing complete ORF and at filtering

out paths corresponding to chimeric ORFs, we do the following:

• Map newly constructed ORFs (the ones that correspond to valid paths in OOG) to

the protein/ORF database;

• Check whether the significance of the map to a protein of the new full ORF is higher

(i.e. the E-value is less) than the significance of each of the significant ORF pairs

comprising this full ORF. In other words, if the newly assembled full ORF corresponds

to a path in the OOG with E-value of its edges (E1, E2, ..., Em), we require that for its

E-value Efull the following inequality to be satisfied:

Efull < min{E1, E2, ..., Em} (3.3)
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3.2.2 Results

For our experiments we used 6 mollusk datasets (Dendronotus, Flabellina, Hermissenda,

Melibe, Pleurobranchaea, Tritonia) consisting of RNA-Seq reads with read length 100 and

insert size 180. We ran Trinity on these reads with the default k-mer length (k = 25). ORFs

were searched using Transdecoder. The number of ORFs are presented in the Table 3.1.

Table 3.1 Number of complete and non-complete ORFs (3’-partial, internal, and 5’-partial)
for 6 mollusk datasets.

3’-partial internal 5’-partial complete
Dendronotus 4173 6376 6849 15826

Flabellina 4198 5080 6989 22189
Hermissenda 4594 7896 7777 15051

Melibe 4887 6596 8178 20684
Pleurobranchaea 4602 6101 8417 25569

Tritonia 4410 5616 6822 18107

We ran DORFA on all 6 datasets with the minimum overlap between two contigs 6

nt against two databases: first, we used Swiss-Prot protein database and, second, for each

mollusk we used ORF database consisting of full and 5’-partial ORFs of the remaining 5

mollusks. ORF databases were transformed into protein databases using EMBOSS Transeq.

We used DIAMOND to map ORFs to Swiss-Prot and the ORF databases. The Table 3.2

presents the number of new full ORFs reconstructed by DORFA against Swiss-Prot and the

ORF databases.

Table 3.2 Number of reconstructed full ORFs for each of the 6 mollusk datasets.

Swiss-Prot ORF database intersection
Dendronotus 1118 2015 472

Flabellina 1757 2630 734
Hermissenda 2066 3673 762

Melibe 1923 3235 823
Pleurobranchaea 2234 4014 1012

Tritonia 1737 3087 732

In order to evaluate DORFA performance from the functional point of view, we consid-
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ered the increase in the number of protein homological groups after running DORFA on each

mollusk dataset (against Swiss-Prot). We used Mnemonic IDs (MIDs) from the Swiss-Prot

as the lowest homology level. The results are presented in the Table 3.3.

Table 3.3 Increase of number of Mnemonic IDs after running DORFA on Trinity contigs.

Trinity MIDs Trinity + DORFA MIDs MIDs increase (%)
Dendronotus 4858 314 6.46

Flabellina 5336 380 7.12
Hermissenda 4423 470 10.62

Melibe 5058 435 8.60
Pleurobranchaea 5239 465 8.88

Tritonia 5052 463 9.16
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PART 4

INFERENCE OF GENE EXPRESSION AND PATHWAY ACTIVITY

LEVELS FROM RNA-SEQ DATA

4.1 Introduction

In this part, we are concentrated on the downstream RNA-Seq analyses (see Figure

1.1.2). RNA-Seq experiments use high-throughput sequencing to generate both sequence

and abundance information about expressed gene isoforms. The two most common appli-

cations of RNA-Seq are to quantify gene/isoform expression levels in single samples and

identify genes/isoforms that are differentially expressed between samples. Both applications

are affected by noise introduced by library preparation and sequencing errors as well as

ambiguities in read mapping. Chapter 4.2 is dedicated to describing IsoEM2 which is an

improved combination of previously published tools IsoEM [68] and IsoDE [2].

Chapter 4.3 presents a novel quantification approach for the inference of pathways ac-

tivity levels from RNA-Seq data. This approach is built upon a simple assumption which

states that a pathway activity is positively correlated (or, in some sense, proportional) with

the expression levels of all the enzymes which are active in it. In other words, the more

enzymes belonging to a particular pathway are produced (i.e., the genes coding for those

enzymes are more expressed), the more active that pathway is. The challenge in quantifi-

cation of pathways activity levels is ambiguity created by some enzymes which work in the

context of several pathways simultaneously. We present a novel tool called EMPathways

which overcomes these challenges. EMPathways takes as input an RNA-Seq sample and

outputs activity levels of pathways expressed in that sample. It is also designed to conduct

differential pathway activity level analysis between several samples.

The ambiguities which were pointed out to create challenges for solving the above de-

scribed quantification problems are of similar abstract nature. Both tools formalize them
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as a maximum likelihood (ML) problem. Efficient algorithms based on the Expectation-

Maximization (EM) approach are proposed.

4.2 IsoEM2: Quantification and Differential Expression Analysis of Gene and

Isoform Expression from RNA-Seq data

Numerous tools for RNA-Seq quantification have been developed. A comprehensive

assessment study [43] recently compared the most commonly used tools BitSeq [32], CEM

[54], Cufflinks [87], eXpress [71], IsoEM [68], MMSEQ [89], RSEM [52], rSeq [77], Sailfish

[69], Scripture [37], and TIGAR2 [67]. The results in [43] show that IsoEM [68] has one

of the highest accuracies in all experiments (see also Supplementary Table 1) while being

orders of magnitude faster than the other best-performing methods.

IsoEM is based on the Expectation-Maximization (EM) algorithm. Its probabilistic

model takes into account the fragment length distribution (with mean/standard deviations

specified by the user or automatically inferred when using paired-end reads) and incorporates

base quality scores and strand information (if available). IsoDE [2] performs differential gene

expression analysis using FPKM/TPM values estimated for bootstrap samples generated by

re-sampling alignments. Although bootstrapping is computationally expensive, the high

speed of IsoEM makes the running time of IsoDE practical.

Here we introduce IsoEM2, a new version of the IsoEM package that uses bootstrapping

to infer confidence intervals for gene and isoform expression level estimates. The accompa-

nying differential expression tool IsoDE2 has also been updated to take advantage of the fast

in-memory bootstrapping of IsoEM2, resulting in speedups of over 200× over the original

version in [2].

Compared to the previous versions, the main enhancements are the addition of confi-

dence intervals for FPKM and TPM estimates produced by IsoEM2, the substantially faster

running time for performing bootstrapping with IsoDE2, and the development of Galaxy

wrappers making both IsoEM2 and IsoDE2 easy to use via a user-friendly web interface.
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Table 4.1 Feature-based comparison of state-of-the-art RNA-Seq quantification tools. In the
reference row, G stands for genome and T for transcriptome.

XXXXXXXXXXFeature
Tool

Is
oE

M
2

K
al

li
st

o

B
it

S
eq

C
E

M

C
u

ffl
in

k
s

eX
p

re
ss

M
M

S
E

Q

R
S

E
M

rS
eq

S
a
il

fi
sh

S
cr

ip
tu

re

T
IG

A
R

2

Alignment free 7 3 7 7 7 7 7 7 7 3 7 7
Reference G/T T T G G T T G/T T T G T
Confidence
intervals

3 3 7 7 3 3 7 3 7 7 7 7

Indels 3 3 3 3 3 3 3 7 3 3 3 3
Integrated DE 3 3 3 7 3 3 3 3 7 3 7 7
GUI 3 7 7 7 3 7 7 7 7 3 7 7
Multi-threading 3 3 3 7 3 3 7 3 7 3 7 7
Frag. length
distribution

3 3 7 7 3 3 3 3 7 7 7 7

Sequence bias 3 3 3 3 3 3 3 7 7 3 7 3

4.2.1 Software Features of IsoEM2

Table 4.1 provides a feature-based comparison of the tools included in the assessment

of [43] and the subsequently published Kallisto [11]. IsoEM2 offers a broad range of features

and achieves one of the highest accuracies (Supplementary Table 1). It is also significantly

faster than the other best-performing methods with the exception of Kallisto. On real

datasets with over 100M read pairs, the HISAT2/IsoEM pipeline requires just over 1 hour

to perform both read alignment and RNA-Seq quantification with 200 bootstraps using 16

CPU cores (Supplementary Table 3). Although the alignment-free Kallisto is 5-10× faster,

its confidence intervals are substantially less reliable than those generated by IsoEM2 (see

Tables 4.2 and 4.3).

IsoEM2 IsoEM2 takes as input aligned RNA-Seq reads in (compressed) SAM format

and outputs FPKM and TPM estimates of gene and isoform expression levels. Unlike the

original implementation in [68], IsoEM2 computes confidence intervals for the estimates

using the bootstrap method [24]. In each run IsoEM2 generates N bootstrap estimates

by in-memory re-sampling of the compatible read alignments. For each genomic feature

(gene or isoform) and given confidence level C ∈ (0, 1), the confidence interval [clow, chi] is
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computed from the N bootstrap estimates B = {b1, . . . , bN} by setting clow and chi equal

to the k-th smallest, respectively k-th largest element of B, where k = bN(1− C)/2c. By

default IsoEM2 uses C = 0.95 and N = 200, but these settings can be changed by the user.

IsoEM2 generates four tab delimited output files for gene/isoform FPKM/TPM estimates.

Each file includes a point estimate and the confidence interval for each feature. Additionally,

it generates a compressed archive containing the bootstrap estimates used to compute the

confidence intervals; these archives can be used for DE analysis using IsoDE2.

Besides the command-line version, IsoEM2 is also available with a user-friendly GUI

through a Galaxy wrapper (Supplementary Figure 1). The wrapper can be downloaded

from the Galaxy Tool Shed and installed on any local installation of Galaxy. The Galaxy

tool is designed to work with both single-end and paired-end Illumina RNA-Seq reads as

well as single-end Ion Torrent reads. It takes as input unaligned RNA-Seq reads and it

maps them to a transcriptome reference selected by the user through the wrapper interface.

The aligned reads are then automatically processed by IsoEM2. In addition to IsoEM2, the

wrapper needs HISAT2 [45] to be installed on the Galaxy server.

IsoDE2 IsoDE2, which is an extension of IsoDE [2], performs differential expression

(DE) analysis using bootstrap samples generated by IsoEM2. To test for differential expres-

sion, the bootstrap expression level estimates generated for the two conditions by IsoEM2

are paired and used to compute for each gene a set of fold change estimates. A confident

fold change f is then computed for a user-specified significance level under the null hypoth-

esis that fold changes obtained from bootstrap estimates are equally likely to be greater or

smaller than f . For details on the format of IsoDE2 output files see Supplementary data.

4.2.2 Experimental Results

We conducted experiments to assess both the running time and the accuracy of confi-

dence intervals of the updated IsoEM2/IsoDE2 suite and of the newly published Kallisto [11].

We only included Kalisto in this comparison since IsoEM was already shown to dominate in
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accuracy and/or running time the methods included in the comparative assessment of [43].

The running time of IsoEM2 is much smaller compared to the bootstrapping step (called

IsoBoot) of the old IsoDE. This is achieved by implementing the re-sampling in IsoEM2

based on internal data structures representing connected components of the read-isoform

compatibility graph [68]. To assess the runtime improvement, we used two mouse retina

RNA-Seq datasets from [44] with ∼100M unaligned read pairs each. On each dataset, gener-

ating 200 bootstrap samples with IsoEM2 has a speed-up of over 200× compared to IsoBoot

(Supplementary Table 2). Although Kallisto is 5-10× faster (Supplementary Table 3), the

HISAT2/IsoEM pipeline remains very practical, requiring just over 1 hour to perform read

alignment and RNA-Seq quantification with 200 bootstraps using 16 CPU cores.

Accuracy Comparison To assess the accuracy of gene/isoform expression level es-

timates we computed the Pearson correlation with the known ground truth. To assess the

quality of confidence intervals we used the percentage of genes for which confidence intervals

contained the known ground truth. Since Kallisto does not output explicit confidence inter-

vals, we ran it with the “-B 200” option to generate 200 bootstrap estimates and computed

confidence intervals using the approach described in Section 4.2.1 for IsoEM2.

Tables 4.2 and 4.3 give Pearson correlations and confidence interval coverages for gene,

respectively isoform expression level estimates obtained by IsoEM2 and Kallisto on datasets

with 1M-10M simulated single-end reads from [43]. The confidence interval coverage for

C = 95% reports how frequently the 95% CI estimated by IsoEM2 or Kallisto contains the

true gene expression value. The accuracy metrics are computed both over the subset of

genes/isoforms with non-zero ground truth, as in [43], and over all genes/isoforms. We note

that, although Kallisto has similar Pearson correlations to IsoEM2 over the genes and iso-

forms with non-zero truth, its Pearson correlation is significantly lower than that of IsoEM2

when including isoforms with zero ground-truth. More importantly, for all considered sets

of genes and isoforms, the coverage of 95%-confidence intervals computed by Kallisto is

substantially lower than that of IsoEM2.
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Table 4.2 Gene expression level estimation accuracy on simulated RNA-Seq datasets with
1M-10M single-end reads from [43].

.

Number of reads 1M 3M 10M

All genes
Pearson

correlation
IsoEM2 0.995 0.996 0.996
Kallisto 0.84 0.84 0.84

Confidence interval
coverage for C=95%

IsoEM2 0.94 0.95 0.94
Kallisto 0.80 0.78 0.78

Genes with non-zero ground-truth
Pearson

correlation
IsoEM2 0.96 0.98 0.98
Kallisto 0.96 0.98 0.98

Confidence interval
coverage for C=95%

IsoEM2 0.74 0.77 0.72
Kallisto 0.33 0.27 0.38

Table 4.3 Transcript expression level estimation accuracy on simulated RNA-Seq datasets
with 1M-10M single-end reads from [43].

Number of reads 1M 3M 10M

All isoforms
Pearson

correlation
IsoEM2 0.98 0.98 0.98
Kallisto 0.89 0.89 0.89

Confidence interval
coverage for C=95%

IsoEM2 0.95 0.95 0.94
Kallisto 0.89 0.86 0.82

Isoforms with non-zero ground truth
Pearson

correlation
IsoEM2 0.90 0.94 0.96
Kallisto 0.90 0.94 0.96

Confidence interval
coverage for C=95%

IsoEM2 0.59 0.64 0.61
Kallisto 0.44 0.38 0.28

4.3 Metabolic Pathways Activity Levels: Inferring Relative Abundance and

Differentially Expressed Pathways from RNA-Seq data

RNA-seq is a standard method for comparative analysis of gene transcription across

different conditions. It supplanted a widely used microarray approach, enabling analysis

of a much larger number of genes, including those represented in pools of transcripts from

complex multi-species communities (metatranscriptomes). RNA-seq allows researchers to

determine and compare gene transcription levels, as well as the transcriptional activity of

distinct metabolic pathways. Diverse bioinformatic tools have been developed to facilitate
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comparisons of RNA-seq data [22, 25, 42, 46, 66, 81, 84, 85, 86, 96]. Such tools include web-

based services with automated pipelines that allow assessment of the metabolic properties

represented in RNA-seq datasets. For example, the MAP platform [41] predicts genes ex-

pressed in samples, while also provides information about gene classification into orthology

groups (see figure 4.1). Unfortunately, such pipelines fail to quantify transcripts in con-

cert with the annotation step. We, therefore, propose an enhanced pipeline that combines

the biochemical annotation with quantification analysis. For this purposes, we propose to

use an expectation-maximization (EM) technique similar to one from IsoEM2 [61] (see the

previous Chapter 4.2). We tested our algorithm using metatranscriptome data from marine

bacterioplankton sampled during both the day and nighttime, and therefore likely exhibiting

predictable variation in community transcription patterns.

Sample1 

Sample2 

Transcript/ 
contig 
assembly 

Metabolic  
pathway 
inference 

Differential 
activity 

Inferring Enzymes 

IsoEM2: Gene expression 

Direct EM for pathway activity inference 

2nd  EM: Pathway activity 

EC1.1.1.1 
EC2.2.2.2 
EC3.3.3.3 

EC4.4.4.4 
EC5.5.5.5 
EC1.2.3.4 

Assembled  
contigs 

Enzymes Metabolic  
pathways 

Multiple meta- 
transcriptomic 
samples 

RNA-seq 
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1st EM: Enzyme abundance  

RNA-seq 

Predicted  
genes 

Gene  
prediction 
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Figure 4.1 The pipeline MAP and the enhanced pipeline for quantification and differential
analysis of the metabolic pathway activity. The quantification enhancements are drawn in
red.

4.3.1 Methods

In this section, we describe the procedure of inferring metabolic pathway activity levels

from RNA-Seq data for naturally occurring microbial communities. We also apply differential

pathway activity level analysis similar to the non-parametric statistical approach described

in [2], which was successfully applied for gene differential expression. The methods described

here were implemented in the tool EMPathways using Python programming language.

A general meta-omic pipeline is described in Figure 4.1. Several metatranscriptomic
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samples are sequenced on an Illumina Hi-Seq (2x150 bp) and the resulting reads are assem-

bled into a set of contigs. Genes detected on the contigs are mapped to protein databases

and enzymatic functions are inferred. Finally, the representation of metabolic pathways is

inferred based on the presence/absence of enzymes within each pathway. The above generic

pipeline has been described in [41]. This paper proposes to enhance the above pipeline with

the inference of metabolic pathway activity levels using repeated maximum likelihood in-

ference and resolution by the Expectation - Maximization (EM) algorithm. The proposed

inferences are depicted in red in Figure 4.1.

Inference of pathway activity levels The first step is to estimate the abundances of

the assembled contigs. The abundances can be inferred by any RNA-seq quantification

tool. Here, we suggest using IsoEM2, as this method is sufficiently fast to handle Illumina

Hiseq data and more accurate than kallisto [12]. The next proposed step is to estimate the

abundance of enzymes based on contig abundances. For this step we propose so-called 1-st

EM. The 2-nd EM is used to infer metabolic pathway activity levels based on inferred enzyme

abundances and databases of metabolic pathways. The 1-st and the 2-nd EM’s can be also

integrated into a single direct EM that directly infers pathway activity levels from contig

abundances. All components (1-st EM, 2-nd EM and direct EM) are built with similarities

to IsoEM2 methodology.

Expectation-Maximization approach. Let w be a pathway that is considered to be a

set of enzymes. Traditionally, pathway maps are drawn as graphs with Enzyme Commission

number nodes. Enzyme Commission numbers (EC numbers) have been widely used as a

primary identifier for reconstructing the metabolic pathway from the complete genome. A

more recent attempt to reconcile metabolic pathways with non-metabolic ones resulted in

the introduction of the so-called KEGG Orthology. As in this paper, we are only interested

in quantifying the activity of metabolic pathways, our primary goal of interest will be con-

sidering EC numbers and their contribution to pathways activity levels. We will, therefore,

refer to the pathway w as a set of EC numbers as the signature describing the biochemical

activity occurring in a given microbial/viral community. A well-known fact is that different
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EC numbers may take part in multiple pathways. Therefore, it is a challenging task to

quantify the activity of each pathway in the condition of the uncertainty of whether enzymes

belonging to a particular EC number participate in one particular metabolic pathway and

not in another one.

Let T be a random variable with values from the set of observed transcripts/contigs,

and let W be a random variable whose values belong to the set of pathways from the KEGG

Pathway database. The probability of observing a contig t is given by the following formula:

P (T = t) =
∑

w∈W fw P (T = t | W = w), where fw stands for the frequency of the pathway

w which will be also referred as the activity level of w. We are interested in computing the

distribution of frequencies on the set of pathways: fW = (fw1 , fw2 , ..., fw|W |) Thus, in our

model we adopt the following likelihood function:

L(fW ) =
∏
t∈T

(∑
w∈W

fw P (T = t | W = w)

)at

where at denotes the abundance of t estimated by IsoEM2. The corresponding log-likelihood

is

l(fW ) =
∑
t∈T

at log

(∑
w∈W

fwP (T = t|W = w)

)

For each transcript, we associate a set of EC numbers. Namely, transcripts are aligned to

a protein database and the set of all EC numbers E corresponding to the matching proteins

is retrieved. In general, more than one EC number is associated with every transcript

(otherwise stated, |E| ≥ 1). We apply the law of total probability to decompose further each

term P (T = t|W = w) participating in the log-likelihood:

P (T = t|W = w) =
∑
e,t∈e

P (T = t, E = e|W = w) =
∑
e:t∈e

P (E = e|W = w) · P (T = t|E = e)

(4.1)

We use the uniform probability distribution over the set of EC numbers participating
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in each pathway. This means the following:

P (E = e|W = w) =


1
|w| , if e ∈ w

0, otherwise

Therefore, each probability term from the log-likelihood function may be written in the

following form:

P (T = t|W = w) =
1

|w|
·
∑

e:t∈e,e∈w

P (T = t|E = e)

Further, the log-likelihood is transformed into the following:

l(fW ) =
∑
t∈T

at log(
∑
w∈W

fw · (
1

|w|
·
∑

e:t∈e,e∈w

P (T = t|E = e)))

Finally:

l(fW ) =
∑
t∈T

at log(
∑
w∈W

fw
|w|
·
∑

e:t∈e,e∈w

pte),

where

pte = P (T = t|E = e) =
bte∑
t′∈e bt′e

In the last formula, bt are the bit-scores obtained from the alignment of assembled

transcripts to the proteins of EC number e. We use the bit-score measure as the degree of

reliability of each alignment. In other words, the probability of assigning a transcript t to

an EC number e is proportional to the bit-score of the alignment (t, e). Finally, we obtain:

l(fW ) =
∑
t∈T

at log(
∑
w∈W

αtwfw),

where
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αtw =
1

|w|
·
∑

e:t∈e,e∈w

pte

In the log-likelihood function l(fW ) the values at are obtained by running IsoEM2 (or any

other tool for transcript quantification). The values αtw are computed from the corresponding

tripartite graph (see Figure 4.2). The only values to be determined are fW . We aim at finding

the values fW which maximize the log-likelihood l(fW ).

Figure 4.2 Tripartite graph: transcripts → EC numbers → pathways.

We apply the EM-type algorithm [21] for determining the values fW . We initialize each

of the abundance estimates for each pathway with a random number fw ∈ [0, 1], w ∈ W .

Then, we iterate the following two steps until a convergence criteria is satisfied:

The E-step. We first compute the expected number of reads nw emitted by each

pathway w through the following formula:

nw =
∑
t∈T

at ·
αtwfw∑

w′∈W αtw′fw′

The M-step. The new estimates are provided based on a standard maximization EM

step:
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fneww =
nw∑

w′∈W nw′

The algorithm halts when the new estimates are “close” to the ones from the previous

step: ||fnewW − fW || ≤ ε, where ε� 1

Differential analysis of pathway activity Using the estimates of pathway activity levels

in the differential pathway activity analysis requires estimating uncertainty. The extension

of our bootstrapping approach introduced in [1] is useful for the direct maximum likelihood

model since the pathway activity levels are inferred directly from RNA-seq reads that can be

resampled. The current version of IsoEM2 allows the user to generate bootstrapped samples

from the RNA-Seq reads and to infer abundance estimates, based on Fragments Per Kilobase

of transcript per Million mapped reads (FPKM). We estimate pathway activity level for each

of the bootstrapped samples and then run a differential expression (DE) analysis similar to

the one described in [2].

4.3.2 Results

In this section, we apply our analysis pipeline to two conditions (day. night) of a plank-

tonic marine microbial community. We describe a subset of the most abundant pathways and

conduct a differential pathway activity level analysis that highlights statistically significant

functional features from the repertoire of metabolic processes occurring in the community.

Datasets. The samples were collected from surface waters (2 m depth) at 12:30 and 23:55

(local time) at a station on the Northern Louisiana Shelf (Gulf of Mexico) in July 2015.

Seawater (≈ 1 L) was pumped directly onto a 0.22 µm Sterivex filter, preserved in 1.8

ml of RNA-later and flash frozen. Samples were stored a -80◦C until extraction. RNA

was isolated from the samples by a phenol-chloroform method following the Mirvana RNA

kit protocol. Samples were treated with DNase to remove residual DNA signal from the

metatranscriptome. The RNA-Seq data were generated via Illumina HiSeq 2500 sequencing

at the Department of Energy – Joint Genome Institute (DOE-JGI). Detailed information

about the two samples is provided in Table 1.
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Table 4.4 Dataset description

Sample Reads Contigs
Name Depth Code Time Length Count Insert size Total Total length
Day 2m 177 2m 12:30 PM 2× 151 bp 89.4 M 195±49 94.7 k 58.3 MB
Night 2m 240 2m 11:55 PM 2× 151 bp 91.4 M 187±49 108 k 68.1 MB

MAP pipeline. A preliminary annotation of RNA-seq data was obtained using the DOE-

JGI Metagenome Annotation Pipeline (MAP v.4) (JGI portal) [41]. The MAP processing

consists of feature prediction including identification of protein-coding genes. In this pipeline,

the MEGAHIT metagenome assembler is used to first assemble RNA-Seq reads into scaffolds.

Further, several software suites (GeneMark.hmm, MetaGeneAnnotator, Prodigal, FragGe-

neScan) are used to predict genes on assembled scaffolds. The MAP pipeline also annotates

genes according to EC numbers, which are a necessary input in our maximum likelihood

model. The annotations are obtained via homology searches (using USEARCH) against a

non-redundant proteins sequence database (maxhits=50, e-value=0.1) where each protein is

assigned to a KEGG Orthology group (KO). The top 5 hits for each KO, with the condition

that the identity score is at least 30% and 70% of the protein length is matched, are used.

The KO IDs are translated into EC numbers using KEGG KO to EC mapping.

The enhanced quantification pipeline. Our enhanced pipeline is depicted in red in

Figure 4.1. We start our analysis from the RNA-Seq metatranscriptomic reads. First, we

find the abundance estimates (frequencies) for each metatranscriptomic gene/transcript by

applying Maximum Likelihood abundance estimation. For this purpose we use IsoEM2. The

custom GTF annotation file needed for supplying each run of IsoEM2 was prepared by using

the fastaToGTF script from the same software suite. Next, we use FPKM estimates as the

weights of each transcript for inferring abundances of each EC number. We use transcripts

to EC notation alignments as provided by the MAP pipeline.

Highly active pathways. Table 4.5 shows the 10 most active pathways in the Day sample

sorted in descending order of their activity level, i.e., the number of reads attributed to the

proposed maximum likelihood model. The 11th pathway listed (ko0061) is among the 10

most active at night but is not among the 10 most active in the day. Similarly, the pathway
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Table 4.5 10 most abundant pathways in the Day and Night samples.

Pathway
Abundance
reads ×103

Code Description Day Night
ko00190 Oxidative phosphorylation (Energy metabolism) 2260 2700
ko00710 Carbon fixation in photosynthetic organisms (Energy metabolism) 837 422
ko00240 Pyrimidine metabolism (Nucleotide metabolism) 644 1110
ko00270 Cysteine and methionine metabolism (Amino acid metabolism) 568 176
ko00020 Citrate cycle - TCA cycle (Carbohydrate metabolism) 525 411
ko00900 Terpenoid backbone biosynthesis (Metabolism of terpenoids and polyketides) 508 261
ko01230 Biosynthesis of amino acids 333 471
ko00195 Photosynthesis (Energy metabolism) 327 63
ko00230 Purine metabolism (Nucleotide metabolism) 318 618
ko00630 Glyoxylate and dicarboxylate metabolism (Carbohydrate metabolism) 299 530
ko00061 Fatty acid biosynthesis (Lipid metabolism) 37 179

ko00195 is among the most 10 actives at night but is not among the 10 most active in the

day. All other 9 pathways are among the most active during both night and day.

Differential pathway analysis. In Table 4.6 there is a list of all metabolic pathways which

are up-regulated at noon with at least 1.7 fold change, 95% confidence and at least 1000

reads assigned by EM. The values of abundances are given at 95% confidence interval upper

boundary (therefore, they are slightly greater than in the Table 4.5). In Table 4.7 there is a

list of all metabolic pathways which are up-regulated at noon with at least 1.7 fold change,

95% confidence and at least 1000 reads assigned by EM.

Results. The results in Tables 4.5-4.7 are reflective of planktonic microbial communities

driven by a diurnal cycle. During the daytime, pathways mediating photosynthesis, carbon

fixation, and the building blocks for amino acid biosynthesis are the most abundant. At

night there is an increase in nucleotide and lipid generation, probably for new cell produc-

tion. In general, the community appears to be gaining energy and substrates during the

day and expending them at night by generating crucial cellular components. This is sup-

ported by the differential expression between the day and night transcript pools, with energy

(photosynthesis) and small organic molecule synthesis (e.g, fructose, glutamine-glutamate,

glycosaminoglycan, etc.) being up-regulated during the day and the synthesis of larger

biomolecules at night (e.g. lipid metabolism, amino acids, and carotenoids). There is a

clear shift in energy sources between day and night. While oxidative phosphorylation is

highly transcribed at both time points, it is clear that photosynthesis elevates some of this
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energy requirement. This is evidenced by a slight decrease of oxidative phosphorylation and

increase of TCA-related transcripts during the day, potentially replenishing the NADH/-

NADPH reserves for the use of the electron transport chain at night. As predicted, these

results indicate a community undergoing diel cycling, thereby providing validation of our

proposed EM-based pipeline and suggesting this method as a valuable tool for coupled an-

notation and quantification of metabolic pathways in community RNA-seq data.

Table 4.6 Up-regulated pathways in the Day sample

Pathway reads in 103

Code Description Day Night
ko00051 Fructose and mannose metabolism (Carbohydrate metabolism) 326 34.1
ko00195 Photosynthesis (Energy metabolism) 488 93.1
ko00261 Monobactam biosynthesis (Biosynthesis of other secondary metabolites) 237 44.5
ko00410 beta-Alanine metabolism (Metabolism of other amino acids) 10.0 0.01
ko00471 D-Glutamine and D-glutamate metabolism 6.79 0
ko00532 Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 28.8 3.65
ko00533 Glycosaminoglycan biosynthesis - keratan sulfate 22.9 0.609
ko00604 Glycosphingolipid biosynthesis - ganglio series 4.17 0
ko00660 C5-Branched dibasic acid metabolism (Carbohydrate metabolism) 4.39 0.01
ko00930 Caprolactam degradation (Xenobiotics biodegradation and metabolism) 3.80 0.883
ko00332 Carbapenem biosynthesis (Biosynthesis of other secondary metabolites) 10.3 1.54
ko00565 Ether lipid metabolism (Lipid metabolism) 10.4 0.682
ko00590 Arachidonic acid metabolism (Lipid metabolism) 51.8 19.4
ko00270 Cysteine and methionine metabolism (Amino acid metabolism) 787 246
ko00514 Other types of O-glycan biosynthesis (Glycan biosynthesis and metabolism) 7.75 2.96
ko00450 Selenocompound metabolism (Metabolism of other amino acids) 201 80.2
ko00710 Carbon fixation in photosynthetic organisms(Energy metabolism) 1000 487
ko00983 Drug metabolism - other enzymes (Xenobiotics biodegradation & metabolism) 58.3 16.5
ko00520 Amino sugar and nucleotide sugar metabolism (Carbohydrate metabolism) 265 123
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Table 4.7 Up-regulated pathways in the Night sample

Pathway reads in 103

Code Description Day Night
ko00053 Ascorbate and aldarate metabolism (Carbohydrate metabolism) 0 1.88
ko00061 Fatty acid biosynthesis (Lipid metabolism) 55.9 270
ko00120 Primary bile acid biosynthesis (Lipid metabolism) 2.75 116
ko00140 Steroid hormone biosynthesis (Lipid metabolism) 0 4.11
ko00232 Caffeine metabolism (Biosynthesis of other secondary metabolites) 0 1.05
ko00260 Glycine, serine and threonine metabolism (Amino acid metabolism) 49.3 227
ko00311 Penicillin and cephalosporin biosynthesis 0 2.74
ko00365 Furfural degradation (Xenobiotics biodegradation and metabolism) 0 2.12
ko00430 Taurine and hypotaurine metabolism (Metabolism of other amino acids) 3.19 62.3
ko00472 D-Arginine and D-ornithine metabolism (Metabolism of other amino acids) 0 1.25
ko00780 Biotin metabolism (Metabolism of cofactors and vitamins) 7.05 48.6
ko00906 Carotenoid biosynthesis (Metabolism of terpenoids and polyketides) 0 26.2
ko00984 Steroid degradation (Xenobiotics biodegradation and metabolism) 0 2.07
ko00362 Benzoate degradation (Xenobiotics biodegradation and metabolism) 3.58 16.7
ko00592 alpha-Linolenic acid metabolism (Lipid metabolism) 0.19 2.89
ko00072 Synthesis and degradation of ketone bodies (Lipid metabolism) 2.67 11.6
ko00364 Fluorobenzoate degradation (Xenobiotics biodegradation and metabolism) 0.180 2.96
ko01051 Biosynthesis of ansamycins (Metabolism of terpenoids and polyketides) 0 3.38
ko00760 Nicotinate and nicotinamide metabolism (Mcofactors and vitamins) 30.2 103
ko00281 Geraniol degradation (Metabolism of terpenoids and polyketides) 1.57 170
ko00627 Aminobenzoate degradation (Xenobiotics biodegradation and metabolism) 0.949 4.06
ko00730 Thiamine metabolism (Metabolism of cofactors and vitamins) 10.4 35.4
ko00643 Styrene degradation (Xenobiotics biodegradation and metabolism) 0.958 22.6
ko01200 Carbon metabolism 13.7 86.9
ko00220 Arginine biosynthesis (Amino acid metabolism) 3.53 11.0
ko00440 Phosphonate and phosphinate metabolism 1.30 5.33
ko00905 Brassinosteroid biosynthesis (Metabolism of terpenoids and polyketides) 2.00 35.6
ko00941 Flavonoid biosynthesis (Biosynthesis of other secondary metabolites) 2.84 6.03
ko00720 Carbon fixation pathways in prokaryotes (Energy metabolism) 1.36 15.9
ko00290 Valine, leucine and isoleucine biosynthesis (Amino acid metabolism) 68.0 193
ko00403 Indole diterpene alkaloid biosynthesis 0 2.68
ko01053 Biosynthesis of siderophore group nonribosomal peptides 0 1.16
ko00920 Sulfur metabolism (Energy metabolism) 47.7 135
ko00625 Chloroalkane and chloroalkene degradation 24.3 51.8
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PART 5

IMMUNE REPERTOIRE PROFILING

5.1 Introduction

A key function of the adaptive immune system, which is composed of B cells and T cells,

is to mount protective memory responses to a given antigen. B cell and T cells recognize

their specific antigens through their surface antigen receptors (B-cell and T-cell receptors,

BCR and TCR, respectively), which are unique to each cell and its progeny. BCR and TCR

are diversified through somatic recombination, during which variable (V), diversity (D) and

joining (J) gene segments are randomly joined, and non-templated bases are inserted or

deleted at the recombination junctions [31]. The resulting diverse DNA sequences are then

translated into the antigen receptor proteins. The random recombination process enables

[missing noun here] to reach an astonishing diversity of the lymphocyte repertoire (i.e.,

the collection of antigen receptors of a given individual), with >1013 theoretically possible

distinct immunological receptors [31]. This diversity is key for the immune system to confer

protection against a wide variety of potential pathogens. Furthermore, BCRs are subject

to additional diversification in their variable region through somatic hypermutation. These

changes are mostly single base substitutions occurring at extremely high rates (105 to 103

mutations per base pair per generation). Another mechanism contributing to the B cell

functional diversity is isotype switching. V(D)J recombination produces BCR expressed

as IgM and IgD isotypes. Isotype switching changes the immunological properties of a

BCR without changing its specificity by joining the heavy chain VDJ regions with different

constant (C) regions that encode IgG, IgA, or IgE isotype antibodies.

High-throughput technologies enable accurate profiling of B- and T-cell repertoires.

Commonly used assay-based approaches provide a detailed view of the adaptive immune

system with deep sequencing of amplified DNA and RNA from the variable region of BCR or
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TCR loci [7]. Those technologies have been successfully applied to characterize the immune

repertoire of the peripheral blood[28]. However, little is known about the immunological

repertoires of other human tissues, including barrier tissues like the skin and the mucosae.

Studies involving assay-based protocols usually have small sample sizes and are not suitable

to study the intra-individual variation of immunological receptors across diverse human tis-

sues. RNA Sequencing (RNA-Seq) traditionally uses the reads mapped onto human genome

references to study the transcriptional landscape of both entire cellular populations and sin-

gle cells. However, due to the repetitive nature of loci encoding for BCRs and TCRs, as

well as the extreme level of diversity in BCR and TCR transcripts, most mapping tools

are ill-equipped to handle immune repertoire sequences. Despite this, BCR and TCR tran-

scripts often occur in sufficient numbers within the transcriptome to characterize the human

immunological repertoires[63].

In this study, we developed ImReP, a novel computational method for rapid and accurate

profiling of adaptive immune repertoire from RNA-Seq data. We applied it to 8,555 samples

across 544 individuals from 53 tissues obtained from Genotype-Tissue Expression study

(GTEx v6)[15]. The data was derived from 38 solid organ tissues, 11 brain subregions,

whole blood, and three cell lines. This provides a rich resource to study lymphatic tissues,

including secondary lymphoid organs (n = 4) and sub-mucosa membrane sites (n = 21)

such as gastrointestinal tract, urogenital tract, thyroid, breast, lung, salivary glands, and

skin. ImReP uses unmapped RNA-Seq reads to reconstruct the CDR3 sequences. Our

analysis of this dataset identified a typical tissue-specific immunological profile and defined

the phylogenetic relation of clonal lineages across various tissues. We found significant

differences in immune profiles across the tissues and between individuals.
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5.2 ImReP: CDR3 sequence assembly and profiling immune repertoires from

RNA-Seq data

5.2.1 Methods

In contrast to assay-based protocols that produce reads from the amplified variable

region of BCR or TCR loci, RNA-Seq is able to capture the entire cellular population of the

sample, including B and T cells.

ImReP first prepares the candidate receptor-derived reads. It extracts reads mapped to

the TCR and BCR genes. Second, ImReP prepares the high-quality unmapped reads using

ROP (step1 – step3) [63] by filtering out low quality, low complexity reads and reads that

match rRNA repeats. It also filters out lost human reads, reads unmapped to the reference

genome, and lost repeat reads, unmapped reads mapped to the repeat sequences. The reads

mapped to the BCR and TCR loci and high-quality unmapped reads were merged, and Im-

ReP used this data to assemble CDR3 sequences and corresponding V(D)J recombinations.

ImReP is a two-stage approach aimed to assemble CDR3 sequence and detect corre-

sponding V(D)J recombinations (Fig 5.1.b). In the first stage, ImReP utilizes the reads

that simultaneously overlap V and J gene segments to infer the CDR3 sequences, which are

the result of the read compassed by cysteine on the right and phenylalanine (for TCR) or

tryptophan (for BCR) on the left. In the second stage, ImReP utilizes the reads overlapping

a single gene segment that contains a partial CDR3 sequence. Then, ImReP uses suffix

tree to perform the pairwise comparison of the reads and join the reads based on overlap

in the CDR3 region. Further, ImReP uses a CAST [6] (Cluster Affinity Search Technique)

clustering technique to correct assembled clonotypes for PCR and sequencing errors. CDR3

amino acid sequences produced by ImReP (see Algorithm 3) are represented as vertices V in

a complete graph G = (V,E, ω), where ω weights are computed as edit distance between all

the pair of sequences. For each v ∈ V we also assign weights w equal to the count of each se-

quence corresponding to v. CAST eliminates the minimal number of edges from G such that

the resulting graph is a union of cliques. In each clique, we choose a representative vertex
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with the highest weight w. The set of such representatives constitutes our assembled CDR3

sequences. We map D genes (for IGH, TCRB, TCRG) onto assembled CDR3 sequences and

infer corresponding V(D)J recombination.

Algorithm 3 ImReP algorithm

1: CDR3 regions← {}
2: Partial CDR3 V ← {}
3: Partial CDR3 J ← {}
4: V genes← V genes sequences from IMGT database
5: J genes← J genes sequences from IMGT database
6: R ← RNA-Seq reads
7: for all r ∈ R do
8: for all (v, j) ∈ V genes× J genes do
9: if intersects(v, r) and intersects(r, j) then

10: CDR3 regions← CDR3 regions ∪ {r}
11: else if intersects(v, r) then
12: Partial CDR3 V ← Partial CDR3 V ∪ {r}
13: else if intersects(r, j) then
14: Partial CDR3 J ← Partial CDR3 J ∪ {r}
15: end if
16: end for
17: end for
18: SF ← suffix tree on Partial CDR3 V
19: for all j ∈ Partial CDR3 J do
20: if overlap(v, j) > 10 for a v ∈ SF then
21: CDR3 regions← CDR3 regions ∪ {concatenation(v, j)}
22: end if
23: end for
24: return CDR3 regions

Simulation of RNA-Seq and BCR (TCR)-Seq data We performed in-silico sim-

ulations to investigate the feasibility of using RNA-Seq to study the clonal adaptive immune

repertoire. We first checked the ability of the ImReP to extract the receptor-derived reads

from the RNA-Seq reads. First, we simulated the TCR and BCR transcripts, which are

composed of recombined VDJ segment with non-template insertion at the V(D)J junction.

We used the IMGT database [50] of V and J gene segments. We randomly selected a pair of

VJ segments and inserted a sequence of random nucleotides. The length of the inserted se-
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quence was sampled from the Gaussian-like distribution with mean 15 [65]. We also exclude

the simulated transcripts with the random insertions leading to out-of-frame proteins. We

used LymAnalizer [99] to validate CDR3 sequences of the transcript.

We used SimNGS (https://www.ebi.ac.uk/goldman-srv/simNGS/) to simulate x1,

x2, x3 number of paired-end reads from BCR and TCR transcripts in order to achieve y1,

y2, y3 infiltration levels of B and T cells. Next, we simulated the 50 million reads from the

human transcriptome reference (GRCh37). We mixed reads derived from BCR and TCR

transcripts with transcriptomic reads into an RNA-Seq mixture. We then apply ImReP to

a simulated RNA-Seq mixture to check the ability of ImReP to extract CDR3-derived reads

from the RNA-Seq mixture. We notice some CDR3-derived reads were partially mapped

(i.e., reads having N and/or S in the CIGAR strings of their alignments) to the genome

by STAR. This highlights the importance of the ImReP’s approach of complementing the

unmapped reads with mapped reads from BCR and TCR loci to extract CDR3-derived reads.

After we proved the ability of ImReP to reliably extract the CDR3-derived reds from

the RNA-Seq mixture, we studied the effects of the coverage and read length on the ability

to reconstruct CDR3 sequences. In total, we simulated 1,000 BCR or TCR transcripts.

We simulated paired-end reads of various read length (l = 50, 75, 100) with use various

coverage of TCR and BCR transcripts (c = 1, 2, 4, 8, 16, 32, 64, 128). We used the power

law distribution to assign frequencies to simulated T and B cell transcripts [94]. The CDR3

protein sequences assembled by ImReP were compared to simulated transcripts to evaluate

the recall and precision for various read length and coverage (Figures 5.2 and 5.3).

We define recall and precision in the following way:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Where TP is the number of correctly assembled CDR3 sequence features (exact match to

the simulated CDR3), FN is the number of simulated CDR3 sequence features not assembled

https://www.ebi.ac.uk/goldman-srv/simNGS/
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by the method, and FP is the number of incorrectly assembled CDR3 sequences.

5.2.2 Results

Feasibility of using RNA-Seq to study adaptive immune repertoire To vali-

date the feasibility of using RNA-Seq to study the adaptive immune repertoire, we simulated

RNA-seq and BCR(TCR)-Seq data. We then compare methods and investigate the sequenc-

ing depth and read length required to reliably assemble TCR and BCR sequences. We com-

pared ImReP to the existing approaches designed for assay-based data based on simulated

RNA-Seq data generated as described in Section 5.2.1. We report recall and precision rates

for each of the methods. MiXCR [10] cannot be applied to RNA-Seq reads, because it was

originally designed for deep sequencing of amplified DNA and RNA from the variable region

of BCR or TCR loci (BCR-Seq or TCR-Seq). We prepared the candidate receptor-derived

reads for MiXCR using the ImReP strategy.

Read length has a strong effect on the performance of MiXCR (Figures 5.2(a) and

5.3(b)). ImReP is able to tolerate short read length of RNA-Seq reads and has consistent

results for different read length including a short length of 50bp. Notably, ImReP is able

to reconstruct significantly more CDR3 clonotypes than MiXCR for read length 50bp with

a higher precision rate. High precision-recall rates even for short reads are achieved by

ImReP due to the second stage implying an assembly step using a suffix tree. The increase

of coverage has a positive effect on the number of assembled clonotypes. At the same time,

the precision of MiXCR drops to 10-20% with the increase in coverage. We observe a slight

drop in the precision of ImReP with the increase of coverage.

We further validated the ability of ImReP to accurately infer the fraction of the reads

derived from B and T cell receptor by comparing it to the proportion of B and T cell

inferences that are based on the gene expression profile. B and T cell signature inferred

by SaVant (http://pathways.mcdb.ucla.edu/savant/) shows high correlation (Pearson

r=0.67) across all tissues except the spleen and EBV-transformed lymphocytes (LCLs).

We applied ImReP to 0.6 trillion paired-end reads (92 Tbp) produced by RNA-Seq

http://pathways.mcdb.ucla.edu/savant/
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for 8,555 samples across 500 individuals from 53 tissues obtained from Genotype-Tissue

Expression study (GTEx v6) to assemble CDR3 sequences of B and T cell receptors. First,

we mapped RNA-Seq reads to the human reference by the short-read aligner (performed

by GTEx consortium [15]. To identify reads spanning the V(D)J junction of B and T cell

receptors and assemble clonotype sequences, ImReP used 0.02 trillion high-quality unmapped

reads that failed to map to the human reference in conjunction with reads mapped to BCR

and TCR genes.

ImReP was able to identify over 26 million reads overlapping 6.1 million CDR3 se-

quences that originate from diverse human tissues. Spleen tissue produced 1.5 million CDR3

sequences. The majority of assembled CDR3 sequences were derived from BCRs, includ-

ing 2.2 million from immunoglobulin heavy chain (IGH), 1.9 million from immunoglobulin

kappa chain (IGK), and 1.4 million from immunoglobulin lambda chain (IGL) BCRs. A

smaller fraction of CDR3 sequences was derived from TCRs, including 0.2M sequences from

alpha and beta TCRs (TCRA and TCRB). On average, we observe 500 CDR3 sequences per

sample, with a range of 0-15,544. We observed the highest number of secondary lymphoid

organs, followed by tissues with mucosa membrane sites. Tissues not related to the immune

system (e.g., brain and esophagus) contain on average 12.1 CDR3 sequences per sample,

which are most likely due to the blood content of the tissues[98]. This is supported by an

increased number of CDR3 sequences shared between the blood and various tissues within

the same individuals. The highest number of CDR3 sequences among non-lymphoid tissues

is present in the omentum, a membranous double layer of adipose tissue corresponding to

fat-associated lymphoid clusters. As expected, Epstein bar virus (EBV)-transformed lym-

phocytes (LCL) contain a high number of immune receptor-derived reads corresponding with

a small number of clonotypes (a group of clones with identical CDR3 nucleotide sequences)

due to the conserved clonotypic pattern of LCL cell lines [19].

We compared the length and amino acid composition (WebLogo 3, http://weblogo.

threeplusone.com/manual.html) of the assembled CDR3 sequences of immunoglobulin and

T cell receptor chains across the tissues. Consistent with previous studies, we observe that

http://weblogo.threeplusone.com/manual.html
http://weblogo.threeplusone.com/manual.html
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immunoglobulin light chains have notably shorter and less variable CDR3 lengths compared

to heavy chains [72].

Histological images of tissue cross-sections and pathologists’ notes (available at GTEx

portal, http://www.gtexportal.org/home/histologyPage) have been used to validate the

ImReP’s ability to detect the samples with a high activity of lymphocytes, which often

correspond to a disease state. ImReP was able to identify Thyroid sample with chronic

inflammation corresponding to 15,219 assembled clonotypes. We have also compared the

number of CDR3 sequences inferred by ImReP from sigmoid colon. As expected, we observe

a significantly smaller number of CDR3 sequences inferred from muscularis externa layer

compared to Mucosa layer(p-value < 10−16).

http://www.gtexportal.org/home/histologyPage
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Figure 5.1 Overview of ImReP. (a) Schematic representation of human adaptive immune repertoire. Adaptive immune
repertoire consists of four T cell receptor loci (blue color, T-cell receptor alpha locus (TCRA); T-cell receptor beta locus
(TCRB); T-cell receptor delta locus (TCRD); and T-cell receptor gamma locus (TCRG)) and three immunoglobulin loci
(red color, Immunoglobulin heavy locus (IGH); Immunoglobulin kappa locus (IGK) ; Immunoglobulin lambda locus (IGL).
Alternative name – BCR, B cell receptor). B and T cell receptors contain multiple variable (V, green color), diversity (D,
present only in IGH, TCRB, TCRG, violet color), joining (J, yellow color) and constant (C, blue color) gene segments. V(D)J
gene segments are randomly jointed and non-templated bases (N, dark red color) are inserted at the recombination junctions.
The resulting spliced T or B cell repertoire transcript incorporates the C segment and is translated into the antigen receptor
proteins. RNA-Seq reads are derived from the rearranged immunoglobulin IG and TCR loci. Reads entirely aligned to genes
of B and T cell receptors are inferred from mapped reads (black color). Reads with extensive somatic hypermutations and
reads spanning the V(D)J recombination are inferred from the unmapped reads (grey color). Complementarity determining
region 3 (CDR3) is the most variable region of the three CDR regions and is used to identify T/B cell receptor clonotypes—a
group of clones with identical CDR3 amino acid sequences. (b) Receptor derived reads spanning V(D)J recombinations are
identified from unmapped reads and assembled into the CDR3 sequences. We first scan the amino acid sequences of the read
and determine the putative CDR3 boundaries defined by last conserved cysteine encoded by the V gene and the conserved
phenylalanine (for TCR) or tryptophan (for BCR) of J gene. Given the putative CDR3 boundaries, we check the prefix and
suffix of the read to match the suffix of V and prefix of J genes, respectively. (c-d) In case a read overlaps with only the V or
J gene, we perform the second stage of ImReP to match such reads based on the overlap of CDR3 sequence using suffix tree.
We map D genes (for IGH, TCRB, TCRG) onto assembled CDR3 sequences and infer corresponding V(D)J recombination.
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Figure 5.2 ImReP vs MiXCR on simulated data: recall plots for coverages 1, 2, 4, 8, 16, 32,
64, 128: a) Read length 50 bp; b) Read length 75 bp; c) Read length 100 bp.
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Figure 5.3 ImReP vs MiXCR on simulated data: precision plots for coverages 1, 2, 4, 8, 16,
32, 64, 128: a) Read length 50 bp; b) Read length 75 bp; c) Read length 100 bp.
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Prostate 1.8801935259740 2.2792215265914 2.0534024674989 0.6641206915930 0.9696628783069 -1.2201080780402 -0.2201080780402 0.8695231073345 1.4868762320423 1.1990763202968 -0.5061169600959 -0.1661720789633 -2.4384648142149 -1.4145632789016 0.5042880057573 0.6051687907395 0.5416711464238 0.0651028405936 0.2609820775616 0.0000000000000 -0.8801032192143

Uterus 1.7521135938501 2.0940149126849 1.8562064623586 0.4721860470448 0.7694774731485 -1.4698220059788 -0.4698220059787 0.5991029357672 1.1293354099508 0.8276262696715 -0.7693535667571 -0.4603787224018 -2.5037815967986 -1.7114981131913 0.4611207714025 0.5831320135854 0.5262758708656 -0.1115824783915 0.1249375195987 -1.9670439264985 -1.3460809612900

Ovary 1.6938303746838 2.0358415969399 1.8037783493921 0.3228271347587 0.4728424667398 -1.2304489113780 -0.7911162175490 0.6065653137067 1.3978527954952 0.8474600836574 -0.8765523201043 -0.7405433943113 -2.4381745345324 -2.0516454453400 0.4335748738855 0.5484136252478 0.4933070244341 -0.2756078764532 -0.1992058302015 -2.0287008275619 -1.6906534459966

Pancreas 1.6181228497601 1.9699481460504 1.7914400129223 0.1822515777609 0.3222193047339 -1.6690067709580 -0.8239087309443 0.4466937369944 0.9051104669621 0.6980771935560 -1.0351400766909 -0.8837750216535 -2.9458889476764 -2.0831254697576 0.4307280518042 0.5604472588069 0.4995777642533 -0.3894258106061 -0.2616069187232 0.0000000000000 -1.7508179473943

Pituitary 1.3323000934658 1.7431660003225 1.5471169360903 0.2230369805537 0.5328764969753 -1.1643528457846 -0.7493794978132 0.1744609675674 0.6891628933857 0.4638549122553 -1.0241399018646 -0.6995805468764 -2.5469002927568 -2.0829478623257 0.3597495545554 0.5099096760934 0.4468739333750 -0.3578392838056 -0.0936936579295 0.0000000000000 -1.4680127718370

Skin	-	Not	Sun	Exposed	(Suprapubic) 1.3098716869446 1.6057404850662 1.4460566091470 0.4094894678770 0.6623559032151 -1.1949765932163 -0.6440691243353 0.3114571509700 0.8159307809135 0.5722522066583 -0.8300529618082 -0.5562900547813 -2.4103341932426 -1.9331772498657 0.3160214443632 0.4422469430876 0.3692383070620 -0.1311727768205 0.0764160560697 -2.3454110275117 -1.5009739107555

Skin	-	Sun	Exposed	(Lower	leg) 1.0214832478152 1.3662680162120 1.1807317947876 0.3514958963763 0.5496191525665 -1.4211924583061 -0.8771244139553 0.1503344076738 0.5931153674766 0.3457895881351 -0.8780180046096 -0.6530392160423 -2.7330531665312 -2.1532955622041 0.1659775340314 0.3535971378360 0.2454644332075 -0.2154199454526 -0.0568441530629 0.0000000000000 -1.8813969929242

Testis 0.9759885171682 1.3455519492125 1.1404509127871 -0.0713558985356 0.1418771685234 -1.5185139298783 -1.2754758811916 -0.0985314477545 0.4626529889883 0.2407239253721 -1.3742719936446 -1.1467408590314 -2.8554841610276 -2.4934691367160 0.1388510019081 0.3550277939709 0.2509749192992 -0.7744686128698 -0.5458580650369 0.0000000000000 -2.1036572011052

Cells	-	EBV-transformed	lymphocytes 1.6919136895857 1.7322375768771 1.4919054215671 0.2613206345593 0.4152975793231 0.0000000000000 -1.1677391746912 2.3729696959103 2.7570683393083 2.4487583297232 -1.0227426939377 -0.7210737047694 0.0000000000000 -2.5804185851144 0.0150727208746 0.0133771255059 0.0578362371096 -0.3324663657554 -0.2159879717906 0.0000000000000 -1.6948904989413

Cells	-	Transformed	fibroblasts 0.4373107105710 0.9309081595717 0.6443163814650 -0.5401234615303 -0.9463888589876 -2.4377505528200 -2.1367205571566 -0.7758088911677 -0.3102186303932 -0.5720846846437 -1.8286978059804 -2.1931133387113 -3.7251043255350 -3.4405627260009 -0.1153119725546 0.2437552386980 0.0548300146434 -1.8187738413922 -2.5969250917753 0.0000000000000 0.0000000000000

Cells	-	Leukemia	cell	line	(CML) 0.2660129569378 0.7832189314416 0.4604955223364 -0.2078056622330 -0.7051303030398 -1.8512583387176 -1.8512583387176 -1.0308317109268 -0.4968624367718 -0.8373350433860 -1.5781911175855 -2.0351587118666 -3.2097008356678 -3.2790689113949 -0.3142637008660 0.1236796552770 -0.0903870684537 -0.8803612738700 -2.0104328776737 0.0000000000000 0.0000000000000

Adipose	-	Visceral	(Omentum) 2.0233018652490 2.1979308334308 1.9986777439107 0.8621313893130 1.1920096026537 -0.9829666507012 0.0334237654869 1.1586654057678 1.6423370843860 1.3326794985506 -0.3385793835580 0.0223590148827 -2.2039644234325 -1.1562635489146 0.5510013807467 0.5945183777128 0.5468137874454 0.2034330643095 0.3614339922401 -2.2560845419629 -0.5552990559243

Esophagus	-	Gastroesophageal	Junction 1.8463116099124 2.1094428610787 1.9223562177231 0.4445920398929 0.6721931183986 -1.5096504695472 -0.7826517416110 1.0294795536018 1.5535032751693 1.2367320818381 -0.7614989735648 -0.5371343967667 -2.7785189264837 -2.0315548313584 0.2657365579519 0.4361958144673 0.3465208372233 -0.2503413739137 -0.0805620076990 0.0000000000000 -1.7334920159245

Adrenal	Gland 1.5019879310783 1.7955076153029 1.5716464625944 0.2604121547561 0.4041003273761 -1.3502480083338 -0.7939455075676 0.7605876037323 1.2033797832037 1.1187782257669 -0.9850470873645 -0.7947923325255 -2.6719493966974 -2.0243262211418 0.3858852105462 0.5120503608644 0.4321963691520 -0.3306619209490 -0.1693304463667 0.0000000000000 -1.9073625559605

Adipose	-	Subcutaneous 1.3571785756042 1.6167054849553 1.3909205265710 0.6281777586791 0.8219301849620 -1.2077240969246 -0.2732256456809 0.3952761217258 0.9229234494060 0.6826257264214 -0.6124340970262 -0.4112338825361 -2.4327477786805 -1.4982308980727 0.3655405437194 0.4557804155029 0.3718430739879 0.0403468812777 0.1604238535915 0.0000000000000 -1.0211557026116

Nerve	-	Tibial 1.3064770893861 1.6054724264185 1.3974337495469 0.3745526116326 0.6241518871073 -1.3596247009303 -0.5214755208715 0.4307448802570 1.0023567229580 0.6749837805489 -0.8869216377836 -0.6083082392314 -2.6975301644477 -1.6979654546728 0.3021199916907 0.4245184795249 0.3380546622050 -0.1878093071935 0.0218303386759 0.0000000000000 -1.4591649224714

Heart	-	Atrial	Appendage 1.2433794404533 1.5335831843690 1.3174499345749 0.2636035077231 0.5434984877354 -1.1923284479266 -0.5902684565983 0.4778678136590 0.9370379286375 0.6443946735357 -1.0331822431934 -0.7378138453365 -2.5997317543329 -1.8600072859686 0.2594537606435 0.4090032096030 0.3288376570515 -0.3206122302009 -0.0599911422786 0.0000000000000 -1.7841467795988

Esophagus	-	Muscularis 1.1689422272655 1.5099016918301 1.3044509683248 0.2829317835715 0.4067139429790 -1.5141048109723 -0.6901960700286 0.1765466819920 0.6228757497926 0.3549785683073 -0.9457897156741 -0.7969495977575 -2.7347049938877 -1.9203141980188 0.2223206811383 0.3894076057566 0.3122042562772 -0.2763170947935 -0.1393645189986 0.0000000000000 -1.5761807009843

Heart	-	Left	Ventricle 0.9447816800841 1.3455222528484 1.1094660599532 -0.1456019269075 0.0329360680958 -2.2174839342136 -1.1760912490555 -0.2668955219144 0.2325490478868 -0.0424415621185 -1.4507823713563 -1.2891255045894 -3.4824590817982 -2.4247202549506 0.1405070027953 0.3836272408320 0.2619828224447 -0.7835989338621 -0.5593757025201 0.0000000000000 -2.4136758590697

Muscle	-	Skeletal 0.7928035482554 1.2340033751516 0.9621533844695 -0.1841488917252 -0.1228150329786 -1.8325089027075 -1.0032051298750 -0.3970554907439 0.1620543412282 -0.1161307612318 -1.5126877475513 -1.4149916629752 -3.1397670288297 -2.2882846231249 0.0774686595692 0.3228575215564 0.1910233237364 -0.9227946151238 -0.8630909126950 0.0000000000000 -2.3108278493461

Brain	-	Spinal	cord	(cervical	c-1) 0.7381221382984 1.1655858616585 0.8916741920557 0.3863138506983 0.6719234874952 0.0000000000000 -0.4938269382227 -0.3207343763808 0.4373086232165 -0.0668426495119 -0.8208014565504 -0.5179304194397 0.0000000000000 -1.7133177793434 -0.0185358673950 0.2388153968811 0.1222023198327 -0.1734107195112 0.0667177754616 0.0000000000000 -1.4485737502845

Brain	-	Amygdala 0.6849592998932 1.0639823206668 0.9249353301473 -0.2082759324268 0.0267342632464 0.0000000000000 -1.0211892890699 -0.5595559619621 0.0953207348032 -0.2558568981386 -1.6054113997689 -1.2931812463702 0.0000000000000 -2.3179115059474 -0.2179508869975 0.1652668428343 0.0229745654143 -0.9991586678395 -0.5776431655575 0.0000000000000 -1.7005299364071

Brain	-	Cortex 0.6135398190111 1.0206966323504 0.7459665770124 -0.3222192847344 -0.2710667622868 0.0000000000000 -1.0791812360478 -0.6166477882985 -0.1288071979374 -0.4153314369378 -1.6844599345604 -1.5570668051464 0.0000000000000 -2.4244240226709 -0.1165797964320 0.2180345774245 0.0349848557262 -1.1018633968906 -0.9371236725435 0.0000000000000 -2.0834538150169

Brain	-	Hypothalamus 0.5755009728089 0.9985253244342 0.8190975996834 -0.1580681449226 0.0924708584772 -1.7708520016415 -0.9927007512595 -0.6571701788880 -0.1063480056284 -0.2877470232224 -1.4266005473159 -1.1286703985285 0.0000000000000 -2.2790915278348 -0.1319791575152 0.1608917116611 -0.0381137511378 -0.8975360889245 -0.4719914732970 0.0000000000000 0.0000000000000

Brain	-	Caudate	(basal	ganglia) 0.5733245330930 1.0114982491148 0.7196546131955 -0.2148438380477 0.0052642499918 0.0000000000000 -1.1356625920002 -0.6650562895970 -0.0929450628554 -0.5677651089650 -1.5838237654660 -1.2963176013725 0.0000000000000 -2.3579730269603 -0.1872779525327 0.1725016950823 0.0180568761806 -0.8855030910153 -0.6931890606329 0.0000000000000 0.0000000000000

Brain	-	Substantia	nigra 0.5484771732548 1.0241336897156 0.8406437085879 -0.0406178409084 0.2811957606780 0.0000000000000 -0.7067953318470 -0.7381169486307 -0.1891137875637 -0.4154477190319 -1.3356354511625 -0.9760993818265 0.0000000000000 -2.0130542625766 -0.1347912514594 0.2084048554518 0.0176740229251 -0.6746657080770 -0.3197435453977 0.0000000000000 -1.5094225472892

Brain	-	Hippocampus 0.4927030070732 0.9601513790497 0.6941843517850 -0.2400735597229 -0.0244737593832 -1.8633228501200 -1.2612628587929 -0.7676796300185 -0.2484676250960 -0.4518087988437 -1.5307806941457 -1.3317432063378 -3.0141815852306 -2.6356081007457 -0.1485752336074 0.2159589128555 0.0268328744720 -0.8535614864816 -0.6802358868787 0.0000000000000 0.0000000000000

Brain	-	Putamen	(basal	ganglia) 0.4749223006199 0.8981265774603 0.6718177682924 -0.3881801613828 -0.1205739212057 0.0000000000000 -1.1205739212057 -0.8175661776774 -0.2825386077360 -0.5266749315858 -1.7086422843117 -1.4447026065961 0.0000000000000 -2.5034424527130 -0.1922038180229 0.1199367085716 -0.0762757025025 -1.5662642172011 -0.8622164649269 0.0000000000000 0.0000000000000

Brain	-	Anterior	cingulate	cortex	 0.4686469571764 0.8286038721525 0.6382721739828 -0.2947810363866 -0.3617278260172 -1.5378190850729 -1.3617278260173 -0.8588637851647 -0.4346172573448 -0.6191945520719 -1.6581885685376 -1.7119725604519 -2.9079460868589 -2.7587076076881 -0.2245178105748 0.1120265475062 -0.0766897706944 -0.9732006290121 -1.0684382462528 0.0000000000000 0.0000000000000

Brain	-	Nucleus	accumbens	(basal	ganglia) 0.4359072648067 0.9536463704345 0.6597167151885 -0.2750165532990 -0.1023050348948 -1.9084850088803 -1.2095150045428 -0.8463312260267 -0.3035902690231 -0.6192136434502 -1.6424009782723 -1.4328369703340 -3.1315480837810 -2.4938380516178 -0.1868030039591 0.1670863234371 -0.0205582868699 -1.0229253195538 -0.7117581493867 0.0000000000000 -2.0676595478333

Brain	-	Cerebellum 0.4120030861350 0.8919536308740 0.6451983456690 -0.2348692496086 -0.4504690499480 -1.8976270812905 -1.4205058265708 -0.8983586484422 -0.3622151428660 -0.6384801723275 -1.5837820429031 -1.7705737271670 -2.9143819374235 -2.5575660281284 -0.1543414260059 0.1863377456055 0.0384864904361 -1.0321122964592 -1.3161817202391 0.0000000000000 0.0000000000000

Brain	-	Frontal	Cortex	(BA9) 0.4013110147577 0.8377851544285 0.6062696738542 -0.3951290213386 -0.2237328834906 -1.5854607195089 -1.1875207108362 -0.8599903529550 -0.4090206404096 -0.6631885536073 -1.7361027604841 -1.5521647692442 -3.0416115339860 -2.5206805294228 -0.2112501020840 0.1485901941355 -0.0618279413084 -1.1160798806881 -0.8718717288722 0.0000000000000 0.0000000000000

a.	Number	of	
clonotypes

b.	Receptor-
derived	 reads

c.	Shannon	
entropy

Figure 5.4 Diversity of adaptive immune repertoire across multiple human tissues. Heatmaps depicting
the T and B cell repertoires of 8,555 samples across 544 individuals from 53 body sites obtained from
Genotype-Tissue Expression study (GTEx v6). We group the tissues by their relationship to the immune
system. The first group includes the lymphoid tissues (n=2, orange colors). The second group includes
the tissues associated with the blood (n=4, red color ). The Third group includes the tissues that contain
mucosal membrane sites (n=21, violet color). The fourth group are the cell lines (n=3, grey color). The fifth
group are the tissues not related to the immune system (n=24, blue color). Inside each group the tissues
are sorted based on median number of CDR3 sequences per sample of each tissue. (a) Each column report
the median number of distinct CDR3 protein sequences of immunoglobulin (IG) or T cell receptor (TCR)
chains: immunoglobulin heavy chain (IGH), immunoglobulin kappa chain (IGK, immunoglobulin lambda
chain (IGK), T cell receptor alpha chain (TCRA), T cell receptor beta chain (TCRB), T cell receptor delta
chain (TCRD), and T cell receptor gamma chain (TCRG). (a) Each row corresponds to a tissue, and each
column corresponds to a mean number of distinct CDR3 sequences. (b) Each row corresponds to a tissue,
and each column corresponds to a mean number of receptor-derived reads per one million RNA-Seq reads
(c) Each row corresponds to a tissue, and each column corresponds to a mean Shannon entropy per tissue.
Shannon entropy incorporates total number of CDR3 clonotypes and their relative proportions.
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[60] Igor Mandric, James Lindsay, Ion Măndoiu, and Alex Zelikovsky. Silp3: Maximum

likelihood approach to scaffolding. In Computational Advances in Bio and Medical

Sciences (ICCABS), 2014 IEEE 4th International Conference on, pages 1–1. IEEE,

2014.



105

[61] Igor Mandric, Yvette Temate-Tiagueu, Tatiana Shcheglova, Sahar Al Seesi, Alex Ze-

likovsky, and Ion Mandoiu. Fast bootstrapping-based estimation of confidence intervals

of expression levels and differential expression from rna-seq data. Bioinformatics, to

appear.

[62] Igor Mandric and Alex Zelikovsky. Scaffmatch: scaffolding algorithm based on maxi-

mum weight matching. Bioinformatics, page btv211, 2015.

[63] Serghei Mangul, Harry Taegyun Yang, Nicolas Strauli, Franziska Gruhl, Timothy Da-

ley, Stephanie Christenson, Agata Wesolowska Andersen, Roberto Spreafico, Cydney

Rios, Celeste Eng, et al. Dumpster diving in rna-sequencing to find the source of every

last read. bioRxiv, page 053041, 2016.

[64] Shweta Mehrotra and Vinod Goyal. Repetitive sequences in plant nuclear dna:

types, distribution, evolution and function. Genomics, proteomics & bioinformatics,

12(4):164–171, 2014.

[65] Patrick Miqueu, Marina Guillet, Nicolas Degauque, Jean-Christophe Doré, Jean-Paul
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