1,118 research outputs found

    The plastic ear and perceptual relearning in auditory spatial perception

    Get PDF
    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear moulds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localisation, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear moulds or through virtual auditory space stimulation using non-individualised spectral cues. The work with ear moulds demonstrates that a relatively short period of training involving sensory-motor feedback (5 – 10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide a spatial code but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis

    A comparison of feedback cues for enhancing pointing efficiency in interaction with spatial audio displays

    Get PDF
    An empirical study that compared six different feedback cue types to enhance pointing efficiency in deictic spatial audio displays is presented. Participants were asked to select a sound using a physical pointing gesture, with the help of a loudness cue, a timbre cue and an orientation update cue as well as with combinations of these cues. Display content was varied systematically to investigate the effect of increasing display population. Speed, accuracy and throughput ratings are provided as well as effective target widths that allow for minimal error rates. The results showed direct pointing to be the most efficient interaction technique; however large effective target widths reduce the applicability of this technique. Movement-coupled cues were found to significantly reduce display element size, but resulted in slower interaction and were affected by display content due to the requirement of continuous target attainment. The results show that, with appropriate design, it is possible to overcome interaction uncertainty and provide solutions that are effective in mobile human computer interaction

    Influence of vision on short-term sound localization training with non-individualized HRTF

    Get PDF
    International audiencePrevious studies have demonstrated that it is possible for humans to adapt to new HRTF, non-individualized or altered, in a short time period. While natural adaptation, through sound exposure, takes several weeks [1], some training programs have been employed to accelerate adaptation and improve performance on sound localization in a few days (see [2] for a review). The majority of these training programs are based on audio-visual positional or response feedback learning [3] (participants correct their answer after seeing the target position), or on active learning, for example through audio-proprioceptive manipulations [4] (blindfolded participants actively explore the sphere around them by playing a mini sonified version of hot-and-cold game). While all training programs are based on a bimodal coupling (audio-vision [3] or audio-proprioception [4]), they are rarely based on a trimodal one. Therefore, if vision is not necessary for adaptation [4], and audio-visual training can even be less efficient than other methods [1,2], the role of vision in short-term audio localization training remains unclear, especially when action and proprioception are already involved. Our study compares two versions of active trainings: an audio-proprioceptive one and an audio-visuo-proprioceptive one. We hypothesize that combining all modalities leads to better adaptation inducing better performances and a longer remaining effect.The experiment is developed in virtual reality using a HTC Vive as a head- and hand-tracker. 3D audio spatialization is obtained through Steam Audio’s non-individualized built-in HRTF. When applicable, 3D visual information is displayed directly on the Vive screen. A total of 36 participants, equally distributed in 3 groups (G1 to G3), participate in this between-subject design study.G1 is a control group receiving no training session, while the 2 other groups receive a training session of 12 minutes during 3 consecutive days. All the participants also had to perform 5 sound localization tests (no feedback, hand-pointing techniques, 2 repetitions × 33 positions, frontal space): one before the experiment, one after each training session, and the last one 1 week after the first day in order to evaluate the remaining effect. G2 receives an audio-proprioceptive training as exposed in [4]. Participants have to freely scan the space around them with their hand-held Vive controller to find an animal sound hidden around them. The controller-to-target angular distance is sonified and spatialized at the controller position. No visual information is provided. G3 receives the same task as in G2 but, a visual representation of a sphere is also displayed at the hand position during all training sessions (audio-visuo-proprioceptive situation). We measure the angular error in azimuth and elevation during localization tests. Performances are also analyzed in interaural polar coordinate system to discuss front/back and up/down confusion errors. Data from training sessions are logged (total number of found animals and detailed sequence of hand positions) to evaluate how training and vision influence scanning strategy. The experimental phase is taking place right now (10 participants have completed it for the moment) and extends until the end of April. Complete results will be available for the final version of the paper in June. References [1] Carlile, S., and Blackman, T. Relearning auditory spectral cues for locations inside and outside the visual field. J. Assoc. Res. Otolaryngol. 15, 249–263 (2014)[2] Strelnikov, K., Rosito, M., and Barrone, P. Effect of audiovisual training on monaural spatial hearing in horizontal plane. PLoS ONE 6:e18344 (2011)[3] Mendonça, C. A review on auditory space adaptation to altered head-related cues. Front. Neurosci. 8, 219 (2014)[4] Parseihian, G. & Katz, B.F.G. Rapid head-related transfer function adaptation using a virtual auditory environment. J. Acous. Soc. of America 131, 2948–2957 (2012

    Calibration of sound source localisation for robots using multiple adaptive filter models of the cerebellum

    Get PDF
    The aim of this research was to investigate the calibration of Sound Source Localisation (SSL) for robots using the adaptive filter model of the cerebellum and how this could be automatically adapted for multiple acoustic environments. The role of the cerebellum has mainly been identified in the context of motor control, and only in recent years has it been recognised that it has a wider role to play in the senses and cognition. The adaptive filter model of the cerebellum has been successfully applied to a number of robotics applications but so far none involving auditory sense. Multiple models frameworks such as MOdular Selection And Identification for Control (MOSAIC) have also been developed in the context of motor control, and this has been the inspiration for adaptation of audio calibration in multiple acoustic environments; again, application of this approach in the area of auditory sense is completely new. The thesis showed that it was possible to calibrate the output of an SSL algorithm using the adaptive filter model of the cerebellum, improving the performance compared to the uncalibrated SSL. Using an adaptation of the MOSAIC framework, and specifically using responsibility estimation, a system was developed that was able to select an appropriate set of cerebellar calibration models and to combine their outputs in proportion to how well each was able to calibrate, to improve the SSL estimate in multiple acoustic contexts, including novel contexts. The thesis also developed a responsibility predictor, also part of the MOSAIC framework, and this improved the robustness of the system to abrupt changes in context which could otherwise have resulted in a large performance error. Responsibility prediction also improved robustness to missing ground truth, which could occur in challenging environments where sensory feedback of ground truth may become impaired, which has not been addressed in the MOSAIC literature, adding to the novelty of the thesis. The utility of the so-called cerebellar chip has been further demonstrated through the development of a responsibility predictor that is based on the adaptive filter model of the cerebellum, rather than the more conventional function fitting neural network used in the literature. Lastly, it was demonstrated that the multiple cerebellar calibration architecture is capable of limited self-organising from a de-novo state, with a predetermined number of models. It was also demonstrated that the responsibility predictor could learn against its model after self-organisation, and to a limited extent, during self-organisation. The thesis addresses an important question of how a robot could improve its ability to listen in multiple, challenging acoustic environments, and recommends future work to develop this ability

    Investigating Visual to Auditory Crossmodal Compensation in a Model For Acute Blindness

    Get PDF
    This study examined neural integration of the sensory modalities of vision and hearing. The objective is to investigate whether an effect of cross-modal compensation of visual to auditory networks in human participants occurs with the deprivation of visual input. This model for acute blindness had a novel design that attempted to imitate true blindness. The experiment involved 10 participants wearing opaque contact lenses that blocked visual feedback for a total of five hours. The duration of the total experiment was approximately eight hours, and involved seven sessions. The overall accuracy across time did not improve in blind individuals (p = 0.586), however, there was a significant finding in speaker accuracy (p<0.000), and a significant interaction between session and speaker (p=0.004). Reaction time generated a main effect of session (p<0.000) and a significant main effect of speaker (p<0.000), but no significant interaction between session and speaker with respect to reaction time

    Shaping the auditory peripersonal space with motor planning in immersive virtual reality

    Get PDF
    Immersive audio technologies require personalized binaural synthesis through headphones to provide perceptually plausible virtual and augmented reality (VR/AR) simulations. We introduce and apply for the first time in VR contexts the quantitative measure called premotor reaction time (pmRT) for characterizing sonic interactions between humans and the technology through motor planning. In the proposed basic virtual acoustic scenario, listeners are asked to react to a virtual sound approaching from different directions and stopping at different distances within their peripersonal space (PPS). PPS is highly sensitive to embodied and environmentally situated interactions, anticipating the motor system activation for a prompt preparation for action. Since immersive VR applications benefit from spatial interactions, modeling the PPS around the listeners is crucial to reveal individual behaviors and performances. Our methodology centered around the pmRT is able to provide a compact description and approximation of the spatiotemporal PPS processing and boundaries around the head by replicating several well-known neurophysiological phenomena related to PPS, such as auditory asymmetry, front/back calibration and confusion, and ellipsoidal action fields

    Auditory navigation with a tubular acoustic model for interactive distance cues and personalized head-related transfer functions: an auditory target-reaching task

    Get PDF
    This paper presents a novel spatial auditory display that combines a virtual environment based on a Digital Waveguide Mesh (DWM) model of a small tubular shape with a binaural rendering system with personalized head-related transfer functions (HRTFs) allowing interactive selection of absolute 3D spatial cues of direction as well as egocentric distance. The tube metaphor in particular minimizes loudness changes with distance, providing mainly direct-to-reverberant and spectral cues. The proposed display was assessed through a target-reaching task where participants explore a 2D virtual map with a pen tablet and hit a sound source (the target) using auditory information only; subjective time to hit and traveled distance were analyzed for three experiments. The first one aimed at assessing the proposed HRTF selection method for personalization and dimensionality of the reaching task, with particular attention to elevation perception; we showed that most subjects performed better when they had to reach a vertically unbounded (2D) rather then an elevated (3D) target. The second experiment analyzed interaction between the tube metaphor and HRTF showing a dominant effect of DWM model over binaural rendering. In the last experiment, participants using absolute distance cues from the tube model performed comparably well to when they could rely on more robust, although relative, intensity cues. These results suggest that participants made proficient use of both binaural and reverberation cues during the task, displayed as part of a coherent 3D sound model, in spite of the known complexity of use of both such cues. HRTF personalization was beneficial for participants who were able to perceive vertical dimension of a virtual sound. Further work is needed to add full physical consistency to the proposed auditory display

    Discrimination experiment of sound distance perception for a real source in near-field

    Get PDF
    International audienceThe ability of distance perception is quite important for our daily life. For the backward region where the vision cannot cover, listeners perceive objects only via binaural hearing, and the distance perception for a backward sound source is very important. It helps listeners to perceive an approaching sound source and avoid dangerous object especially when the sound source is in the rear. In the free field, the main acoustic distance perception cues for a nearby sound source include intensity variation with distance, binaural cues, dynamic cues, spectrum change and direct-to-reverberant energy ratio (Pavel Zahorik, 2005). Theoretically, all the above mentioned cues can be simulated via virtual auditory display (VAD), and realized by using a real sound source in an anechoic chamber. In comparison, the results based on a real sound source measurement should be more accurate. Previous researches have proved that the sound pressure has a giant influence on the ability of distance discrimination in both near field and far field when source is in front of head (Daniel H. Ashmead, 1990). However, few researches attempt to examine the binaural effect alone in distance perception. The theory was based on a fact that both the sound intensities and spectrums of a nearby sound will be different in two ears due to the head shadow, and these differences will change with distance when the sound source is lateral (PAUL D. COLEMAN, 1963). To verify the impact of binaural effect to distance discrimination, we conducted an experiment to exam the backward sound distance perception thresholds when the sound is presented from different azimuths in the horizontal plane. We used an automatic test system controlled by a computer in an anechoic room, eight listeners participated in the test. A loudness balanced band noise was used as test signals to remove the influence of sound level, and the signal was presented in 75 dBA. One signal was presented in the reference distance (50cm or 100cm), while the other one was presented in a closer distance, and sequence is random. The subjects need to do 2IFC (choose the closer one) between the signals presented in two different distances, and no feedback was given to subjects.The discrimination thresholds of two reference distances (0.5m and 1m) and five source azimuth (0°, 45°, 90°, 135°, 180°, right half plane of head) were examined in the experiment. The result show that subjects&#61602; distance discrimination thresholds are lower when the sound source is on the side of head (about 20%) compared with front and back (above 30%), distinguishing two signals become quite difficult for participants when signals are presented in azimuth 0° and 180°. Moreover, this phenomenon is more prominent in 50cm compared with 100cm, while the effect of head shadow is more significant in 50cm. The results obtained in this study are consistent with previous studies and reveal that the binaural effect indeed contributes to distance discrimination process of human in a degree. This work is supported by the National Natural Science Foundation of China (Grant No. 11574090) and the Natural Science Foundation of Guangdong Province (Grant No. 2018B030311025)
    • …
    corecore