3,944 research outputs found

    Evolutionary Computing and Second generation Wavelet Transform optimization: Current State of the Art

    Get PDF
    The Evolutionary Computation techniques are exposed to number of domains to achieve optimization. One of those domains is second generation wavelet transformations for image compression. Various types of Lifting Schemes are being introduced in recent literature. Since the growth in Lifting Schemes is in an incremental way and new types of Lifting Schemes are appearing continually. In this context, developing flexible and adaptive optimization approaches is a severe challenge. Evolutionary Computing based lifting scheme optimization techniques are a valuable technology to achieve better results in image compression. However, despite the variety of such methods described in the literature in recent years, security tools incorporating anomaly detection functionalities are just starting to appear, and several important problems remain to be solved. In this paper, we present a review of the most well-known EC approaches for optimizing Secondary level Wavelet transformations

    3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network

    Get PDF
    State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based streams, especially in the scenarios of intelligent remote control and communications, where virtual and augmented reality will soon become outdated and are forecasted to be replaced by point cloud streams providing explorable 3D environments of communication and industrial data. One of the most novel approaches employed in modern object reconstruction methods is to use a priori knowledge of the objects that are being reconstructed. Our approach is different as we strive to reconstruct a 3D object within much more difficult scenarios of limited data availability. Data stream is often limited by insufficient depth camera coverage and, as a result, the objects are occluded and data is lost. Our proposed hybrid artificial neural network modifications have improved the reconstruction results by 8.53 which allows us for much more precise filling of occluded object sides and reduction of noise during the process. Furthermore, the addition of object segmentation masks and the individual object instance classification is a leap forward towards a general-purpose scene reconstruction as opposed to a single object reconstruction task due to the ability to mask out overlapping object instances and using only masked object area in the reconstruction process

    Computer vision and optimization methods applied to the measurements of in-plane deformations

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Learning From Geometry In Learning For Tactical And Strategic Decision Domains

    Get PDF
    Artificial neural networks (ANNs) are an abstraction of the low-level architecture of biological brains that are often applied in general problem solving and function approximation. Neuroevolution (NE), i.e. the evolution of ANNs, has proven effective at solving problems in a variety of domains. Information from the domain is input to the ANN, which outputs its desired actions. This dissertation presents a new NE algorithm called Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT), based on a novel indirect encoding of ANNs. The key insight in HyperNEAT is to make the algorithm aware of the geometry in which the ANNs are embedded and thereby exploit such domain geometry to evolve ANNs more effectively. The dissertation focuses on applying HyperNEAT to tactical and strategic decision domains. These domains involve simultaneously considering short-term tactics while also balancing long-term strategies. Board games such as checkers and Go are canonical examples of such domains; however, they also include real-time strategy games and military scenarios. The dissertation details three proposed extensions to HyperNEAT designed to work in tactical and strategic decision domains. The first is an action selector ANN architecture that allows the ANN to indicate its judgements on every possible action all at once. The second technique is called substrate extrapolation. It allows learning basic concepts at a low resolution, and then increasing the resolution to learn more advanced concepts. The iii final extension is geometric game-tree pruning, whereby HyperNEAT can endow the ANN the ability to focus on specific areas of a domain (such as a checkers board) that deserve more inspection. The culminating contribution is to demonstrate the ability of HyperNEAT with these extensions to play Go, a most challenging game for artificial intelligence, by combining HyperNEAT with UC

    Learning to Generate 3D Training Data

    Full text link
    Human-level visual 3D perception ability has long been pursued by researchers in computer vision, computer graphics, and robotics. Recent years have seen an emerging line of works using synthetic images to train deep networks for single image 3D perception. Synthetic images rendered by graphics engines are a promising source for training deep neural networks because it comes with perfect 3D ground truth for free. However, the 3D shapes and scenes to be rendered are largely made manual. Besides, it is challenging to ensure that synthetic images collected this way can help train a deep network to perform well on real images. This is because graphics generation pipelines require numerous design decisions such as the selection of 3D shapes and the placement of the camera. In this dissertation, we propose automatic generation pipelines of synthetic data that aim to improve the task performance of a trained network. We explore both supervised and unsupervised directions for automatic optimization of 3D decisions. For supervised learning, we demonstrate how to optimize 3D parameters such that a trained network can generalize well to real images. We first show that we can construct a pure synthetic 3D shape to achieve state-of-the-art performance on a shape-from-shading benchmark. We further parameterize the decisions as a vector and propose a hybrid gradient approach to efficiently optimize the vector towards usefulness. Our hybrid gradient is able to outperform classic black-box approaches on a wide selection of 3D perception tasks. For unsupervised learning, we propose a novelty metric for 3D parameter evolution based on deep autoregressive models. We show that without any extrinsic motivation, the novelty computed from autoregressive models alone is helpful. Our novelty metric can consistently encourage a random synthetic generator to produce more useful training data for downstream 3D perception tasks.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163240/1/ydawei_1.pd
    corecore