66,162 research outputs found

    Disambiguation strategies for data-oriented translation

    Get PDF
    The Data-Oriented Translation (DOT) model { originally proposed in (Poutsma, 1998, 2003) and based on Data-Oriented Parsing (DOP) (e.g. (Bod, Scha, & Sima'an, 2003)) { is best described as a hybrid model of translation as it combines examples, linguistic information and a statistical translation model. Although theoretically interesting, it inherits the computational complexity associated with DOP. In this paper, we focus on one computational challenge for this model: efficiently selecting the `best' translation to output. We present four different disambiguation strategies in terms of how they are implemented in our DOT system, along with experiments which investigate how they compare in terms of accuracy and efficiency

    Peptide vocabulary analysis reveals ultra-conservation and homonymity in protein sequences

    Get PDF
    A new algorithm is presented for vocabulary analysis (word detection) in texts of human origin. It performs at 60%–70% overall accuracy and greater than 80% accuracy for longer words, and approximately 85% sensitivity on Alice in Wonderland, a considerable improvement on previous methods. When applied to protein sequences, it detects short sequences analogous to words in human texts, i.e. intolerant to changes in spelling (mutation), and relatively contextindependent in their meaning (function). Some of these are homonyms of up to 7 amino acids, which can assume different structures in different proteins. Others are ultra-conserved stretches of up to 18 amino acids within proteins of less than 40% overall identity, reflecting extreme constraint or convergent evolution. Different species are found to have qualitatively different major peptide vocabularies, e.g. some are dominated by large gene families, while others are rich in simple repeats or dominated by internally repetitive proteins. This suggests the possibility of a peptide vocabulary signature, analogous to genome signatures in DNA. Homonyms may be useful in detecting convergent evolution and positive selection in protein evolution. Ultra-conserved words may be useful in identifying structures intolerant to substitution over long periods of evolutionary time

    A Coverage Criterion for Spaced Seeds and its Applications to Support Vector Machine String Kernels and k-Mer Distances

    Get PDF
    Spaced seeds have been recently shown to not only detect more alignments, but also to give a more accurate measure of phylogenetic distances (Boden et al., 2013, Horwege et al., 2014, Leimeister et al., 2014), and to provide a lower misclassification rate when used with Support Vector Machines (SVMs) (On-odera and Shibuya, 2013), We confirm by independent experiments these two results, and propose in this article to use a coverage criterion (Benson and Mak, 2008, Martin, 2013, Martin and No{\'e}, 2014), to measure the seed efficiency in both cases in order to design better seed patterns. We show first how this coverage criterion can be directly measured by a full automaton-based approach. We then illustrate how this criterion performs when compared with two other criteria frequently used, namely the single-hit and multiple-hit criteria, through correlation coefficients with the correct classification/the true distance. At the end, for alignment-free distances, we propose an extension by adopting the coverage criterion, show how it performs, and indicate how it can be efficiently computed.Comment: http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.017

    Robust language pair-independent sub-tree alignment

    Get PDF
    Data-driven approaches to machine translation (MT) achieve state-of-the-art results. Many syntax-aware approaches, such as Example-Based MT and Data-Oriented Translation, make use of tree pairs aligned at sub-sentential level. Obtaining sub-sentential alignments manually is time-consuming and error-prone, and requires expert knowledge of both source and target languages. We propose a novel, language pair-independent algorithm which automatically induces alignments between phrase-structure trees. We evaluate the alignments themselves against a manually aligned gold standard, and perform an extrinsic evaluation by using the aligned data to train and test a DOT system. Our results show that translation accuracy is comparable to that of the same translation system trained on manually aligned data, and coverage improves
    corecore