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ABSTRACT 

ALIGNMENT-FREE METHODS AND ITS APPLICATIONS 

Ramez Mina, Master of Science 

University of Nebraska, 2011 

Advisor: Hesham Ali 

Comparing biological sequences remains one of the most vital activities in 

Bioinformatics. Comparing biological sequences would address the relatedness between 

species, and find similar structures that might lead to similar functions. 

Sequence alignment is the default method, and has been used in the domain for over four 

sdecades. It gained a lot of trust, but limitations and even failure has been reported, 

especially with the new generated genomes. These new generated genomes have bigger 

size, and to some extent suffer errors. Such errors come mainly as a result from the 

sequencing machine. These sequencing errors should be considered when submitting 

sequences to GenBank, for sequence comparison, it is often hard to address or even trace 

this problem. 

Alignment-based methods would fail with such errors, and even if biologists still trust 

them, reports showed failure with these methods. 

The poor results of alignment-based methods with erratic sequences, motivated 

researchers in the domain to look for alternatives. These alternative methods are 

alignment-free, and would overcome the shortcomings of alignment-based methods. 

The work of this thesis is based on alignment-free methods, and it conducts an in-depth 

study to evaluate these methods, and find the right domain’s application for them. The 

right domain for alignment-free methods could be by applying them to data that were 

subjected to manufactured errors, and test the methods provide better comparison results 
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with data that has naturally severe errors. The two techniques used in this work are 

compression-based and motif-based (or k-mer based, or signal based). We also addressed 

the selection of the used motifs in the second technique, and how to progress the results 

by selecting specific motifs that would enhance the quality of results. 

In addition, we applied an alignment-free method to a different domain, which is gene 

prediction. We are using alignment-free in gene prediction to speed up the process of 

providing high quality results, and predict accurate stretches in the DNA sequence, which 

would be considered parts of genes. 

 
Keywords: sequence alignment, alignment-free, compression complexity, Lempel-Ziv 
complexity, Kolmogorov complexity, biological signals, motifs, phylogeny, comparative 
genomics, and gene prediction. 
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CHAPTER 1 

INTRODUCTION 

1.1 Bioinformatics and computational biology 

Research in biology is very important for human life. Discoveries in this domain help 

physicians to improve their treatments techniques, and provide better quality for the 

health care domain. The primary research has been done in wet lab over hundreds of 

years. Biomedical engineering along with other similar disciplines came to the domain to 

speed up the research, and improve the quality of the treatment. Computational biology 

specifically came to provide biologists with fast and accurate tools to look into the human 

DNA sequences, and provide analysis for the digital format of the sequences. These tools 

would analyze the sequences and provide evidences for natural phenomena, where these 

tools are computational and are applied to digital data. Types of tools would be to find 

specific patterns or signals in the sequences, searching for stretches that could be genes, 

or identifying relationships between species. The enhancements to provide such tools 

happen in another discipline called Bioinformatics. This science integrates biology with 

other sciences to provide solid tools for the biologists, and give them faster and more 

accurate results compared to those obtained in a regular wet lab. Basically computational 

biologists take advantages of the bioinformatics tools to help them enhance their biology 

research. 
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1.2 Sequence analysis 

Sequence analysis is an important field of bioinformatics domain, and it deals with the 

analysis of sequences. Sequence analysis is the heart of bioinformatics; and it is essential 

in almost any biology research. A biologist would undergo major analysis on the 

sequences in preference, before they decide about applying their methodologies. 

Sequence analysis deals with both; DNA and protein sequences, and it is mainly a tool 

for data mining in the sequences; to obtain information that would be essential in the 

decision needed for the biologist. This information would let the biologist proceed on 

with their research, and apply the right solution for the problem in favor. An example of 

this process would be a research to find new signals in the sequences, so a biologist 

would apply a motif finding approach, to find words with potential strength, and then 

compare these words to others from other sequences. This would allow them to conduct a 

deeper research on the reported ones and measure their biological strength. The first step 

for such a work would be applying some sequence analysis tools, like motif-finding tools, 

before proceeding to solve the actual problem. 

Another example would be gene prediction, and finding genes is very important problem, 

especially for drugs companies. The drugs’ industry is built on understanding the nature 

of genes, and their main research is to search for stretches in the DNA sequences. These 

stretches might be genes, where one way to find genes in sequences, would come from 

the fact that similar species carry similar functions. The first task to carry on such 

research; is to find similar species that might carry similar functions and structures, hence 

applying sequence comparison tools to find such groups of species is the first step in this 

kind of research, which would need sequence comparison. 
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1.2.1 Sequence comparison and sequence alignment 

Sequence comparison deals with comparing biological sequences. That could happen in 

either pair-wise fashion or multiple sequence comparison fashion. By pair-wise; we mean 

comparing two sequences and find the relationship between them. So if we need to 

compare 3 sequences together, we compare each 2 separately, and then relate the 3 

sequences accordingly. While multiple sequence comparison is also based on pair-wise 

comparison, but the end result deals with the relationship of several sequences at once. 

Sequence alignment is the default method by choice; it came to the literature in 1970 as a 

digital solution to solve the problem of comparing sequences. The basic interpretation for 

sequence alignment; is how many steps are needed to convert one sequence to another. 

This process involves aligning two similar nucleotides (a nucleotide is the basic unit of a 

DNA sequence), aligning dissimilar nucleotides, or inserting a gap in one sequence. The 

cost of this process would provide a numerical value; which would represent the 

similarities between the sequences. 

1.2.1.1 Limitations of sequence alignment 

Sequence alignment came in the frustration time, when there was no computational tool 

to speed up the process of comparing biological sequences. Biologists were really excited 

to see a fast tool to provide them with numerical results; which they can analyze; and 

build a sense on how closely related are the sequences. With the new advancement in the 

domain, reports showed failure of sequence alignment, especially with longer sequences 

that were the results of the new sequencing technologies. Also the tool became relatively 

slow, and would take long time before it reports results. Improvements and algorithmic 

solutions were provided to deal with the speed issue, and there was success in this 
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direction to some extent, but the problem of quality still existed, and biologist started to 

request other solutions to the problem. 

The limitations of alignment-based methods come mainly in two categories: 

1. Accuracy, although the methods provided the biologists with graphical 

representation, but in many cases it forced the sequences to be aligned, even if 

they are closely related. This shortcoming would mislead the biological research, 

and provide incorrect results. 

2. Complexity, although alignment-based methods were fast when they first came; 

as the available sequences length were short at this time, it started to be 

considered slow with more longer sequences, and it is now unreliable method 

with whole genomes. Alignment-based methods also failed with longer sequences 

as they consume large amount of memories. 

1.3 Alignment-free methods 

Alignment-free methods came to the literature in the last two decades, as a solution for 

the shortcomings of the sequence alignment methods. These methods are not based on 

alignment, but they are built on different concepts and computational foundations. 

Sometimes these methods integrate biological facts to provide better way to compare the 

sequences, some of them are based on statistical and stochastic models; like Hidden 

Markov Model, some of them are based on finding special signals in the sequences like 

shortest unique substring, or find genes that would be considered in a weighing function 

and would indicate the relationships between species. But the major two categories that 

alignment-free methods fall in; are compression-based techniques and k-mers methods. 

1.3.1 Compression-based methods 

Compression-based techniques came to the literature recently, and they got a lot of 

attention from researchers because of their heuristic speed, and because of the concept 
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they were built on. They are based on compression complexity; which basically deals 

with the similarity between the compared strings. The basic idea falls in the concept of 

compressing one string in terms of another string, so if an algorithm is capable of 

compressing string S1 in terms of string S2, then the two strings have similarities, and the 

compressibility ratio would provide an estimate of how closely the two sequences are. 

That would happen mainly by appending S2 to S1, and compress them as one string, and 

then append S1 to S2 and compress them as one string, and use the resulting values in 

some mathematical equations to measure the relatedness between the sequences. That 

would provide a numerical value that is also normalized for the relatedness between two 

strings, by normalized we mean that the value is scaled in a range of 0 to 1. This concept 

was borrowed to the sequence comparison domain, and two strings would be replaced 

with two biological sequences, and lots of experiments and tests were applied to measure 

the viability of these methods and how good results they would provide. In this work; two 

different compression complexities were used, Kolmogorov complexity and Lempel-Ziv 

complexity. Kolmogorov complexity deals with different compression algorithms, and 

uses the resulting compression values as the seeds for its unique equations, giving by this 

flexibility for the researcher to use their own compression algorithm. While Lempel-Ziv 

has its own compression technique that is a dictionary-based and would provide special 

class of unrepeated parsed words. The number of these words would express the 

complexity, and would be the main seeds for a group of equations provided by the 

technique, and the results of these equations would provide numerical values to express 

the relatedness between 2 sequences as well. Besides testing this hypothesis, our work 

was beyond the point of testing the method, and went beyond that to find applications for 
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these methods, the application is mainly for sequences that have natural changes, and 

these changes would mislead alignment-based methods, and would make it reports 

uncertain results. Examples of these changes would be sequences with mutations that 

were developed over years, sequences with high repetitions of subsequences, sequences 

that are not complete, sequences that are not complete and were assembled from 

incomplete fragments, or sequences that are incomplete and were assembled from 

incomplete fragments that were out of order.  

We applied the methods on such erratic datasets to evaluate the methods performance in 

such cases, and to report them for better use when datasets are highly subjected to errors. 

1.3.2 k-mers methods 

K-mers methods is the second main category for sequence comparison, it deals mainly 

with the probabilistic model for all possible words of length k. For example all possible 

words of length 3 for a DNA sequence would be 64 (43), where 4 stands for the number 

of letters in alphabet (4 nucleotides for a DNA sequence) and 3 is the length of the word. 

The algorithm then would scan the sequence for all the occurrences for each word, and 

reports its probability in a vector for each sequence. Then it applies a distance measure 

between each pair of vectors to be an indication for the relatedness between two 

sequences. The algorithm could be applied to protein sequences as well. 

The algorithm has several improvements that deals with using different values for k, and 

even append several vectors representing different values for k in one vector. The main 

contribution to the algorithm was in providing lots of suggested measures for the 

distances between the vectors were proposed; and these distance measures would 

maximize the quality of the results. 
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In this work we are using a different approach to use the k-mers concept, and this 

approach considers the occurrence, frequency and order of the k-mers, it also consider the 

usage of random signals that might carry special information in the sequences, and 

signals that have biological relevance; like restriction enzymes or signals obtained from 

coding regions. The main motivation for such an approach; is based on the fact that some 

signals would differentiate between sequences, and sometimes such signals would be 

unknown, and hidden within the sequences, hence integrating an algorithm to reveal their 

strength (and not revealing the signals themselves) would lead to better results for 

sequence comparison. That would happen by running the approach using random words 

of length k, and measures if these random signals would provide better results than those 

of alignment-based or not. If the results are better than alignment-based methods, then 

this would prove that there exist some signals with better strength. Another issue was 

addressed in the k-mers work, is to use signals that have biological relevance, and 

measure if they would provide better measurement for sequence comparison; relative to 

measurements obtained by alignment-based methods. Such words could be restriction 

enzymes, or words that occur within a region of the DNA with biological relevance, like 

coding region (CDs). 

1.3.3 Sequence comparison assessment 

Evaluating sequence comparison was never an easy task, the default method is to cluster 

the species based on the reported distances, draw the phylogenetic tree of these distances, 

and leave it to the biologist to decide the correctness of the resulting tree, which in turn 

would reflect the correctness of the reported distances. Unfortunately this method lacks 

accuracy, especially with a big number of species, which would make the biologist not 
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able to read the tree and give an in-depth report about its quality. In addition to that, this 

method would not provide a numerical value to be used to evaluate the correctness of 

several trees, for example if we are evaluating the results of 5 different methods, and 3 of 

them sound to have very close tree’s topology, it will be difficult for the biologist to 

report the best of them, but if there is numerical values for the correctness of each tree, 

then a sorted order of best trees would be reported, which in return would reflect the 

quality of each experiment and the used approach. 

We evaluated the results using a modified approach of the above, and we overcome the 

shortcomings of this one, by first compare the resulting trees of our methods; to a 

reference tree that would be provided by the biology society. This tree has the correct 

topology for a group of species, and it is usually provided by a trusted organization like 

NCBI, this tree has the correct topology for a group of species. Secondly we measure the 

resulting trees computationally and not using visual measurement, and this computational 

measurement would provide values to be considered for evaluating the approaches. The 

basic idea is to first run the experiment for the method/technique in favor, report the 

resulting distances of this technique, use these distances to cluster the species and 

construct their phylogenetic tree, then we compare the resulting tree to a reference tree 

that has the gold standard topology. The comparison occurs computationally using an 

algorithm called path-length-difference. This algorithm measures the relative positions of 

the species to each other, and evaluates how much deviation happened in the resulting 

tree compared to the reference tree. This would occur by giving a penalty for any species 

that move from its original position, and report the penalties as numerical values. These 

numerical values would be considered as the measurable values for the difference 
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between the resulting tree and the reference tree. Finally the evaluation for the resulting 

trees and their differences to the reference tree would be reported as a way of comparing 

different sequence comparison approaches. For example when we compare Lempel-Ziv 

distance measures which are compression-based, to Multiple Sequence Alignment (MSA) 

which is alignment-based, this would happen by generating the trees of all the proposed 

methods, measure their distances to the reference tree, and evaluate which distances are 

smaller. That would reflect which tree is closer to the reference tree, which in turn would 

be an indication for better results, as the good results indicate which trees are closer to the 

reference tree. 

1.4 Comparative genomics and gene prediction 

Comparative genomics is an application of sequence comparison, it deals with comparing 

the entire genomes, and we are considering it in this wok to predict genes. The main 

motivation of using comparative genomics to search for genes in closely related 

genomes, which would share similar structures and functions, these structures would 

probably be the proposed genes (sometimes the similarities are not usually genes). So in 

case of unknown genes, the similar structures might be unknown genes; and hence using 

comparative genomics would lead to find new genes in the sequences.  

1.4.1 Using comparative genomics to find genes 

The proposed algorithm works by first splitting the sequences to relatively short 

fragments, and these fragments would overlap, and then use a fast and an accurate 

alignment-free technique to compare these fragments, and report the closely related 

fragments to be considered for the next step. The next step would be local alignment, to 
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measure how closely related are these fragments, and finally report the fragments that 

pass the proposed thresholds, and combine those which are in order to have them as 

predicted genes. 

1.4.2 Gene prediction assessment 

Evaluation of the method occurs by using the sensitivity and specificity measures, where 

sensitivity reports how many true positive divided by true positive and false negative, and 

specificity reports how many true positive divided by true positive and false positive, 

where true positive are the number of predicted nucleotides that happen to be within a 

gene region, false negative is the number of unpredicted nucleotides that happen to be 

within a gene region, and false positive is the number of predicted nucleotides that 

happen not to be within a gene region. 

Understanding the work of this thesis needs understanding of some foundations in 

biology, and the following subsection would discuss these foundations briefly. 

1.5 Overview of biology 

The work of this thesis is considered to be “biological sequence analysis”; hence it is 

important to understand some basic definitions and concepts of biology, which are 

needed for the reader to understand both the biological terminology, as well as the nature 

of the sequences and their problems that motivated the work of this thesis. 

The following brief headers cover the definitions and the nature of genomes, genes, 

DNA, gene expression, transcription, gene structure, splicing, translation, synteny and 

homology. 
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1.5.1 Genomes 

Genomes are the genetic material of a species, hence it is the total amount of DNA in the 

entire cell. It occurs as a set of chromosomes, and each chromosome has a long chain of 

DNA that is highly condensed. 

1.5.2 DNA 

DNA sequences are usually a pair of anti-parallel chains, held together by 

complementary base pairs that form the double helix. Each DNA sequence is composed 

of a molecule called a nucleotide, which is composed of hydrogen, oxygen, nitrogen, 

carbon, phosphate and a base of four bases. The four bases are Adenine, Guanine, 

Cytosine and Thymine.  

The structure of the DNA model reveals some information that would be needed in the 

sequence analysis. 

• The nature of the sequences could be interpreted as a digital nature, by 

considering the main difference between nucleotides, which is the base. The bases 

are denoted digitally as A, G, C and T. It is worth mentioning that T is replaced 

with U (for Uracil) in an RNA sequence. 

• The two chains are complementary to each other, A faces T, C faces G and vice 

versa, hence to analyze the sequences, a mean of definitions is needed for forward 

or positive (+) and reverse or negative (-) strands, and elements that specify the 

sequences like genes, exons and introns. Although genes are transcribed from 

both chains, most research deals with only the forward sequence, which is also 

known as 5’ to 3’. 
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• The complementary nature allows computers to just deal with the forward 

sequence, as the reverse one could be digitally constructed using the forward. 

• The forward sequence could be read as from 5’ to 3’, where the 5’ is the upstream 

region, and 3’ is the downstream region. 

1.5.3 Gene Expression: from DNA to RNA to Protein 

Gene expression is a process in which the gene in form of DNA is converted to protein. It 

is also known as the central dogma of biology, this process includes transcription, 

splicing and translation steps, and each step is triggered by some signals. In general the 

process of gene expression starts with the DNA (gene), and it converts to RNA and 

finally it becomes a protein sequence. Figure 1 shows the central dogma flow. 

 

 

Figure 1 Central dogma of molecular biology. 
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1.5.4 Transcription 

Is the copying of the gene sequence in form of DNA (template strand) to RNA (pre-

mRNA). Transcription starts when an upstream region of the gene (promoter region) is 

activated (bound) by transcription factors, and these regions control and initiate a gene 

transcription from either a forward or reverse strand. The strand which gets transcribed is 

called the template or sense, and the other is called nonsense or antisense strand. 

When analyzing mRNA, cDNA or EST data, the mRNA to be translated would be 

identical to the coding strand, where coding refers to translation and not transcription. 

This means that mRNA is transcribed from the strand that has its complementary 

sequence. 

There are three main types of transcript data: 

1. mRNA: messenger RNA. 

2. cDNA: a double-stranded copy, usually a fragment, of an mRNA molecule 

3. EST: expressed sequence tag. A short single-pass sequencing of a cDNA clone. It 

is typically a fragment from the 5' or the 3' end of the cDNA. 

1.5.5 Gene Structure 

In Eukaryotes, genes are short stretches of DNA within a genome of peculiar and discrete 

structure, and gene prediction techniques take advantage of this structure to predict genes. 

The main characteristics of this structure to consider are: 

• Coding and non coding exons (UTRs) 

• Introns 

• Translation start site (ATG) 

• Splice sites (GT, donor and AG, acceptor) 
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• Translation termination site (STOPs: TAG, TGA and TAA) 

1.5.6 Splicing 

Splicing is the process where introns are removed from the RNA, and only exons would 

remain. Splicing are denoted by splicing signals like GT (donor) and AG (acceptor) in the 

intron region, and are used to delimit exon-intron boundaries, hence exons (whether 

coding or non-coding) are joined together as an open reading frame from 5’ to 3’. 

1.5.7 Translation 

The mature mRNA sequence is translated into a protein; the process is guided by signals 

along the mRNA sequence to find the right open reading frame (ORF), hence the process 

would start, and would be terminated by a stop signal (stop codon). 

1.6 Structure of this thesis 

The rest of this thesis is as follows, chapter 2 presents the problem statement, chapter 3 is 

overview on the literature review, chapter 4 presents the compression-based methods, and 

the results of applying them to datasets with different level of errors, chapter 5 presenting 

a modified method of using k-mers, and application of this method on genomic datasets 

using random motifs or motifs that have biological relevance, chapter 6 discusses the use 

of comparative genomics in gene prediction, and present the obtained results, chapter 7 is 

the conclusion and future work. 
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CHAPTER 2 

Problem Statement 

2.1 Sequence comparison importance 

The importance of sequence comparison comes in every aspect in biology, as it is a 

necessary step to solve most of the biological problems. Sequence alignment is the main 

tool to solve this problem, as biologists use this method to compare and align sequences 

and measure their relatedness, as the method provides an easy graphical tool to visualize 

the aligned nucleotides. This trust for sequence alignment was developed as it was the 

only computational method for long time, and biologists trusted it, especially with its 

graphical representation. 

2.1.1 Limitations of sequence alignment 

But sequence alignment has limitations; these limitations result in failure with sequences 

of erratic nature. This erratic nature would be mutation, inversion, translocation, 

repetition or sequencing errors. Such errors would mislead the results of sequence 

alignment, and would report misunderstanding of the relationships between species for 

the researchers. In fact it might reports dissimilarities between species, while they are 

similar and their similarity is not recognized by sequence alignment. Hence the urge need 

for alternative methods to catch such similarities comes to the domain, and researchers 

are looking for alternatives to overcome the shortcomings of sequence alignment. To do 

so, a need to understand the nature of the errors is very important, and an extensive 
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research and lookout for methods that would address these errors, and provide alternative 

solutions is very important. 

2.1.2 Features of errors in biological sequences 

Biological sequences undergo evolution events over time; these events could be mutation, 

inversion, translocation, repetition, also the sequences would be subjected to sequencing 

errors. It is very important for the reader to know that if events exceed certain limit, then 

the species would evolve, hence our focus is on events that would not cause evolution of 

the species. 

Mutation events happen over years in an amount that would still maintain the 

functionality of the sequence. They happen mostly as point mutation, where a nucleotide 

changes to a different one in the same position. Mutations happen also as deletion of a 

nucleotide, or as insertion of a new nucleotide.  

Inversion is an event that sequences undergo, and it is basically an inversion that happens 

to a substring in the sequence, but still this inverted substring would carry the needed 

information for the sequence to maintain their functionality. Translocation is the transfer 

of some substrings from their original locations; to different locations within the 

sequences. Repetition is the process where a substring would copy itself to another 

location; this location could be after the same position of the original substring, or in a 

different location.  

Sequencing errors are errors that happen from the sequencing machine, and those might 

be incomplete sequences, which are composed of fragments in or out of order. 



17 
 

 

Looking deeper into the nature of these events and errors, we would get a sense on how 

poor sequence alignment would perform, and that a different method which would 

address and catch these errors would be needed. 

2.1.3 Addressing a proposed solution 

The previous discussion on the errors would lead us to look into alternative algorithms 

and techniques, which would overcome the erratic nature of the sequences. This nature 

would consider mutations, inversion, translocation, repetitions and sequencing errors. 

Hence the proposed technique should not look at the sequences with their order, but 

should go beyond that and address the similar structures, even if they are not in order 

(because of translocation), or do not carry the exact same structure (because of the 

mutation), or are inverted, or have repetitions that would be extra unneeded information. 

One or two main approaches needed to be addressed by this algorithm, the first is to have 

the algorithm looking for these errors, and compression would address such errors, the 

second is an algorithm that would look for special signals carried by the sequences, and 

these signals would conserve the species even if they have undergone some errors, and 

that would be using k-mers approach. 

2.1.4 Alternatives for sequence alignment 

Compression would overcome such shortcomings, as compression algorithms would look 

for similar structures within strings, and would consider little changes that could be 

mutations. It will also catch the repetition of strings; consider them by ignoring them in 

the final output, and as compression looks at the sequences in a linear way, it will also 

address any translocation of the sequences. In general, an efficient compression algorithm 
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would catch such errors, and the compressible output of two compressed strings would 

indicate the relationship between them. 

On the other hand, by considering special signals in the sequences, we would identify the 

relationships between species, as some signals are consistent and needed for the species 

to maintain their functionality. These signals don’t change over time, and they might be 

hidden within these errors, and a good algorithm would reveal the similarity between 

species based on these signals. 

A k-mers approach is suggested in this work, to address the relatedness between species 

based on mutual signals. The main motivation in this work; is to take advantage of 

unknown signals to address the relatedness between them, this could be done by applying 

all possible signals of length k, random sets of them, or signals with biological relevance. 

2.2 Gene prediction problem 

Gene prediction is an important problem for biologist, and it provides a major 

contribution to the drug industry. But gene prediction is not an easy problem to solve, as 

reports showed poor results with several tools. The main problem in searching for genes 

is that the nature of DNA is very random, and the DNA mechanism is not known. In fact 

the functionality of a lot of subsequences for the DNA is not known. Although a lot of 

research has been applied to look for genes, report showed that the generated tools are 

domain specific, and even in some cases they fail within the same domain. Hence the 

need for a tool that would overcome these problems comes, and a need to address the 

possible features that can be used to find genes is important. Based on these features we 

would design the appropriate approach. 
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2.2.1 Features of biological sequences and comparative genomics 

As the work for gene prediction is a continuation for our work on sequence comparison, 

we are addressing the features of DNA that would be relative to comparative genomics, 

and that would help in providing a model to predict genes. 

The DNA sequences carry similar functions, and these functions are the results of gene 

expression. As these functions are similar, their protein sequence would be similar, and in 

turn their DNA sequences would be similar. Hence the idea of using sequence 

comparison would be relevant and would identify such stretches in DNA, which might be 

genes. 

2.3 Terminology 

Sequence comparison is a sub science of bioinformatics. It deals with comparing 

biological sequences, to find the relationship between a group of species. This 

relationship is represented by a metric matrix. Sequence comparison has two main 

categories, the first one is called sequence alignment, and deals with methods that are 

alignment-based, and the second is alignment-free, and this one does not use sequence 

alignment for comparison, but use other techniques to catch the similarities of the 

sequences based on pattern recognition and/or biological relevance.  

Alignment-free methods have two main categories, first one is based on compression 

techniques, and it takes advantage of the compression algorithms’ ability to search 

similar patterns for compression purposes. The second one is based on k-mers, which 

deals with signals within the sequences, and find the relatedness between species based 

on these signals. 



20 
 

 

Compression techniques use compression complexity to identify the relationships 

between species, and this complexity is the main tool to identify similarities between 

species. The main two compression complexities are Kolmogorov and Lempel-Ziv 

complexity. Kolmogorov complexity uses any compression algorithms, and takes its 

compressibility value as the seeds for proposed equations. The results of these equations 

would be the normalized distances between species. While Lempel-Ziv complexity has 

its own compression algorithm, and its results would be the seeds for a group of proposed 

equations to evaluate the distances between the sequences. In both complexities, a 

measure of compressibility for each sequence, and each sequence appended to the other 

sequence is needed. 

The k-mers method is similar to the use of a group of motifs, to identify the relatedness 

between species. By Motif, we mean a special word that is composed of a group of 

nucleotides, and might have special biological nature. These motifs works as the main 

source of signals to trigger the similarities between species, and these signals could be all 

possible motifs of length k, some random sets of motifs, or sets with biological relevance, 

like restriction enzymes which cut the sequences in specific positions, or motifs from 

biological relevant regions like coding regions. Restriction enzymes are special structures 

of DNA sequences, that cut the sequences in specific positions of the sequences, and 

Coding Regions or CDs are the regions of DNA that carry genic information. 

The k-mers method transfers the nucleotide level sequences to motifs sequences, and a 

comparison between the sequences happen using some comparison methods, like Longest 

Common Subsequence or a compression technique. 
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The resulting pair-wise distances are the scores needed to construct a phylogenetic tree, a 

tree that would show the relationships between species. This relationship is presented as a 

topology with the branch length between species and ancestors. There are few datasets 

for species that their right topology are known, and would be considered as the gold 

standard trees for datasets. 

The results of the alignment-free techniques need to be compared to alignment-based, to 

measure their performance against the well known method; hence the use of multiple 

sequence alignment scores to build a phylogenetic tree is important. Multiple sequence 

alignment is based on sequence alignment, but it considers all the sequences together for 

alignment, and provides a scoring matrix to be used as the main seeds for phylogeny. 

The main reason to use phylogeny in this research; is to find how close would be the 

resulting trees to the gold standard tree. That would reflect the quality of the resulting 

scores from other methods. Two famous phylogeny algorithms were used in this work, 

UPGMA and Neighbor-Joining (NJ). 

Back to the discussion of the k-mers (motifs) method, and after identifying the signals in 

the sequences, a way of comparing these signals is needed. The use of longest common 

subsequence algorithm for comparison is in favor, where this algorithm would provide a 

numerical value that represents the relationship between the species, and this value 

represents to how many mutual signals that are in order between the two sequences. 

Local alignment is a method of sequence alignment. As its name explains, it deals with 

defining the best local relationship that could be found between two sequences, and 

would have the maximum score. This method is used in our work for gene prediction as 

the last step to verify the relationship between fragments. 
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CHAPTER 3 

LITERATURE REVIEW 

The literature review covers all the previous work that has been conducted in sequence 

comparison, alignment-free, compression-based, k-mers approaches and gene prediction. 

It is important for the reader to understand where the researchers’ steps are, so they 

would be able to evaluate the work of this thesis accordingly. 

3.1 Sequence comparison 

Sequence comparison is an essential tool for biologists. In the past, and before 

introducing computers and computational methods, biologists used to compare biological 

sequences using biological observations. These observations were mainly focused on the 

species natural behavior. With the advent of microscopes and other analog tools, biologist 

started to look in-depth at the DNA and protein structures, but these methods were very 

slow and to a lot of extent were not accurate, and the work needed several runs for 

verification purposes. Hence the need for automated and computational methods was 

necessary. 

Sequence alignment was brought to biologists by Saul B. Needleman and Christian D. 

Wunsch in 1970[1], this method was built on dynamic programming, and provided a 

graphical tool for biologists to map the relationships between species. This method has a 

name of global alignment, as it aligns the entire sequences, and maps the base level 

relationships between a pair of sequences for the entire sequences. Later in 1981 Temple 
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F. Smith and Michael S. Waterman [2] modified the method, and had it to find the best 

score for subsequences from the pair of sequences, and this score would be maximal. 

Biologists counted on both methods for their research and their sequence comparisons 

problems, but slowly errors were reported for sequence alignment, and with a deeper 

investigation, researchers found that sequence alignment fails with some natural events or 

errors in the sequences. Such natural events could be mutations, inversion, translocation 

and repetitions. Hence the need for other methods that would overcome such errors 

became demanding, these methods are not based on alignment and are called alignment-

free methods. 

3.1.1 Alignment-free methods 

The main strength about alignment-free methods; comes from their algorithmic nature. 

That nature does not consider the order of the nucleotides and/or the subsequences; hence 

they would overcome natural errors like inversion, translocation and repetitions. They 

would also overcome errors like in mutation, although sequence alignment might work 

fine with some limited point-mutations. 

Alignment-free methods came to the literature in the last 25-30 years, a comparative 

study by Susana Vinga and Jonas Almeida [3] shows that alignment-free methods fall 

mainly in two main categories. The first category is based on compression techniques 

[3][4][5][6][7][8][10][11]; and takes advantage of the pattern recognition searching 

algorithms, which compression-based techniques are built on. While the second one is 

based on the use of k-mers [3][12], by generating vectors of the probabilities of these k-

mers, then measure the distances between these vectors using several distance measures, 

and the numerical result would be the biological distance between species.  
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In addition to these two categories, other papers in the literature discussed alignment-free 

methods, like using shortest unique substrings [13] or Local Decoding of Order N [14]. 

The basic idea behind using shortest unique substrings, is to find these shortest 

substrings, and use them as an identity for the genomes, and would provide a way of 

clustering for the species, but the researchers did not provide numerical measures.  

While the basic idea of Local Decoding of Order N falls in the use of some statistics. 

These statistics deals with the change of a certain amount of nucleotides in a word of 

length N, and by scanning the similar words that has a little of mutation on the nucleotide  

level. 

Unfortunately the first method did not provide a numerical value for the distances, and 

the second one did not use a biological fact, or at least consider any. 

Beside these two methods that were provided in the literature, the main two methods for 

alignment-free are the compression-based and the k-mers based techniques, and we are 

providing more details about the work that has been done for each one. 

3.1.2 Compression-based techniques 

Compression-based techniques provided a new way to compare biological sequences. 

The concept that compression is built on is that strings would be compressible if they 

have repetitions, and these repetitions could be replaced by pointers which would save 

space. If two sequences share similar structures, and they are combined into one 

sequence, then this similar structure would be repetitions, and hence the new sequence 

would be compressible. This concept is used to identify relationships between sequences, 

and according to the compressibility values, the distances between species would be 

identified. 
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But the use of compression with biological sequences started for the sake of compression, 

and to save space; and give lighter weight for the biological data when they are 

transferred over networks. 

When research in bioinformatics and computational biology was born, compression of 

biological sequences was introduced for the sake of saving space as well. The properties 

of DNA and protein sequences are suitable to apply compression techniques. Chen [8] 

stated that standard text compression tools like Compress, Gzip and Bzip2 cannot 

compress DNA sequences efficiently [8], while Behzadi and Le Fessant [9] discussed 

that DNA sequences have structures that are not random; which would make them 

possible for compression using only two bits. That led Chen et al. [8] to design a 

compression algorithm that would take advantages of the previous facts. 

Compression is based mainly on compression complexities, and these complexities are 

the main core to use compression in comparing sequences. Abraham Lempel and Jacob 

Ziv introduced the concept of compression complexity in 1976 [15] which was the core 

foundation to introduce the LZ compression technique in 1977 [16]. Another angle and a 

little different concept of compression complexity was introduced by Kolmogorov [17], 

and his concept was independent from the compression algorithm, which means that the 

user can apply any compression algorithm. 

We started to learn about the integrated information of the biological sequences. This 

integrated information comes in different forms of similarities within the same sequence, 

or among several sequences, and it became convenient to use compression to detect the 

relatedness between biological sequences. Chen et al. [8] and Rivals et al. [10] discussed 

that biological sequences have tandem repeats in higher eukaryotes, and multiple copies 
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of genes which make them relevant to the compression techniques. In addition to these 

properties, DNA sequences are rich with other biological features that are hidden within 

the sequences, and these features could be detected using compression, such features are 

random mutations, translocation, cross-over and reversal events.  

Also Rivals et al [10] discussed how compression would address such properties, and 

would use these properties to provide high compression values. Which in turn would 

reflect the relatedness between the sequences, so by concatenating two sequences we 

would be able to compress them effectively if they have some common information. 

Compression complexity is a powerful tool to address the relatedness between strings, as 

strings in general are the base for text. Compression complexities would address how 

much similarity does several text has in common.  

In the application of this research, the strings are the biological sequences, and the 

complexity would address if two sequences are related according to the compressibility 

level of each sequence, and each sequence in terms of the other (concatenate first 

sequence to the second, and the second to the first). For any pair of sequences [5], we 

would measure the compression complexity of each sequence, also for each sequence 

concatenated to the other sequence. We then introduce the compressibility values to 

distance measures that would give us good estimates for the relatedness between this pair 

of sequences. Two compression complexities were used in previous research, and are 

used in this work, Lempel-Ziv complexity as in the work of Otu et al. [4] and Burstein D. 

et al. [7], and Kolmogorov complexity as in the work of Ming Li et al [6] and E. Rivals et 

al. [10]. 

This researchers’ work was mainly focusing on the assessment of the methods, and how 
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viable they could be, but they ignored searching for a good domain for these methods, 

and although these methods are very effective, we believe they would be even better with 

datasets that have errors. 

3.1.3 k-mers based techniques 

k-mers based techniques were introduced to magnify the importance of hidden signals 

within the sequences. These signals are not known in the biology domain, but they do 

exist, and researchers want to take advantage of their existence, and use them to identify 

the relatedness between species. The basic idea for this approach is to parse the sequence 

into words of length k, and these words overlap with k-1 period, and then measure the 

probability of each word in the sequences. This would lead to a feature vector that has 

probabilities for 4k cells words; each one is in a separate cell. These probabilities would 

identify the biological distance between species. The idea itself is basic, and the only 

added improvement was to consider different vectors for different values of k, and 

append them together to result in one vector, as was shown by Guoqing Lu et a. [12]. But 

the main contribution to this area occurred within advances in the suggested distance 

measures, as in the work of Guoqing Lu et al, they used the cosine angle between the 

vectors [12]. Also as in the work of Qi Dai et al., as they used Euclidian distance, cosine 

of the angle between the vectors, Standardized Euclidean distance, Kullback-Leibler 

discrepancy, a protein matrix noted as W-metric and some suggested statistical measures. 

They also provided novel statistical distance measures like the generalized relative 

entropy and gapped similarity measures [18]. 
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3.2 Gene prediction 

The work for gene prediction in this thesis; focuses on the use of comparative genomics, 

and is a continuation for the work that has been done before by Rong Chen et al. But 

there is a lot of work in the gene prediction that was mainly based on digital signal 

processing and other statistical and machine learning approaches, and we are 

summarizing the previous work in the following section. 

Mahmoud Akhtar et al. used digital signal processing (DSP) models to find genes in 

eukaryotic [19], as they proposed several DSP models to predict genes and exons, and 

compared them to other existed models. They also contributed a DSP-statistical hybrid 

technique for acceptor splice site detection. While P.P. Vaidyanathan et al. [20] used 

specifically digital filters on DNA sequences to predict patterns for the codons, which 

would be 3 nucleotides and would be translated into proteins. T. Efstetol et al [21] used 

Fourier transform to detect genes in the DNA sequences based on the framework of 

Bayes classification. On the other hand Yang Weng et al. [22] combined several work 

and programs using Desmpster-Shafer theory to find evidence for gene prediction, their 

basic idea is to use several reliable programs, and take their results as the seeds for their 

approach to maximize the results. Other approaches included using resampling-based 

spectral analysis to improve the gene prediction process, as in the work of C.Q. Chang et 

al. [23], they suggested that any small improvement in the process of finding genes would 

contribute to the literature, as these improvement could be combined together to provide 

a better solution. Statistical combination and classification in terms of gene 

characteristics was introduced as well, as in the work of Qing Tong et al. [24]. The focus 

of their work was to identify special features of the genes, and identification of these 
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features would happen by using statistics that are applied to different gene prediction 

approaches. The different approaches and methodologies discussed above resulted in a 

group of gene prediction packages/software like genescan, genemark.hmm, HMMgene, 

Fgenes and MZEF [25]. 

Another domain for gene prediction focused on finding genes based on comparative 

genomics as in the work of Rong Chen et al. [25]. The main strength of this work focuses 

on identifying similar stretches from closely related species, and considers that these 

species would share similar functions, and hence would also share similar structures of 

DNA. Their work showed promising results. 
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CHAPTER 4 

COMPRESSION-BASED TECHNIQUES 

Comparing biological sequences remains one of the major activities in the bioinformatics 

domain. Sequence alignment is the default method by choice, but reports showed 

limitations for the method, on quality and speed levels. Hence the need for alternative 

methods became essential, and compression-based techniques are a main alternative for 

replacing sequence alignment, especially with data that suffers errors. This chapter 

discusses compression-based techniques and how to apply them on DNA and protein 

datasets, it also discusses their application to different types of datasets that might have 

erratic nature, like DNA datasets, protein datasets, or genomic datasets that have errors. 

4.1 Background on Compression Complexities 

4.1.1 Kolmogorov Complexity 

For any two sequences x and y, we define the conditional Kolmogorov complexity K(x|y) 

[9] as the shortest binary program that compute x  in terms of y. We define Kolmogorov 

complexity of a sequence x as K(x) and is also defined as K(x|λ), where λ  stands for an 

empty string. We also define the information distance ID between two sequences x and y 

as: 

ID(x, y) = max {K(x|y), K(y|x)} 

Kolmogorov theory is a concept more than a measure; therefore it does not offer a metric 

value that could be used in constructing a phylogenetic tree, and provide an application of 
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clustering. Hence Universal Similarity Metric (USM) was suggested and implemented to 

measure the complexity of Kolmogorov.  

Three practical approximations to Kolmogorov were suggested; Universal Compression 

Distance/Dissimilarity (UCD), Normalized Compression Distance/Dissimilarity (NCD) 

and Compression Distance/Dissimilarity (CD), and have the following formulas: 

• UCD(x, y) = 
|})(||,)(max{|

|})(||)(||,)(||)(max{|

yCxC

yCyxCxCxyC −−  

• CD(x, y)= 
|)(||)(|

|})(||)(||,)(||,)(min{|

yCxC

yCxCyxCxyC

+

+  

• NCD1(x, y) = 
|})(||,)(max{|

|})(||,)(min{||)({|
yCxC

yCxCxyC −  

Then NCD(x,y) = min {NCD1(x,y), NCD1(y,x)}, while C(l)  is the length of the 

compressed sequence. 

4.1.2 Lempel-Ziv complexity 

Consider the sequence S = AACGTACC, its history [3] is defined as: 

H(S) = A.A.C.G.T.A.C.C,  

H(S) = A.AC.G.T.A.C.C or  

H(S) = A.AC.G.T.ACC 

The exhaustive history [3] is defined as the history where no substring has a repetition, 

and no substring can be found in the whole sequence before this substring. This means if 

a substring is chosen at the i
th position, then the sequence of characters before the i

th 

position will not contain an occurrence for the following parsed substring. By examining 

the histories in the previous example, the first two cannot be exhaustive histories because 

the ‘A’ and ‘C’ are repeated, but the third one is. 
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LZ complexity is defined as the least exhaustive history of a sequence and noted as 

c(sequence) 

Example: 

Consider the following three sequences: 

S =AACGTACCATTG  

R =CTAGGGACTTAT 

Q=ACGGTCACCAA 

The exhaustive histories for these sequences would be: 

HE(S) = A · AC · G · T · ACC · AT · TG  

HE (R) = C · T · A · G · GGA · CTT · AT  

HE (Q) = A · C · G · GT · CA · CC · AA  

c(S) = c(R) = c(Q) = 7 

And the exhaustive histories for SQ and RQ are: 

HE(SQ) = A·AC ·G· T ·ACC · AT·TG·ACGG·TC ·ACCAA  

HE(RQ) = C · T ·A·G·GGA·CT T · AT·ACG·GT ·CA·CC ·AA  

c(RQ) = 12 and c(SQ) =10  

Which means that S is closer to Q than R is to Q, and that would be visualized as in the 

following colored sequences: 

S =AACGTACCATTG  

Q =ACGGTCACCAA  

Q =ACGGTCACCAA  

R =CTAGGGACTTAT 
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LZ complexity itself is not a distance measure between sequences, but instead the 

following distance measures are used: 

Distance measure 1:  

d(S, Q) = max{c(SQ) - c(S), c(QS) - c(Q)} 

Distance measure 2: 

d
*
(S, Q) =

c(Q)} max{c(S),

c(Q)} - c(QS) c(S), - max{c(SQ)  

Distance Measure 3: 

d1(S, Q) = c(SQ) - c(S) + c(QS) - c(Q) 

Distance Measure 4: 

d1
*
(S, Q) =

c(SQ)

c(Q) - c(QS)  c(S) - c(SQ) +  

These distances would be same as the scoring values of any sequence alignment method, 

and would be used in building the phylogenetic tree of the dataset. 

We referred to phylogeny and phylogenetic trees in the compression complexities, as 

they are major tool for the evaluation and assessments of the experiments. 

4.2 Methodology 

The purpose of this section is to have a way to evaluate the hypothesis, which starts with 

designing the flow of each experiment, moving to collecting the datasets, then applying 

the steps for each experiment to finally evaluate our hypothesis. 

4.2.1 Experimental Design 

The experiments progressed in four phases (Figure 2): dataset assembly, scoring matrices 

compilation, construction of the phylogenetic trees, and then evaluation of the hypothesis. 

Lempel-Ziv-Welch and Huffman compression algorithms [26] were the seeds for 
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Kolmogorov complexity metrics. Lempel-Ziv complexity has its own algorithm to 

measure the complexity, before seeding it to a group of distance measures, and finally 

introduce the results as the compilation matrices for phylogeny. Lempel-Ziv complexity 

was implemented with a modified algorithm published by Borowska et al. [27]. 

After obtaining the datasets, and generating the scoring matrices using compression 

complexities and multiple sequence alignment, the evaluation step would come next. As 

the scores generated by the compression algorithms are subjective according to different 

datasets, we evaluated them by measuring the consistency of the constructed trees of 

these scores. The correctness of the topologies of these trees would be an indication for 

the quality of the used scoring algorithms (compression complexities), and hence 

evaluating the quality of these trees would reflect the quality of the compression 

techniques used in this research. 

 

 

Figure 2 Experiment steps, starting from collecting data, and moving towards 

compiling the scoring matrices for the sequences, then clustering the results using 

phylogeny, and finally evaluating the correctness of the resulting trees. 

 

4.2.2 Dataset Collection 

Datasets varied according to the experiment, the first experiment used a protein dataset 

and a mitochondrial whole genomes dataset. The protein dataset is a Chew-Kedem data 
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set for 36 protein sequences, drawn from PDB entries of three classes (alpha-beta, 

mainly-alpha, mainly-beta), and the mitochondrial dataset is for Apostolico whole 

mitochondrial genomes. 

These two datasets were used to test the viability of compression techniques in 

comparing biological sequences. The datasets obtained are as follows [5]: 

CK-36-PDB: Chew-Kedem dataset of 36 protein domains, represented as amino acid 

sequences in FASTA format. 

AA-15-DNA: Apostolico dataset of 15 species, mitochondrial DNA complete genomes. 

The second dataset (mitochondrial DNA complete genomes) was used as the source 

dataset for the last four experiments, and several datasets were manufactured from this 

dataset, each new dataset was manufactured to serve a specific purpose of the 

experiments, and hence it has specific parameters.  

The second experiment focused on having different percentage of incomplete genomes, 

ranging from 10% - 90% of the original genomes, with start positions of the incomplete 

fragments chosen randomly (Figure 3-A). The third experiment evaluated incomplete 

genomes assembled from separate segments, and the total length contained of 10 - 90% 

of the whole genomes (Figure 3-B). The fourth experiment explored genomes that are 10 

- 100% incomplete fragments containing several shuffled fragments assembled together 

(Figure 3-C). The fragments were placed in random order using the Fisher–Yates 

algorithm [28]. The fifth experiment dealt with mutated sequences, these mutations were 

obtained with different percentages, and were point-mutations. For each experiment 

multiple sequence alignment was used to measure the sequence alignment values for each 
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dataset. MUSCLE [29] package was used to generate the multiple sequence alignment 

scores.  

 
Whole genome 

 
Incomplete one fragment 10% 

 
Incomplete one fragment 50% 

 
Incomplete one fragment 90% 

Figure 3-A 

 
Whole genome 

 
Incomplete two fragments(10% of whole 

gemome) 

 
Incomplete three fragments (50% of whole 

genome) 

 
Incomplete seven fragments (90% of the 

whole genome) 
Figure 3-B 

 
Incomplete seven fragments in order (90% of 

whole genome) 

 
Incomplete seven fragments NOT in order 

(90% of whole genome) 
Figure 3-C 

Figure 3, 3-A. Diagram describing the 

range of completeness of genomes for 

experiment 2, 3-B. Diagram describing the 

range of completeness of genomes for 

experiment 3, 3-C Diagram describing the 

range of complexity of genomes for 

experiment 4. 
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4.2.3 Comparing Phylogenetic Trees 

Evaluating the constructed phylogenetic trees was accomplished by measuring the 

distances of the trees to a gold standard tree. The distance’s measure to the gold standard 

tree is done by estimating the path-length-difference metric as described in Felsenstein 

[30]. A matrix is constructed for each tree, and the size of the matrix is m2, where m is 

the number of tree leaves (the species) and each cell in the matrix has the number of 

branches that separates the species of the corresponding row and column. For each cell in 

the matrix and its correspondent in the gold standard tree matrix, the squared of the 

difference between them is computed. The distance is then calculated by finding the 

square root of the sum of these square differences, taking into account not to include 

duplicate values. The distance then was normalized by dividing it by the summation of 

the distances of the cells in the gold standard tree.   

For example, consider the two trees in Figure 4), where the tree on the left represents the 

gold standard tree (species A, B, C, and D) and the second tree on the right represents the 

output tree of a tested algorithm (species A', B', C' and D'). The scoring matrices are 

calculated by summing the edges between two nodes in a tree. The finished scoring 

matrices are shown in Figure 5 

 

 

Figure 4 Two possible output trees, the one of the left is the gold standard tree and 

on the left is the algorithmic tree. 
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 A B C D   A' B' C' D' 

A 0 2 4 4 A' 0 3 4 4 

B 2 0 4 4 B' 3 0 3 3 

C 4 4 0 2 C' 2 3 0 2 

D 4 4 2 0 D' 4 3 4 0 
 

Figure 5 The scoring matrix for the two trees in Figure 4. The shaded cells 

represent the distance from one node to another. 

 

The distance between the two trees is calculated by finding the root mean square between 

the trees: 

Distance = √ ((AB – A'B')2 + (AC - A'C')2 + (AD - A'D')2 + (BC - B'C')2 + (BD - B'D')2 + 

(CD – C'D')2 ) 

= √ ((2 - 3)2 + (4 - 4)2 + (4 - 4)2 + (4 - 3)2 + (4 - 3)2 + (2 - 2)2) = (12 + 02 + 02 +12 + 12 + 

02) = (1 + 0 + 0 + 1 + 1+ 0) = √ 3 

The distance between the two trees is √3 or 1.732. To normalize the distance, it is divided 

by the sum of the distances between the species in the gold standard tree, which is: 

(AB + AC + AD + BC + BD + CD) = 20  

Normalized distance = √ 3 / 20 = 8.66%. 

4.3 Results and Analysis 

Results are the heart of this work; they would give an evaluation for the used 

compression methods on different datasets. In addition to regular datasets that are error-

free, applications to datasets with errors that range from basic to severe errors were 
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conducted. The reason for using such datasets is to evaluate the performance of the 

methods on datasets that would suffer natural errors. 

The evaluation of compression-based techniques is not trivial, as the techniques would 

provide dissimilarities values, and those values could not be evaluated, as there is no 

mathematical formula that would provide a value for the quality of results. Instead 

clustering algorithms for phylogeny were applied, and hence evaluation of the correctness 

of the resulting trees was conducted. And that turned the problem of evaluating the 

scoring matrices, to evaluating the correctness of the trees. Fortunately NCBI provided 

gold standard trees for some datasets, and a gold standard tree would be the reference for 

the resulting tree of an algorithm. 

Although most research evaluates the correctness of a phylogenetic tree based on visual 

inspection, we do not recommend this approach, but instead we use a method from the 

literature called path-length-difference. This method provides a numerical value, but this 

value is still not normalized, so a contribution to the method was suggested to provide 

normalized values. The same method of evaluation was applied to phylogenetic trees 

resulting from multiple sequence alignment (MSA), to evaluate if compression-based 

methods would result in closer trees to gold standard trees over MSA or not. 

4.3.1 Evaluating the hypothesis on datasets with no errors 

The first experiment determined the feasibility of using compression algorithms for 

phylogenetic purposes. It tests the methods against regular datasets that are error-free, 

and its purpose is to evaluate if these methods are capable of measuring the distances of 

normal datasets. We compare the results obtained from various versions of compression-

based techniques to those results obtained from multiple sequence alignment. In this 
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experiment, two datasets were used, a set of protein sequences and a set of complete 

mitochondrial genomes. The gold standard trees for both datasets are available to provide 

the base line comparison.  

Table 1 and Table 2 show the results for experiment 1. The shaded cells reveal the 

compression techniques that surpassed multiple sequence alignment. In the protein 

dataset, the consistently desirable results were derived from UPGMA clustering using the 

scoring matrices of both Kolmogorov and Lempel-Ziv complexities. In the mitochondrial 

dataset, only Lempel-Ziv outperformed multiple sequence alignment.  

 
Table 1 Comparisons of the compression algorithms and 

multiple sequence alignment for the protein dataset CK-36-

PDB. Shaded cells represent cases when compression based 

algorithms performs better than multiple sequence alignment Test Protein dataset CK-36-PDB 

Algorithm Variant 
Neighbor-

Joining 
UPGMA 

Kolmogorov 
using Huffman 

coding 

CD 2.395244 3.169468 
NCD 2.328382 2.264505 
UCD 2.328382 2.264505 

Kolmogorov 
using LZW 

compression 

CD 2.176959 2.165911 
NCD 2.210704 2.215544 
UCD 2.305268 2.238781 

Lempel - Ziv 
complexity 

Distance 1 2.337454 2.26598 
Distance 2 2.248862 2.192803 
Distance 3 2.244591 2.284809 
Distance 4 2.222918 2.371806 

Multiple Sequence Alignment 2.182934 2.371806 
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Table 2 Comparisons of the compression algorithms and 

multiple sequence alignment for the Mitochondrial genome 

dataset in experiment 1. Shaded cells represent outcomes better 

than multiple sequence alignment algorithms performs better 

than multiple sequence alignment 

Test 
Mitochondrial Genome dataset 

AA-15-DNA 

Algorithm Variant 
Neighbor-

Joining 
UPGMA 

Kolmogorov 
using Huffman 

coding 

CD 7.871585 7.871585 
NCD 7.871582 7.871582 
UCD 7.871582 7.871582 

Kolmogorov 
using LZW 

compression 

CD 3.034474 3.034474 
NCD 2.797647 2.797647 
UCD 2.878755 2.878755 

Lempel - Ziv 
complexity 

Distance 1 1.357058 1.357058 
Distance 2 1.357058 1.357058 
Distance 3 1.357058 1.357058 
Distance 4 1.357058 1.357058 

Multiple Sequence Alignment 1.5547053 1.878762 
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The reported results clearly indicate that compression-based technique provides a valid 

measure for the dissimilarity of biological sequences. The produced measures are in the 

same vicinity as the ones produced by multiple sequence alignment, or outperformed 

alignment-based results in several cases. It is also clear that with a careful selection of the 

clustering algorithm, the compression methods and associated distance measure can 

improve the overall results. 

Results of Table 2 might be confusing for the reader, as all the LZC distances had the 

same results. The reader might think that all results are the same, but in fact the resulting 

trees had different branch lengths, although the algorithm was able to have consistent 

topological relationships among species. By looking at the following newick strings for 

the trees of LZC distance 2/NJ and LZC distance 4/UPGMA, we find that they have 

different branch lengths values, but share the same topology. 

((Hylobates_lar:0.35896,(Pongo_pygmaeus_abelii:0.34718,(Gorilla_gorilla:0.29236,(H

omo_sapiens:0.25472,(Pan_troglodytes:0.13975,Pan_paniscus:0.14321):0.11433):0.032

986):0.050659):0.0128):0.048022,((Mus_musculus:0.36248,Rattus_norvegicus:0.35935)

:0.045141,((Balaenoptera_musculus:0.22948,Balaenoptera_physalus:0.23363):0.15935,

((Ceratotherium_simum:0.35369,Equus_caballus:0.3531):0.023024,(Felis_catus:0.3689

5,(Phoca_vitulina:0.12961,Halichoerus_grypus:0.12935):0.23825):0.013218):0.005808

3):0.004996):0.008113); 

((Hylobates_lar:0.82879,(Pongo_pygmaeus_abelii:0.81548,(Gorilla_gorilla:0.73281,(H

omo_sapiens:0.6775,(Pan_troglodytes:0.44288,Pan_paniscus:0.44288):0.23462):0.0553

11):0.082675):0.013308):0.064518,((Mus_musculus:0.83845,Rattus_norvegicus:0.83845

):0.049034,((Balaenoptera_musculus:0.62995,Balaenoptera_physalus:0.62995):0.24279
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,((Ceratotherium_simum:0.82737,Equus_caballus:0.82737):0.035366,(Felis_catus:0.848

21,(Phoca_vitulina:0.40841,Halichoerus_grypus:0.40841):0.4398):0.014523):0.010005)

:0.014747):0.005823); 

Figure 6 shows that these trees have the same topology even if they do not share the same 

branches’ lengths. 

 

 

Figure 6 the trees of LZC distance 2/NJ (left tree) and LZC distance 4/UPGMA 

(right tree), although the two trees have the same topology, they are not exactly the 

same according to the branches’ lengths. 

 

Although it is difficult to compare the two trees by visual inspection, the reader would be 

able to identify some differences in the two trees, for example the distances of the pair 

(Pan_troglodytes, Pan_paniscus) to their ancestor in each tree are not the same, same 

with the pair (Phoca_vitulina, Halichoerus_grypus). 

4.3.2 Evaluating the hypothesis on datasets with incomplete fragments 

With the success of the first experiment, the second experiment was conducted to 

discover the capabilities of compression algorithms in clustering incomplete genomes. 

The purpose of this experiment is to conduct a study on the compression-based methods, 

and evaluate its performance on datasets with incomplete sequences, and to decide if 
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these methods are worth using or MSA would be a better solution for such datasets. For 

this, the mitochondrial genomes were again used, and percentages of the genomes were 

incrementally removed, then an application of an algorithm to randomly choose the 

starting position of the remaining genome was provided (Figure 3-A). We eliminated 

Huffman results from the charts as they did not provide comparative results in the first 

experiment. In examining Neighbor-joining method (Figure 7 - left) and UPGMA (Figure 

7 - right), Lempel-Ziv complexity surpassed multiple sequence alignment in all the trials 

(with both NJ and UPGMA clustering) except once in both figures. Kolmogorov with 

LZW had viable results but not competitive to Lempel-Ziv. 

 
 

 

Figure 7 Experiment 2 results using Neighbor-Joining clustering (left figure) 

results using UPGMA clustering (right figure). 

 
In general, Lempel-Ziv complexity had the best chances in revealing the similarities 

between the genomes, even while these genomes were not complete, but still Lempel-Ziv 

was able to address the dissimilarities between the sequences. 

4.3.3 Evaluating the hypothesis on datasets with incomplete fragments that are not 

continuous 

This experiment expanded on experiment 2 by breaking the genome into several pieces 
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and then reducing the total size to the same 10 – 90%, but allowed each fragment to be of 

different and random size (Figure 3-B). Multiple fragments were then combined together 

and tested. The results of experiment 3 mirrored that of experiment 2 in both the neighbor 

joining method (Figure 8 - left) and UPGMA (Figure 8 - right) in that Lempel-Ziv 

complexity outperformed multiple sequence alignment in almost every percentile. Also 

Kolmogorov using LZW compression, and Kolmogorov using Huffman coding failed to 

perform better than multiple sequence alignment (Huffman results were eliminated from 

the charts as well). 

 

 

Figure 8 Experiment 3 results using Neighbor-Joining clustering (left figure) and 

results using UPGMA clustering (right figure). 

 
Again, Lempel-Ziv showed powerful results of detecting similarities among sequences, 

while these sequences were not complete and not even from the same region within 

genomes. 

4.3.4 Evaluating the hypothesis on datasets with incomplete fragments that are not 

continuous and not in order 

This experiment was designed to “push the envelope” of multiple sequence alignment 

and the compression algorithms for the erratic datasets. The genomes for this experiment 
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were cut into multiple fragments, randomly decreased to a total 10 – 100% of the original 

size, and then rearranged (Figure 3-C). Again we eliminated Huffman results from the 

charts as they did not have comparative results. The compression algorithms returned 

results similar to the previous experiments, and multiple sequence alignment performed 

much worse (Figure 9). For the incomplete genomes less than 50% in length, 

Kolmogorov using LZW and Lempel-Ziv both surpassed multiple sequence alignment, 

but Kolmogorov was overtaken by multiple sequence alignment at 60% and above. 

Huffman still failed to perform as well as the other tests. 

 

 

Figure 9 Experiment 4 using Neighbor-Joining clustering (left figure) and using 

UPGMA clustering (right figure). 
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In this experiment, Multiple Sequence Alignment had a big failure in detecting the 

relatedness between the genomes, which shows that alignment-based method would fail 

with sequences that has translocated segments. The rest of results show that compression-

based method of Lempel-Ziv would still detect the relationships among genomes, and 

would give accurate clustering results compared to Multiple Sequence Alignment. Even 

LZW was competitive to Multiple Sequence Alignment in finding the right dissimilarities 

between the genomes. 

4.3.5 Evaluating the hypothesis on datasets with mutated nucleotides 

This experiment was designed to evaluate the performance of the compression-based 

methods, on mutated dataset. As the sequences evolve and mutate, it is difficult for 

methods like MSA to identify the relatedness among species. We have a hypothesis that 

compression-based methods, which has a nature of looking linearly into sequences; 

would identify the relatedness between sequences even if they have such kind of errors. 

Mutations (point mutations) were applied with percentages of 1%, 3%, 5% and 7% to the 

mitochondrial genomic datasets, and selection of point mutation was applied randomly. 

Comparison of the results to the multiple sequence alignment was conducted in the same 

fashion as the previous experiments, by measuring the resulting trees’ distances to the 

gold standard tree.  

Table 3 shows the results for this experiment, the shaded cells represent the resulting 

trees that had closer distance to the gold standard tree, these shaded cells are the values 

for Lempel-Ziv complexity. 
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Table 3 Comparison of the performance of compression against Multiple sequences 

alignment, on a mutated datasets with mutation percentages of 1%, 3%, 5% and 

7%, the shaded cells shows the best results, where these results complexity of 

Lempel and Ziv, were for scoring matrices obtained by compression 

 1 percent 3 percent 
 NJ UPGMA 

Kolmogorov 
using 

Huffman 
coding 

CD 7.1835178 7.8715849 7.1835178 7.8715849 
NCD 7.0541659 7.8715818 7.0541659 7.8715818 

UCD 7.0541659 7.8715818 7.0541659 7.8715818 

Kolmogorov 
using LZW 
compression 

CD 3.200615 3.2658798 3.4431587 3.152301 
NCD 3.2717484 2.996303 3.2776065 2.7907814 
UCD 3.4095661 3.0407893 3.1278642 2.9898938 

Lempel and 
Ziv 

complexity 

Dist 1.357058 1.357058 1.357058 1.7737186 
Dist2 1.357058 1.357058 1.357058 1.357058 
Dist3 1.357058 1.357058 1.357058 1.7737186 
Dist 4 1.357058 1.357058 1.357058 1.542317 

Multiple Sequence Alignment 1.5547053 1.8787618 1.5547053 1.7737186 
      

 5 percent 7 percent 
 NJ UPGMA 

Kolmogorov 
using 

Huffman 
coding 

CD 7.1835178 7.8715849 7.1835178 7.8715849 
NCD 7.0541659 7.8715818 7.0541659 7.8715818 

UCD 7.0541659 7.8715818 7.0541659 7.8715818 

Kolmogorov 
using LZW 
compression 

CD 3.6434739 3.0970471 3.6957492 3.0090805 
NCD 3.3240997 3.4874455 3.3869859 2.9641184 
UCD 3.2776065 2.7070388 3.5366032 3.0026985 

Lempel and 
Ziv 
complexity 

Dist 1 1.8582282 2.1005195 2.0543486 2.2758555 
Dist 2 1.357058 1.5298284 1.357058 1.357058 
Dist 3 1.357058 2.699943 1.1588089 2.2758555 
Dist 4 2.0166509 1.4259876 1.357058 1.357058 

Multiple Sequence Alignment 1.5547053 1.357058 1.6849758 1.8787618 
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With limited mutations (not exceeding 9%) (which may lead to few changes in function 

but not in an evolution of the species itself), Lempel-Ziv complexity was able to detect 

the similarities among the species, and showed better clustering than Multiple Sequence 

Alignment, while Kolmogorov failed to detect similarities with this kind of sequence 

errors. 

The results of Lempel-Ziv that are similar, are for trees that have the same topology but 

different branches’ lengths. 

4.4 Conclusions 

Compression-based techniques to compare biological sequences are a viable alternative 

to multiple sequence alignment. In cases where the datasets contain errors such as 

incomplete genomes and/or out of order fragments or mutations that happened over time, 

compression techniques would cluster the dataset more accurately than multiple sequence 

alignment. Additional benefits of using compression analysis over sequence alignment 

include much shorter run times and independence of sequence length. Of the three 

compression techniques examined in this paper, Lempel-Ziv complexity has shown the 

best propensity in classifying incomplete and malformed datasets. To summarize these 

results, Lempel-Ziv complexity comes first in performance as alignment-free techniques. 

It also outperforms multiple sequence alignment, especially with unprocessed DNA 

datasets, as protein sequences are considered processed biological sequences, and they 

are rich with information that can be addressed easily using alignment-based techniques. 

From charts and tables, we can see that compression techniques in general, and Lempel-

Ziv specifically were able to catch the relatedness among species, that comes from the 
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algorithmic nature of compression techniques, as they look linearly into the sequences, 

and ignores the arrangements of the fragments. Additional application for the 

compression-based techniques would be trans-located genes, and those would be 

addressed by compression techniques, while alignment-based would fail. In addition to 

these applications, compression techniques addressed point mutations in DNA sequences 

that undergone up to 7%. 
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CHAPTER 5 

MOTIF-BASED TECHNIQUES 

 

The previous chapter showed the usage of compression-based techniques as alignment-

free methods. The strength of compression-based comes from their heuristic speed and 

their strong parsing techniques that would catch similarities between sequences. Though 

this method does not address the hidden signals within the sequences, some of these 

signals might provide major information for identifying the relationships between 

sequences. 

This chapter is considering using different signals within the sequences to address the 

relationships between sequences; the approach is modified from the k-mers approach, and 

considers the order, occurrence and frequency of the signals. 

The work of this chapter is extensive and covers addressing usage of all possible signals, 

random signals, signals that have biological relevance like restriction enzymes or signals 

taken from CDs regions. 

5.1 Nature of DNA sequence 

DNA sequences are not random in their structures, and it is believed that each 

fragment/subsequence of the DNA sequence carries a message or a signal. The 

hypothesis used in this research; is that these signals would be similar if the genomes are 

closely related. For example sequences that carry the same restriction enzymes cut 

positions [31] might be related and would have similar functions; the same would be with 
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sequences that carry transcription factor binding sites. Other signals would be motifs of 

specific nature, unique shortest substrings [13] within the sequences, or just motifs with 

biological relevance that are unknown to the literature. Another feature that DNA 

sequences hold, that they carry tandem repeats in their structures, and again these tandem 

repeats might be signals with significance. All these features are needed to be addressed 

when comparing the biological sequences. 

One way to analyze the comparison problem is based on the fact that similar genomes, 

share similar structures and functions, and although subsequences with similar functions 

do not necessarily have similar exact structures; they carry similar signals within these 

structures. And by identifying these signals, we would be able to classify these genomes, 

and address better measurement for their relatedness. 

Notice that these signals might be hidden, and/or overlap with other signals, also they 

might be of different lengths.  

For the previous reasons we designed an approach that would consider all or a group of 

prospective signals of specific length k, which would consider the unknown hidden 

signals. Also would consider the overlapping signals, and could be applied using signals 

of different lengths. 

The question of identifying such hidden and unknown signals is not easy. The focus of 

this work is to try to identify these signals and their functions, or to take advantage of 

their existence within the sequences and use them for clustering purposes. The hypothesis 

in this work is to take advantage of these hidden signals within the sequences; to identify 

the relatedness between a group of species. This would be done by considering all the 
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possible chances for the existence of these signals within the sequences, and use them to 

identify the biological distance between the sequences. 

The focus and challenge of this work is to investigate if addressing such signals would 

improve the clustering process, and reveal a better measurement for the relatedness 

among species. We consider different signals of different lengths for comparing the 

sequences, we also consider random groups of these signals to measure the quality of the 

results in each case, and we measure if some randomly selected signals would have better 

results than others or not. In addition, this work considered the use of signals that have 

biological relevance like restriction enzymes, and also signals that occur within specific 

regions that have biological functionality in the DNA sequence, like those in CDs 

regions. Finally and as a conclusion of the strength of this approach, applications to 

datasets with errors were conducted. 

5.2 Experimental Design 

The design of the experiment should meet the needed requirements to test the hypothesis. 

Recalling that comparing DNA sequences results in numerical values that represent 

biological distances between species. These values are subjective with each dataset, and 

would be meaningless if they are not used to address the relationship for the entire group 

of species. Verification of the correctness of these distances is not an easy task; looking at 

these numerical values will not reveal the correctness of the results, and there should be a 

way to measure the correctness. Clustering the species based on the resulting distances 

would provide a way to evaluate the correctness of these results; this would be done by 

evaluating the trees instead of the distances. The clustering would be done using bi-
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clustering algorithms for phylogeny. The resulting trees of the phylogeny would be a 

good way to evaluate the quality of the results, but even with these trees; evaluating their 

correctness is needed as well; so we can make sure that they represent the correct 

relations among species. This evaluation happens mostly by visual inspection, which in 

many cases might be misleading, and have a drawback of not providing a numerical 

value for the evaluation.  

It is also important to have the results compared to some reference, as these numerical 

results will not provide evidence for any quality improvement unless if they are 

compared to a known method. As this work is an alternative method for sequence 

alignment and its drawbacks, then the results would be compared to those obtained by 

sequence alignment. 

The previous discussion addressed the main points needed for the experimental design, 

and hence a summary for the needed steps to accomplish any experiment in this work is 

concluded as follows: 

1. Generate the list of the k-mers, for example for k = 3, it would be all the possible 

3-mers, which would result in 64 words (43), or  the list could be a random 

selection of about 20% of all the possible words. Which would be 13 random 4-

mers; also it could be a list of biological signals. 

2. Convert the DNA sequences according to the input list of k-mers (refer to Figure 

10) 

3. Generate the scoring matrix based on pair-wise comparison and not multiple 

sequence comparison, using longest common subsequence (LCS) and Lempel-Ziv 

Complexity of distance measure 2 (LZC). 
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4. Build the phylogenetic trees using UPGMA and Neighbor-Joining (NJ) 

phylogenetic algorithms. 

5. Repeat the last step using scoring matrix generated by multiple sequence 

alignment (MSA). 

6. Measure the distance between the generated trees and the gold standard tree 

(defined in the terminology in chapter 2), the method used to measure this 

distance is the path-length-difference (discussed in chapter 4). 

The first two points are the main core for this work, and the following subsection would 

explain how to apply them. 

5.2.1 Conversion of DNA sequence to sequence of signals (motifs) 

To consider all the possible signals of specific length k (all possible k-mers), a production 

of all the possible combination of the length k is generated, this would result in a words’ 

list of size 4k, where 4 is the number of the used nucleotides in a DNA sequence(A, C, T 

and G). 

The generated list is used as the main seeds for the signals needed to be identified within 

the sequences. If a signal exists in the DNA sequence, we substitute it with a unique code 

for this signal, and this would have conservation of the order for the signals within the 

sequences. Also this design would save computational time, when the list is small and the 

sequences are longer. 

Figure 10 shows how to identify the existence of these signals in the sequences, and how 

to convert the DNA sequence to a sequence of signals/words with the proper order of 

these signals. The used motifs/signals list in this example is on the right side of the 
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figure; in this list each motif/signal would have a name (code), and the left side of the 

figure has the original sequence, parsed as words of length k (k = 4 in this case). 

 

Figure 10: the list on the right side is the preferred signals to be used for the 

approach and their proper code, the sequence on the left is parsed to subsequences 

each of the same length as the signals’ length on the right. If there is occurrence for 

any signal from the list within subsequences, this subsequence would be replaced 

with the matching code; if the subsequence is not listed, then it will be deleted. 

 

The used motifs/signals list in this example is on the right of the figure, and each has a 

name (code), and on the left side is the original DNA sequence. We identify the signals 

from this list that exist in the sequence, and if they occur; their codes would be assigned 

with the proper order to the new sequence of signals. Thus we convert the DNA sequence 

to a sequence of signals, also notice that this approach consider all the overlapped signals. 

We also need to mention that sometimes some of these signals do not exist in the 

sequence, or they occur more frequent, and in either way that would impact the results for 

the relatedness between the sequences. This would be a major difference between the 

converted sequences, and would address similarity or dissimilarity among species. 
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5.2.2 The experimental design steps, discussion on the rest of the steps 

The conversion step is the heart of this work, as in this step addressing the signals in 

preference happens, but the work remains incomplete as long as there is no way of 

comparing the converted sequences. The nature of the converted sequences carries two 

main features, the first feature is a new alphabet of preferred signals, and this would 

motivate us to use similar comparison algorithms/approaches as in regular DNA 

sequences. Simple and efficient algorithm like longest common subsequence (LCS) [32] 

would address the distances between the converted sequences. The second feature of the 

converted sequences is the conservation of the signals’ order within the sequences; this 

was missed by other research that was also based on k-mers [12]. The order of the signals 

would have a great impact on the results. Although there is some possibility of having 

few or more mobile subsequences, we would still be able to use an algorithm that would 

address the order feature, like Lempel-Ziv Complexity (LZC) [4]. LZC is based on 

compression complexity and has a great success in identifying the relatedness of different 

strings. 

The comparison method would result in numerical values that represent the distances 

between species, which are needed to cluster the species and identify the correctness of 

the resulting distances. The clustering would be using hierarchical clustering algorithms 

like UPGMA and NJ. The results of these algorithms are in the form of trees, and 

although most researches use visual inspection to evaluate phylogenetic trees, we don’t 

recommend it for the following reasons: 
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1. Visual inspection uses personal judgment, and personal judgment is not usually 

accurate, and would mislead the evaluation process, especially if it is not 

compared against some reference 

2. Visual inspection cannot identify the correctness of trees with big number of 

species. In fact with a big number of species like 1000 species, it would be 

impossible to find out the relationships between each species and the rest of 

species. 

3. Visual inspection does not provide numerical value for the comparison, and hence 

no clear decision could be achieved based on it. But using a computational 

method to measure the distance of the resulting tree to a reference tree, would 

give a decision for the entire experiment. 

For these reasons, a computational approach to measure the distance between the 

resulting trees to a gold standard tree was used. This approach is called path-length-

difference [30], and it was modified to give normalized values. 

And finally it is important to compare the trees from our approach to the resulting values 

from MSA, and evaluate if our approach would have better results on not. 

5.2.3 Different algorithms of the experiments 

This subsection has a discussion for some of the methods used to verify the hypothesis of 

this work, specifically methods that are new to the reader or those that have modification 

to fit into the experiments. 

5.2.3.1 Normalizing Longest Common Subsequences:  

LCS is based on dynamic programming, and has a well established reputation and 

implementations, but the problem that the generated scores are not normalized, and these 
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scores cannot be used to build a phylogenetic tree. To understand this problem, we refer 

to the following example: 

Consider these sequences 

S1: GTTAATGCCACCAAAAAAAAA (length 21) 

S2: GTTAATGCCACCGA (length 14) 

S3: TCCCTAGCT (length 9) 

The LCS for all the pair-wise sequences is as follows: 

S1: GTTAATGCCACCAAAAAAAAA  

S2: GTTAATGCCACCGA  

LCS is GTTAATGCCACCA and the score is 13 

S1: GTTAATGCCACCAAAAAAAAA 

S3:  TCCCTAGCT 

LCS is TTAGC and the score is 5 

S2: GTTAATGCCACCGA 

S3: TCCCTAGCT 

LCS is TTAGC and the score is 5 

The resulting scores of using LCS for these sequences are shown in Table 4. 

 
Table 4 A table represents the scores of using LCS on the 

example sequences 

  S3 S2 S1  

 S3 9 5 5  

 S2 5 14 13  

 S1 5 13 21  
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Two problems are seen here from Table 4, the first one is that these scores are maximized 

and not minimized, which means that two closely related sequences have a bigger score, 

while the clustering algorithms are designed for smaller scores with two closely related 

sequences (representing shorter distances between sequences). The second problem is 

that these scores are not normalized, for example the relationship between S1 and S3 is 5, 

and this 5 is not relative to any value, and that means that several comparisons with this 

value would mean different relatedness between species, which is not consistent. But if it 

was 0.43, it would represent a relative distance of 43% for both sequences. 

To solve this problem, we normalized the resulting score by dividing it by the length of 

the shortest sequences of the measured pair; and that would normalize it, then subtract the 

result from 1; and that would minimize the relationship between the sequences instead of 

maximizing it, and would also result in a normalized value, as in the following matrix 

(Table 5). 

 

Table 5 A table shows the results generated after using the normalizing 

function which was suggested 

  S3 S2 S1  

 S3 0 1-5/9 1-5/9  

 S2 1-5/9 0 1-13/14  

 S1 1-5/9 1-13/14 0 

 

 

 

The normalization issue was very essential for the clustering step, as the clustering 

algorithms would take only normalized matrix with zero diagonal. 
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5.2.3.2 Lempel-Ziv complexity [4]: 

Lempel-Ziv complexity of distance measure 2 was used. Please refer to the reference for 

more details or section 4.1.2. 

5.2.3.3 Path-Length-Difference:  

The comparison between trees was done by estimating the path-length-difference metric 

[30]. For more details review section 4.2.3 

5.3 Experiments 

The experiments are designed and carried to answer proposed and motivation questions 

for this work, these questions are: 

1. Would some motifs/words/signals provide good results for sequence comparison? 

Would these signals have better comparison results over traditional sequence 

comparison methods like those that are alignment-based? 

2. If the answer for point 2 is yes, is it possible to change the selection of the k-mers 

for the experiment? Would that enhance the results? In other words, are there 

certain words that would improve the clustering results? 

3. If the answer for point 2 is yes, would we be able to use signals with biological 

relevance like restriction enzymes; to improve the results? 

4. If the answer for point 3 is yes, would it be possible to find hidden signals within 

the sequence with biological relevance? And use them to have valid results? 

5. Finally, if the first four questions have answered positively, is it possible to use 

the approach on datasets that have errors, and still get better results than with 

MSA? 
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To answer these questions, designs of an experiment for each question was proposed. 

5.4 Results and Analysis 

All the experiments have the same steps that were discussed previously in the 

Methodology section. The only differences between them are the list of used k-mers, the 

used dataset in some experiment, and the purpose for using this specific list. In addition 

to these differences, one experiment had a change in the conversion algorithm, which 

would be discussed in that experiment (restriction enzymes). 

Datasets Collection: 

1. The first dataset used was for mycobacterium dataset, and we used it for the first 3 

experiments. 

2. The second dataset was for a mitochondrial genomic dataset, and was used for 

experiment 3, 4 and 5. 

5.4.1 The First Experiment::Viability of the method 

The purpose of this experiment is to evaluate if using such hidden signals within the 

sequences, would provide good results, and also if those results would be better than 

results of traditional alignment-based methods. This experiment deals with all the 

possible k-mers; as some of them might be hidden signals within the sequences and have 

strength. The used list of k-mers is all possible k-mers. 

Figure 11 shows the results of using all possible k-mers, and it shows outstanding results, 

as all distances of any value for k was less than 1.25%, while with MSA the results were 

above 1.8%, recalling that smaller values express better distance measures. 
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Figure 11 this figure shows the results of using our algorithm with different 

parameters, here k ranges from 3 to 9, the used methods of comparison are LCS 

and LZC, and the clustering methods are UPGMA and NJ. The chart shows that 

in all cases our approach outperformed MSA (multiple sequence comparison), 

with significant results. 

 

The figure shows significance in the results using our approach compared to those of 

MSA. That proves our hypothesis that emphasizing such signals would improve the 

results, and would answer the first question. 

5.4.2 The Second Experiment::Selection of random k-mers 

With the success of the first experiment, we proceeded with the second one, and used 

lists of random signals, these signals were selected randomly from all possible k-mers. 

The lists were generated randomly by selecting k-mers from all possible k-mers lists, 

with percentages of 10%, 20%, ..., 90%, and these selections were applied to k values of 

3 to 9, and comparison methods LCS and LZC, and clustering NJ and UPGMA. 

0

0.5

1

1.5

2

2.5

3
 L

C
S

 V
a

lu
e

s:

3
 L

Z
C

 V
a

lu
e

s:

4
 L

C
S

 V
a

lu
e

s:

4
 L

Z
C

 V
a

lu
e

s:

5
 L

C
S

 V
a

lu
e

s:

5
 L

Z
C

 V
a

lu
e

s:

6
 L

C
S

 V
a

lu
e

s:

6
 L

Z
C

 V
a

lu
e

s:

7
 L

C
S

 V
a

lu
e

s:

7
 L

Z
C

 V
a

lu
e

s:

8
 L

C
S

 V
a

lu
e

s:

8
 L

Z
C

 V
a

lu
e

s:

9
 L

C
S

 V
a

lu
e

s:

9
 L

Z
C

 V
a

lu
e

s:

M
S

A

UPGMA

NJ



64 
 

 

Expectations for the randomly generated lists are: either the list carries signals with 

strength, carries weak signals or carries both. The purpose of running this experiment is 

to test the hypothesis of having better results, worse results or close results to those 

obtained from first experiment. 

Results were presented as charts, each chart would be for one comparison method (LCS 

or LZC), and one clustering algorithm (NJ or UPGMA), and would include all the 

different values of k, and at different levels of percentages. 

The horizontal axis represents the different percentages used to select the randomly 

generated lists in the experiment, and the vertical represents the degree of closeness to the 

gold standard tree. 

All charts showed better results compared to MSA, and some of them were even better 

than results of the first experiment. But some results had lower quality, and some results 

were very close to the results of the first experiment. 

Figure 12 shows the results of applying the approach using LCS and NJ Figure 13 shows 

the results for the same experiment using LZC and NJ, Figure 14 shows the results for 

LCS and UPGMA, and Figure 15 shows results of LZC and UPGMA. 
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Figure 12 Chart represents the results of the approach using LCS as a comparison 

method and NJ as a clustering method; compared to the results of Multiple 

Sequence Alignment, the vertical axis shows the distance value of the algorithmic 

tree to the gold standard tree, and horizontal axis represents the percentages of the 

randomly selected k-mers compared to the whole pool. Each line in the chart 

represents one value for k. 

 

The charts show that with just a random selection of k-mers; the approach would still 

provide better performance than using alignment-based methods (the black horizontal 

line in charts represents results of MSA), notice that with any length for k, the method 

was still successful and provided a better way of comparing the sequences, compared to 

multiple sequence alignment. Also with a small list for k-mers (up to 10% of all the 

possible k-mers of specific k), the results would still outperform MSA.  

Another point to mention from the charts, that some runs for the experiment showed 

better results than those obtained in the experiment for all possible k-mers, as in Figure 

15 with 60% random selection of k-mers of length 6, the resulting tree has a distance to 

the gold standard tree of 0.489%, which outperformed any result of all possible motifs as 
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you can compare it by looking at Figure 11, also another value in Figure 14 was worse 

than the results of all possible motifs; as the random selection of 10% for k-mers of 

length 5 has a value of 1.877005%, which is worse than any value in Figure 11 and that 

shows that some signals would do even better when they are used alone compared to the 

usage of all the possible k-mers. That would also be computationally less expensive, 

while other signals would do worse. So in this experiment we were able to answer the 

second proposed question. 

 

 

Figure 13 Chart represents the results of our algorithm using LZC as a 

comparison method and NJ as a clustering method; compared to the results of 

Multiple Sequence Alignment, the vertical axis shows the distance value of the 

algorithmic tree to the gold standard tree, and horizontal axis represents the 

percentages of the randomly selected k-mers compared to the whole pool. Each 

line in the chart represents one value for k. 
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Figure 14 Chart represents the results of our algorithm using LCS as a comparison 

method and UPGMA as a clustering method; compared to the results of Multiple 

Sequence Alignment, the vertical axis shows the distance value of the algorithmic 

tree to the gold standard tree, and horizontal axis represents the percentages of the 

randomly selected k-mers compared to the whole pool. Each line in the chart 

represents one value for k. 

 

 

Figure 15 Chart represents the results of our algorithm using LZC as a 

comparison method and UPGGMA as a clustering method; compared to the 

results of Multiple Sequence Alignment, the vertical axis shows the distance value 

of the algorithmic tree to the gold standard tree, and horizontal axis represents the 

percentages of the randomly selected k-mers compared to the whole pool. Each 

line in the chart represents one value for k. 
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5.4.3 The Third Experiment: using restriction enzymes cut positions as the words 

list 

The second experiment showed that results would be impacted with the selection of the 

words (k-mers) list. And that some signals would have higher impact over others, which 

motivated us to proceed with the third experiment that deals with words that have 

biological relevance, and to see how these words would impact the results. The used 

signals were obtained from a database of restriction enzymes cut positions. 

Restriction enzymes are special nucleotide signals that cut the DNA double or single 

stranded sequence at specific recognition positions. We believe that DNA sequences that 

share similar restriction enzymes cut positions, would also have similarities in their 

functions and structures. 

We used restriction enzymes cut positions that have lengths 4 to 8 nucleotides. As the 

number of restriction enzymes for each length was small, we had to use all of them as the 

words’ list, hence we used a modified implementation for the conversion algorithm. This 

modified algorithm would integrate different lengths of the words, and the following 

subsection shows how we integrated our conversion approach to take advantage of all 

restriction enzymes cut positions. 

5.4.3.1 More details on using the restriction enzymes: 

As restriction enzymes are not many, we had to integrate all of them in the converted 

sequence. To do so, we looked at restriction enzymes of length 4, and identified their 

locations in the sequences, we looked then at restriction enzymes of length 5, 6, 7 and 8. 

This would consider priorities of words with smaller length first, then bigger length, and 

again these words would have names/codes in their list, so the generated sequences 

would have a new alphabet that represents words of different lengths and have biological 
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relevance. The rest of the experiment would be the same as in the previous two 

experiments. The following example shows the new modification for the conversion 

approach. 

Assume this sequence 

ACCGTGC 

And the restriction enzymes list we have with their codes is 

ACCG    = RE1 

CGTG    = RE2 

ACCGT = RE3  

Applying the restriction enzymes of length 4 would generate 

RE1 (at position 1), RE2 (at position 3). 

Applying the restriction enzymes of length 5 would generate 

RE3 (at position 1) 

And the final sequence of restriction enzymes after integrating both lengths would be: 

RE1, RE3, RE2. 

Notice we consider the position first, and if we have more than one restriction enzyme 

(overlapped signals) that occur in that position, we then give the smaller length higher 

priority in the generated sequence. 

Figure 16 shows the results of using a list of restriction enzymes cut positions on the 

mycobacterium dataset. The results showed better quality with the application of the 

restriction enzymes’ list than those of using MSA. 

Figure 17 shows the results of the same experiment, but on the mitochondrial genomes 

dataset, and again the results outperformed those obtained by MSA. 



70 
 

 

 

 

Figure 16 Results of using the approach with a list of restriction enzymes cut 

positions; Multiple Sequence Alignment results were included as a reference for 

comparison. 

 

 

Figure 17 These are the results of using our algorithm with a list of restriction 

enzymes on the mitochondrial dataset, we also included Multiple Sequence 

Alignment results as a way of comparison. 

 

The two figures show that results of using restriction enzymes were better than those of 

MSA. Though in some cases and using the random selection (refer to experiment 2 in 

section 5.4.2), the results might be even better using the random selection, as shown in 

Figure 12 and using k = 6 and random selection of 60% we got a 0.489% of tree distance 

difference to the gold standard tree. Which proves that there are some strong signals that 
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are not known to the literature, and those signals would improve the results of the 

comparison method. 

5.4.4 The Fourth Experiment::Using k-mers that occur only in CDs regions of the 

genomes 

As our hypothesis of using words with biological relevance had promising results, as with 

the restriction enzymes, we continued searching for more signals that would also give 

high quality. 

In this experiment, we used signals/words from the CDs regions of the genomes. As these 

regions are rich of biological information; we thought they would improve the results. In 

fact CDs are the main DNA source for functional genes, and a lot of species that are 

closely related, would have similar functions and in turn genes with similar structures. 

Hence we generated a list of the k-mers that occur within the CDs regions. 

Elimination of words lists of lengths 3, 4 and 5 was applied, as those lists were all 

possible k-mers of these lengths, and would have same exact results as in the first 

experiment. 

The used dataset here were for entire genomes, these mitochondrial genomes are rich 

with CDs regions, and was a good fit for this experiment, as they also have a gold 

standard tree. 

Figure 18 shows better results for using our approach with signals from the CDs. The 

results of Figure 18 show that these signals are rich of information that would improve 

the quality of the method; hence these signals would be a major source as input lists of 

the approach. And this would come with a positive answer for the fourth question. 
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Figure 18 This figure shows the results of using our algorithm with lists that were 

generated from CDs regions, k ranges from 6 to 9, the used methods of comparison 

are LCS and LZC, and the clustering methods are UPGMA and NJ. 

 

5.4.5 The fifth experiment::Application of the approach to datasets with different 

level of gaps errors 

We finally applied the approach to special datasets; these datasets were generated and 

manufactured from the mitochondrial genome dataset, and they are incomplete genomes 

and/or with errors. The reasons for applying the approach to such datasets, is to measure 

if it would be able to identify the relatedness among species with errors or not.  

These datasets are divided into three categories, the first category is for a dataset where 

each sequence is a fragment from the original genome, and each fragment’s content is a 

percentage of the original genome’s content. The content was chosen randomly from the 

genome’s content. For this category we generated two datasets one with 50% content and 

the second for 70% content. 

The second group has each sequence composed of several fragments from the original 

genomes, and these fragments are in order. Each sequence would be the merging of 

several fragments from the original sequence, and these fragments would have a content 
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represented as a percentage of the original genome, these fragments were chosen 

randomly from the genome’s content and did not overlap. For this category we generated 

two datasets with percentages 30% and 90%. 

The third category is similar to the second one, but the fragments were shuffled 

randomly, which means that a new sequence has fragments that are not in order, and 

would still have a content that is represented as a percentage amount of the original 

genome. These datasets were generated with percentages 40% and 80%. 

For more details on these types of datasets, please refer to Figure 3. 

We compare the results of using our approach on these datasets to those resulting from 

MSA on the same datasets. We are evaluating if our approach would identify the 

relatedness of the species in these datasets, even if they have errors, and if these results 

would be better than those of MSA. 

Figure 19 shows the results of applying the approach to these datasets, each group of 

columns (colors blue, red and green) represent one dataset and the use of one clustering 

algorithm (NJ or UPGMA), and each column is the result of using either LCS, LZC or 

MSA. The results show that in most cases our approach outperform MSA, except in two 

cases as with the dataset of using several fragments, with 30% contents of the original 

sequences, and using all possible 4-mers, and LCS comparison method with UPGMA 

clustering algorithm. The quality of result in this experiment was lower than MSA, same 

with the dataset of (80% contents, several fragments not in order, 6-mers selected from 

CDs and using LCS and UPGMA); the result again was lower than MSA. 
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Figure 19 shows the results of applying our approach to datasets with high level of 

errors. 

Abbreviations: APK (All Possible K-mers), CDs (Coding Regions), OF (One 

Fragment), SF (Several Fragments), SFN (Several Fragments Not in order). 

Horizontal axis shows the distances for the generated trees to gold standard. Notice 

MSA was applied to the entire genomes. 

 

The usage of this approach with datasets that have errors would be more convenient than 

using MSA, as most of the results of our approach outperformed MSA results, 34 results 

were better than MSA out of 36 runs (94.44%). 

5.5 Conclusion 

The experimental results we had showed that some signals would improve the quality of 

comparison of biological sequences. It showed that there are hidden signals that are 
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possibly overlapped within the sequences, which could identify and improve the 

relatedness between species. It also showed that with a small number of the signals; we 

would still be able to get better results than those of MSA, and even in sometimes better 

results than in all possible signals of specific length. That would mean that we randomly 

chose strong signals that would identify the relatedness between the species, also this 

small signals’ list would computationally be inexpensive. With more research and 

extensive experiments we might be able to identify such signals, and even find out if they 

have any biological information/relevance. 

The third experiment dealt with words that are identified as biological signals, restriction 

enzymes are known for several usages in biological research, and again these biological 

signals were able to identify better relatedness among species. Same happened with the 

fourth experiment where we extracted signals that occur only within the CDs regions for 

genomic sequences, and these signals were able to outperform traditional methods like 

MSA in identifying the relatedness between genomes. The conclusion of this work; is 

that specific available signals with biological relevance would improve the results. 

We finally evaluated if such approach would have better results over MSA with datasets 

that have errors, and again with most of the results we had, these signals have better 

results and identified better relatedness among species compared to those resulting from 

MSA. So for genomic datasets that have errors, it would be better to use this approach 

instead of using traditional alignment-based methods, and that the overlapped signals 

would identity such relationships among species. 
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Overlapped signals are powerful marks for comparing biological sequences, and would 

identify more accurate relationship between species compared to alignment-based 

methods. 
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CHAPTER 6 

GENE PREDICTION USING COMPARATIVE GENOMICS 

Gene prediction deals with identifying stretches within the DNA sequences, these 

stretches might be subsequences with biological functions, and would go through gene 

expression and start a specific function for the species. As similar species carry similar 

functions, these functions are results of similar DNA structures, and although these 

structures are not exactly identical, but they would still carry a lot of similarities, these 

similarities could be identified using comparison methods, hence the use of comparative 

genomics would address such stretches. 

The work of this chapter focuses on using LZ complexity as a major filter to search for 

such similarities between small fragments of the DNA sequences, before applying local 

alignment as a way of confirmation to this method, then report the found segments as the 

DNA stretches, and finally evaluate the results against the gold standard of these 

sequences. The work is compared to a strong tool that was published recently in 2010, 

PRODIGAL has been developed Oak Ridge National Research Lab [33]. 

6.1 Methodology 

We are conducting several experiments to verify our hypothesis of using comparative 

genomics; the following steps show how to run each experiment. 

1. Run the gene prediction approach based on comparative genomics, which would 

be by applying the following steps: 
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a. Split each sequence to fragments of length L, the fragments should overlap 

with a period O. 

b. Compare the fragments of the first sequence against the fragments from 

the second sequence, using Lempel-Ziv complexity [4]; with distance 

measure 2. 

c. Filter the pair-wise comparison using a predefined threshold S. 

d. Compare the filtered pairs using local alignment [2]. 

e. Filter the compared pairs based on local alignment using a predefined 

threshold LS. 

f. Combine the filtered pairs that are consecutives, into subsequences. 

g. Reports the combined subsequences as predicted active regions for genes. 

2. Measure the sensitivity and specificity for the predicted regions using the 

approach. 

3. Run PRODIGAL [33] to predict genes in the genomes. 

4. Measure the sensitivity and specificity for the predicted regions using 

PRODIGAL. 

5. Evaluate which method has better results. 

6. Tune the parameters of the approach to reach better results. 

6.1.1 Gene prediction approach 

The approach starts first by splitting the two sequences into fragments of length L, with 

overlapping period O. Figure 20 shows the splitting process. 
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Figure 20 splitting a DNA sequence to fragments of length L, and overlapping 

period O (which is the shared region between two successive segments), notice the 

black region is the size of the overlapping. 

 

The next step after splitting the sequences is to measure their LZ complexity. LZ 

complexity showed a lot of efficiency and high speed in a previous research.  It is used as 

a way of preprocessing, to filter the fragments to the closely related ones. It also has 

another big advantage over traditional comparison methods (like sequence alignment), 

which is its heuristic speed. For more details about LZ complexity please refer to the 

work of Otu et al [4] or section 4.1.2. 

Comes next is another filtration for these results. This filtration is based on the scores of 

the local alignment, which is an application of a threshold applied to the selected pairs. 

This threshold is the percentage of the scores of the Local alignment to the length of the 

fragments, and in most cases we used 80%, which would provide a score of 40 for 

fragments of length 50. 

When the strongly related fragments are finally selected using the Local Alignment 

threshold, we merge those that are consecutives, and that would result in bigger 
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fragments. Those bigger fragments are our prediction for the Coding Regions in the 

sequences. 

For assessment, a measure of sensitivity and specificity is applied on the predicted genes. 

Sensitivity means how many accurate genetic nucleotides were predicted, and specificity 

reveals how much wrong prediction was made. 

Figure 21 provides means of definitions for needed terminology of the evaluation, like 

true positive (TP), false positive (FP), true negative (TN) and false negative (FN). 

 

 

Figure 21 TP is the predicted nucleotides and they are truly within the coding 

regions, FP is the predicted nucleotides but they are not truly exist in the coding 

regions, TN unpredicted nucleotides that exist outside the coding regions and FN 

are the unpredicted nucleotides that exist in coding regions. 

 

6.1.1.1 Accuracy 

Accuracy is measured using sensitivity and specificity. Sensitivity measures how much 

accurate results were measured, while specificity specify how much unneeded data were 

measured and they are defined as follows: 

(Sensitivity) Sp = TP/(TP + FN) 

(Specificity) Sn = TP/(TP + FP) 
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6.1.1.2 PRODIGAL 

Prodigal (Prokaryotic Dynamic Programming Genefinding Algorithm) is a microbial 

(bacterial and archaeal) gene finding program developed at Oak Ridge National 

Laboratory and the University of Tennessee [33]. 

 

In general gene prediction software is case specific; some of them works for microbial 

genomes, some works for eukaryotes or any specific type of species. In our work, gene 

prediction is not a case specific, but it focuses on the usage of comparative genomics. We 

are comparing our approach’s results to those of other software like PRODIGAL, so we 

can evaluate the performance of our approach. 

6.1.1.3 Local Alignment [2] 

Local alignment was used with the default scoring criteria. 

 
The evaluation process for the results of PRODIGAL is the same as with our approach, 

that would provide us with a good way to assess the results, and would help us to 

evaluate the approach, and modify the parameters to provide better results. 

The approach parameters are the fragment’s length, the overlapping period, the LZ 

complexity distance’s value and the local alignment score. The following bulletin shows 

the parameters, with a brief discussion on their general effect. 

1. Fragment length, this is the length of the used fragments, it should range from 1 

(represents one nucleotide) to the full length of the shortest sequence. The best 

fragment length is subjective and cannot be predicted without experiments. 

2. Overlapping period (this is the shared sequence between two successive segments), 

this is the length of the shared region between two successive fragments, it could be 



82 
 

 

zero, which means no overlap at all, and up to fragment’s length – 1 (L-1). The 

reason of having the overlapping period; is to take advantage of shared information 

between successive fragments. The good value for the period is subjective as well, 

and was left for the experimental work. 

3. LZ complexity distance, this value would provide an evidence on the relatedness 

between fragments. It is a normalized value and scaled from 0 to 1. 0 or close to 0 

means closely related fragments, and 1 means distantly related fragments. The 

smaller the LZ complexity distance’s value, the similar the fragments are.  Also LZ 

complexity is a very fast tool of filtering the bad fragments, as it has a linear time 

complexity. 

4. Local alignment, is another verification method for the similarity between 

fragments, and would help in approving that these fragments are similar and their 

structures are in order. The measurement of the good local alignment happens by 

dividing the local alignment score by the length of the fragment. For example if the 

fragment length is 100 and the local alignment score is 85, then the output would 

be 0.85, and the bigger the output the closer the fragments. Local alignment was 

used instead of global alignment, as we were looking at a detailed alignment 

instead of a generalized one. 

The first groups of experiments were conducted to measure the output delivered after 

changing the parameters. Then second group of experiments was applied with a focus on 

having best results, with a mind set on how to use the parameters. 
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6.2 Experimental design 

Conducting such research requires running a group of experiments to verify the 

hypothesis. Each experiment has several steps, and each step would have a different 

impact on the results. These steps include splitting the sequences to fragments that 

overlap, filter these fragments by comparing them using LZ complexity, and finally 

compare the filtered fragments using Local Alignment. These steps lead to the use of 4 

parameters, the first one is the fragments’ length, and the second one is the overlapping 

period, and these two parameters can be combined together. The third parameter is the 

value of the LZ complexity distance, and the fourth parameter is the Local Alignment 

value. 

The rest of steps of any experiment would be the merging of the finely selected fragments 

that are in order, and those would be the predicted genes. We finally apply assessment 

procedure based on sensitivity and specificity. 

The previous discussion would provide an understanding on what are the needed 

experiments to conduct such a research. The first issue we needed to address and 

conduct; is building a sense of the parameters and which values would enhance the 

results. For this we designed a group of experiments to establish such a sense. Each group 

of these experiments deals with one parameter, and the basic idea is to fix the values of 

the other parameters and then change the value of the parameter of choice, then measure 

the quality of the results and evaluate the performance accordingly. This would provide 

us with good understanding on how to set the values for the parameters. 
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Once we establish this sense of the good values for the parameters, we move to the next 

and main experiment, which is how to use these parameters to predict as much regions as 

possible of genetic information. 

This experiment is designed with a consideration of the good values for the parameters in 

mind, and with some expectation for the performance of the results accordingly. 

6.3 Results and analysis 

6.3.1 Analysis of the experimental parameters 

6.3.1.1 First group of parameters (fragment length and overlapping period) 

The first group of experiments focused on understanding how to use the parameters. This 

was conducted by fixing all the parameters except one, which would be the one on focus 

for a specific group of experiments, then analyze the behavior of this parameter was 

conducted. 

To conduct such experiments, we fixed the length of the fragments, and then slowly 

changed the overlapping period, so an understanding of the effect of the size of the 

overlapping period would be reached. We used fragments of length 150 nts, and 

overlapping period of length 75, 120 and 135 nts. The results of sensitivity and specificity 

showed improvement with the increase of the overlapping period; as shown in Table 6. 

For verification, same experiment was run several times on fragment’s length 100 nts, 

and with overlapping periods (50, 70 and 90 nts), and also on fragment length 50 nts with 

overlapping periods (25, 30 and 45 nts). The results also showed that the smaller the 

fragment’s length, the better the results. 
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The first group of experiments focused on the first two parameters. Smaller fragments 

length, with bigger overlapping periods would provide better sensitivity and specificity. 

 

 

 

 

 

Table 6 results of using different fragments lengths, these fragments are the main 

unit of comparison, and also different overlapping periods, which is the shared 

sequence between two successive segments, the results show that smaller fragment 

length and bigger overlapping period would provide better results 

Parameters Seq 1 Seq2 Both Seqs (Total 

Sn and Sp) 

Sn Sp Sn Sp Sn Sp 

150, 75, 0.2, 80% 0.08926 0.24564 0.09547 0.26431 0.09237 0.25497 

150, 120, 0.2, 80% 0.15693 0.31158 0.16248 0.3243 0.15971 0.31794 

150, 135, 0.2, 80% 0.18847 0.34612 0.19383 0.3578 0.19116 0.35199 

100, 50, 0.2, 80% 0.14988 0.32412 0.15547 0.3381 0.15268 0.33111 

100, 70, 0.2, 80% 0.20812 0.38282 0.2131 0.39433 0.21062 0.38857 

100, 90, 0.2, 80% 0.30884 0.46076 0.31348 0.47036 0.31117 0.46556 

50, 25, 0.2, 80% 0.19808 0.3998 0.20338 0.41287 0.20074 0.40637 

50, 30, 0.2, 80% 0.2321 0.42486 0.23649 0.43534 0.23434 0.4301 

50, 45, 0.2, 80% 0.4262 0.53406 0.43093 0.54275 0.42858 0.5384 

Prodigal 0.5991 0.90034 0.48639 0.85621 0.54287 0.88008 
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6.3.1.2 Second group of parameters (LZ complexity distance) 

The second group of experiments dealt with the analysis of the effect of LZ complexity 

distance. To investigate the effect of these parameters, we fixed the fragment length, 

overlapping period and local alignment threshold score, and had the LZ complexity 

changed. 

We picked the best parameters we had from the first group of experiments to use in this 

group of experiments, fragments’ length of 50 nts, and overlapping period of 45 nts. 

A tuning of the LZ complexity parameter was applied from value of 0.2, 0.25 and 0.3, 

and evaluation of sensitivity and specificity was analyzed. Results in Table 7 show that 

with the increase of LZ complexity distance, outputs would be enhanced. 

 

Table 7 results of using different LZ complexity values, the results show that higher 

values would provide better results 

Parameters Seq 1 Seq2 Both Seqs (Total 

Sn and Sp) 

Sn Sp Sn Sp Sn Sp 

50, 45, 0.2, 80% 0.4262 0.53406 0.43093 0.54275 0.42858 0.5384 

50, 45, 0.25, 80% 0.70887 0.62955 0.71236 0.63549 0.71062 0.63252 

50, 45, 0.3, 80% 0.84889 0.66354 0.84996 0.66855 0.84942 0.66605 

Prodigal 0.5991 0.90034 0.48639 0.85621 0.54287 0.88008 
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6.3.1.3 Third group of parameters (local alignment score) 

The third group of experiments dealt with the local alignment score. Fixation of fragment 

length, overlapping period and LZ complexity distance was applied, and changing of the 

local alignment score from 50%, 70%, 80% and to 90% was provided. 

Table 8 shows that performance has not changed at all, or was very slight with the change 

in local alignment score. The reason for this; is that LZ complexity is a strong filter, so 

with a small value like 0.1 (in our dataset case), the filtered fragments are very similar. 

These fragments with high similarity would have a high score for local alignment, and 

with the application of scores less than 90%, no change in the score was reached. While 

when the score reached 90%, a slight improvement in the specificity was achieved. 

 

 

 

Table 8 results of using different percentage of local alignment similarity, this 

parameter reflect the fine results of a detailed comparison between the different 

segments, the results show that higher values would provide slightly better results 

Parameters Seq 1 Seq2 Both Seqs (Total 

Sn and Sp) 

Sn Sp Sn Sp Sn Sp 

50, 45, 0.1, 50% 0.05507 0.26732 0.05457 0.26545 0.05482 0.26638 

50, 45, 0.1, 70% 0.05507 0.26732 0.05457 0.26545 0.05482 0.26638 

50, 45, 0.1, 80% 0.05507 0.26732 0.05457 0.26545 0.05482 0.26638 

50, 45, 0.1, 90% 0.05507 0.27316 0.05457 0.27122 0.05482 0.27219 

Prodigal 0.5991 0.90034 0.48639 0.85621 0.54287 0.88008 
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6.3.2 Analysis of the performance of good parameters on the results 

After conducting the previous experiments to build a sense on the performance of the 

parameters, we conducted another experiment to measure the enhancement of these 

parameters on the performance on the results. 

We picked fragments of length 50, and overlapping period of length 45, and fixed the 

local alignment score to 80%, and gradually increased the LZ complexity from 0.2 to 0.5, 

so we can measure the gradual performance. 

Table 9 shows the improvement of the sensitivity and specificity with the increase of the 

LZ complexity distance. 

This experiment proves that our conclusion of the first group of experiments was correct, 

and that the right use of these parameters would provide better results for the gene 

prediction process. 

 

Table 9 results of using different LZ complexity values, the results show the smooth 

improvement of the results with the increase of LZ complexity 

Parameters Seq 1 Seq2 Both Seqs (Total 

Sn and Sp) 

Sn Sp Sn Sp Sn Sp 

50, 45, 0.2, 80% 0.4262 0.53406 0.43093 0.54275 0.42858 0.5384 

50, 45, 0.22, 80% 0.5212 0.57494 0.52413 0.58165 0.52267 0.5783 

50, 45, 0.23, 80% 0.62693 0.60786 0.62845 0.61341 0.62769 0.61063 

50, 45, 0.24, 80% 0.6546 0.61321 65753 0.61939 0.65607 0.6163 

50, 45, 0.25, 80% 0.70887 0.62955 0.71236 0.63549 0.71062 0.63252 
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50, 45, 0.27, 80% 0.78395 0.64975 0.7848 0.65478 0.78437 0.65226 

50, 45, 0.3, 80% 0.84889 0.66354 0.84996 0.66855 0.84942 0.66605 

50, 45, 0.5, 80% 0.89629 0.67534 0.8969 0.68013 0.8966 0.67773 

Prodigal 0.5991 0.90034 0.48639 0.85621 0.54287 0.88008 

 

6.4 Overall analysis 

We conducted several groups of experiments to verify our hypothesis of using 

comparative genomics in predicting genes. As these experiments have several 

parameters, it was necessary to understand the nature of these parameters, and then we 

can use them to maximize the results of predicting genes. These parameters are 

fragments’ length, overlapping period length, LZ complexity distance and local 

alignment score. Our experiments showed that smaller fragments have better results 

compared to bigger fragments. But there are computational limitations of using smaller 

fragments, especially with using big overlapping period parameters, as this would 

increase the number of generated fragments, and that might take the entire memory of the 

used computer. This limitation was met when we tried to break the sequences to 

fragments of length 40 and 30. Although a customization could be applied to the code to 

overcome such limitation, this customization would slow down the process and would 

take several months to achieve the output. Also the first groups of experiments showed 

that bigger overlap would improve the results. The local alignment parameter is the last 

parameter, and this is the main parameter, as the quality of the local alignment would 

reflect the similarity between the fragments; with consideration of the order of the 
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substrings and nucleotides in these fragments. 80% of local alignment was the least value 

for this parameter, as lower than this value would provide distantly related fragments. 

After fixing these parameters for the quality purposes or computational limitations, the 

only parameters that would enhance the results would be the LZ complexity distance, and 

the last experiment showed that increasing this parameter would improve the results. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

Sequence alignment has gained a lot of trust among researchers, but with the new 

achievements in the domain, it also showed limitations regarding performance and speed. 

Compression was suggested as an alternative, and based on its algorithmic structure; 

compression would address any similarities between any two strings, even if these 

similarities are not in order. 

Compression showed high performance in catching such similarities and identifying the 

relationships among a group of species. Compression also was able to address the 

relatedness with datasets that have high level of errors, these errors ranged from random 

mutations, to incomplete genomes that come as fragments, and these fragments could be 

one fragment, several fragments, in or out of order.  

Another alignment-free technique was based on k-mers, and the major motivation is to 

address the strength of specific signals, and see how much impact they would have on 

identifying the relationships between species. These signals could be hidden signals 

within the sequences, or could be specific motifs that have a biological nature and or 

significance. The technique showed better results over sequence alignment, starting from 

using all possible motifs of specific length k, random groups of these motifs, specific 

motifs that carry known biological information like restriction enzymes, and motifs that 

occur only in coding regions that have biological function. 
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Results showed better performance than in sequence alignment, and it showed that 

specific signals are better than others in finding the relationships between species. 

Compression based techniques have the advantage of catching similarities even if it is 

hard to catch them, they are also fast, and mostly have a linear time complexity. While 

the motif-based technique has the advantage of using and addressing specific signals in 

the sequence, these signals would identify the relationships between the sequences, hence 

the technique would be useful with the advances in biology that would result in knowing 

more signals, and would be biologically more accurate to find the relationships between 

species that carry them. 

Compression based was also a good source of providing filters for the gene prediction 

using comparative genomics. Comparative genomics is the base for one of the suggested 

techniques for gene prediction, which we used to identify specific regions of stretches 

within the DNA sequences. Compression was accurate to identify closely related 

segments, and very fast to speed up the process. 

Compression is a good tool for comparing biological sequences, and it could be applied 

for sequences with different level of errors. Hence more work in this domain could be 

achieved by applying it to different erratic datasets. Same with k-mers approach, as it 

showed from the results of last experiments, that they would provide better results to 

erratic datasets than MSA results. Hence a good direction for future research would be by 

applying the approach to other erratic datasets. 

Although the results of gene prediction approach were impressive, we found that the 

parameters that would provide such good results are not consistent, but they change 

according to the sequences in use. A good work could be done to find the mathematical 
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relationship between the good gene prediction parameters and some other parameters, 

like LZ complexity for the entire genomes, and test if this would provide good estimate 

for the used parameters, and have them dataset dependent. 
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