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Abstract
Background: Historically, two categories of computational algorithms (alignment-based and
alignment-free) have been applied to sequence comparison–one of the most fundamental issues in
bioinformatics. Multiple sequence alignment, although dominantly used by biologists, possesses
both fundamental as well as computational limitations. Consequently, alignment-free methods have
been explored as important alternatives in estimating sequence similarity. Of the alignment-free
methods, the string composition vector (CV) methods, which use the frequencies of nucleotide or
amino acid strings to represent sequence information, show promising results in genome sequence
comparison of prokaryotes. The existing CV-based methods, however, suffer certain statistical
problems, thereby underestimating the amount of evolutionary information in genetic sequences.

Results: We show that the existing string composition based methods have two problems, one
related to the Markov model assumption and the other associated with the denominator of the
frequency normalization equation. We propose an improved complete composition vector method
under the assumption of a uniform and independent model to estimate sequence information
contributing to selection for sequence comparison. Phylogenetic analyses using both simulated and
experimental data sets demonstrate that our new method is more robust compared with existing
counterparts and comparable in robustness with alignment-based methods.

Conclusion: We observed two problems existing in the currently used string composition
methods and proposed a new robust method for the estimation of evolutionary information of
genetic sequences. In addition, we discussed that it might not be necessary to use relatively long
strings to build a complete composition vector (CCV), due to the overlapping nature of vector
strings with a variable length. We suggested a practical approach for the choice of an optimal string
length to construct the CCV.
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Background
The increasing proliferation of biological sequence data
has created tremendous opportunities for biologists and
medical researchers to address both fundamental issues
(e.g., molecular evolution) and practical problems (e.g.,
drug design). On the other hand, it poses many computa-
tional challenges for theoretical scientists to create effi-
cient and reliable methods or algorithms for sequence
analyses and knowledge mining. Sequence comparison,
an essential operation for gene finding and protein func-
tion annotation, is one such challenge. The methods for
sequence comparison are classified into two categories,
alignment-based and alignment-free. The alignment-
based sequence analysis methods have both fundamental
and computational limitations [1-4]. For example, these
methods cannot deal with changes like chromosome
reversal or gene translocation. They also encounter diffi-
culties in aligning dissimilar sequences. Another draw-
back with sequence alignment is its computational
complexity, where no optimal solution can be achieved
when a large number of sequences are compared. Conse-
quently, considerable efforts have been made to seek for
alternative, i.e., alignment-free, methods for sequence
comparison.

The alignment-free methods seen in the past few decades
can be divided into three categories: gene contents [5-7],
data compression [8-11], and string (or word) composi-
tion [12-18]. Of these methods, the string-composition-
based methods, especially the composition vector (CV)
method [12] and the complete composition vector (CCV)
method [16], have received substantial attention. The CV
method uses strings of a fixed length whereas the CCV
method uses strings of multiple lengths. The CCV method
was found to provide finer evolutionary information than
the CV method; however, it has disadvantages regarding
computing time and memory usage. Both of the above
mentioned methods apply a Markov model assumption
to estimate the random background of observed frequen-
cies, which has been found to be problematic, as detailed
in Section 2. In this paper, we will provide an improved
CCV (ICCV) method and demonstrate that this new
method is more robust and efficient in performing
sequence comparison compared with the existing CCV
method. The issue of how to build a more informative
CCV, i.e., how to select the maximum vector string length
for better evolutionary information representation, will
be addressed as well.

The contents of this paper are arranged as follows. In the
Methods section, we point out the two aforementioned
problems in the existing CV or CCV methods and describe
our new ICCV method. In the Results section, we compare
the CCV and ICCV methods through simulations and
experimental data analysis. In the Discussion section, we

discuss the potential impact of the simple assumption of
a uniform and independent model and issues related to
selecting the maximum string length for CCV construc-
tion.

Methods
Existing CV and CCV methods

Define S as a DNA sequence consisting of N nucleotides.

Let f(α1...αk) be the observed frequency of the k-mer string

α1...αk, where αi is one of the four nucleotides A, C, T, or

G and k is the string length (1 ≤ k <N). We define

 as a vector of observed frequencies for

a given k, where 4k is the number of k-mer strings, and let

γK = (S1, S2, ..., SK) as a combined vector for some constant

K (K < N), where K is the maximum string length consid-

ered. From the perspective of molecular evolution, Sk or γK

reflects both random mutation and selection, and the ran-
dom background needs to be normalized in order to rep-
resent genetic information contributed by natural
selection. After the normalization of observed frequen-
cies, Sk is converted into a composition vector (CV), and

γK is transformed into a complete composition vector

(CCV).

The method to normalize the observed frequencies of dif-
ferent k-mer strings in S was originally proposed by Bren-
del et al. [20] and has been used with minor
modifications for phylogenetic studies of prokaryotes and
viruses [12,16]. We have found two problems associated
with string frequency normalization in existing methods.
To explicate these problems, we reiterate the normaliza-
tion equation of the observed frequency of α1...αk, i.e.,
f(α1...αk), described in [12] as below:

where

 for

k ≥ 3.

First, there is a positive correlation between the observed
frequency f(α1...αk) and the estimated expected frequency
f0(α1...αk). We computed both quantities for k = 3, 4, 5
using a randomly chosen virus sequence. The correlation
coefficients between f0(α1...αk) and f(α1...3;αk) are 0.92,
0.92 and 0.86, respectively, for k = 3, 4, 5 with p < 0.0001
(Fig. 1).
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Define E0[f(α1...αk)] as the true expected frequency of k-
mer string α1...αk in S. Since there exists a highly positive
correlation between f0(α1...αk) and f(α1...αk), the differ-
ence between them tends to be smaller than the difference
between f(α1...αk) and E0[f(α1...αk)], indicating the infor-
mation contributed by selective evolution is underesti-
mated.

Another problem associated with Eq. [1] is the denomina-
tor. As originally proposed in [20], a square root needs to
be applied to the denominator. Without such an opera-
tion, the normalized frequency tends to be over-standard-
ized.

Improved CCV (ICCV) method
We assume that the four bases A, C, T, and G occur ran-
domly with equal chance and derive the expected fre-
quency of a k-mer string and the frequency variance in a
given sequence S based upon this simple assumption.
Define xi as follows:

where i = 1, 2, 3, ..., N - k + 1 and N - k + 1 is the maximum

frequency one can observe for string α1...αk in DNA

sequence S of length N. Therefore, it can be shown that

. The expectation and variance of

f(α1�αk) are given as

and

x
k i

i =
⎧
⎨

1

0

,

,

if the -mer string begins at position 

otherwise⎩⎩
,

f xk i
i

N k
( )a a1

1

1
=

=

− +

∑

E f E x
N k

kk i

i

N k

[ ( )] ( ) ,α α1

1

1
1

4
= = − +

=

− +

∑

Var f
N k

k k k
k N k

k
N kk[ ( )]

( )
( ) ( )( ) (a a1

1

4
1

1

4

2

42
1

3
2

1
2

4
= − + − − − − + + − + 11

41

1

−
=

−

∑ t
Jt
t

t

k

) ,

Correlation between the observed frequencies and the estimated expected frequencies of strings with length k = 3, 4, 5, respectively, in a randomly selected sequence from our databaseFigure 1
Correlation between the observed frequencies and the estimated expected frequencies of strings with length k = 3, 4, 5, 
respectively, in a randomly selected sequence from our database. Reference lines in the plots designate y = x.
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where , for t = 1, 2, 3,..., k

- 1. For a full derivation of the above equation, readers
may refer to [21,22].

With both expectation and variance derived, the normali-
zation function for the observed frequency of a k-mer
string is given as:

for k ≥ 1.

We construct an improved CCV (ICCV) with the normal-
ized frequencies of all k-mer strings computed using Eq.
[2]. Since E[f(α1...αk)] is a theoretical value based on N
and k, it is independent of f(α1...αk) for a fixed k. There-
fore, the ICCV method we proposed does not experience
the underestimation problem of the existing CCV meth-
ods. Another advantage of ICCV over CCV is that ICCV is
constructed for any k but CCV is constructed for k > 3. The
latter neglects the evolutionary information contained in
1-mer and 2-mer strings.

Distance measurement
Let α = (a1, a2, ..., aT) and β = (b1, b2, ..., bT) be the CCV or
the ICCV of two DNA sequences A and B, respectively. To
calculate D(A, B), the distance between A and B, we adopt
a distance measurement in this paper as detailed below:

where . C(α, β) is the cosine

of the angle between α and β.

Data sets
To generate simulation data sets to compare the perform-
ance of the ICCV and the CCV methods, we adopted a
similar approach as in [8]. In brief, an ancestor sequence
was randomly picked from our influenza virus database;
and the progeny sequences were derived through simula-
tion using different types of mutations (insertion, dele-
tion, substitution, inversion, transposition or
translocation) and following a pre-defined tree topology
(Fig. 2). Six types of mutations at the rate of 9–15% were
applied to generate A1 and A2 from A, and B1 and B2
from B. Three types of mutations (insertion, deletion, sub-
stitution) at the rate of 2–5% were used to generate A0
from A and B0 from B. A total of 1000 data sets were gen-
erated for phylogenetic analysis.

Besides the simulated data sets, we used a real dataset to
compare the ICCV and the CCV methods. Fifty-four influ-
enza A viral HA sequences were used. Each has approxi-
mately 1,659 base pairs. Based upon alignment-based
phylogenetic analyses, each sequence was assigned a clade
number by the International H5N1 Evolution Working
Group (RO Donis, personal communication) [23].

Data analysis and visualization
Statistical package R version 2.5.1 was used for program-
ming and implementation of the CCV and ICCV meth-
ods. The trees were generated using the Neighbor-joining
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program in the PHYLIP 3.6.4 package. The resulting phyl-
ogenetic trees were displayed with MEGA 4.

Results
Analysis of simulation data sets
Both CCV and ICCV trees for K = 6 show the same topol-
ogy of six sequences, as shown in Fig. 3. However, the
ICCV tree provides much higher bootstrapping values in
support of two major clades. This indicates the ICCV
method is more robust in resolving phylogenetic relation-
ships of remotely related clades than the existing CCV
method.

Application on influenza A virus lineage Analysis
As shown in Fig. 4, ICCV and CCV trees for K = 7 agree
with each other in the clade designation (denoted as 0, 1,
..., 9), but at the sub-clade level it appears that the desig-
nation based on the ICCV method is more convincing. For
example, it is logical to assign the viral strain dk/Guangxi/
13/4 to Sub-clade 2.4 as shown in the ICCV tree. How-
ever, this is not the case when examining the CCV tree. In
addition, the positions of Clade 3, Clade 7 and Sub-clade
2.3.3 on the ICCV tree are not the same as on the CCV
tree. When comparing trees generated from different
methods, both the ICCV tree and the tree constructed by
the H5N1 Working Group have exactly the same topol-
ogy, which suggests that the ICCV method is more
dependable than the existing CCV method.

Discussion
Does the uniform and independent assumption matter?
As we can envision, the only potential weakness associ-
ated with the ICCV method is the assumption of a uni-
form and independent model. It has been shown that the
null hypothesis of equiprobable occurrence of different
nucleotides is reasonable in the context of the DNA struc-
tures that have evolved from a "primordial soup' or 'base
pool' containing equal quantities of each base [21]. Sege
and Saxberg (1982) [24] have discussed this issue thor-
oughly. The hypothesis of independent occurrence of dif-
ferent nucleotides has also been accepted in numerous

situations, particularly in the analysis of relatively short
strings [21]. Arritia et al. [25] showed that the approxima-
tion of actual dependence in a DNA sequence to the the-
ory of independence of bases is quite good.

We used our influenza H5N1 virus sequence database to
examine the assumptions of uniformity and independ-
ence. Chi-square tests reject that the four nucleotides A, C,
T, and G occur in equal probabilites (p < 0.0001) or occur
independently of one another (p < 0.0001). Although the
assumption does not generally hold, both results from the
analyses of simulated data and experimental data showed
that our improved method is more robust than the exist-
ing CCV method, indicating that the violation of the
assumption on base composition has no significant
impact on the accuracy of the ICCV method.

Is increasing the maximum string length necessary?
Wu et al. (2007) [19] suggested that increasing the maxi-
mum string length results in a vector containing finer evo-
lutionary information. To investigate this issue, we used
the same simulated sequences data as in section 3.1, and
constructed the ICCV trees for K = 3, 4, 5, 7, 8, 9, 10 (Fig.
5). For the purpose of comparison, we also show the ICCV
tree for K = 6 from Fig. 3. In Fig. 5, it is clearly shown that
as K increases from 3 to 5, the supporting values signifi-
cantly improve. However, this trend declines as K
increases from 6 to 10. Obviously, in this case, K = 5 or 6
is a cutoff point, which means increasing K after a certain
number may not necessarily improve the result. There-
fore, it might not be the case that increasing the maximum
string length would result in a vector containing finer evo-
lutionary information.

The reason for this is that the overlapping nature of strings
with multiple lengths causes the overlap of evolutionary
information carried by each individual CV. As multiple
CVs are combined into a complete CV, the complete CV
collects the exclusive evolutionary information that each
CV contains, but at the same time the overlapping infor-
mation that individual CVs contain is also summed up.
Therefore, increasing the string length K to a certain point
will certainly improve the result, but the trend of improve-
ment reaches its peak and afterwards declines. The ques-
tion is how to choose an optimal string length for
construction of the CCV, which will be discussed next.

How to choose an optimal string length for the CCV

Firstly, all the DNA sequences in the dataset are concate-
nated into a single sequence W of length M, which pro-
vides an empirical nucleotide distribution for the class of
sequences in the dataset. Then Sk for W is computed. Since

Sk is the vector of observed frequencies of all the k-mer

Consensus trees of simulated sequences constructed based on the CCV and ICCV methods for K = 6Figure 3
Consensus trees of simulated sequences constructed based 
on the CCV and ICCV methods for K = 6.
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strings in W,  is the

observed probability for all the k-mer strings. As for a ran-
dom sequence, the probability for all the k-mer strings is

, where  for i = 1, 2,...., 4k.

Therefore, we can determine the difference between these

two probability distributions by their Kullback-Leibler
distance:

Sk
M k q q qk k k k− + =1 1 2 4
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pi k= 1

4
D W q
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=
∑ 2

1
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Phylogenetic trees obtained from the experimental sequence set using the CCV and ICCV methods for K = 7Figure 4
Phylogenetic trees obtained from the experimental sequence set using the CCV and ICCV methods for K = 7.
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Dk(W) would be small if the two distributions are close to
each other, which indicates that Sk does not contain rich
evolutionary information and should be excluded from
calculating the ICCVs.

To apply the above method to the experimental dataset in
Section 3.2, we concatenated all 54 sequences in the
experimental dataset into sequence A and calculated
Dk(A) for k = 1, 2, ..., 30. Similarly, we calculated Dk(B) for

k = 1, 2, ..., 30, where B is a randomly generated sequence
with the same length as sequence A. Then we computed

 for k = 1, 2, ...., 30 (Fig. 6). In Fig. 6, we can

see that the magnitude of Q(k) is fairly large when k is
small. As k increases, Q(k) starts to decrease, and then it
reaches a steady state at Q(k) = 1 when k is larger than 7.
The reason for this is that the effect of selective evolution
is more significant on shorter strings than it is on longer
strings. Therefore, Dk(A) is much larger than Dk(B) when

k is small. However, as k increases, the effect of selective
evolution on k-mer strings starts to decline. Thus, the

behavior of k-mer strings in sequence A becomes more
similar to that of a random sequence and Dk(A) becomes

closer to Dk(B), which indicates that less evolutionary

information is carried by Sk. For the experimental dataset,

since Q(k) is fairly close to 1 when k is larger than 7, an
appropriate choice for the maximum (optimal) string
length K would be 7.

Q k Dk A
Dk B( ) ( )

( )=

Q(k) = Dk(A)/Dk(B) for k = 1, 2,..., 30Figure 6
Q(k) = Dk(A)/Dk(B) for k = 1, 2,..., 30. The two reference lines 
designate k = 7 and Q(k) = 1, respectively.
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Consensus trees obtained from simulated sequences using the ICCV method for K = 3, 4,..., 10, respectively.
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Conclusion
In this paper, we show that the existing CV and CCV meth-
ods underestimate the evolutionary information con-
tained in a DNA sequence due to the Markov model
assumption and the denominator used for the normaliza-
tion of observed string frequencies. Experiments using
simulated and experimental data sets demonstrated that
our ICCV method generates more accurate and robust
results compared with the currently used CCV method.
The consistency between the ICCV tree and the alignment-
based tree recommended by the International H5N1 Evo-
lution Working Group indicates that the ICCV method is
a valuable alternative to the alignment-based methods. It
is also shown that the violation of the assumption about
base composition has no significant impact on the accu-
racy of the ICCV method. As to the issue related to maxi-
mum string length, we believe that it is not necessary to
use relatively long strings to construct the CCV due to the
overlapping nature of strings with variable length. We sug-
gest a practical approach for choosing the optimal string
length for the CCV.
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