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Abstract

Patterns and Signals of Biology: An Emphasis On

The Role of Post Translational Modifications in

Proteomes for Function and Evolutionary

Progression

Oliver Bonham-Carter, MS, PhD

University of Nebraska, 2016

Advisors: Dhundy (Kiran) Bastola, PhD and Hesham Ali, PhD

After synthesis, a protein is still immature until it has been customized

for a specific task. Post-translational modifications (PTMs) are steps in

biosynthesis to perform this customization of protein for unique

functionalities. PTMs are also important to protein survival because

they rapidly enable protein adaptation to environmental stress factors

by conformation change. The overarching contribution of this thesis is

the construction of a computational profiling framework for the study of

biological signals stemming from PTMs associated with stressed

proteins. In particular, this work has been developed to predict and

detect the biological mechanisms involved in types of stress response

with PTMs in mitochondrial (Mt) and non-Mt protein.

Before any mechanism can be studied, there must first be some evidence

of its existence. This evidence takes the form of signals such as biases of



biological actors and types of protein interaction. Our framework has

been developed to locate these signals, distilled from “Big Data”

resources such as public databases and the the entire PubMed literature

corpus. We apply this framework to study the signals to learn about

protein stress responses involving PTMs, modification sites (MSs). We

developed of this framework, and its approach to analysis, according to

three main facets: (1) by statistical evaluation to determine patterns of

signal dominance throughout large volumes of data, (2) by signal

location to track down the regions where the mechanisms must be found

according to the types and numbers of associated actors at relevant

regions in protein, and (3) by text mining to determine how these signals

have been previously investigated by researchers. The results gained

from our framework enable us to uncover the PTM actors, MSs and

protein domains which are the major components of particular stress

response mechanisms and may play roles in protein malfunction and

disease.
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If beauty isn’t genius, it usually

signals at least a high level of

animal cunning.

Peter York

Chapter 1

Introduction

1.1 Signals After Mechanisms

Biology is not made up of magical systems; there is always a mechanism of logic

to explain a phenomenon. Naturally, this mechanism may remain in the dark until

it is illuminated by an investigator whose goal is set on its discovery. To confirm

its existence, it is by the meticulous collection of biological data surrounding this

mechanism, in conjunction with its acute analysis, that the form of the mechanism

emerges. Once the signals originating from their natural environment have been

identified, the mechanism may be isolated for study and eventually presented to the

community as new knowledge.

Signals may be detected by their effects on members of their environments. For

example, cellular stresses (i.e., originating from heat, cold, salt and others) may

damage proteins in short amounts of time requiring stressed proteins to quickly

cope to continue their functions. Failure to tolerate environmental stresses has
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unfortunate consequences. For example, muscular tissues experience atrophy when

exposed to the stress of weightlessness (microgravity) during space travel after only

a few weeks [4;209]. To combat the effects of stress, it generally takes less time to

recondition an existing protein that has already completed its transcription and

associated biological processing, than to re-synthesize steady-state proteins [115].

Although we may not directly observe this transformation, we can, in fact, note that

the alteration has occurred by the nature of the signals which have been emitted as

a result of this mechanism.

In this dissertation, we explore the signals of different types of biological data

(i.e., sequences of DNA, RNA, protein and curated data from public databases) to

locate biological mechanisms which we believe to exist due to their tell-tail signals

emerging from the distillation from large amounts of the data. This work is

primarily an investigation into the detection and isolation of signals that may be

used to describe the existence of their biological mechanisms. Each contribution

that we provide reinforces two main concepts: (1) that signals may be detected and,

(2) that these signals are not randomly distributed in the data. This non-random

distribution signifies that there are elements in the data that must have deeper

meanings and may likely originate from conserved biological mechanisms. The data

for this work is informational-based and has been curated by researchers in wet-labs

and placed on public databases where it can be obtained for studies such as our

own.

1.2 A Focus On PTMs, Proteins And Their

Typical Stress Responses

Before a building material may be applied to some specific task, it must be crafted

into the some shape or form which will be useful to its intended usage. In much the
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acid residues in the protein chain called modification sites (MSs). For example, the

majority of MSs of particular proteins are rapidly phosphorylated following cellular

exposures creating stresses (i.e., including DNA damage, abnormal oncogenic events,

telomere erosion and hypoxia [124]), although a few MSs such as, serine (S) or threonine

(T) phosphorylation, are phosphorylated constitutively in unstressed cells and are

then dephosphorylated following stress [26;180]. It is interesting to note that these

phosphorylation sites exhibit redundancy since a particular site can be phosphorylated

by multiple kinases (an enzyme catalyzing phosphate transfer) and a single kinase

can phosphorylate multiple sites [161]. Additionally, the p53 protein also contains nine

acetylation sites, which activate transcriptional activation mechanisms and enhances

the proteins stability [161]. The acetylation levels are enhanced in the C-terminal of the

protein, when the protein is stressed. Since this protein is constantly responding to a

wide variety of stresses, it has been suggested that diverse stresses initiate alternative

pathways for stress response [161].

Glycosylation is a significant type of PTM that alters protein function by changing

its folded structure. Different types of glycosylation have been observed (i.e., O and

C-glycosylation) [95;134;291], but much about its mechanisms are still unclear [105]. This

PTM involves the addition of glycosyl groups (carbohydrate sugars) to the protein

at several MSs: asparagines (N), hydroxylysines (Hyl), serines (S), or threonines (T).

Phosphorylation implies the addition of a phosphate group to serine (S), tyrosines

(Y), threonines (T) or histidines (H). PTMs are also involved in the localization of

the protein to different compartment of the cells or body of the organism to perform

its function. For example, S-Nitrosylation, a reversible PTM that occurs at a cycstein

(C) modification site, localizes proteins by regulating nitric oxide reactions [98].
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from normal function [229]. Discussed in Phillips et al., PTMs offer a convenient and

rapid solution to changing environmental conditions since they are able to quickly

convert the cellular protein into complexes that are able to survive and function

under diverse conditions [229]. When one considers resources necessary to recreate

a new protein from DNA, the reuse of existing protein material is likely a better

mode of adaptation, although the complete protein re-synthesis may play a part in

response to a chronic stress [13]. PTMs offer this quick and often reversible protein

transformation [3]. Once the stress has elapsed, PTMs are often able to convert the

protein back into its original state. For example, in mice, rabbits, and pigs, Phillips

et al. [228] noted that during an exposure to metabolic stress, the heart (where the

stresses are greater and more sudden) was more reliant on the PTM phosphorylation

to withstand metabolic stress than the liver (where the stresses are minimal). In a

related study, the relative right and left values of the heart were observed to have

alternative protein expression levels for healthy heart function.

1.2.3 PTM Localization And Study

Advances in mass spectrometry technology have allowed for the increased ability to

routinely identify new PTMs and observe their involvements with protein [62].

However, the functional characterization of these modifications is confused by

studies which note divergences across species where modification sites are naturally

shifted (as in the case of phosphorylation, for example) or their regulation appears

to affect organismal proteins in non-uniform ways [18;123;165].

Sirt1 and Sir2L1 are two closely related proteins that are found in human and

mouse (and other organisms) which perform similar types of regulation tasks. By

studying their protein data available from UniProt [9;194], we have observed that a PTM

bias exists between Sirt1 and Sir2L1. For example, the PMT usage frequencies of N-

acetylalanine, phosphoserine, S-nitrosocysteine and phosphothreonine in both, human
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(according to UniProt: Q96EB6 has 19 PTMs total which are associated to this Sirt1

protein) and mouse (UniProt: Q923E4, 13 PTMs sum total), the most frequently used

PTM is phosphoserine. The second most used PTM is phosphothreonine (human)

and S-nitrosocysteine (mouse) which implies a deviation of general usage between

both samples.

Serving as possible regulators of PTM interaction with proteins, PTM

modification sites have been shown to be largely located in 60 percent of functional

regions in proteins [191]. Furthermore, in the same study it was found that in

trans-membrane proteins, the N-linked (GlcNAc...) glycosylation sites were located

in the extracellular regions, as well as the O-linked and C-linked glycosylation sites.

Phosphorylation sites were mainly located in cytoplasmic regions, which induce

signal transduction and ion transport. This suggests that the placement of

modification sites along proteins may help to control PTM initiations for cellular

function in certain protein regions [58;172].

We note that an overwhelming majority of functional roles of Homo sapien

genes are largely unknown in the 35K to 50K of the discovered genes [52], it is likely

that about half can be assigned functional roles based on homology to proteins

having a known function [135]. This lack of knowledge may be attributed to a lack of

sufficient data due to underdeveloped computational tools for the annotation

protein function [238].

1.2.4 Protein Domains

At the heart of protein function are protein domains: the conserved parts of protein

functional structures which can evolve and exist independently of the rest of the

protein chain. The functions of domain structures were thought to be context

dependent and directed by PTM activity (i.e., phosphorylation) [191]. However more

recently, protein regulation has been made possible by vastly interconnected and
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functionally associated PTM operations [200], and other factors such as, alternative

splicing and intrinsically disordered protein fragments [83;210]. This evidence points to

a contextual aspect of regulation where the locational information of PTMs and

protein domains is absolutely necessary for further study of regulation mechanisms.

In [19], regions which were rich in PTM activity were mapped across organisms and

found to be conserved which suggested a common and conserved regulatory

mechanism.

Figure 1.5: Two mitochondrial organelles located within a mammal lung tissue. Here
we note their matrix and membranes as shown by electron microscopy.
Image: https://en.wikipedia.org/wiki/Mitochondrion (21 March 2016).

1.3 Mitochondrial And Non-Mitochondrial

Protein

We differentiate mitochondria (Mt), shown in Figure 1.5, and non-Mt proteins for

much of the work presented in this thesis. Mt and non-Mt protein may be

differentiated by the fact that only the Mt proteins build energy and perform many

diverse tasks in cellular regulation. We note that the two sets of protein already

have different types of lives. For instance, the production of energy (adenosine
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triphosphate, ATP) in Mt creates an environment where the types and frequencies

of encountered stresses are very different from those of non-Mt proteins.

In our beginning contributions, we discuss trends occurring in each set (i.e., Mt

and non-Mt) in terms of DNA and RNA data. Towards in the latter contributions, we

concentrate on their interactions in protein and stress. Each type of protein may be

exposed to entirely different types of environmental stresses which must be handled

by internal stress-response systems and specialized PTMs. Discussed in Section 1.3

in more detail, ailments are not uniform across both these sets of proteins and protein

failure may arise from one of the other type of protein. As we will see in our work in

Chapter 10 (and others) the very nature of the protein, in addition to its associated

types of PTM, may make the difference between the life or death of a protein, tissue

or organism when exposed to specific types of stress.

Disorders such as Leigh’s syndrome (i.e., a neurometabolic disorder that affects

the central nervous system and is characterized by seizures and muscular debilitation),

aging-related problems, Parkinson’s disease [117] and heart disease [142] may have been

initiated of disorders of Mt protein as a result of stress exposures [50;57]. Impaired Mt

function is likely to increase oxidative stress and might render cells more vulnerable

to pathogenesis of the Parkinson’s disease, Alzheimer’s disease [121] and other related

processes, including excitotoxicity. These ailments, and others, are thought to be

caused by stresses which excite and drive oxidative carbonylation (i.e., a kind of

adverse protein PTM) which signifies that coping with oxidative stresses (and other

types of stresses) may create the stage upon which, the PTM actors play to perform

protein health maintenance.
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1.3.1 Mitochondria: Energy Production And Stress

Response

Chemical energy Adenosine triphosphate (ATP) is created by mitochondrial processes

and serve as the chemical energy currency to support all cellular processes. Mt supply

the majority of ATP in eukaryotic cells by respiration and oxidative phosphorylation.

Mt are also key players in many other types of cellular processes as well, such as

intercellular Ca2+ homeostasis, biosynthesis of pyridine nucleotides and amino acids

and β-oxidation of fatty acids. The importance of Mt is so great to the maintenance

of general eukaryotic cellular function that there are only a few isolated cases of

“amitochondrial” organisms, in which the Mt organelles are absent. Discussed in

Regoes et al. [241], organisms such as Giardia intestinalis, having no Mt organelles,

make up for their absent, yet essential, functions by containing double membrane-

bounded structures involved in iron-sulfur cluster biosynthesis.

During energy production by cellular respiration, oxidative stresses take the form

of reactive oxygen species (ROS) and general oxidation. Since these stresses likely

originate from the creation of energy deep within the Mt organelle, its proteins cannot

avoid the influences and hardships that the stresses may bring. However, in spite of

this stress, there are fewer protein failures and interruptions due to stress-related

disorders than we would expect. It may even appear that Mt proteins are more

robust to resisting oxidative stresses. Over evolutionary time, the Mt proteins appear

to have resolved this dilemma by evolving their amino acid compositions to allow for

fewer regions where oxidative stresses are able to be destructive. This phenomenon

is further discussed in Section 10. It is significant to note that if Mt proteins were

to fail due to these stresses, then there would be far-reaching complications, possibly

resulting in cellular death and so we begin to appreciate the importance of the abilities

of proteins to handle the influences of stress.
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1.3.1.1 An Energy Crisis

For a protein interaction to occur, there must be an energy imbalance that will “fund”

the processes that make life possible. A default on the production of ATP has been

shown to create a failure of protein function and cause disease. For instance, in Cha et

al. [51], the retardation of ATP production has been found to contribute to the on-set

of Alzheimer’s disease (AD). Mitochondrial ATP synthase is a multiprotein complex

that synthesizes ATP from ADP and other elements and was found to be decreased

in the brains of AD patients and in transgenic mouse models, as well as in Aβ-treated

cells. Mitochondrial dysfunction is an early and causal event in neurodegeneration.

Epilepsy and various unprovoked seizures may commonly result from Mt dysfunction

and its failure to deliver energy. Shown in Figure 1.6 neurons require much ATP

energy from Mt and are likely to malfunction in its absence. A disorder of energy

production would be crippling since these cells also work closely with other cells to

transfer signals.

The lack of energy production from faulty Mt proteins has also contributed to

disorders. Mitochondrial encephalomyopathies are common disorders that are the

result of mutations of genes that affect Mt encoding proteins that act in many

leading Mt functions [175]. These mutations have been observed to reduce energy

production in proteins where Mt are abundant (i.e., muscle and brain tissue), which

initiated diseases such as HSD10, affecting muscle control, hearing and epilepsy [55].

Furthermore, in these tissues (i.e., heart, brain and skeletal muscle) the disorders of

proteins are typically characterized by weakness and types of developmental

retardation. At the clinical level, the manifestation of these disorders have

symptoms such as loss of ataxia, cardiomyopathy, deafness, decreased cognitive

function, dementia, exercise intolerance, fluctuating encephalopathy, migraine pains,

optic atrophy, proximal myopathy, seizures, spasticity (continuous muscle

contraction), stroke-like episodes and others [284;315].
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Figure 1.6: Neurons require more ATP to drive their signals and associated processes
and mechanisms. We note that all of these mechanisms require energy to function
and an absence of ATP is likely to cause malfunctions and the onset of ailments.
Graphic taken from Knott et al. [151]

Mt also help to regulate many cellular processes which consume energy. Critical

processes may cease during the depletion of ATP such as defects in biosynthesis and

metabolism of neurotransmitters, disruption of Ca2+ homeostasis, generation of ROS

(oxidative stress), and other complications [94]. Oxidative stress serves to disrupt the

cable-like morphology of functional Mt and cause disorders [151]. We remark that the

failure of Mt function may result in cell death as these above complications are by
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Furthermore, since Mt are also directly responsible for many important cellular

regulatory processes, we note that there is must be an incredible amount of Mt

communication to detect and analyze in order to understand how these regulatory

mechanisms function. In Yin et al. [320], it was suggested that when Mt

communications for cellular regulation are understood, then therapies could be

efficiently administered to correct the problems left in the wake of poor or absent

Mt signal communication. This therapy may also serve to correct other types of

ailments which are indirectly related to poor Mt communication.

1.3.2 Mechanisms From Signal Detection

Most of the work of this thesis has been focused on detecting and analyzing some

of the signals from biological processes so that their cellular mechanisms may be

eventually understood. Although Mt energy production signals are important to

this work, we are concentrating on the signals which originate from stress response

systems and their functions involving PTMs, MSs, protein types and environmental

stresses. Discussed and demonstrated in the chapters of this thesis, we offer the

details of philosophies, techniques and automated technologies for the detection and

study of signals from seemingly any type of biological processes where mechanisms

are concerned.

In Chapter 4, we discuss the kinds of mathematical and statistical tools necessary

to isolate signals and then we begin our investigation by isolating some of the signals

from the DNA and RNA levels, which are discussed in Chapters 5 to 8. Here we

determine some of the non-random trends in code and structure which could only be

the result of mechanisms at play. We then turn our attention to the protein level

where we apply our knowledge to detecting the signals of PTM mechanisms. This

work is discussed in Chapters 10 to 13.

The work on the detection of PTM signals is extremely relevant since there is
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still much to learn about the mechanisms used by PTMs. As we will see in Chapters

9 through 13, there are many hundreds of unique PTMs found in nature (i.e.,

acetylation, glycosylation, phosphorylation, methylation, and many others [148]), that

all appear to play unique roles in cellular regulation [265], protein conformation

change [222], response to environmental stresses and other functions [157].
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In the new era, thought itself will

be transmitted by radio

Guglielmo Marconi

Chapter 2

The Ubiquitous Nature Of Signals

In Biology And Living Systems

In addition to perpetual change, the real constant across all living systems and

aspects of biology, is that signals prevail. Communicated from one party to another,

a signal may take the form of a hand gesture, a sound, a smell, an excreted chemical

compound, a bark, a meow, an electrical impulse, an email, a symbol, a word, or

simply anything at all. What ever the signal that has been sent, its existence has

been created by a member of the environment to covey some type of concept,

sentiment, information, instructions or meaning to another member. We will now

explain what is meant by a “signal” in the setting of living systems and biology.

2.1 Traffic Signals

At the city level, many types of signals are obvious and extremely demanding of one’s

attention. For instance, on a busy road, we may often hear the sounding of horns
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party must look for visual cues at the location of the sound’s origin to investigate its

possible reasons. If there is (or was) no obvious danger, then one may be inclined to

believe that the message was a simple greeting to someone. However, if the sound

of the horn was heard, followed by a crash of metal, then it would be obvious that

the horn was one of urgency. In either case, an investigation was necessary once the

ambiguous signal had been perceived.

Other types of signals in the city never have ambiguous meanings, as described in

Figure 2.1. For example, the sirens of emergency vehicles, such as ambulances and fire

engines, are unlike car honks because they are generally unambiguous. These signals

are continuous and do not stop sounding until the emergency vehicle has arrived at

its destination which ensures that all by-standers will be well aware of them. Any

emission of this signal, even if not from a recognized emergency vehicle, will carry the

same message of urgency – all members of the community must allow this vehicle a

safe, hurried and uninterrupted passage.

The final type of signal in a city scenario is the sound of a bell from an ice cream

truck. Although fire engines used bells in the late 1800’s and early 1900’s, they

currently use loud sirens to announce their presence in traffic. Unlike the siren, the

bell does not convey a message of urgency but it is none-the-less unambiguous in its

own right (like the emergency vehicle siren) and requires little further investigation

about its implied meaning, unlike the car horn.

We discuss these signals as they are common to our world, yet they are never truly

analyzed for what they are - signals to remind the members of their environments

of an existence of meanings. One learns at an early age that these signals originate

from a mechanism composed of a vehicle and a driver. Additionally, this knowledge is

supplemented by the degree of urgency of the mechanisms that they represent. Unlike

the siren and the bell, the car horn is ambiguous and, even though one may know

much about cars, drivers and their relationships, this signal always requires attention
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concentrating on these specific regions of waveforms, may be easily confused by

noise and artifacts. In these cases, the signals of the heart cannot be correctly

studied and understood.

In Antink et al, [7] the interference of noise is discussed. The authors propose

an algorithm to remove types of noise for the robust detection of heart beats in

multimodal data. In Yu et al. [321], support vector machines (SVMs) are discussed

as a method for improving the quality of the electrocardiogram (ECG) and PPG

waveforms that have been distorted by noise. The noisy wavelengths, as detected by

the SVM approach of Yu et al., are shown in Figure 2.2.

Although some of these methods may concentrate on specific regions of waveforms,

it was noted in Elgendi et al. [86], that more information may be extracted about the

heart when its PPG recordings are evaluated in entirety (i.e., taken over durations

where major trends may be discovered). The authors concluded overall patterns from

these recordings may be determined which are sufficient to detect types of heat stress

from their effects on the heart’s waveforms. Furthermore, knowledge learned from

the study of these signals may eventually be used to explore some of the impacts on

health from the stresses of global warming.

There are many diverse technologies, algorithms and methods for reading trends

from heart beat signals. In a review by Silva et al. [273], these technologies are explored

in the effort to accelerate their development and to facilitate the comparison of robust

methods for locating heart beats in long-term, multi-channel recordings.

In the above discussion, signals of the heart were used to explore its mechanism of

beating to describe general heart health (and, therefore, the condition of the patient’s

health). Disorders also have mechanisms emitting signals. In the case of the heart,

these signals may be noted in the ECG and PPG waveforms where the waves are

malformed or, perhaps even missing. Studies, such as those mentioned above (having

goals of improving the reception capabilities of natural signals) are hence, important
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since they may likely uncover some of the disorders that impact the mechanisms

maintaining life.

Below, we describe other types of signals which stem from diverse and functional

mechanisms in nature. These signals, like those of the heart, may provide information

into the nature of the organism’s health or condition of living.

2.3 Natural Signals Of Organismal Biology

2.3.1 Mobile Organisms

At the organismal level, humans and animals often use visual and audible signals

to express all feelings of happiness, sadness, peace and aggression. A visual signal

between humans may be a hand gesture in the form of a salute to indicate respect.

The hand could also be used to make a wave to convey types of greetings. Animals

use visual cues from each other to determine types of aggression. For instance, dogs in

packs show respect for their superiors and masters by bowing their head and avoiding

direct eye contact to display their non-intention of aggression.

Signals are also used to identify dangerous types of organisms which could cause

harm if bothered. For example, the black widow spiders of the family Theridiidae

often have markings on their bodies, such as red spots which indicate their poisonous

nature. In addition to sending threatening signals to others, these spiders, working in

groups, also send signals to each other and were described by Krafft and Pasquet [159]

who studied hunting activities. During the hunting phase, multiple spiders are spread

around the webs. When a thrashing of a struggling prey is detected in the web, the

spiders venture to the epicenter to entangle, wrap and bite the prey. As they travel

towards the prey, they move in a synchronized and rhythmical venture - each spider

moves in function of the others. This interaction may likely, prevent their combined

movements of creating violent trembles in the web that could shake the prey free. It
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was by studying their actions of the signals of this coordinated hunting tactic could

be recognized.

Snakes also exhibit distinguishing signals to threaten attackers. The python of

the family Pythonidae has colored markings, resembling wavy segments and the

Eunectes, a genus of boas, have similar types of blotchy markings to intimidate

attackers. There are countless examples of these types of visual signals made up of

bright, colorful patterns to describe types of jeopardy. Any camper or animal who

happens to encounter such a pattern in nature will quickly associate this type of

signal to danger. It is likely that this signaling system has facilitated the survival of

these snakes (as well as, spiders, and other types of perilous organisms) by

exhibiting messages which are associated to pain. These snakes occasionally prey on

porcupines which have long prickly spines which could be dangerous to snake as

they are able to puncture snake guts when a porcupine is swallowed. In Duarte [82] it

was noticed that these porcupines are often ambushed by snakes in Africa, America,

and Asia. During the hunt, the porcupine is mistaken for a rodent as the natural

signals (i.e., quills and the extension of spines and other warnings) are unnoticed by

the snakes. After they are consumed, surviving snakes may learn to never again eat

porcupines due to the distress of the indigestible spines. This mechanism of

porcupine survival was made evident by the visual cues of the snake - porcupine

interactions.

Wild bears have many signals of aggression to keep other animals (and humans)

away, yet some of children’s favorite possessions are teddy bears. Interestingly,

teddy bears are popular because this particular (stuffed) animal lacks any of the

symbolism for aggression and natural fear. For instance, real bears have strong

claws, big teeth and powerful growls, however, a teddy bear has no claws, teeth or

growl. Instead the teddy bear is soft and inviting of bed-time cuddling. In absence

of the signals of jeopardy (and its likely onset of suffering), a fuzzy teddy bear emits
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signals of vulnerability to make it extremely inviting to small children who are

especially talented at noticing these signals [294]. The adoption of teddy bears was

thought to originate from the mechanism of natural aversion to danger.

2.3.2 Immobile Organisms

Although they are unable to move and speak, plants convey very specific signals to

their environments to prevent the interference of others that likely facilitates their rate

of survival. To ward off the animals who may feed off their stems, leaves and fruit,

raspberry plants defend themselves by displaying several visual signals – typically

bright-red thorns and prickly stems. The color red has often signified toxicity across

biology, such as in the case of poisonous berries from types of bushes. On raspberries,

although the berries are not toxic, the plants defend themselves by their thorns to

invite thoughts of suffering and deter those who would pick the berries.

Interestingly, in McMenemy et al. [199] it was discovered that types of viruses,

targeting raspberry plants, are able to manipulate the plant’s glutamate levels to deter

aphid attacks on the plant. The reduced glutamate, coupled with virus infection and

abnormal aphid attacks, provided the signals necessary to determine a mechanism of

a virus-orchestrated defense of plant and habitat.

The Amanita muscaria mushroom is a psychoactive basidiomycete fungus native

to temperate and boreal regions of the Northern Hemisphere which also uses signals to

deter its attackers. Commonly known as the fly agaric or fly amanita, this mushroom

exhibits a bright red top with white speckles to signal its potent danger to humans

and to animals who may graze on it. Since the mushroom is highly poisonous when

raw, it is conceivable that if its bright color fails to deter, then the poison will have

an immediate effect on those who interfere with its survival tactics.

Plant signals for defense may be observed in Acacia raddiana and A. tortilis trees

which are found in semi-arid savannas and also in the deserts of northern Africa
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and the Middle East. Despite their thorns, when a tree in a population is grazed

upon, there is a production of tannin which serves two purposes: (1) a protection

from the nearby animals and (2) a warning to other trees of the population that

there are grazers are in the neighborhood [251]. The airborne scent of the tannin is

detected by other acacia trees, which start their own productions of tannin to deter

grazing. This chemical compound serves to deter grazers by interfering with digestion.

For instance, condensed tannins, polymers composed of 2 to 50 (or more) flavonoid

molecules, inhibit herbivore digestion by binding to consumed plant proteins and

making them more difficult for animals to digest, and by interfering with protein

absorption and digestive enzymes [295].

Protection of plants by signals is discussed in Lev-Yadun et al. [176]. Since many

of the insect grazers receive food and nourishment from plants, the visual perception

(i.e., the colors, textures and pattens) of both herbivores and predators co-evolved

with plants. During this evolution, these organisms developed crypsis (i.e., camouflage

or, the ability to avoid observation or detection by others) which was aligned to the

dominant colors, textures and patterns of plants. However, plants have evolved on

their own to become generally too colorful to enable the herbivorous insects and

other invertebrates to employ a universal camouflage system to hide from predators.

Similar to the concept of the peppered moth, which was able to hide from predators

and flourish only when its natural color was similar to the grey hue of post-industrial

buildings where it lives, the parasitic insects of plants were unable to hide with the

alteration of plant color. As they were unable to hide from predators, the insect

populations declined and the plant populations were able to flourish. We note here

that it was simply a strategy of switching signals which changed the survival rates of

the plants and the insects.

At the microscopic-level, signals also prevail. For example, one of the most

famous examples of signalling in biology is found in the brain. Defined here as gap
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junction-mediated connections, many neurons in the mammalian central nervous

system communicate through electrical synapses all around the brain. Discussed in

Connors and Long [64] is the existence of countless undiscovered electrical synapses

throughout the central nervous system which serve to move electrical signals from

cell to cell much like a computer network. Each process of the brain is likened to an

interaction where a gap junction protein, connexin36 (Cx36) is applied for robust

electrical coupling to transfer electrical signals. It is often not the signal itself

(electrical or chemical) which is the focus of these brain pathways. The speed of an

impulse passing through the different types of synapses and receptor mechanisms

(including ionotropic receptors, metabotropic receptors, in addition to the gap

junctions) describes the absolute necessity for signals in brain science and, perhaps

in molecular biology, alike [78].

There are many other examples of signals of mechanisms in nature which were

first noticed by investigators who were interested in discovering and exploring their

mechanisms. It is suggested here that the isolation of signals must come before any

confirmation may be made of a mechanism. As we have seen above, once these signals

are found by observation or in the experimental data, then the search and study of

their mechanism may be performed.

2.4 Signals, Semantics And Comprehension

Most, if not all signals are at one time uncertain and their meaning must be

comprehended before their messages may be interpreted. Often, the context of a

signal provides much about its intended meaning. Here, we claim that the signal

arises from some mechanism (known or unknown). It is by an initial examination of

the signals (in its own environment) that allows one to better understand its

meaning. For instance, a car honk placed in a quiet library would create much
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confusion about its meaning. Furthermore, even in its rightful setting, the car

horn’s intended meaning may not be fully understood until its environment has

been fully explored to understand its context. By itself, the car horn has no

meaning when there are so many meanings that the noise could imply.

On the other hand, the sirens of the emergency vehicles create a context of

emergency, as recognized by others in the environment. From their experience with

other sirens of emergency vehicles, a traveler would likely have recognized that these

signals carry a sense of urgency and caution. One may hear a car horn many times

each day but it is only when context is known which caused the signal (i.e., to give

an alert or a greeting) that one may uncover more about the actual meaning for the

signal.

In the same way, signals stemming from dangerous plants also imply a degree of

urgency which must be understood from a contextual standpoint. A human or grazing

animal may recognize a pattern of thorns on the raspberry plant or the bright patterns

on snakes (and perhaps, even their hissing sounds). After they are understood, these

signals cue the recollection of discomfort or fear from previous experiences and deters

interference, which may be an advantage for both dangerous organisms (such as a

snake) and also for the traveler or grazer who encounters it.
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Management by objective works - if

you know the objectives. Ninety

percent of the time you don’t.

Peter Drucker

Chapter 3

Objectives

3.1 Motivation

In this thesis, we create a framework from tools and applications of analysis to

discover signals from biological mechanisms. We maintain the idea that the isolation

of signals is the first step in understanding various cellular mechanisms. We offer a

framework, built from computational tools and analysis, to investigate signals to

describe the existence of mechanisms and their general natures. In each chapter

below, we develop our framework to study different types of signals originated in

DNA, RNA and protein. We then apply this framework to specifically investigate

the signals of PTMs, associated MSs interactions and the stresses that motivate

them during protein stress responses.
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3.2 General Organization

We group the contributions of this thesis into chapters to imply the types of signals

they discuss: DNA, RNA and protein. In the sequences of DNA, RNA and protein,

there is a grammar and syntax necessary to hold their information and so in Chapter

4, we describe the mathematical and statistical manipulations for the detection of

signals from any genetic code. In this chapter, we demonstrate how mathematics

may be used to differentiate sequences by comparing information content. In Chapter

5, we investigate the signals in DNA of restriction enzyme locations which resemble

palindromic words (i.e., motifs) in the code. In Chapter 6, we show how the signals

from permutations of DNA motifs may be used to determine the origins of contigs

from an assembly. In Chapter 7, we show how the natural signals of the central

dogma of biology (i.e., DNA gives RNA gives protein), has signals which can be used

to encrypt human-language text.

Next, we move our attention to the RNA code. In Chapter 8, we show how the

signals left over from DNA processes may eventually interfere with those of RNA.

In Chapter 9 we study signals from protein post-translational modifications (PTMs).

We show these signals may likely be affected by those from RNA (the phase before

protein synthesis) and also influenced by typical protein code syntax signals.

Lastly, we focus on protein signals. In Chapter 10 we show how the signals due to

PTMs may be used to indicate types of protein folding. In Chapter 11, we discuss and

illustrate that the PTM signals become increasingly complicated in higher developed

organisms. In Chapter 12, we demonstrate how these and other signals may be

isolated from the literature and used to determine who the actors are in a particular

stress response. Finally, in Chapter 13, we discuss that signals may be found from

the distances from PTM sites to the protein domains which are thought to make the

conformational changes necessary for the maturation of the protein for the completion

of specific tasks.
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3.3 Thesis Contributions

3.3.1 Contribution 1

One of the leading problems in bioinformatics is to compare sequences to determine

their similarities. However, determining these likenesses is often confused by issues

such as synteny, or the physical co-localization of genetic loci on the same

chromosome within an organism. Dynamic programming techniques, such as the

Smith-Waterman and Needleman-Wunsch algorithms, are often confused when

working with sequences where key regions are not found in the same orders.

Another approach to detecting similarity is to apply alignment-free methods (i.e.,

non-dynamic programming and statistically-based) to calculate the amount of

common information between the sequences that is not concerned with the exact

location of the information in the sequence. In Chapter 4, we review many of the

popular mathematical and statistical methods to measure informational content

content between DNA, RNA or protein sequences.

3.3.2 Contribution 2

When a virus infects a cell, its DNA is injected and mixed in with that of the cell’s so

that the cell will begin to manufacture the virus to continue the infection. However,

one of the earliest defenses that cells use to protect themselves from this kind of

infection is to lacerate all foreign DNA by deploying restriction enzymes which cut at

specific regions of DNA. The cuts to kill the invading parties happen at programmed

motifs (i.e., a specific word) in the code which, if found, is cut. These words are

palindromic, meaning that they appear to be the same backwards as forwards on

each strand of the DNA. Since these words could equally appear in the host’s DNA,

they are automatically methylated to prevent a restriction enzyme from being able

to cut it. In Chapter, 5, we investigate the locations of these words using statistical
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tools to compare their populations between coding (i.e., regions of DNA that code for

protein) and non-coding regions of DNA. We determine that there are fewer of these

words in coding regions to suggest that these stretches of sequence are intolerant of

non-coding information.

3.3.3 Contribution 3

To obtain the exact code of DNA for an organism, the DNA is prepared from a

sequencing machine in tiny segments called reads. Contigs are reads which have been

joined together like a jigsaw puzzle pieces. Before it returns one large, continuous

DNA sequence, all the tiny reads must be assembled into larger contigs and then into

a larger sequence by the automation of a computer. This task is computationally

intensive and may take hours to days to complete. In Chapter, 6, we describe that this

assembly task can be preprocessed to speed-up the process. Our method clusters the

reads according to their informational content and generates smaller pools from which

the processor has to compare each read to all others. When the task of comparing

all the reads can be reduced to smaller tasks, then the work proceeds faster with less

computation. This work introduces the notion of spectrum sets, (i.e., sets of signaling

motifs) used to cluster the sequence reads during this pre-processing step.

3.3.4 Contribution 4

In Chapter, 7 we introduce an encryption system which uses the central dogma of

biology. Since the method of converting DNA to protein must follow rules for this

natural system to work each time throughout biology, we adapt these rules to

convert human-language messages into DNA which is then “translated” into

protein. The protein sequence is the encrypted text which can be safely sent

through public communication channels. The keys to the encryption are taken from

the massive amounts of restriction enzyme data which is publicly available to
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resolve the problem of passing keys from sender to receiver. This contribution

supports the notion that signals from biology may be used in computer science for

secure communications and security.

3.3.5 Contribution 5

Naturally occurring along the genomes of many viruses and other pathogens, short

palindromic restriction sites (<14bps) are often exploited by bacterial restriction

enzymes as autoimmune defenses to end pathogen threats. These motifs may also

appear in the host’s genome where they are methylated so as not to attract

restriction enzymes to the host’s genetic material. Since these motifs in the host’s

genome may pose a significant danger, it is likely that their numbers have been

reduced due to possible failures of methylation during evolutionary time. To reduce

the chances that methylation failure could happen, there are generally fewer of these

palindromic words in DNA. During translation, tRNAs, as directed by the

information in DNA, are responsible for the delivery of unique amino acids into the

protein sequence. In this contribution, we noted that these missing words correlated

to missing tRNA proteins as well. In Chapter 8, we describe this phenomenon after

having studied the DNA motif signals of eight organisms and concluded that DNA

mechanisms affect the other mechanisms down the chain of events for building

protein.

3.3.6 Contribution 6

In Chapter 9, we begin our exploration of the signals stemming from the interaction

between PTMs and the amino acid modification sites (MS) in protein. By studying

the exact types of PTMs and the MS of nine different organisms, we note that the

usage of PTMs in protein was biased since each organism had a unique collection

of PTMs involved with its proteome. In this contribution, we discussed that PTMs
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are not applied uniformly across organismal proteins and differing PTM preferences

and usages may often exist between proteins of the same organism. We study the

frequency of factors (PTM predominance and their associated active sites, tRNAs

and amino acids) which likely influence a PTM bias and conclude that many signals

of one particular organism are dissimilar from those of another, in terms of protein

modification.

3.3.7 Contribution 7

In protein, there are specific types of motifs made up of amino acids which attract

oxidative carbonylation (i.e., a biological rust). The literature has suggested that

motifs composed of R, K, T, P, E and S residues in protein sequence are more likely to

degrade when a protein is exposed to a stress such as microgravity (i.e., weightlessness)

which is known to cultivate oxidation. Since Mt also generate natural oxidation, this

study was designed to determine whether the composition of these words was fewer

for organelles than that of the non-Mt proteome. In Chapter 10 we confirm that Mt

protein has adapted itself over evolutionary time to have fewer motifs where oxidation

would interfere with general protein function.

3.3.8 Contribution 8

Previously, in our work, we noticed that organisms have different arsenals of PTMs

to apply to their proteomes for protein stress or other types of protein modifications.

In Chapter 11 we noted that the increasing complexity of the 11 organisms of our

study appeared to correlate with an increase in available PTMs and MSs of the

proteome. Since PTMs enable proteins to withstand types of stresses and different

stressed proteins may require different types of PTMs for adaptation, we concluded

that complexity may be a function of the types of stresses that an organism may

tolerate in its environment. For instance, the organisms having the most PTMs were
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the human and the plants. We speculated that plants are immobile and cannot leave

their environment. They, therefore, must be able to withstand any stresses of their

environment for survival. Humans, we noted, appear to be able to live under a wide

variety of stress conditions (i.e., diverse habitats) as well which is likely supported by

their collection of PTMs.

3.3.9 Contribution 9

In Chapter 12 we introduce a text mining application (called “Lister”) that is able to

search through the entire collection of PubMed literature (hundreds of thousands of

articles) to determine the associations between common stresses, proteins and PTM

types (i.e., the actors of the study). The tool is highly customized for this task

and uses a supervised approach. Understanding how the literature links these three

actors involved with any stress response in the proteome is pivotal to determining

more about the mechanism in which these actors play a role. In addition, since their

roles are determined from curated literature, they are also established with some

certainty. To help form some understanding how their relationships, our tool outputs

network graphs to visual show how stresses, PTMs and proteins have been connected

in the literature.

3.3.10 Contribution 10

PTMs in a protein leads to conformation changes. It is believed that domains are

being influenced by PTMs, and in this scenario, it is likely that the exact position of

the amino acid MS, relative to the domain, plays a major part in how these structural

changes are influenced by PTMs. In Chapter 13 we present a system called “PTM

Tracker”, to study the general distances of MS amino acids which are relative to

(i.e., before, inside and after) known functional domains of proteins. The data for

this project was obtained from public databases. In this contribution, we study the
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distances of these relevant MSs to their corresponding domains across the 11 diverse

organisms of our study. Using our computational tool for automating this study

for determining the signals of mechanisms involved in PTM - domain interactions,

we conclude that many domains of each organism are generally situated at specific

distances from the MS with which they are likely to interact. Each organism has

slightly different measurements to imply that the mechanism across organisms is

biased.
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If I were again beginning my

studies, I would follow the advice of

Plato and start with mathematics.

Galileo Galilei

Chapter 4

Alignment-Free Genetic Sequence

Comparisons: A Review of Recent

Approaches By Word Analysis

4.1 Abstract

Modern sequencing and genome assembly technologies have provided a wealth of

data which will soon require an analysis by comparison for discovery. Sequence

alignment, a fundamental task in bioinformatics research, may be employed but

with some caveats. Seminal techniques and methods from dynamic programming

are proving ineffective for this work due to their inherent computational expense

when processing large amounts of sequence data. These methods are prone to giving

misleading information, because of genetic recombination, genetic shuffling and

other inherent biological events. New approaches from information theory,
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frequency analysis and data compression are available and provide powerful

alternatives to dynamic programming. These new methods are often preferred since

their algorithms are simpler and are not affected by synteny-related problems.

In this contribution of the thesis we provide a detailed discussion of computational

tools, which stem from alignment-free methods based on statistical analysis from word

frequencies. We provide several clear examples to demonstrate applications and the

interpretations over several different areas of alignment-free analysis such as base-base

correlations, feature frequency profiles, compositional vectors, an improved string

composition and the D2 statistic metric. Additionally, we provide detailed discussion

and an example of analysis by Lempel-Ziv techniques from data compression.

4.2 Introduction

Gene structure, function and phylogenetic relations are discovered by the basic

comparison of known to unknown genetic material across organisms. Sequence

comparison is pivotal to the success of basic phylogenetic and metagenomics

research. For instance, large portions of common genetic material between

organisms provide much evidence to suggest that they are somehow related.

Furthermore, similar sequence data fuels conjecture that the associated functions

are also similar.

Comparative research came from computer science which provided tools and

algorithms to find specific substrings in larger sequences [109] for discovery. For

instance, the Knuth-Morris-Pratt algorithm [152], the Boyer-Moore [40] algorithm was

used initially in the 1970’s [126] to locate regions of common DNA by exact matching

of larger sequences. Later, a modified version of the Boyer-Moore [8] was applied in

the 1980’s. Since these algorithms assumed that the input strings contained exact

matches, tiny mismatches found in DNA interrupted performance. This led to
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algorithms for approximate pattern matching [292] and others [59;207].

Due to the growth of inexpensive computing and improvements in sequence

assembly technologies, there is now more sequence data available to bioinformatics

research than ever before. Comparative genomics has been an obstacle to

discovery [156;311] and still manages to be a major factor in more current applications.

Some of these applications include sequence assembly [179], evolutionary history

comparison involving complications from synteny [184], horizontal gene transfer

discovery [25;75], analysis by gene-shuffling [67] and many other applications where

proper sequence comparison must be used [214].

Dynamic programming [84] has often been applied to comparing sequences in the

above-mentioned applications. Since global and local alignment algorithms [208;279]

work base-by-base, they stand to be confused by the inherent mismatches, gaps,

alternating blocks of sequence material and inversions, that are easily found in

genetic material. These methods may erroneously conclude that the functionally

related sequences are largely unrelated since they do not demonstrate any

statistically significant alignment. Sequence length is also important to address

when running an alignment from dynamic programming. For example, local and

global, implemented in softwares such as ClustalW [166], have complexities of O(mn)

and so it is clear that their resource requirements quickly escalate for larger

sequences of lengths, m and n. It is often infeasible to perform comparisons of

complete genomes by this approach due to the large amount of time this would

involve. For this reason, technologies requiring databases for speed such as

BLAST [5], BLASTZ [56] and BLAT [147] have gained popularity. Other methods to

help overcome some of the limitations of dynamic programming have come from

diverse fields such as: cloud computing [257], distributed computing, [60] and parallel

computing for multiple sequence comparison, [145].

Frequency-based algorithms, which are driven by the statistics of word usage or
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similar, are becoming popular in research for discovery. This is because these

approaches are not typically confused by the complexities caused by mismatches,

gaps and sequence inversions that are often found between sequences for

comparison [114]. For example, these methods function by evaluating the

informational content between sequences and so alternating blocks of DNA between

two sequences will not be problematic. This form of alignment does not depend on

where the features are found in the sequence, only that the sequence contains the

features. Methods using frequency analysis also do not suffer from high algorithmic

complexities as they are generally linear. They are, therefore, able to process larger

sequences with fewer resources than dynamic programming algorithms and do not

rely on having database support, as would, BLAST, BLASTZ and BLAT. There is

clearly a call for an alternative approach for sequence comparison done by methods

which are not of dynamic programming and so, alignment-free methods are

becoming very attractive to bioinformatics research where the data is substantial

and naturally dynamic.

For this contribution, we discuss some of the prominent methods stemming from

vector or frequency-based analysis such as: base-base correlations, feature frequency

profiles, compositional vectors, improved string composition and the D2 statistic

metric. These methods have been chosen for discussion because of their simplistic

nature and ease of application to research. We provide clear examples for the

implementation of these methods and discuss their interpretation. We also provide

discussion and an example of a method inspired by the Lempel-Ziv compression

techniques. This contribution aims to show how these alignment-free methods are

integral to the quantification and discovery of sequence function and structure.
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4.3 Background

Methods for differentiating sequence data by using statistical concepts (factor

frequencies and approaches from data compression) have attracted much interest. In

their often cited 2003 publication, Vinga et al. [296] reviewed some related methods,

metrics and algorithmic implementations. S. Mantaci et al. [278] continued by

illustrating other methods recently introduced for the alignment-free comparison

which were also based on a statistical approach. The authors organize the

comparison algorithms in the following basic groups:

• Count factor frequencies

• Data compression

• Edit distances, or on block edit distance - a special case involving moving entire

blocks of a sequence.

Recent developments and the release of new technologies from the scientific

community have caused the above references to become out-dated. Here, we discuss

some of the more recent statistical methods which involve frequency data for

comparison. The approaches that we cover were chosen based on their simplicity of

application and can be divided into the following categories: factor frequencies

( [190]), composition vectors ( [54]), improved compositional vectors ( [192]), data

compression ( [48;215;293]) and common substrings ( [76;292]).

4.4 Factor Frequencies

Producing seminary ideas in 1948, C.E. Shannon’s Information Theory is the

branch of mathematics which is concerned with quantifying information and signal

processing [267]. Since DNA contains observable structures and patterns [149;304;327],

tools from information theory (e.g., mutual entropy et al.) are appropriate for
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frequency analysis. Many of these methods break each sequence for comparison into

numeric parts such as frequencies from the occurrence of types of words or k -mers

(substrings of length k) occurring in the sequences. If two sequences are similar,

then the derived k -mer frequencies would have similar distributions to reflect this

likeness. If the sequences are different, then so are the frequency distributions.

To perform a k -mer study, the size of the motif is an important factor to consider.

When collecting word frequencies from motifs, the size of the motif does make a

difference to the results. According to [313] where the length of motif or window size is

extensively discussed, there is a general rule of play when collecting word frequencies.

When the sequences are obviously very different (they are not related, for example),

then size of k -mers or window-size should be short. However, when the sequences are

very similar (known to be related) then the k -mers or window sizes can be longer. The

reader is invited to consult the above reference for the details behind their general

rule.

4.4.1 BBC By Analysis Of Mutual Information

Mutual information is a tool from information theory, which measures the amount

of common information (or interaction) between two entities. Liu et al. [190],

described the development of Base-Base Correlations (BBC), an algorithmic

approach for determining sequence similarity by mutual information to infer

phylogenetic relationships from complete genomes. In their work, an interval is

established containing r -bases, making up strings of DNA to be used for multiple

sequence comparison. In this interval, a vector is created from all possible joint

probabilities of DNA pairs, since the total possible pairs = 4 ∗ 4 = 42 = 16. In their

paper, they showed that the interval containing these joint probabilities in the

sequence can often be expanded to get a better measurement of the difference

between sequences.
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For (α1, α2, α3, α4) ≡ (A, C, G, T), the probability of finding base αi is denoted pi

for 1 ≤ i ≤ 4. For Tij(r), the average relevance of the two-base combination (the

feature) with different gaps from 1 to r (a range of r), the authors define a BBC by

the following:

Tij(r) =
r∑

d=1

pij(d) · log2
(
pij(d)

pipj

)
(4.1)

for i, j ∈ {1, 2, 3, 4} where pij(d) signifies the joint probabilities (e.g., the 42 = 16

possible length-2 DNA words which we refer to as features) of bases i and j at a

distance of d. A BBC feature constitutes a 16-dimensional feature vector, VS1 for a

sequence S1 having a length of n1.

The statistical independence of two bases for a sequence of length-l is defined by

pij(l) = pipj and its deviation is defined, Dij = pij(d) − pipj. Let S1 = ACGTGCTATG

and S2 = ACGCGCTA. We find the joint probabilities to populate the vector,

(AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT),

with the following equation for frequency, f(Wk), from
[69]:

f(Wk) =
c(Wk)

n− k + 1
, (4.2)

where c(Wk) signifies the number of occurrences of a length-k word in a sequence of

length-n1. The finalized vectors are the following.

VS1 = (0.0, 0.2, 0.0, 0.1, 0.0, 0.0, 0.1, 0.1,

0.0, 0.1, 0.0, 0.0, 0.1, 0.0, 0.3, 0.0)

VS2 = (0.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5,

0.0, 0.5, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0)
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For two sequences S1 and S2 having the same length n1, the authors define the

distance HS1S2 in the following equation.

HS1S2 =

√√√√ 16∑
i=1

(VS1i
− VS2i

)2 (4.3)

By this calculation, we find that HS1S2 = 0.8890 for the example above. Higher

values for this metric indicate a greater spread in the frequency distribution and

increasing dissimilarity, however, lower values indicate levels of increasing similarity

(e.g., 0 if and only if the distributions being compared are equivalent). The authors

note that HS1S2 satisfies the definition of a sequence distance because (i) HS1S2 > 0 for

different sequence lengths: n1 �= n2; (ii) HS1S2 = 0; (iii) HS1S2 = HS2S1 (symmetric);

(iv) HS1S2 ≤ HS1 +HS2 (triangle inequality).

Liu et al. used phylogenetic trees, employing branch weights gained from their

BBC mutual information calculations. From the sequence data of 48 different

Hepatitis E viruses, they constructed a phylogenetic tree which was consistent with

previous studies by diverse approaches [190].

4.4.2 Feature Frequency Profiles (FFPs)

In [10], a feature frequency approach (UVWORD) was presented which compares the

DNA words from two sequences. Known as oligonucleotide profiling, the sliding-

window method compared the encountered word frequencies of one sequence (the

target) to another (the source). The sequence similarity was determined by how

many words were common to both sequences. Word-based statistical models were also

presented in [69] which investigated the occurrence, type and frequency of overlapping

and embedded DNA words for sequence comparison.

Sims et al. [275] were interested in comparing whole genomes, even in situations

where there are no common genes with high homology. To do this, they developed
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a variation of text compression, where the distance between word frequency profiles

of two texts would be taken as a measure of dissimilarity. They substituted relative

k -mer frequencies (Feature Frequency Profiles, or FFPs) for word frequencies.

A sliding window of size k is run through the sequence from position 1 to n−k+1

and counts the number of all t = 4k possible k -mers (the total number of features,

for example) where four is the number of DNA bases. Although the k -mers extend

themselves throughout the entire genome, the window is only allowed to span over the

regions which are completely free of sequencing gaps. The vector C =< c1, ..., ct >

holds the t number of raw frequency counts for all possible words of length-k and is

conventionally found by the following equation:

F = C/
∑
i

ci. (4.4)

It is important to note that the length of the genome must be considered carefully

at this vector-forming stage. If the genomes are of approximately equal length, and

a less than 4-fold difference exists between sequences (four is the number of bases),

then the method is conveniently employed. However, if the sequences for comparison

have extremely different lengths, then it is necessary to implement the block-FFP

method which is similar to the method described by [313]. This pre-processing step

works to ensure that diverse genome lengths do not yield misleading results.

This step breaks up each sequence into smaller, manageable fragments of length-

n1 (called FFP-blocks). In the case where the length of the shorter sequence is evenly

divisible by the length of the longer sequence, the intervals (e.g., blocks) are made

so that they have the same length as the shorter sequence. If a sequence (length n2)

is not evenly divisible by the shorter sequence (length n1) then the total number of

possible blocks for comparative analysis that can be made is n2 modulus n1.
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4.4.2.1 A Comparison By Frequencies And The Jensen-Shannon

Divergence Test

Comparing genomes is actually comparing the sets of frequencies which have been

taken over an interval of sequence data. To make this comparison, we will follow Sims

et al. [275] approach to employ the Jensen-Shannon Divergence (JSD) test. The JSD

test is a close relation to the Kullback-Leibler Divergence (KLD) test, an information

theoretic, non-symmetric divergence measure of two probability distributions, that is

extensively discussed in [186].

Once the vectors have been properly created, we are ready to apply the calculations

which determine their distance apart. For two arbitrary vectors, VS1 and VS2 , prepared

from sequences S1 and S2 for t, the number of features collected, the JSD is given

below:

JS(VS1 , VS2) =
1

2
KL(VS1 , VM) +

1

2
KL(VS2 , VM), (4.5)

where,

VMi
=

VS1i
+ VS2i

2
(4.6)

for i = {1, ..., t} and KL is the KLD, below.

KL(VS1 , VM) =
t∑

i=1

VS1i
log2

VS1i

VMi

, (4.7)

where t is the number of features.

We now return to our earlier example of the two sequences S1 = ACGTGCTATG

and S2 = ACGCGCTA, which we compared by this JSD analysis. In this example,

we populate vectors for these sequences using all length-2 words (2-mers) in the

sequences. The possible 2-mers, are ordered in the following order:

AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT.
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The FFP vectors VS1 and VS2 are created and populated by all available 2-mers from

sequences S1 and S2.

VS1 =< 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0 > ∗1
9

VS2 =< 0, 1, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 1, 0, 0, 0 > ∗1
7

At each position i of both vectors, we apply VMi
=

VS1i
+VS2i

2
to get the an average

vector VM . The calculated values for all three vectors, are shown in Table 4.1.

Table 4.1: Positions 1 through 16 of the table of vectors for VS1 from S1 = ACGTGCTATG

and VS2 from S2 = ACGCGCTA, aligned with position. The elements of combined vector
M by index is also shown. Frequencies of each 2-mer are made by normalizing the
occurrences of each 2-mer in S1 and S2, respectively, by the total number of 2-mer
occurrences in each sequence.

2-mers AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Position i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

VS1 0 1
9

0 1
9

0 0 1
9

1
9

0 1
9

0 1
9

1
9

0 2
9

0
VS2 0 1

7
0 0 0 0 2

7
1
7

0 2
7

0 0 1
7

0 0 0
VM 0 8

63
0 1

18
0 0 25

126
8
63

0 25
126

0 1
18

8
63

0 1
9

0

To help the reader to keep track of the vectors and their frequencies at each

position, we offer Table 4.1. We apply vectors VS1 and VM (and then vectors VS2 and

VM) to Equation 4.7 which we illustrate below.
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KL(VS1 , VM) =
t∑

i=1

VS1i
log2

VS1i

VMi

=
1

9
∗ log2

( 1
9
8
63

)
+

1

9
∗ log2

( 1
9
1
18

)

+
1

9
∗ log2

( 1
9
25
126

)
+

1

9
∗ log2

( 1
9
8
63

)

+
1

9
∗ log2

( 1
9
25
126

)
+

1

9
∗ log2

( 1
9
1
18

)

+
1

9
∗ log2

( 1
9
8
63

)
+

2

9
∗ log2

( 2
9
1
9

)

= 0.1943

Following this theme for sequence S2 (vector VS2), we find that KL(VS2 , VM) =

0.3734.

JS(VS1 , VS2) =
1

2
KL(VS1 , VM) +

1

2
KL(VS2 , VM)

=
1

2
∗ (0.1943) + 1

2
∗ (0.3734)

= 0.2839

Provided the base 2 logarithm is employed, the JSD is bounded below by 0 and

1 [186]. Higher values indicate increasing dissimilarity but lower values indicate

increasing similarity (e.g., 0 if and only if the distributions are identical). Since

JS(VS1 , VS2) = 0.2839 is close to zero, we conclude that the sequences S1 and S2 are

similar by this test.

Sims et al. [275] reconstructed phylogenies from concatenated mammalian “intronic

genomes” by this method and found that their method closely reflected the accepted

evolutionary history, and agreed to results from a codon-sequence-based alignment



49

technique [235].

4.4.3 Suffix Trees By k-mer Frequencies

The abundance of sequence noise (insertions, mismatches and similar, for example)

often necessitates frequency-based analysis. Similar to the work of [275] above,

another method of applying frequency data have been extensively explored by

Soares et al. [280] to measure Euclidean distance between sequence data. When

collecting frequency data, typically a window is opened at the beginning of the

sequence and the frequencies are found for all encountered words. The authors

depart from this method by presenting a new approach that determines a single

optimal word length (k-mers) from which to generate a frequency distribution for

application to suffix trees.

To collect these optimal k-mer frequencies, Soares et al. began by determining

all words in the DNA alphabet (e.g., {A,C,G,T}) of length-k. An optimal resolution

range of k-mers for the given set of genomes was described in [275] and later applied to

the work of Soares et al., for instance, kH max = log4(n1) for a sequence of length-n1.

In order to find a value applicable to all sequences under analysis, we choose n1 as the

length of the greater sequence and K as the smaller integer greater than log4(m). For

m sequences of different lengths, the peak value of word length (K) that is applicable

to all sequences of the study is described by the following two equations:

n1 = max{length(Si), 1 ≤ i ≤ m},
K = �log4(n1)�

In the logarithmic equation, L is given the smallest integer not less than the calculated

value.

The exhaustive lists of DNA L-words for n sequences were created by

combinatorial means. For words of length-L, the size of the list can be described
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mathematically: t = 4L. The frequencies of these words are similarly found as

in [275]. Once amassed, they are added to an n× t matrix to create a global profile of

all L-word frequencies of all input sequences. Next is the development of the genetic

distance for the suffix trees. This pairwise standard Euclidean distance between

pairs of sequences is calculated by the following:

SED(S1, S2) =

√∑
w∈t

(fS1w
− fS2w

)2 (4.8)

for w, representing the k-mer and t representing the exhaustive list of words,

respectively, and fSiw
represents the relative frequency of w in the sequence Si.

These values may be applied to suffix trees for convenient sequence analysis across

large sets of sequences.

4.4.4 Composition Vectors Based On k-mer Frequencies

There are two main string composition vectors that we will discuss; the compositional

vector (CV) and the complete composition vector (CCV). Discussed in [113;237;314], a

k-mer frequency CV for a genomic sequence is a distribution of frequencies of length-

k motifs which are used for comparison across sequences. The CV method contains

motif frequencies of the same length whereas the CCVs contain motif frequencies of

unequal length.

The basic steps of creating CVs are the following; (1) find the frequencies of the

motifs in a sequence, (2) create a vector by organizing the frequencies in some order,

(3) compute the distance between every two composition vectors to form a distance

matrix, and, optionally (4) construct the phylogenic tree based on the differences.

This last step is not essential but may be helpful when evaluating the degree of

closeness between a set of sequences.
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4.4.4.1 Creation Of Composition Vectors, (CVs, CCVs)

The creation of a CCV is very similar to that of a CV except that the input frequencies

are made from strings of differing lengths. Despite its extra computational expense,

the CCV method was found to provide finer evolutionary information than the CV

method [192].

Following the discussion from [54;192], we define S1 to be a sequence consisting

of n1 nucleotides and let f(α1 . . . αk) to be the observed frequency of the length-k

motif in S1. We define αi for 1 ≤ i ≤ k to be a nucleotide such that αi ∈ {A, C,
G, T} for 1 ≤ k < n1. Next, for some constant K, the largest string length we

consider, we define VS1 = (f1, f2, ..., f4K ) as the combined vector. Finally, we define

VS = (S1, S2, ..., SK) as the combined vector. The vectors, VS1 and VS, reflect both

random mutation and selection. Lu et al. noted that there is an underestimation of

selective evolution for both these vectors when the data is normalized according to

Equation 4.9, which is also discussed in [42] and [112]. For the observed frequency of

α1α2 · · ·αk, the normalizing equation is described by the following:

a(α1...αk) =
f(α1...αk)− fe(α1...αk)

fe(α1...αk)
(4.9)

where fe represents the expected frequency and is defined by:

fe(α1...αk) =
f(α1...αk−1)f(α2...αk)

f(α2...αk−1)

× (n1 − k + 1)(n1 − k + 3)

(n1 − k + 2)2
.

for k ≥ 3 and fe(α1...αk). Lu et al. [192] note that this normalization method

underestimates the actual reality of the data. Next we describe their modified

method which overcomes this problem.
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4.4.4.2 Creation Of Improved CCV’s

To overcome this setback, Lu et al. [192] propose an improvement to CVs and CCVs.

The improved complete composition vector (ICCV) is made assuming that the

sequence bases all occur with equal probability, according to the expected frequency

of a k-mer string. The variance of frequency of a given sequence S1 of length-n1 is

also based upon this assumption. We first define the expected motif frequencies and

their variance in the vectors. For any given k -mer, a position in the sequence is

given as:

xi =

⎧⎪⎪⎨
⎪⎪⎩
1, if the k-mer begins at position i

0, otherwise

for integer i such that 1 ≤ i ≤ (n1 − k + 1). This upper bound is the maximum

observed frequency for a string α1 · · ·αk in S1. Therefore it can be shown that;

f(α1 · · ·αk) =

n1−k+1∑
i=1

xi. (4.10)

The expectation and variance of f(α1 · · ·αk) are described in the following equations.

E[f(α1 · · ·αk)] =

n1−k+1∑
i=1

E[xi] =
n1 − k + 1

4k
(4.11)

and the variance;

Var[f(α1 · · ·αk)] =
n1 − k + 1

4k
(1− 1

4k
)

− 2

42k
(k − 1)(n1 − 3

2
k + 1)

+
2

4k

k−1∑
i=1

(n1 − k + 1− t)
Jr
4t
,
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where Jr, is defined by the following.

Jr =

⎧⎪⎪⎨
⎪⎪⎩
1, if (α1 · · ·αk−r) = (αr+1 · · ·αk)

0, otherwise

for integer r such that 1 ≤ r ≤ k − 1. See [102] for a full derivation. One of the

problems with the original CV and CCV concerns the denominator which requires a

square root operation without which, Lu et al. warn of a problem of over-estimation.

To mitigate the over-estimation problem, the authors apply the data’s expectation

and variance to the normalizing equation given below and complete the construction

of the ICCV. The normalization of each observed frequency of a k-mer string, knorm

is given by the following equation:

knorm =
f(a1 · · · ak)− E[(a1 · · · ak)]√

Var[f(a1 · · · ak)]
(4.12)

for k ≥ 1.

4.4.4.3 Distance Measurement

We next discuss how the distance between vectors is measured. For two sequences,

S1 and S2, let their vectors be defined, VS1 = (α1, α2, · · · , αk) of length-k and VS2 =

(β1, β2, · · · , βk), also of length-k. We define the normalized distance between the

vectors by the following:

D(VS1 , VS2) =
1− C(VS1 , VS2)

2
, (4.13)
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where C(VS1 , VS2) is the cosine distance of the angle between VS1 and VS2 and is

described by the following.

C(VS1 , VS2) =

∑k
i=1 αi · βi√∑k

i=1 α
2
i ·

∑k
i=1 β

2
i

(4.14)

Lu et al. show that the ICCV method fixes the observed overestimation problems

with the previous method, and generates more accurate and robust results. They

also show that its results are consistent with methods based on alignment by dynamic

programming in phylogeny.

4.4.5 A Revised String Composition Method

Chan et al. [54] revisit the composition vector method and apply an analysis of entropy

from information theory and operations research. Their method begins by finding the

frequencies of each base of a k-string sequence. For example, from ACTGCTATGC, the

base frequencies are the following: f(A) = 1
5
, f(C) = 3

10
, f(G) = 1

5
, f(T) = 3

10
.

The second step is to estimate the expected frequency q(u) for each k-string. For

this step, the authors suggested determining the relationship between q(·) and f(·) by
maximizing the following system of equations from Hua et al. [128]. Here, the entropy

in q(·) is maximized given the frequency f(v) for all (k − 1)-strings v.

⎧⎪⎪⎨
⎪⎪⎩
q(vA) + q(vC) + q(vG) + q(vT ) = f(v),

q(Av) + q(Cv) + q(Gv) + q(Tv) = f(v)

(4.15)

Chan et al. depart from the work of Hua et al. by making no assumptions between

q(·) and f(·). Instead, they maximized the following equations which estimate the

expected frequencies q(u).

q(LwR) =
f(Lw)f(wR)

f(w)
(4.16)
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for k ≥ 3, which was introduced by, Qi et al. [237] and,

q(LwR) =
f(L)f(wR) + f(Lw)(R)

2
(4.17)

for k ≥ 2, from Yu et al. [322]. For any k-string u, L and R represent the left and right

nucleotides of the word and w represents the middle (k − 2)-string located between

them. In the second equation, all these elements are assumed to occur independently.

From these equations, the authors created a new system of equations (below) to

solve where the right-hand side concerns sequence frequencies and the left-hand side

concerns the estimations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(vA) + q(vC) + q(vG) + q(vT)

= f(Lw)
f(w) [f(wA) + f(wC) + f(wG) + f(wT)]

q(Av) + q(Cv) + q(Gv) + q(Tv)

= f(xR)
f(x) [f(Ax) + f(Cx) + f(Gx) + f(Tx)] .

(4.18)

When this system is maximized, Chan et al. note that the system generates a set

of all possible estimation formulas q(·) from which, one can be selected to maximize

the entropy. In general, from any existing estimation formula q(·) given in terms of

f(·), the authors note that the set of constraints such as the following can be derived:

⎧⎪⎪⎨
⎪⎪⎩
q(vA) + q(vC) + q(vG) + q(vT ) = l(v),

q(Av) + q(Cv) + q(Gv) + q(Tv) = r(v)

(4.19)

where the left and right side frequency values, l(v) and r(v) are derived from frequency

information (f(v)) for each length-(m− 1) motif v. To obtain the unique q(u) for all

u, the following optimization problem is solved:
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maximize: −
4k∑
i=1

qi log qi

subject to:

⎧⎪⎪⎨
⎪⎪⎩
qi satisfies the system of equations

qi ≥ 0 for all i

where −qi log qi is Shannon’s entropy calculation. The authors apply this

information to phylogenetic tree analysis in a similar fashion as we saw in Lu et

al. [192].

Maximum Entropy Principle (MEP) After solving the problem above, a

system of noise estimation formulas is provided. Note: a motif appears as the

following: (α1 · · ·αmαn · · ·αk) and can be split into to sub words.

qMEP (α1 · · ·αmαn · · ·αk) =
l(α1 · · ·αm) r(αn · · ·αk)

σ
, (4.20)

where, qMEP is the maximized entropy principle score for the sequence data and,

σ =
∑

L∈{A,C,G,T}
l(α1 · · ·αm) =

∑
R∈{A,C,G,T}

r(αn · · ·αk). (4.21)

We note that qMEP = 0 if σ = 0 and that l(·) and r(·) are parametric functions.

Different l(·) and r(·) will give different estimation formulas and will have varying

levels of success. The authors applied this test to create phylogenetic trees from

simulated data sets. Their results showed differentiation of “closely related”

sequences.

4.4.6 D2 Statistic

The statistic D2, is the number of approximate word matches of length k between

sequences S1 = (α1, ..., αk) and S2 = (β1, ..., βk), with αi and βj belonging to an

alphabet A (in this case, the DNA bases), which is distributed according to a letter
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distribution parameterized by η [91]. This statistic is applied to two populations of

differing means, but identical dispersion matrices [307], to determine distance.

Recently, the statistic has evolved to provide more exact approximations by

asymptotic regimes for uniform and non-uniform distributions [90;187].

Mathematically, the D2 statistic is defined by the following. From [242], given

sequences S1 = (α1, ..., αn1) of length-n1 and S2 = (β1, ..., βn2) of length-n2 and

W = {w1, ..., wk} ∈ Ak, then D2 is defined by the following:

D2 =
∑

W∈Ak

Cs1(W )Cs2(W ) (4.22)

where Csi(W ) is the number of occurrences of W in sequence Si.

The D2Z statistic [143] was developed to compare gene regulatory sequences and

offered an improvement in performance to D2, but could still fail due to noise

complications [242;302]. To combat this problem of noise, Reinert et al. [242] propose a

new statistic DS
2 , which is a self-standardized D2.

DS
2 =

∑
W∈Ak

C̃s1(W ) C̃s2(W )√
C̃s1(W )2 + C̃s2(W )2

(4.23)

For pW =
∏t

i=1 pwi
, the probability of occurrence of wi for 1 ≤ i ≤ k and ñi =

ni − k + 1 for i sequences, the centralized count variables, C̃s1(W ) and C̃s2(W ), are

therefore denoted by the following.

C̃s1(W ) = Cs1(W )− ñ1pW
and C̃s2(W ) = Cs2(W )− ñ2pW

Reinert et al. also proposed a second statistic, D∗
2, which we shall presently define.

To introduce this statistic, we replace p(a), the unobserved feature probabilities, by

p̃(a) (the observed) for the relative count of letter a in the concatenation of the two

sequences that are based on the assumption that the two sequences are independent.
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We note that these sequences are both independent and contain identically distributed

(i.i.d.) bases. The estimated probability of occurrence ofW = {w1, ..., wk} is obtained
by p̃W =

∏k
i=1 p̃wi

. We now define D∗
2 by the following.

D∗
2 =

∑
W∈Ak

C̃s1(W ) C̃s2(W )√
ñ1ñ2p̃W

(4.24)

The authors found that the D∗
2 statistic out-performed both the D2 and DS

2

statistics in terms of accurate detection of relatedness between two sequences. The

statistical power of both D∗
2 and DS

2 increases with sequence length and tends to 1

as the sequence length tends to infinity under a common motif model. When

applied to organizing sequence reads of Next Generation sequence assembly tasks,

and to phylogeny tasks, the DS
2 statistic provided a powerful alignment-free

comparison tool [282]. However, when studying phenomena in the patten transfer

model such as horizontal gene transfer, the power of these statistics declines and

converges to a limit that is generally less than 1 as the sequence length tends to

infinity. The primary reason for this limitation is that the means of the word counts

in these statistics eventually become increasingly similar to each other. This

resemblance works to desensitize the detection of patterns between the sequences.

To improve the detection of relationships across sequences using alignment-free

methods in the pattern transfer model, Liu et al. [189] developed new statistics (T ∗,

T S and T ∗
sum, described below) which they claim have a better statistical power. The

authors present them with simulations to demonstrate their power and to show that

they are more appropriate for applications where long sequence-lengths are a concern.

Based on approximating the mean by a sample mean, the approach of the new

statistic is to partition a long sequence of length-n1 into consecutive, non-overlapping

(discrete) subintervals of length-r, dsub = �n1

r
�. Then the D∗

2 and DS
2 values are

calculated over each ith subinterval for word counts w and are denoted D(i)∗2 and

D(i)S2 , respectively. For, two sequences of length n1 where, S1 = {α1, ..., αk} and
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S2 = {β1, ..., βk}, these statistics are defined by the following equations.

T ∗ =
dsub∑
i=1

D∗
2(i) (4.25)

and

T S =

dsub∑
i=1

DS
2 (i) (4.26)

The final statistic from [189] is drawn over two sequences S1 and S2 of lengths n1 and

n2, respectively, to conclude the degree of relatedness.

T ∗
sum =

n1−k+1∑
i=1

S∗
1i +

n2−k+1∑
i=1

S∗
2i (4.27)

for,

S∗
1i = max

{1≤j≤n1−k+1}
M∗[i, j, k] (4.28)

and

S∗
2i = max

{1≤i≤n1−k+1}
M∗[i, j, k] (4.29)

where,

M∗[i, j, k] = D∗
2(S1[i, i+ k − 1], S2[j, j + k − 1]) (4.30)

WhileD∗
2 andDS

2 are generally more powerful statistics than T ∗
sum and T s

sum for the

common motif model, this is not the case for studies concerning the pattern transfer

model. For this reason, the statistics presented by Liu et al. are desirable in pattern

transfer model applications when the sequence data is very long.

4.5 Data Compression And Dictionaries

Alignment-free methods, involving data compression and dictionaries, are based on

the idea that the more similar two sequences are to each other, then the better one

sequence can be created from the parts of another. Inspired by Lempel-Ziv(LZ)
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compression technologies [331], we offer an example of sequence comparison, from Otu

et al. [215].

For the sequences S1, S2 and SQ, we define HE(S1), HE(S2) and HE(SQ) to be the

exhaustive sets of all words found using an approach from LZ-compression. We then

analyze the sets of sequence histories to determine how much of one sequence can be

built out of the sequence histories of another. We define cH(·) to be the number of

components in a history of a sequence S and cmin({cH(S)} over all histories of S.

For S1 and S2, we have cmin(S1SQ) ≤ cmin(S1) + cmin(SQ), by the sub-additivity

of the LZ-complexity. To compute the closest similarity of S1 and SQ, d(S1, SQ),

and S2 to SQ, d(S2, SQ), we take the smallest value of

max{cmin(S1SQ) − cmin(S1), cmin(SQS1) − cmin(SQ)} and

max{cmin(S2SQ)− cmin(S2), cmin(SQS2)− cmin(SQ)}, respectively.
Compare the sequence similarity of S1 to SQ and S2 to SQ. We first find the

sequence histories to compare distances. We introduce an example to demonstrate

how this is performed.

S1 = ATGGC

S2 = ACGGT

SQ = ATGGC

• S1 = ATGGC

– HE(S1) = A, T, G, GC

– cmin(S1) = 4

• S2 = ACGGT

– HE(S2) = A, C, G, GT

– cmin(S2) = 4

• SQ = ATGGC
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– HE(SQ) = A, T, G, GC

– cmin(SQ) = 4

• S1SQ = ATGGCATGGC

– A, T, G, GC, ATGGC

– cmin(XSQ) = cmin(SQS1) = 5

• S2SQ = ACGGTATGGC

– A, C, G, GT, AT, GGC

– cmin(S2SQ) = cmin(SQS2) = 6

• d(S1, SQ) = max {cmin(S1SQ)− cmin(S1), cmin(QS1)− cmin(SQ)} =1

• d(S2, SQ) = max {cmin(S2SQ)− cmin(S2), cmin(SQS2)− cmin(SQ)} =2

By the author’s method, we conclude that S1 and SQ are more similar since 1 =

d(S1, SQ) < d(S2, SQ) = 2. The authors used this method to populate phylogenetic

trees from simulated sequences to show clusterings of “related” sequences.

4.5.1 Text Compression Algorithms

Data compression is nearly out of the scope of this contribution, however, they are

worth mentioning because they also provide an alignment-free approach to

comparing sequence data. These general purpose compression algorithms may be

based on the Ziv and Lempel [331] methods (as seen above). Recent advances have

been developed in [66;203] and [158]. Cao et al. [48] proposed a memory-based algorithm

called expert model (XM) to compress DNA by applying statistical information,

gained from previous encounters of a particular symbol.
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4.5.2 Average Common Substring (ACS)

Ulitsky et al. [293] built on information theoretic tools such as, Kullback-Leibler

relative entropy, to find a distance between entire genomes, even if their lengths

vary. The ACS measure that they proposed is based on computing the average

lengths of maximum common substrings. They used these average lengths between

the sequences to construct phylogenetic trees from an efficient algorithm.

Let S1 and S2 be sequences, of lengths n1 and n2 where, S1 = (α1, ..., αn1) and

S2 = (β1, ..., βn2). For any position i, let r(i) be the length of longest substring in S1

that exactly matches a substring in S2 starting at some position j. These lengths r(i)

are averaged to get a measure, L(S1, S2) =
∑n

i=1 r(i)/n1. Since L(S1, S2) represents

a common sequence found in both sequences, then the longer it is, the more similar

the sequences are to each other. This value is only a similarity measure and must

still be converted to a distance value. The inverse is taken to get the distance and

then a “correction term” is subtracted to ensure that the distance d(S1, S1) = 0 (will

always be zero). This allows for, d(S1, S2) =
logn2

L(S1,S2)
− logn1

L(S1,S1)
where L(S1, S1) =

n1

2

to provide the correctional term, 2 · log(n1)
n1

which converges to 0 as n1 → infty.

Since the measure, d(S1, S2) is not symmetric, the authors compute the final ACS

measurement between the two strings, ds(S1, S2) by the following.

ds(S1, S2) = ds(S2, S1) =
d(S1, S2) + d(S2, S1)

2
(4.31)

We now show how to apply this method to determine the distance between two

sequences. Let S1 = ACGTGCTATG and S2 = ACGCGCTA, of lengths n1 = 10 and n2 = 8,

the method finds all common substrings as shown in Table 4.2:
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Table 4.2: The similar and different chunks, taken in order from each sequence.

Sequence Same Different Same Different

S1 ACG T GCTA TG

S2 ACG C GCTA

L(S1, S2) =
(1 + 2 + 3) + (1) + (1 + 2 + 3 + 4) + (1) + (1)

10

=
19

10
= 1.9

and

L(S1, S1) =
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

10

=
55

10
= 5.5

Then the distance between the two sequences is;

d(S1, S2) =
log 8

1.9
− log 10

5.5
= 0.293

Similarly, we can calculate D(B,A) as follows:

L(S2, S1) =
(1 + 2 + 3) + (1) + (1 + 2 + 3 + 4) + (1) + (1)

8

=
19

8
= 2.375,

L(S2, S2) =
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

8

=
36

8
= 4.5

and,

d(S2, S1) =
log 10

2.375
− log 8

4.5
= 0.220.
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For our example above, where ds(S1, S2) is not symmetric, the symmetric distance

is: ds(S1, S2) = ds(S2, S1) =
d(S1,S2)+d(S2,S1)

2
= 0.293+0.220

2
= 0.257. This value, can be

used as a weight for a sequence in a phylogenetic tree to show relations between

sequences of a set.

4.6 Applications Of Alignment-Free Methods

4.6.1 Biological Data And Sequence Assembly

In genetic sequence assembly work, alignment technologies are very important for

determining the adjacency of reads (or contigs which are partially combined reads)

to reconstruct the original sequence. During a typical de novo assembly task, a

sequencing machine may split the genome into many millions (trillions) of reads

that must be reassembled like from a jigsaw puzzle. This reconstruction task is

computationally intensive since each piece must be compared with every other piece

in the pool to determine adjacency. This task is frustrated when there are foreign

reads of other sequences to be assembled in the same data pool. The extra sequence

data serves to massively broaden the search space when determining the adjacency

of a read since there are many more comparison operations to perform. To reduce

the workload of the assembly project, it is therefore desirable to place all related

reads into a unique groups (bins) and apply the main assembly algorithms to each

organism separately.

A novel approach, requiring no database support, was introduced by [28;30] to

order the organisms in the pool into separate bins. The authors’ method creates

CVs from restriction sites [29] to determine inter-sequence relatedness, and place the

sequences from the mixed pool into separate groups. This type of proposed

alignment is for a global analysis as it is able to process and compare sequences in a

pool of arbitrarily size. They applied their work to the sequence assembly reads and
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contigs of Bifidobacterium longum, Mycobacterium bovis, Clostridium tetani,

Staphylococcus aureus, Burkholderia pseudomallei and Campylobacter jejuni. Based

on the similarity of proportional values contained in the CVs, the authors were able

to differentiate the sequence material by organism.

The method uses spectrum sets which are lists of motifs made up of permutations

of restriction enzymes which are specific and unique sites in DNA where enzymes are

able to cleave. To create a spectrum set from the bacterial restriction site, GAATTC,

we observe that the motif contains, two A′s, two T′s, one C and one G. A spectrum set

contains all motifs which have exactly the same number of each base. For example,

for the bacterial restriction site, GAATTC, there are (156 motifs in the spectrum set

which have the same base composition. A vector of length-156 is constructed from

the proportions of each of these motifs which are contained in the sequence data. For

example, to populate the vector VS1 of the motif proportions of wi for i = {1, ..., 156}
for sequence S1 of length-n1, the following equation is employed,

VS1 =
c(wi) ∗ |wi|

n1

, (4.32)

where c(·) represents the number of occurrences of the motif in the sequence. This

equation serves to normalize the proportions so that the values can be compared

across diverse data sets. The authors noted that similar sequence data gave rise to

similar vectors which they used to organize the sequence data.

4.6.2 Chromosomal Data And Phylogeny

In addition, in [30], it was shown that the method could also be applied to create

phylogenetic trees which were extremely similar to trees created by NCBI’s

taxonomy tree making software. In this work, they used chromosomal sequences of

arbitrarily chosen organisms (Caenorhabditis elegans, Canis lupus familiaris,
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Drosophila melanogaster, Mus musculus, Mycoplasma hyorhinis, Oryctolagus

cuniculus and Rattus norvegicus) and built a tree which replicated that of NCBI’s

taxonomy analysis software (available at http://www.ncbi.nlm.nih.gov

/guide/taxonomy/).

4.6.3 Horizontal Gene Transfer

Horizontal Gene Transfer (HGT) is the phenomenon where genetic material is shared

between unrelated organisms. Evolutionary [286] and Phylogenetic studies [204] have

observed common material between unrelated bacterial organisms which suggests a

parallel evolutionary history. The discovery of similar regions of DNA between two

enormous genomes is not a trivial task and so alignment-free methods have proven

to be helpful in this field. In [76], the authors present Alignment-Free Local Homology

(alfy), a method to determine HGT by an alignment-free approach. Since determining

evolutionary distances from word frequency data is a non-trivial task, the authors

report that their method is conveniently able to make this determination.

We cite and discuss the method and example presented in [76] where the query

sequence, denoted as SQ of Table 4.3, is compared to the subject sequence, S1. For

each position in the query SQ, the alfy algorithm determines the shortest substring

that starts in query which is absent from the subject sequence.

In Tables 4.4 and 4.5, this comparison task is shown by a string of numbers (match

scores) which show the length of the substring starting in (SQ) that are absent in

(S1). If the consecutive intervals created by these matching scores are wide (e.g., long

strings of uninterrupted consecutive integers), then the sequences are closely related

(similar), however, if the intervals are generally short, then the sequences are not

closely related (dissimilar).

We cite an example from another study concerning HGT by the same authors [76].

This method is applied to locating regions of common genetic material in E. coli and
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Table 4.3: The sequences to compare by the alfy method. To compare sequences, we
find the shortest sequence in the query (SQ) which is absent from a subject.

Query (SQ) = CGCGATTACT$
Subject (S1) = CGCCCGGACT$
Subject (S2) = TGAGATTCAG$

Table 4.4: S1 is compared to SQ to determine the shortest substring in SQ which
is absent from S1. The matching numbers indicate the shortest unique substring
starting at this position that is absent from the subject.

Subject (S1) CGCCCGGACT$
Query (SQ) CGCCCTGACT$

Matching Score 6543325432

Table 4.5: Sequences S1 and S2 are compared to SQ. The matching numbers indicate
the shortest unique substring starting at this position that is absent from the subject.
The HGT is described by a string of S1 and S2 characters to indicate where the
subsequences likely originated.

Subject (S1) CGCCCGGACT$
Subject (S2) TGAGATTCAG$
Query (SQ) CGCCCTGACT$

Matching Score 4325432432
Implied HGT ( S1) and (S2) bbbccccbbb

Table 4.6: We wish to determine the sequence relations based on common sequence
material. The query sequence is SQ and subjects are S1 through S3.

1 2 3 4 5

SQ T A G C $
S1 G A $
S2 G C C $
S3 T A $

recombinant HIV-1 strains. This method is similar because it locates local regions

in subject sequences which are closely related to the query sequence. In Table 4.6,
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sequences S1 to S3 are the subjects and SQ is the query. We find which parts of SQ

most closely resemble the subject sequences. The sections of sequence material are

written in an interval notation: SQ[1, 2] = TA matches S3[1, 2], SQ[3, 4] = GC matches

S2[1, 2]. By this system, we claim that SQ[1, 2] is most closely related to S3 and

SQ[3, 4] is most closely related to S2.

During the sequence comparison task of query-to-subject, in [75], the authors

denote the length of the shortest query sequence prefix by hi,p. The query suffix,

Q[p, |Q|] denotes the sequence starting at position p, which is absent in subject

sequences. The length of the longest subsequence starting at Q[p] taken over all

subject sequences is denoted, Hp = max{1≤i≤n} hi,p, where hp is bounded by the

query length: Hp ≤ |Q| − p + 1. For example, in Table 4.6,

H1,1 = T = 1;H2,1 = T = 1;H3,1 = TAG = 3; and H1 = max{1,1,3} = 3. Conversely, the

longest subject subsequences which start at Q[p] are found in a subject sequence,

are denoted by Sp = {Si ∈ S|hi,p = Hp}. Based on these properties, the authors

note that the longest sequence from Table 4.6 is S3 (the most similar subject to

sequence SQ).

4.7 Advantages And Disadvantages Of Methods

The method that an algorithm uses to gain its statistical data for an analysis is an

important part of the whole operation. A fault at this stage would travel

throughout the comparison task and upset the conclusion. In this section, we

describe the generation of the motif frequency distributions and we discuss how this

initial statistical work may not always be appropriate for a particular data set.

The methods of Section 4.4 (Factor Frequencies) are powerful methods to employ

in sequence comparison tasks since they do not concern the location of the motifs they

analyze. Their algorithms are efficient since they are generally of a linear complexity.
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They contrast to the general high complexity of the algorithms that are based on

dynamic programming. The results of factor frequency methods are adaptable and

can be conveniently applied to an analysis by mutual information (Section 4.4.2.1),

k-mers (Section 4.4.3) or by compositional vectors (Sections 4.4.4 and 4.4.5).

As the factor frequency methods are generated by word occurrences in a sequence,

it important to choose words which are not likely to commonly appear in a sequence.

As a general rule in DNA, the shorter the word, then the more likely it will appear

randomly in a sequence. In Sections 4.4.1 and 4.4.2.1, vectors were created out of

pairs of DNA bases. While this may be an simple way to illustrate the concept,

frequencies made up of these short pairs have less meaning than frequencies made up

by longer words because any particular DNA pair has a probability of 1
42

= 1
16

to occur

randomly. We note that for sequences which are largely dissimilar, then shorter words

(hence shorter compositional vectors) should be used to create the feature frequency

distributions. However, longer words, (hence, longer compositional vectors, assuming

an exhaustive list of motifs) may be used when the sequences are known to be similar,

such as when they are related, [313]. The methods of Section 4.4 are well suited for

this application using both long and short motifs. They also function well when the

location of the motif in the sequence is not important, as in the case of synteny.

Unlike the approachs of Section 4.4 where the frequency distributions were

generated by user-specified motifs, the methods of Section 4.5 ‘choose’ their own

sizes of words for their sequence comparison task. In the methods proposed by [215]

(LZ compression based) and [76] (horizontal gene transfer), the word size is not a

parameter set by the researcher. These kinds of algorithms are useful to comparison

tasks where it is not clear about the “correct” kinds of motifs to employ. In the case

of factor frequency methods, when designing a list of motifs from which to generate

a frequency distribution, an exhaustive list is likely used. As we have previously

mentioned, the longer the motif, then the larger the exhaustive list. Finding the
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frequencies of these extra motifs may add additional computational time to the

task. Therefore, compression based methods may be more suitable to comparisons

where longer motifs are desirable, such as when the sequences are similar. This

might be because the words of varying size and composition will be more similar

across related sequences.

4.8 Conclusion

Table 4.7: Summary of the discussed methods in this contribution. The column
“Alignment” contains the best suggested use of the method.

Sec. Method Author Alignment Citation

4.4.1 Base Base Correlations Lui et al. Global [190]

4.4.2 Oligonucleotide profiling Arnau et al. Local [10]

4.4.2 Feature Frequency Sims et al. Local [275]

4.4.3 k-mers Frequencies Soars et al. Global [280]

4.4.4 Composition Vectors Lu et al. Global [192]

4.4.5 Composition Vectors Chan et al. Global [54]

4.4.6 D∗
2Statistic Reinert et al. Global [242]

4.4.6 Improved D2 Statistics Lui et al. Global [189]

4.5 Sequence distance Otu et al. Global [215]

4.5.1 DNA Compression Cao et al. Global [48]

4.5.2 Avg Common Substring Ulitsky et al. Global [293]

4.6.3 ALign. Free local homologY Domazet-Lošo et al. Local [75;76]

4.6.1 Sequence Assembly Bonham-Carter et al. Global [28]

4.6.2 Phylogeny Bonham-Carter et al. Global [30]

Comparison of sequence data represents a large problem in computational

biology research. Discovery is often frustrated by obstacles such as synteny or other

forms of genetic recombination, preventing methods of dynamic programming from

working effectively. We provide a summary of the methods that we have discussed

in Table 4.7, listed by sections, references and authors. When confronted with a

large number of comparison tasks, which are unsuitable for traditional forms of
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alignment from dynamic programming, these alignment-free methods may be the

only feasible approach for completing the tasks to permit discovery. This is because

the alignment-free methods do not function based on the location of genes or

regions in each sequence. When the location of these regions is not important for

the analysis, alignment-free methods like the ones included in this work may

accomplish the goal of comparing genetic sequences.

Since there is more sequence data available today than ever before, there are

many more projects that depend on sequence comparison. In order for discovery to

be made, this work will have to be done by other technologies such as those based

on dynamic programming which have obvious limitations. Alignment-free methods

generally require less computational resources and use algorithms that are typically

of linear complexity. These incorporated elements are appropriate for advancing

comparative bioinformatics research.

It is our hope that this review provides useful information for researchers who

are studying alignment-free methods and are using them in the analysis of genomic

sequences and metagenomes. Since the mathematical aspects of the above tools are

themselves an obstacle, it is also our hope that this review helps to introduce the

reader to some of the more complicated calculations that are associated with these

alignment-free tools for discovery. Furthermore, we envisage that this contribution

of the thesis will serve as a useful reference in identifying open problems and driving

future research in sequence comparison.

4.9 Article Details

This contribution was published in Briefings in Bioinformatics, 2013.

• Bonham-Carter, Oliver, Joe Steele, and Dhundy Bastola. “Alignment-free

genetic sequence comparisons: a review of recent approaches by word
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analysis.” Briefings in bioinformatics (2013): bbt052.
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Words have no power to impress

the mind without the exquisite

horror of their reality.

Edgar Allan PoeChapter 5

An Analysis Of Palindromic

Content In The Coding And

Non-coding DNA Regions Of

Bacteria

5.1 Abstract

DNA palindromes, the reversed and complemented genetic words, are read the same

in the 3’ to 5’ as the 5’ to 3’ direction, and can form a unique restriction sites

(RSs) where enzymes are able to cut DNA. Several studies have confirmed that short

palindromes, behaving as active RSs, are few when compared to statistically expected

values in bacterial genomes. These studies suggest that palindromes bring potential

instability to intolerant coding regions of the genomes which appears to alter their
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concentrations. While this palindrome-avoidance phenomenon has been observed in

bacteria, the exact location in the genome where palindromes are most rare has not

been investigated. In this contribution of the thesis, we provide evidence to suggest

where the palindromic content is the least by comparing the content in coding and

non-coding regions of bacterial DNA. We study the exhaustive lists of palindromes

(lengths 4, 6, 8, and 10) to conclude that at least half of the motifs of each set (and

sometimes, nearly all of the motifs of a set) show similar trends of reduced presence

in the coding regions, when compared to the non-coding regions of bacteria.

5.2 Introduction

A DNA palindrome (here called a palindrome) is a word which is equivalent to itself

when in its reversed and base-complemented form. Palindromes have been shown to

be key actors in bacterial auto-immune defense systems as they often form the

restriction sites for type II restriction endonucleases; highly specific restriction

enzymes which cleave the DNA at these sites [49;218;226].

In palindromic avoidance studies across several bacterial groups, Koonin et. al. [101]

found type II restriction-modification enzymes tended to be under-represented when

compared to expected levels. Since it is conceivable that natural restriction sites can

fail to be methylated (and are unprotected from enzymes) on occasion, the authors

explain that avoidance is likely an evolved damage-control system.

5.3 Methods

The data for this study was drawn from common bacterial chromosomal DNA which

was downloaded from Genbank [23]. We developed a software tool written in Python,

employing Biopython version 1.58 that, for each sequence, calculates the GC-content,

isolates the coding and non-coding regions of sequence material from the inputted
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genomes, and determines an exhaustive list of palindromes which are then parsed in

each preprocessed region of the input sequences. Finally, the results are organized

for Mann-Whitney, non-parametric statistical tests (discussed later) to determine the

final motif distributions of the genomes.

To obtain the coding and non-coding datasets, the protein-coding segments of

each genome were found based on the CDS features given in the organism’s Genbank

record. All the segments which were associated with CDS regions were joined together

to create a unified and continuous string for each organism. We secured all the non-

coding material for each organism in a similar way; starting with a complete genome,

we removed all the CDS regions. The remaining code was the non-coding material

for the organism.

Our genera data was divided into two groups based on GC-content of the

genomes. The GC rich group was made up of sequences with more than 60% GC

content. The genera in this group are; Bifidobacterium, Burkholderia, Caulobacter,

Desulfovibrio, Geobacter, Xanthomonas. The other group, GC-poor, contained the

following; Agrobacterium, Bifidobacterium, Brucella, Chloroflexus, Corynebacterium,

Erwinia, Geobacter, Pantoea.

The palindromes for our study were prepared by first creating an exhaustive list

of all possible DNA words of lengths-{4, 6, 8, 10}. The complement of a base is

one which is found on the opposite strand in the helix (i.e. A ⇔ T, C ⇔ G).

Each word w in the list was tested for palindromy by determining whether w ==

reversed[complemented(w)] was true. By the nature of this function, only even

palindromes, where length(w) mod 2 ≡ 0, are considered in this study. There are

4 ∗ 4 ∗ 1 ∗ 1 = 16 possible palindromic words of length-4. Expressed mathematically,

the number of possible palindromes of a length Lp is; n
Lp
2 , where n is the size of the

alphabet.

Across each organism’s coding and non-coding material, we determined the
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proportion of sequence code made up by each palindrome. We use proportions, not

frequencies, in our study of palindromic content because proportions are naturally

normalized and facilitate comparison of content between regions. For these readings,

there is no overlap between palindromes in the sequences and we do not consider

nested palindromes. The proportion is given the following equation;

SL = count(mi)∗|mi|
|SL| , where mi is a motif, SL is the sequence space, count(mi) is

number occurrences of mi in SL, |mi| and |SL| are the lengths of the motif and the

sequence respectively. This equation determines how much of the coding or

non-coding sequence is actually composed from the current motif by finding the

number of occurrences. This value is divided the length of each region. The higher

the value of the proportion, the greater the content of the motif in the region.

Null Hypothesis 1. The proportions of palindromic motifs of length 4 are the same

between the coding and non-coding regions of all evaluated sequence material.

Null Hypothesis 2. The proportions of palindromic motifs of length 6 are the same

between the coding and non-coding regions of all evaluated sequence material.

Null Hypothesis 3. The proportions of palindromic motifs of length 8 are the same

between the coding and non-coding regions of all evaluated sequence material.

Null Hypothesis 4. The proportions of palindromic motifs of length 10 are the same

between the coding and non-coding regions of all evaluated sequence material.

The Mann-Whitney, non-parametric test, was selected to determine which of the

two regions had more content for each palindromic. This test was appropriate for our

data since there is no requirement of a normal distribution of the data. We test the

palindromic motifs of lengths {4, 6, 8, 10} by the Hypotheses: 1, 2, 3 and 4.

The significant value from the outcome of these tests indicate that the alternative

hypothesis was satisfied for the particular palindromic motif set under evaluation

(i.e. a higher proportion of the palindrome in the non-coding region than the coding
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region by evidence in all evaluated genomes). The approach that we chose may be

conveniently reproduced. The other methods capable of performing a similar study,

such as those involving dynamic programming (i.e. methods from global alignment

and similar) are more computationally expensive. For this reason, we opted to use

an efficient statistical approach which we discuss below.

5.4 Results And Discussion

We used the Mann-Whitney tests to determine which palindromes of the lengths-{4,
6, 8, 10} had significantly greater concentrations in the non-coding regions than in

the coding regions. Our working alternative hypothesis (that there is more short

palindromic content in the non-coding regions than in the coding regions) was

concluded by the observation that long palindromes are generally found in the

non-coding regions of mitochondrial DNA [193].

Table 5.1: The percentage of the exhaustive lists of all possible palindromes (lengths 4,
6, 8 and 10) which are found in higher proportions in the non-coding regions than the
coding regions, according to their significant p-values (Mann-Whitney tests). The row
“p < 0.05 only” excludes the set from p < 0.01 and indicates that these palindromes
were not as significant as the α = 0.01 group. Each column of this table correlate to
our listed Hypothesis 1 through 4.

Motif Length
GC 4 % 6 % 8 % 10 %

Rich
p < 0.01 14 87.5 54 84.4 183 71.5 431 42.1

p < 0.05 only - - 4 6.3 18 7.03 123 12

Poor
p < 0.01 13 81.3 43 67.2 118 46.1 501 48.9

p < 0.05 only - - 10 15.6 43 16.8 166 16.2
Size Of Exhaustive List 16 64 256 1024

Hypothesis 1 2 3 4

Table 5.1 shows the results of the Mann-Whitney tests for the GC-rich and poor

data sets with lengths of 4, 6, 8, and 10 bases. There are two α values given, for

both, GC-rich and poor sequence data. In each column (length) and row
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(significance), the number of palindromes out of the total (i.e the exhaustive set)

satisfying our alternative hypothesis, is given for our Hypotheses 1, 2, 3 and 4. The

Size of Exhaustive List represents the number of palindromes, taken from the

exhaustive list, which passed the Mann-Whitney test, used to determine that the

palindrome had larger proportions in the non-coding data than the coding data.

The, “p < 0.05 only” row, indicates the number of significant counts but not

significant at the α = 0.01 level. A percentage is also given to describe how much of

the total number of palindromes for this length were able to satisfy our alternative

hypothesis. By the nature of the Mann-Whitney test, we only learn whether the

proportion of a particular palindrome is greater in the non-coding data than the

coding data and so it could be that the proportions were low in both areas, but less

so in the non-coding regions.

5.4.1 Lengths-{4,6,8,10} Palindromes

From the GC-rich sequences we note that 14 of 16, length-4 palindromes (87.5%) are

abundant in the non-coding regions at the α = 0.01 significance level (also significant

at the 0.05 level). In the GC-poor set, we have 13 out of the total 16 (81.3%) were

found in greater proportions in the non-coding regions. All were significant at the

α = 0.01 level. A large percentage of the exhaustive list of palindromes of length-6

was found to have higher proportions in the non-CDS regions. From the GC-rich

sequences, 54 of 64 (84.4%) at α = 0.01 and 43 of the total 64 (67.2%) for the

same alpha in the GC-poor data. For the GC-Rich dataset, four palindromes were

significant only at α = 0.05 level and 10 in the GC-poor. The majority of the possible

palindromes of length-8 are still found in abundance in the non-coding regions of the

GC-rich dataset; 183 of 256 (71.5%) at α = 0.01. For the GC-rich dataset, 118

palindromes of the total 256 (46.1%) were significant also for the same alpha level in

the GC-poor set. Palindromes of length-10 are almost too long to be called “short”
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palindromes and since the normal RSs is on average length-6, we expect now to

see some changes in the general trends of palindromic abundance in the non-coding

regions. For example, for the GC-rich set, 431 or the total 1024 there is 42.1% of the

total set of all palindromes at the α = 0.01. For the GC-poor set, we have 501 of the

total 1024 (48.9%) at the α = 0.01.

5.5 Conclusions

Short palindromic sequences play important roles as restriction sites for cleaving

enzymes. Various studies have provided evidence that these palindromes occur in

reduced numbers along the bacterial genome but they do not provide evidence about

where palindromic avoidance is actually happening. In this study, we hypothesized

that avoidance of short palindromes (for lengths {4, 6, 8, 10 }) is concentrated in the

coding regions which is thought to be less tolerant of the palindromic instability [100].

Our argument was further motivated by observations in the literature that longer

palindromes have been found performing their structural duties in the non-coding

regions [193].

The results described in this contribution can be used to determine strategies for

finding and studying biological mechanisms which depend on palindromic

involvement such as, auto-immune function, restriction enzyme activity and

methylation systems. More importantly, a sequence property such as the one

observed here that was obtained from the analysis of complete genomes, would be

very important in whole genome sequence assembly and annotation problems.

Similar to pieces of sky in jigsaw puzzles, reads belonging to certain regions in a

genome are difficult to position correctly. In particular, when current assembly

algorithms use common overlapping substrings of letters as a basis to assemble

sequence reads, presuming the two reads likely originated from the same
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chromosomal regions in the genome. Consequently, most of the assembly algorithms

are greedy or graph based. Incorporation of sequence specific features observed from

biological samples is expected to overcome the limitations that arise during

sequence assembly.

In the future, we will study the GC content of the palindromes to find their

distribution properties. In greater detail, we plan to analyze the role of sequence

specific feature in the development of sequence assemblers.

5.6 Article Details

This contribution was published in the 8th International Symposium on

Bioinformatics Research and Applications (ISBRA), 2012.

• Oliver Bonham-Carter, Lotfollah Najjar, Ishwor Thapa and Dhundy Bastola,

“Distributions of palindromic proportional content in bacteria”, 8th

International Symposium on Bioinformatics Research and Applications

(ISBRA 2012).
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The past, like the future, is

indefinite and exists only as a

spectrum of possibilities.

Stephen Hawking

Chapter 6

A Base Composition Analysis Of

Natural Patterns For The

Pre-Processing Of Metagenome

Sequences

6.1 Abstract

On the pretext that sequence reads and contigs often exhibit the same kinds of base

usage that is also observed in the sequences from which they are derived, we offer a

base composition analysis tool. Our tool uses these natural patterns to determine

relatedness across sequence data. We introduce spectrum sets (sets of motifs) which

are permutations of bacterial restriction sites and the base composition analysis

framework to measure their proportional content in sequence data. In this
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contribution of the thesis, we suggest that this framework will increase the efficiency

during the pre-processing stages of metagenome sequencing and assembly projects.

Our method is able to differentiate organisms and their reads or contigs. The

framework shows how to successfully determine the relatedness between these reads

or contigs by comparison of base composition. In particular, we show that two types of

organismal-sequence data are fundamentally different by analyzing their spectrum set

motif proportions (coverage). By the application of one of the four possible spectrum

sets, encompassing all known restriction sites, we provide the evidence to claim that

each set has a different ability to differentiate sequence data. Furthermore, we show

that the spectrum set selection having relevance to one organism, but not to the

others of the data set, will greatly improve performance of sequence differentiation

even if the fragment size of the read, contig or sequence is not lengthy.

We show the proof of concept of our method by its application to ten trials of

two or three freshly selected sequence fragments (reads and contigs) for each

experiment across the six organisms of our set. Here we describe a novel and

computationally effective pre-processing step for metagenome sequencing and

assembly tasks. Furthermore, our base composition method has applications in

phylogeny where it can be used to infer evolutionary distances between organisms

based on the notion that related organisms often have much conserved code.

6.2 Introduction And Related Work

During a DNA sequencing task, the nucleotides of the reads or contigs must be

placed in the correct order to reconstruct the original sequence. This sequencing task

is particularly challenging when working with a metagenomic task, which requires

one to gather and order similar sequences from a number of different organisms. This

metagenomic technique has been extensively discussed in [162;316] and a framework to
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infer phylogenetic relationships (patterns) among assemblages of microorganisms has

been developed [146]. This approach is expected to help improve assembly projects by

reducing search spaces when grouping related sequence fragments. Massively parallel

next-generation sequencing technologies (a major technological rebirth of the former

Sanger methods of the 1980’s [264]) provide ultrahigh throughput results at a low cost

but the reads are often too short to be able to determine their adjacency. In [183],

the authors describe a novel method for de novo assembly of large genomes from

short read sequences which they used to assemble two giant genomes: the Asian and

African human genome sequences.

Some of the limitations encountered in the assembly process include read

coverage and size. The absence of placement information such as read coverage

forms a bottleneck in the reassembly process [80;127]. When the read sequences are

very short, then special procedures must be taken to maximize their informational

content to achieve placement evidence. For this work, it may be necessary to form

contigs by de novo assembly methods as in [305]. Despite these limitations,

technologies such as Velvet and Oases have been used for many genome assembly

projects [96;136] and [324]. Assembling reads using approaches from probability theory,

or from the memory-based, are gaining popularity. This was determined by Zhang

et. al. [328] who compared the performance of eight distinct tools (i.e., SSAKE,

VCAKE, QSRA, SHARCGS, Edena, Velvet, SOAPdenovo, and Taipan) against

eight groups of simulated datasets.

In metagenomic studies, where there are different kinds of reads or contigs mixed

together into the same pool, the task of separating them back into n-distinct groups,

becomes an NP-hard problem. Although a researcher may choose to determine their

order using some computational tools, as described in Figure 6.1, this still is an

NP-hard problem to separate the sequence data.

Furthermore, this difficulty of separating the reads may prevent the assembly tools
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from ever being used optimally. In [225], the authors discuss the problem of filtering the

reads or contigs into smaller groups for better management. Time and productivity

can be saved by these pre-processing steps where related sequence material is placed

into a bin (here called, binning) to reduce search spaces for reconstructing entire

sequences or genomes. It is therefore important to perform efficient binning steps to

save costs in the sequencing task to reduce the work-load in an assembly project.

Chromosomal material across different genera were organized into species-specific

groupings by virtue of the motif composition which was contained in the DNA [164]. In

our study, we present a similar framework of organizing samples of DNA by their motif

content. Our method differs from the authors’ work, however, because it could be

applied to smaller sequence fragments than chromosomes and it also employs motifs

of similar base-composition to associate (e.g., bin) sequences of different organisms

into related groups. Our set of motifs are biologically relevant since they were derived

from known bacterial restriction sites. We permuted the base composition of the bases

found in a particular restriction site to generate a list of all possible motifs of the same

composition. Here, all the motifs belonging to a set of the same base composition

is said to form a spectrum set. We show that an organism’s recognition sequence

belongs to only one of the four possible non-palindromic spectrum sets. Furthermore,

each set must be strategically selected for successful sequence binning.

Our hypothesis is that a restriction site base composition algorithm can be used

to separate and bin the sequence material from several different organisms. Our

method compares the spectrum set motif proportions between sequences and uses

this knowledge to separate them. For instance, if the motifs have similar proportions

across two sequences, then there is evidence to suggest that the sequences are related

to each other in some way. Here, this relation is called an association. In summary,

our work stands apart from the traditional assembly pre-processing methods found in

wet-labs since our method relies on statistics alone to find likenesses across sequence
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material to discover associations and bin the sequence data.

Figure 6.1: Sequence fragments are separated into groups (called,“bins”) of
relatedness by a quick pre-proccessing step. This graphic taken from our previous
work in [28].

6.3 Methods

6.3.1 Genome Sequences

The genomic DNA sequences were studied from six different phylogenetic groups

(Actinobacteria, Firmicutes and Proteobacteria) shown in Table 6.1. The genomes

and chromosomes for this study were downloaded from Genbank (a public and

international online database) and were manipulated with tools which we describe

below. All sample genomes were at least 1Mb in length. There is evidence to

suggest that GC-groups have a tendency to mutate to AT groups [119;120].

Furthermore, it is thought that similar GC composition implies similar genomic

structure [185]. In light of this knowledge, our analysis was drawn from bacteria

comprising many raised and lowered levels of GC-content.

In each experiment, ten trials of five freshly drawn reads were studied. We used

MetaSim [245] to create artificial contigs (or reads) similar to those of an actual

assembly project. Each set of contigs (or reads) was extracted from the Contig

Originator organism of Table 6.1. We applied all four spectrum sets to determine
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Table 6.1: This table displays the genera used in our study. The Read Originator
column displays the sequences which we processed via MetaSim for its reads. To
determine their general associative behaviors, we studied ten trials of five freshly
drawn reads. We chose two organisms from each of the three divisions from which to
draw our contigs.

Organism Contig Originator Division

Bifidobacterium longum NC 004307 Actinobacteria
Mycobacterium bovis NC 002945 Actinobacteria
Clostridium tetani NC 004557 Firmicutes

Staphylococcus aureus NC 007622 Firmicutes
Burkholderia pseudomallei NC 012695 Proteobacteria

Campylobacter jejuni NC 008787 Proteobacteria

the proportional distributions used for the leaf weights in our heatmap trees. We

placed randomly selected contigs in each test. There were also several other related

organisms added to each pool to test and further determine the association

behaviors.

We found very similar trends in each division. We illustrate them by discussing

the arbitrarily chosen the organisms Staphylococcus and Clostridium of the Firmicutes

division. The results from the other divisions featured in Table 6.1, Proteobacteria

and Actinobacteria, were very similar to the findings of the Firmicutes.

6.3.2 Read And Contig Sequences

The synthetic data was made up of shorter reads of less than 1kbp and were generated

utilizing the 454 framework that was offered by the MetaSim software tool. MetaSim

selects its reads by a statistical approach according to user input. The software

simulates the approaches of both Sanger sequencing and Roche’s 454 (sequencing-by-

synthesis). The maximum allowed length of contigs by MetaSim is 1Kbp and so the

longer reads or contigs for this study (1Kbp - 30Kbp) had to be generated by our own

tool, which also follows the 454 (sequencing-by-synthesis) method. We created longer
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reads or contigs of lengths 2kbp, 5kbp, 10kbp and 30kbp for an exhaustive study

using this tool. Although it may appear that some of these reads are unnaturally

long, we note that the typical lengths of reads appear to be growing as the sequencing

technology improves and evolves.

In our experiments, we ran binning tests containing many reads or contigs but

due to redundancy in the outcome of the analysis, our tests required only about five

to ten reads or contigs to display the relevant trends. This small set of sequence data

was acceptable to our work because we often observed that nearly all of the reads of

a larger set had very similar distributions of motifs content from the spectrum sets.

6.3.3 Motifs

REBASE [248] is an online database of information concerning bacterial restriction

enzymes and their recognition sites. Each of the organisms (Campylobacter,

Burkholderia, Bifidobacterium, Mycobacterium, Clostridium, Staphylococcus) were

queried at REBASE for their organism-specific, palindromic recognition site

sequences of length-6. This length was desirable for our work because (1) it is a

common size in bacteria, mitochondria and plasmids and, (2) it is statistically

interesting. For example, let A be the size of the DNA alphabet {A,C,G,T} (four

elements) and let L be the motif length. There are A
L
2 = 4

6
2 = 43 = 64 possible

palindromic sites available from the set of all possible length-6 words,

AL = 46 = 4096. When compared to the seemingly spontaneous occurrence rates of

the shorter motifs, these longer words are less likely to be random occurrences along

the genome.

6.3.3.1 Base Compositions And Spectrum Sets

There are usually several uniquely spelled, palindromic recognition sequences of

length-6 for each bacterial organism according to REBASE. For example,
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Figure 6.2: The spectrum set taken from the four restriction sites of the Clostridium
genera. There are ten unique recognition sites covering all four spectrum sets (shown
in Figure 6.4). This graphic taken from our previous work in [28].

Figure 6.3: The spectrum set taken from the four restriction sites of the Staphylococcus
genera. The motif ATGCAT is common to Clostridium. This graphic taken from our
previous work in [28].
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Clostridium has eleven recognition sequences (Figure 6.2), and Staphylococcus

(Figure 6.3) has only four. It is typically rare to find common recognition sequences

between two organisms however, in this case, ATGCAT is common to both.

Consulting REBASE, we found all the known restriction sites and placed each into

one of four unique sets according to their DNA compositions. In Figure 6.4, we

show this grouping of all restriction sites. We call these sets, spectrum sets where

each element of a set contains the same count of each base. We name each set by

the following motifs: AAATTT, AATTCG, CCGGAT and CCCGGG. For example,

the motifs, ATTTAA, AATTTA, TAAATT and TTAAAT, are all elements

belonging to the AAATTT -spectrum set. A DNA word, w is palindromic if

w == reversed[Complemented(w)]. We do not consider palindromes in our

spectrum sets, although many of the restriction sites of restriction modification

systems are naturally palindromic, since they are thought to be avoided in the

genome [100]. This avoidance property may confuse our results since we are

investigating their occurrences in a sequence. Table 6.2 lists the sizes of each set.

Table 6.2: The numbers of available motifs belonging to each spectrum. The motifs
in the spectrum set are non-palindromic and are permutations of the set seeds. The
set created from the permutation of AATTCG is called, the AATTCG-spectrum, for
example.

Set Seed Available Motifs
AAATTT 12
CCCGGG 12
AATTCG 156
CCGGAT 156

6.3.4 Proportions

We use proportions, not frequencies, in our study of motif content because we are only

using a subset of the set of all possible motifs of length-6. We ignored overlapping
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palindromes (no nested motifs) in the sequences for simplicity. The motif occurrence

data in the sequences was normalized to make the comparisons meaningful. We

determine the proportionality for each motif in a set across a genome by the following

Equation 6.1:

The proportion of,

mi in SL =
count(mi) ∗ |mi|

|SL| (6.1)

where mi is a motif, SL is a sequence fragment (a read, contig or genome), count(mi)

represents the number of occurrences of mi found in SL, and |mi| and |SL| are the

lengths of the motif and the sequence, respectively. For each motif in a spectrum

set, the proportion of sequence that is made up of the motif is calculated by this

equation. For each spectrum set, a vector is created from all proportions to be applied

to a clustering analysis by hclust: a command in the R Statistical software [288]. The

result of the analysis is a heatmap [154] to determine the associations.

We used the motif proportions, to make vectors from each sample sequence.

Comparing the vectors across the organisms determined likenesses and relatedness.

If the vectors of the spectrum set motifs were similar between sequences, then this

may have been an indication of much common DNA between both sequences. This

may also suggest a degree of relatedness between the organisms. Since a contig

comes from a sequence, then the contig and the sequence will both share all their

DNA and so our analysis will locate these similarity patterns and bin them

together. Our analysis code was written in Python. In Figure 6.5, we provide a

summary of how our method is applied.

6.4 Results And Discussion

According to their proportions of motif content, the clustering in heatmaps describes a

tree of relatedness between the organisms. Similar proportions between the sequences
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Figure 6.5: The flowchart that we applied to the clustering operation using heatmaps.

are indicated by their close proximity in a subtree of the main tree of relatedness. A

parent sequence is one which is closely related to the sequence from which the reads

or contigs were derived. Since these fragments may contain large regions of common

code with parent sequence(s), they will associate with them and will be found in its

subtree in our heatmaps. By association, we imply that there is ample evidence to

suggest that the reads or contigs are more similar to their parent(s) than any other

genome in the tree of relatedness. We, furthermore, suggest that these fragments

make up a sequence that is related to the parent(s). This property can be utilized to

create bins from which to begin assembling each sequence in the reassembly task.

6.4.1 Sequence Data

In the following, we discuss the task of binning long reads or contigs. Here, we

choose to use DNA strands of a length 5000bps. These strands shall be contigs for

the purpose of describing the tool that manipulates them. Our method is a tool to

determine the proportions of motifs occurring in sequence data. The tool requires
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enough information from each strand to make correct decisions about relatedness and

if there is an insufficient amount of sequence material for comparisons to others, then

our base composition tool will make poor determinations. Sequence fragments of

700bps were often enough to show the trends we discuss in this contribution, but we

found some errors. We found that longer sequence data provided clearer and more

accurate results due to having enough base information upon which our method relies.

This size of sequence material may seem large if the sequences were reads and

not contigs. However, we note that sequencing and assembly technologies appear to

continually create longer reads than previous technologies. Very large sizes may soon

be a reality since read pre-processing methods and various read alignment technologies

are already being used to create larger contigs [85;183;219;259;274;325].

6.4.2 Clostridium And Staphylococcus

Clostridium and Staphylococcus typify the kinds of phenomena we observed after

of ten trials of each experiment, using the arbitrarily selected pairs of organisms

from Table 6.1. Here will describe the typical kinds of observed phenomena using

spectrum sets on these two organisms. We will begin by showing that the two genera

groups, Clostridium and Staphylococcus, are unrelated by the analysis of their motif

proportions. We note from Figures 6.3 and 6.4 that only Clostridium, having the

recognition sites ATTAAT and CCCGGG, can be discriminated by the AAATTT

and CCCGGG-Spectrum sets (Staphylococcus does not have restriction sites of this

composition). By our analysis of motif proportions of this spectrum set, we see that

both organisms have very different proportions of these spectrum sites.

We note from Figures 6.6 and 6.7 that there were two clearly contrasted subtrees

in the heatmap to separate the two organisms. There was similar contrast between

the sequences of our other heatmaps of the other organisms. In the present two

organisms, we noted that the heatmaps are nearly opposite from each other: the
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Clostridium family members tend to have warmer colors (elevated proportions) and

the Staphylococcus members have colder colors (low proportions) in the AAATTT -

spectrum set. This trend is the inverse for the CCCGGG-spectrum set.

The AATTCG-spectrum set was also successful in showing two different family

subtrees but there was much less apparent contrast between the organisms than there

was when using the AAATTT -spectrum set. We attribute this high contrast to the

phenomenon that a spectrum set may perhaps be more biologically relevant to one

of the organisms than the other, according to their recognition sequence usage. The

CCGGAT -spectrum set was not typically very successful in showing contrasts for

binning in our trials for these organisms. This same experiment was performed ten

times with different (i.e., newly selected) contigs and we observed similar results in

the heatmaps as those discussed. We suggest that since the Staphylococcus group

appears to have a higher proportion of CCCGGG content than Clostridium, this

contrast helps to associate the reads by relations.

It is clear that the proper use of the correct spectrum set can neatly differentiate

one organism group from another for binning. Above, we saw that there are differences

in the amounts of the spectrum sets which are found in the organisms. This made

a high contrast which helped to determine one organism from another. We will now

discuss how this method can discriminate between only read or contig sequence data.

6.4.3 Proportional Differences In Contigs By Spectrum Sets

We shall now discuss an application of separating reads originating from three different

organisms that have been mixed together into the same pool. Incidentally, a part of

this process comprises the separation of contigs belonging to two different organisms.

For our test, we arbitrarily selected another organism (featured in our organism group

in Table 6.1) Burkholderia pseudomallei to be added to the contigs from Clostridium

tetani and Staphylococcus aureus. The contigs are of length 5000bps which we chose
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Table 6.3: The organisms used in the base composition experiment. We note that
rabbit, dog, mouse and rat are seemingly more closely related than the bacteria,
fruit fly and the worm. This observation is used as a first-glance assessment of the
heatmaps below.

Locus Organism Common

NC 003279 Caenorhabditis elegans, chrm1 Worm
NC 006583 Canis lupus familiaris, chrm 1 Dog
NT 033779 Drosophila melanogaster, chrm 2L Fruit fly
NT 039169 Mus musculus, chrm 1 genomic contig Mouse
NC 016829 Mycoplasma hyorhinis, GDL-1 chrm 1 Bacteria
NW 003159226 Oryctolagus cuniculus, breed Thorbecke inbred chrm1 Rabbit
NW 047544 Rattus norvegicus, chrm 1 Rat

bacterium should be the most evolutionarily distinct organism. The mammals (i.e.,

the dog, rabbit, rat and mouse) should be the most evolutionarily similar group of the

set. The worm and the fruit fly should be found in a subtree which is evolutionarily

between the bacterium and the mammals. Indeed, the worm and the fruit fly are quite

diverse organisms, however, for this example they are clearly more similar to each

other (than to the bacterium) and do not belong to the set of mammals. Therefore,

our inspection involved checking for three basic subtrees: one for the mammals, one

for the worm and fruit fly, and a subtree containing only the bacterium. In other

words, the subtrees had to be arranged similarly to those of NCBI’s taxonomy tree

shown in Figure 6.14.

In Figures 6.15 through 6.18, we note the phylogenetic trees from each spectrum

set. By inspection, the closest trees to the one in Figure 6.14 are from the CCGGAT

and AAATTT spectrum sets, Figures 6.15 and 6.16, respectively. Both of these

trees show that the bacterium is most evolutionarily distant from rest of the

organisms and that the fruit fly and the worm form a subtree which is distinct from

that of the mammals. The locations of the subtrees in both figures are in the same

configuration as illustrated in NCBI’s taxonomy tree however, the tree of the
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motifs have been known to successfully differentiate chromosomes, as shown in [164].

However in Figure 6.19, we note that palindromes do not successfully recreate the

taxonomy tree from Figure 6.14.

Table 6.4: Ranking of Spectrum Sets over Chromosomal Data: We note the best
to worse resemblance of spectrum set trees to actual taxonomy data. For this data
set, the CCGGAT -spectrum set created a tree which most closely resembled the one
based on the classification in NCBI taxonomy database in Figure 6.14.

Ranking Set Seed Figure

1 CCGGAT 6.15
2 AAATTT 6.16
3 AATTCG 6.17
4 Palindromes, Length-6 6.19
5 CCCGGG 6.18

To summarize these results, we offer Table 6.4 which contains the highest to lowest

resemblance to the tree in Figure 6.14. We note from their ranking that the spectrum

sets do not behave uniformly and that further study is required to understand how

they should be applied to a particular set of organismal data for classification.

6.6 Conclusion

As in playing with jigsaw puzzles, if there are the pieces of several different puzzles in

the same box, then the completion of any one of the puzzles is a sizable undertaking.

In the same way, during a sequence assembly task where the contigs of different

organisms are mixed together in the pool, much time can be spared by first sorting

the contigs into their own bins from which to work. Our method places many of the

unknown contigs into their corresponding bins to drastically reduce the search space.

Most of this contribution discussed working with contigs which are typically longer

than reads. Our base composition analysis tool works by quantifying the amount the

spectrum set motifs which are contained in the sequence data. When there is not
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enough sequence data, then our method may produce erroneous results and so we

suggest using contigs of at least 1000bps because they should contain enough sequence

information for a good analysis. We should mention here that we have had very good

results when using contigs of 700bps in length and so 1000bps is not always absolutely

necessary.

By sorting the contigs with related sequence data which is based on motif

proportions, our method aims to accomplish the binning task. We used heatmaps to

show the contig clusters by organism-types. Furthermore, we illustrated that there

are only four spectrum sets, which can be created from length-6 recognition sites to

apply to differentiate by contrasting the sequence data. For instance, we used the

AAATTT and CCCGGG-spectrum sets to show that one set had high proportional

values in one organism, but not the other. This created the contrast that would

help to bin the contigs of these two organisms. We then showed how the contigs of

three organisms can be binned in a two-step process. We first removed the most

contrasting set of contigs in the pool and then reapply our method to the remaining

contigs. An analysis by base composition can also be used to determine

evolutionary orders of organismal sequence data. For instance, we showed that our

method could create phylogenetics trees which were very similar to those produced

by NCBI’s taxonomy tool.

One of the leading benefits to our method is that there is no setup required as

there would be for other sequence recognition softwares such as BLAST [5] or

BLAT [147]. While these methods provide powerful sequence analysis, they require

expansive hardware requirements for use (i.e., memory, storage and fast

computational power). Our method is a statistical approach, programmed in

Python to run on basic hardware and does not require a database for operation.

Our goals for the future are to test this base composition framework using

synthetic and biological data to further analyze its performance and levels of
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sensitivity. This work will be conducted using MetaSim, to generate contigs of a 10

X coverage for two or more genomes which we shall apply to our binning method.

This study will help to give us a more realistic interpretation of its power for

discriminating contigs and how best to use it as a pre-processing step to sequence

assembly.

6.7 Article Details

This contribution was published in BMC Bioinformatics, 2013.

• Oliver Bonham-Carter, Hesham Ali and Dhundy Bastola, “A base composition

analysis of natural patterns for the preprocessing of metagenome sequences”,

BMC Bioinformatics 14. Suppl 11 (2013): S5.
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The only real security that a man

can have in this world is a reserve of

knowledge, experience and ability.

Henry Ford

Chapter 7

sEncrypt - An Encryption

Algorithm Inspired From

Biological Processes

7.1 Abstract

As a fourth contribution of this thesis we present a new conceptual methodology for

realizing encryption involving trap-door functions built from biological processes.

Many standard encryption methods such as RSA security, for example, utilize

functions that are easy to compute in one direction but the reverse is a

computationally hard problem without a key. In biology, a trap-door like functions

can be created from natural phenomena such as the process of creating protein

sequences. A fragment of DNA can be transformed to protein easily however given a

protein sequence, it is very hard to convert the protein information back to DNA. In
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essence, protein creation is a lossy function and if we keep certain side-information

secret, then a trap-door like function can be constructed from this mechanism that

is ideal for encryption.

We propose sEncrypt (sequence Encrypt), a model inspired by the central dogma

of biology to encode, encrypt, decrypt and decode plain text using publicly-available

sequence data from bioinformatics research. We evaluate the entropy of the cipher

text to show randomness of characters and show by autocorrelation tests that the

encrypted text of our method contains no repetition which could form potential

weaknesses. These tests and results show that the sEncrypt framework constitutes a

good encryption framework for use in information exchange.

7.2 Introduction And Related Work

In many modern information security technologies such as encryption, key exchange,

password protection and similar kinds of security, the protocols which provide the

actual security are likely built out of functions similar to trap-door functions [72].

When computing in one direction across one-way functions, the task is trivial, but

computing in the reverse direction generally cannot be performed in feasible time [178].

However, trap-door one-way functions are easy to invert when using a key.

To secure information, there are many different kinds of algorithms available which

rely on trap-door functions or other functions for which the inverse is very difficult

to find without a key. For instance, the RSA algorithm [247] is based on the presumed

difficulty of factoring large integers (the factoring problem).

A different kind of encryption, the Advanced Encryption Standard (AES),

originally called Rijndael, is a cryptographic algorithm using symmetric block

ciphers for protecting electronic data [68]. This forms a part of the Federal

Information Processing Standard. Serpent is a similar encryption system using
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symmetric key block ciphers, [6]. Twofish also uses symmetric key block cipher but

with a block size of 128 bits and key sizes up to 256 bits [260].

The AES, serpent and Twofish algorithms employ the substitution-permutation

network method to confuse and diffuse output bits based on the input bits of the

plain text. This network forms a series of operations which are hard to invert due to

the near impossibility of constructing the input information from the output bits of

the substitution-permutation network without the key. Additionally, these described

methods also satisfy Shannon’s confusion and diffusion properties [267] which imply

that the inter-character associations have been removed when constructing the cipher

text.

Other low power consuming algorithms have been developed. Among notables

are RC series of algorithms, RC4 being the most popular. Quasigroup based

encryption algorithms have been explored in [14;15;103]. At the same time quantum

cryptography [21;216] has shown promise for perfectly secure communication, however,

remain far away from practical use because of limitations in hardware design.

“Encryption less” secure storage of data by dividing it into partitions has been

explored in [217].

DNA watermarking, a system to identify fraudulent sequences or the

unauthorized use of genetically modified organisms, has recently gained attention.

In [116], DNA-Crypt, a method to secretly mark sequences, is proposed using

concepts from both encryption and steganography. By their method, the authors

propose that information be conveniently binary-encrypted using algorithms such as

AES, RSA or Blowfish. This encrypted information may eventually be placed into

the DNA of a living organism for long term storage. Since DNA is likely to undergo

mutations, the information must first be protected by correction codes such as the

Hamming-code or WDH-code [287] to ensure that the information is unaltered.

Finally, the encrypted information is converted to DNA form and is placed into
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organismal DNA where it cannot be found, except by those that placed it there.

Encryption is another area where biological processes have contributed. The

literature contains many methods which involve wet-lab techniques. In [174], a

wet-lab method of encryption is presented employing primers (i.e., small and unique

strands of DNA used for locating specific regions of DNA in a solution and here

used as keys) to find a specific region of DNA corresponding to a binary-encoded

plain text. Also employing primers, Gehani et al. [99] proposed DNA-driven

cryptography methods based on one-time pads (encryption by modular addition) of

nearly unlimited size using DNA as a data structure. Encryption techniques based

on number conversion, DNA digital coding and PCR (polymerase chain reaction)

amplification are being explored by [234]. Although wet-lab methods have been

well-received by the community, they may be much slower than

computer-algorithmic approaches such as the ones proposed in [116] and [253].

In this contribution, we propose sEncrypt (sequence Encryption), a new

conceptual technique for encryption of plain text that uses the process of DNA to

protein translation as its foundation. The proposed technique leverages two

observations: first, is the existence of publicly available databases containing DNA

sequences of millions of organisms and second, the many-to-one mapping between

DNA codons and corresponding amino acid.

The mounting availability of publicly available DNA sequence data allows us to use

terra-bytes of DNA data to form a part of our encryption key. In other words, if one

were to randomly choose one of these sequences (belonging to a particular organism),

to encrypt the message (plaintext) to be sent, then the identity of this organism could

serve as a part of the secret key that would need to be conveyed to the recipient. Upon

receiving the encrypted data and the secret key (organism ID), the recipient could go

to one of these public repositories and download the corresponding DNA sequence to

decrypt the data. The existence of terra-bytes of DNA data belonging to millions of
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different organisms makes it difficult to determine the DNA of which organism was

used for encryption.

The second observation, many-to-one mapping, enables us to create a trap-door

like function in which some amount of side information is needed to invert the

function. This many-to-one mapping arises from the fact that for 64 combinations

of DNA bases only 20 possible amino-acids exist. Amino-acids form the building

blocks of proteins. Further, for different organisms, this mapping differs in

frequency of use. In other words, the frequency with which a given DNA codon

maps to a given amino acid is unique for different algorithms. This information

forms the second part of the secret key.

We show that the proposed encryption algorithm performs well to increase the

entropy of the input sequence (indicating a highly random looking output sequence).

This is one of the properties a good cipher text should have. Further, we perform

auto-correlation tests between the outputs of different input sequences to determine

if the proposed technique introduces any similar looking structure.

7.2.1 Background On DNA To Protein Translation

DNA (Deoxyribonucleic acid) is comprised of a sequence of “bases” (molecules) called

adenine (A), guanine (G), cytosine (C) and thymine (T), sometimes also referred to as

nucleotides. Therefore, a strand of DNA can be represented as a string of characters

A, G, T and C. Further, DNA exists in the form of double stranded helical structure

and each strand runs anti-parallel to the other based on certain pairing rules of

molecules.

DNA is first converted into mRNA by a process called transcription and then

mRNA is translated into amino acids that form proteins. There are 20 amino acids.

However, the translation of DNA to an amino acid involves forming groups of three

bases called codons that correspond to one amino-acid. Since there are four possible
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bases (A, G, T and C) and a codon consists of three bases, a total of 64 possible

codons can be constructed. However, only 20 amino acids exist. As a result, multiple

codes translate to a single amino acid while some codes act as stop and start signals

for the translation process.

7.2.2 Lossy Biological Functions

In essence the DNA to protein mapping is a many-to-one function. Therefore,

obtaining the original sequence of DNA from the protein is not trivial because of its

lossy nature. As we will see later, a function similar to a trap-door function may be

constructed from this system to obtain the original sequence of DNA using a key.

In the set of 20 protein amino acids, most have between two and six different

codons from DNA that encode them. For instance, leucine, a protein amino acid, can

be encoded by six different DNA codons. By this redundancy, it becomes increasingly

hard to determine the exact DNA sequence when starting at the protein sequence and

working backward. Basic problems cannot always be answered, such as, whether the

same codon is used each time to encode a particular protein amino acid, or whether

there is no such logic. As the protein sequence gets longer the complexity eventually

diverges since a sequence of n leucines has 6n possible DNA formations. This assumes

a uniform probability of mapping a codon to its corresponding protein amino acid.

In [206], codon-use frequency tables have been created which shows that the translation

process varies by organism.

7.3 Methods

Although each step is discussed in detail below, we provide Figure 7.1 to summarize

each step of the encryption and decryption steps. In addition, we provide Table 7.1

to help the reader keep tract of the information as it transitions between the steps.
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Figure 7.1: The flow chart of the encryption and decryption phases.

Table 7.1: A Summary of Steps. The plain text moves through phases one and two
before becoming the cipher text.

Phase Stage Description Sequence

One PT Plain text written in a
language (here, English)

A, B, C

PtDNA Binary PT encoded into DNA CAA CCA AGC
AAT

keyDNA The sequence of DNA which
is used by the Latin square to
encrypt PtDNA

AGC TTT TCA
TTC

CtDNA Cipher text in DNA form
having completed the Latin
square of phase one

TGC GGT TTT
TTG

Two CtProtein Amino acids, A translated
version of CtDNA

[‘C’, ‘G’, ‘F’, ‘L’]

CtFinal Text version of the encoded
amino acids and triplets

[(‘0001011’,‘1’),
...,]

CT CtFinal in binary format
containing the protein
encoding followed by the
corresponding triplet codes.

[00010110010...,
011011110101...]
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7.3.1 Phase One

7.3.1.1 Latin Squares

Latin squares are extensively discussed in [196]. A Latin square is an n by n matrix

filled with n unique symbols such that no symbol occurs more than once in any row

or column. The Latin square has elements on the top row and left-side column which,

at their intersection points, yield a specific element. Although any permutation of

the Latin square using the four bases of DNA {A,C,G,T} can be used as long as the

same square is used for both encryption and decryption operations, we designed our

Latin square for this study using a rotational ordering as shown in Table 7.2. The

Table 7.2: The quasigroup table used.

A C G T

A a c g t
C t a c g
G g t a c
T c g t a

notation of the Latin square is the following: each cell of a Latin square is written

using a coordinate system of three members: {row, column, symbol}. The notation

begins at the top, left-most cell and finishes at the bottom, right-most cell, covering

the rows similarly in-between. Our own Latin square of Table 7.2 is therefore written:

{(1,1,a), (1,2,c), (1,3,g), (1,4,t), ..., (4,1,c), (4,2,g), (4,3,t), (4,4,a)}.

7.3.1.2 Sequence Encoding

In keeping with the biological concepts of this study, we mapped the English

language plain text into a DNA form as done in Pedersen et al. [221]. For this effort,

we imply that the data is manipulated as DNA, using modeled biological functions

and processes. To create this unambiguous sequence of DNA from the plain text,
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this sequence must be transferred to the receiving party, which creates concerns of

how the exchange will be made. It is therefore easier to construct the key from a

genome from a database which both the sender and the receiver can access.

Once a DNA sequence is chosen, we can extract the encryption key from it using

one of the two techniques. The first method is the inclusive base-to-base where the

key begins at some randomly chosen base in the genome and includes all bases for

a distance of the necessary length. Another key selection method is the periodicity

of the nth base system, where an arbitrarily base is selected and each nth base after

this location is appended to create the key of the desired length. Since selecting

the nth base in the natural DNA to create a KeyDNA sequence likely removes base

structure, the resulting key may not resemble actual DNA. If it is desirable that

the key retain some biological structure, then we recommend the inclusive base-to-

base method instead to create the KeyDNA as the chances of including some basic

structure are better than employing the periodicity of the nth base method.

For this study, our KeyDNA was arbitrarily created from the genome of

Escherichia coli (LOCUS: NC 008253) which is publicly available from Genbank [23].

Although we could have chosen any point for the start, we chose the first base

(position 1) of the genome, for simplicity, using the inclusive base-to-base method to

create a key sequence of length of 12 – the length of our PtDNA.

7.3.1.4 Encryption

After the KeyDNA has been created, we aligned both strings (the PtDNA and the

keyDNA) to achieve a pairing of their bases at each position (i.e., PtDNAi AND

KeyDNAi, for 0 ≤ i ≤ the length of the PtDNA). Taken together, each position

gives a base from the KeyDNA and one from the PtDNA, as described in Figure 7.3.

When using the Latin square, there are rows and columns for which the keyDNA and

PtDNA sequence data must be applied. In our study, we arbitrarily chose to use the
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rows for the key data and the columns for the PtDNA data. We note: the Latin

square on the receiving end must apply the same sequence data to the same row and

column for the decryption to work.

To encrypt the data using the Latin square, we located the keyDNA

base-character in its left-most column. We then found the intersection of the

column containing the PtDNA base-character (found in the top row). This

intersection between the KeyDNA (row) and the PtDNA (column) is the cipher text

base-character as illustrated in Figure 7.4.

Figure 7.3: The application of the Latin square to the PtDNA and the KeyDNA.
This step serves to encrypt the information by recombination in function of two
input-sequences.

7.3.2 Phase Two: Translation Of DNA To Protein Code

According to the central dogma of biology, DNA is encoded into RNA to be translated

into protein code. In the literature, it is well known that there is much redundancy

in the triplets which encode a particular protein amino acid. In addition, it is also

understood that organisms have varying habits of how they encode proteins from

triplets. In this phase, sEncrypt converts CtDNA to protein amino acids (CtProtein)
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Figure 7.4: Encryption using the Latin square. Here the KeyDNA character is ‘A’
from the left column and the plain text character is ‘C’ of the top row. At the
intersection of these two characters is the cipher text character ‘t’.

to further conceal the original PT using natural biological processes.

CtProtein is then converted to binary using efficient Huffman codes to make

CtFinal (explained below). We use Huffman codes for efficient transmission of

encrypted messages.

7.3.2.1 Huffman Codes From Triplet Frequencies

Each listed organism appears to have a unique preference of triplet usage to build

its proteins during translation. From these preferences, frequency distributions have

been derived [206] which we applied to constructing Huffman codes [130]. These prefix

codes are further optimized as they are able to be read without the need of a delimiter

separating them.

To translate our CtDNA, we arbitrarily chose an organism, Bacillus phage PBS2

from which to use these frequencies to create codes. A casual glance will show that

the triplet, UUA for leucine (L) is the only triplet used to create this amino acid by

this organism. However, in a related organism, Bacillus phage SP82, UUC has the

highest frequency of use for this protein amino acid. In using these frequencies to

make codes, the task of determining the original DNA from our protein sequence is
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Figure 7.5: The transformation of DNA code to Huffman binary codes. Here we
coded these triplets and their amino acids according to the codon usage frequencies
of Bacillus phage PBS2. We note that the final product of phase two contains two
levels of code: the amino acid from the translation and its exact RNA triplet. Since
there are redundant triplets encoding the same amino acid, coding the triplets all
together make lengthy codes. To maintain shorter codes, we made sets of triplet
codes, corresponding to each unique protein amino acid.

further complicated without the knowledge of the exact organism for its frequencies.

Each amino acid was given a Huffman code to record the exact sequence of protein

amino acids. For each protein, the sum of its associated triplet frequencies was used

to create its Huffman code. For example, according to Bacillus phage PBS2, proline is

created by the following triplets and their associated frequencies (i.e., probabilities):

{P(‘CCA’) = 0.353, P(‘CCT’) = 0.118, P(‘CCC’) = P(‘CCG’) = 0.0 }. We ranked

proline’s frequency by the following: Rank(proline) =
∑m

j=0 freq(cj) for each of the

m triplets, associated to an amino acid, c. Therefore, Rank(P) = 0.353+0.118+0+

0 = 0.471. Each protein amino acid was treated similarly.

7.3.2.2 Encoding Triplet Codes By Protein Amino Acid Codes

During translation, we split up CtDNA into 3-mers. Each triplet group of the

sequence was converted to RNA and then translated to its protein amino acid by a
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biological codon table. To make a new binary sequence, each protein amino acid

was Huffman encoded according to codes prepared by the codon use frequencies of

Bacillus phage PBS2. Simply having the knowledge of a protein amino acid is

insufficient information to return to the original sequence of RNA or DNA. The

exact triplet data must be used and so we kept a record of these triplets. All

triplets, corresponding to each protein amino acid, were encoded as a set according

to frequency data. Each triplet code must be written with the knowledge of its own

protein amino acid to avoid confusion with the same arbitrary code which is

associated with a difference amino acid.

The CtFinal contains two binary sequences, one for the protein amino acids and

another for their triplets. To decode the triplets, the same codon-usage table must be

used to reconstruct the protein and triplet codes. Since each protein is encoded using

a prefix code, the string can be read in absence of code delimiters. This is also the case

for the triplet codes but they can only be prefix-free codes once their corresponding

protein code (their code set) is known. Therefore, to decode this string, the triplets

are decoded in function of the protein codes which are read first. We include a

summary of phase 2 in Figure 7.5.

Since CtProtein will likely be sent over a computer network, it would be convenient

to have the data in a file-format. If we were to save the file as a simple text file, then

the size of the file would soon become large but would be reduced in size when in a

binary format. To prepare the binary, the binary sequences of CtFinal were split into

length-8 words which were written to a binary file (CT).

7.3.3 Decryption

When the cipher text CtFinal has been decoded, the work involving Huffman codes of

phase two is undone. Here, we return to the CtDNA which is the encrypted sequence

from phase one. To decrypt this sequence and obtain plain text in DNA (PtDNA), we
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apply the Latin square in the reverse direction using the KeyDNA. The KeyDNA and

the CT sequences are aligned to locate the base pairings by position in the sequences.

For each position, the KeyDNA base is found in the left-most row. The CT base is

then found along this row and the PtDNA character is the entry at the top of this

column. Figure 7.6 describes how this method is performed using a KeyDNA and CT

base. This concludes the encryption and decryption steps of phases one and two of

the sEncrypt framework.

Figure 7.6: Decryption using the Latin square. Here the KeyDNA character is ‘A’
from the left column and the cipher text character is ‘t’. At the top of the column is
the plain text character is ‘C.

7.4 Results And Discussion

When encrypting data, the resulting cipher text must be made to look as random

as possible to defeat any statistical tests which work to break the CT code. Below

we discuss how we measured the randomness of the CT, compared to the English

language PT.
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7.4.1 Entropy

Shannon’s entropy [267] is a measure the predictability of information by the frequency

of content occurrence. We measured the unpredictability of characters in the PT and

CT text sequences using normalized entropy, bounded by zero and one for low or high

randomness of sequence data, respectively.

For a set of probabilities P such that pi ∈ P for 0 ≤ i ≤ m and
∑m

i=1 pi = 1,

Shannon’s entropy is defined as, h(P ) = −∑m
i=1 pi ∗ log2 pi. The upper bound of

entropy (i.e., complete unpredictability of the m characters) is reached when the m

frequencies are identical (i.e., p1 = p2 = ... = pm). Mathematically, this upper bound

can be written, hmax = log2(m). We define normalized-entropy, hnorm = h(P )/hmax,

which we used to compare the frequencies of characters occurrence each PT and the

corresponding CT. This measurement was applied in the same style by Minosse et

al. [202].

To test the randomness of sEncrypt’s CT data, we chose PT data which was

made up of about 500 to 3000 characters of the following kinds of arbitrary text: a

data table, a fragment of biological gene code, a sample of legal text (an end-user

agreement), a piece of poetry (Alfred Tennyson), a news article, a piece of prose

(Conan Doyle’s, The Red Headed League), a paragraph of random words and a

technical abstract (one of the papers in the references).

Figure 7.7 illustrates the entropy scores for each PT and its corresponding CT.

We note that the normalized entropy for the PT of each text was between 0.65 and

1 (the upper bound). Although genetic code for making protein is highly

structured [16;239;244;317], the structure of our sample was not apparent. As we

expected, the CT of each of our samples of text obtained maximum entropy scores

after being processed by sEncrypt. We recall entropy scores, approaching the upper

bound, imply that the individual frequencies of elemental occurrence are similar.

Thanks to the Huffman encoding process, these similar elemental frequencies are
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In the future, we intend to further analyze sEncrypt’s algorithmic complexity,

strength of encryption and determine the amount of computational power and time

necessary to break the codes. In addition, we will study the subtle changes in

informational content between the stages of biologic data (PtDNA, CtDNA, and

CtProtein) of different organisms. We also plan to compare our algorithm to some

of the standard encryption algorithms such as those mentioned in the introduction.

7.6 Article Details

This contribution was published in the 12th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom), 2013.

• Oliver Bonham-Carter, Abhishek Parakh and Dhundy Bastola, “sEncrypt: An

Encryption Algorithm Inspired from Biological Processes”, 12th IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), 2013, IEEE, 2013.
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The universe is wider than our

views of it.

Henry David Thoreau

Chapter 8

Evidence Of A Pathway Of

Reduction In Bacteria: Reduced

Quantities Of Restriction Sites

Impact tRNA Activity In A Trial

Set

8.1 Abstract

Occurring naturally along the genomes of many viruses and other pathogens, short

palindromic restriction sites (<14bps) are often exploited by bacterial restriction

enzymes as autoimmune defenses to end pathogen threats. These motifs may also

appear in the host’s genome where they are methylated so as not to attract
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restriction enzymes to the host’s genetic material. Since these motifs in the host’s

genome may pose a significant danger, it is likely that their numbers have been

reduced due to possible failures of methylation during evolutionary time.

These palindromes are composed of bases likely containing information relating

to codons used for protein translation. If palindromes are reduced in the genome,

then its sequence composition making up the codons may also be found in reduced

quantities. Furthermore, during translation codons are associated with tRNAs for

protein fabrication which may also occur in reduced numbers.

We suggest that a pathway of reduction that can be followed from the onset of

these missing palindromes to the reduction (or absence) of specific tRNAs correlated

to the codons from the palindromes. To create evidence for this pathway, we studied

the bacterial genomes of Bacillus subtilis, Escherichia coli, Haemophilus influenzae,

Methanococcus jannaschii, Mycoplasma genitalium, Synechocystis sp. and

Marchantia polymorpha. Across these organisms, we applied statistical data from

reduced palindromic populations (biological and non-relevant words) to regression

models and performed an analysis of genomic tRNA presence from their

compositions. In this contribution of the thesis we illustrate a pathway of reduction

that extends from palindromes to tRNAs which may follow from evolutionary

pressures concerning restriction site handling.

8.2 Introduction

8.2.1 Palindromes And Restriction Enzymes

A short DNA palindrome of four to eight bases (here called a palindrome) is a word

which is equivalent to itself when in its reversed and base-complemented form. On

double stranded DNA, palindromes create identical motifs when read in the 5’ to

3’ direction at this region. Palindromes have been observed to maintain various
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roles in the regulation and cellular processes such as gene expression, replication and

DNA recombination [122]. Palindromes tend to make up the recognition sites for most

restriction endonucleases in prokaryotic genomes [218]. In this theater, they have been

shown to be key actors in bacterial auto-immune defense systems. Since the genome

of an invading pathogen (e.g., a virus) may likely contain many of these palindromic

sites, upon its invasion of the cell, the host may deploy restriction enzymes to cleave

the foreign DNA at these unique sites to end the threat.

8.2.2 Methylation And Damage Control

The methylation process, also responsible for rendering gene transcription

inoperative [182;258], is an important step for controlling the activity (e.g., the level of

danger) of palindromic content in the host’s genome. During methylation, the host

cellular machinery adds a methyl group to encountered palindromic sites which

coincidentally occur in the host’s own DNA to make these motifs inert to local

restriction enzymatic activity.

In addition to the natural palindromic content in the genome, it has been

observed that these motifs readily occur in prophages [170;249]. Since it is conceivable

that natural restriction sites may fail to be methylated on occasion, and may

instead form dangerous cleavage sites for restriction enzymes in bacteria, it is

suggested in [45] and [71] that palindromic avoidance is likely to have evolved as a

damage-control system. For example, in studies across several bacterial groups,

Koonin et al. [101] found that type II restriction-modification binding sites tended to

be under-represented when compared to their statistically expected levels in

bacterial genomes. Here, the authors concluded that these palindromes were

generally selected-against in their sample population since the un-methylated motifs

could potentially trigger self-destruction.
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8.2.3 The Pathway Of Reduction

Here, we suggest that the pathway of reduction of this study is a representation of the

central dogma of biology. We maintain that the pathway can be observed from these

early palindromic avoidance trends, reflected in codon quantities and traced down to

the pool of tRNAs. In this contribution, we show this pathway by investigating the

effects of low palindromic content over codons and tRNA. We first show that many

of our organisms avoid palindromes in a similar fashion and then we show that the

codon and tRNA content (taken from the palindromic content) from all organisms is

similar and has been reduced in tandem.

Palindrome distributions may deviate from expected levels due to other kinds of

evolutionary pressures such as, alterations of gene structure for competitive

advantage [153], or were possibly affected by uneven distributions of GC content and

base compositions, as noted in Drosophilia melanogaster by Liu et al. [188].

Palindromes of four to eight bases contain nested DNA triplets (e.g., codons),

corresponding to specific amino acids during translation. If the palindromes are

avoided, then the codons from their compositional triplets may also appear in

below-expected quantities.

Codon bias is the preferential use of specific codons for translation [233]. Biases

related to palindromic content have been studied in [92]. For instance, they have been

shown to reduce the amount of close-by palindromic content in the genome, according

to experimental models [93]. Here, the author produced evidence to suggest that codon

succession in Escherichia coli was correlated to reduced palindromic content in genes.

In Escherichia coli and Saccharomyces cerevisiae it was noted that biases were

observed to exist according to gene expression levels: genes that are strongly

expressed have more codon bias than genes having lower levels of expression [22]. In

addition, a strong positive correlation existed between codon usage and genomic

tRNA content. For instance, in these organisms as well as Bombyx mori (a
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multicellular organism), it was observed that certain prominent genes adapt a

codon-choice pattern to better fit the tRNA pool to maintain efficient translation

processes [132]. Other studies suggest that the tRNA pool itself may be regulated to

optimize gene expressions under specific growth conditions [24;77]. In [299], codon-pairs

were observed to be biased towards codons that form a perfect Watson-Crick

pairing with tRNAs. In this study the authors reported that codons favored stable

interactions to weak interactions with tRNAs, that decreased the chances of

mistranslations. In Drosophila studies, codon bias was explained by tRNA

availability and was likely influenced by developmental changes in the organism [205].

This study concerns tRNA selection and use which is relevant to cellular regulation

and general cell health. In [220] it is discussed that Trm9-catalyzed tRNA modifications

promote fidelity during the translation of specific transcripts. Modification of the

wobble nucleotides in tRNA by enzyme-catalyzing may impact the positioning of

ribosome anticodons which creates changes in codon-dependent translation of specific

transcripts. The final result of this scenario is that protein errors may be caused by

the activation of unfolded protein and heat shock responses resulting in threats to

cellular health. Although this study does not concern wobbling-bases where the third

base is different between tRNAs, we discuss the interchanging of tRNAs where the

third base is still unique between the tRNAs corresponding to the same amino acid.

Here we study some of the reasons for the natural modifications of tRNAs as a result

of an external impact.

8.3 Methods

8.3.1 Data Collection

To investigate the possible connection between the avoidance of short palindromes

and restriction-modification systems in bacteria, Gelfand and Koonin [101] organized
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their data by palindromes of lengths-4, 5 and 6. They show that the most avoided

length-4 and length-6 palindromes are likely to be recognition sites for two novel

restriction-modification systems. This finding was made by their comparison of the

palindromic content in Haemophilus influenzae, Mycoplasma genitalium,

Synechocystis sp., Methanococcus jannaschii, Escherichia coli and Bacillus subtilis.

Since the literature notes that mitochondria and chloroplasts have significantly low

counts of palindromic material and do not encode restriction-modification

systems [144], the authors used Marchantia polymorpha mitochondria and chloroplast

genomes as a control set. The literature also notes that it is rare to find foreign

DNA mixed into these genomes [213]. Table 8.1 summarizes the list of Gelfand and

Koonin’s organisms which provided the data we used in our study.

Table 8.1: The organisms, their abbreviations and the type of data used in our study.
This selection of organisms is the from Gelfand and Koonin’s published results [101].
We note that “Mito” and “Chloro” indicate “mitochondria” and “chloroplasts,”
respectively.

Organism Name Locus Abbrev. Material

Bacillus subtilis NC 000964 BS genome
Escherichia coli NC 010498 EC genome

Haemophilus influenzae NC 000907 HI genome
Methanococcus jannaschii NC 000909 MJ genome
Mycoplasma genitalium NC 000908 MG genome

Synechocystis sp. NC 000911 Ssp genome
Marchantia polymorpha NC 001660 Mit-MP Mito
Marchantia polymorpha Z98094.1 Chlor-MP Chloro

8.3.2 Regression Models

Stepwise regression models are powerful tools of analysis which create models where

the independent and dependent sets of data share a statistically-significant likeness or

growth trend. In our study, we created stepwise regression models from the avoidance

data of Gelfend and Koonin’s work [101] to ascertain which independent and dependent
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sets would fit into a model and relate to a significant relationship. The sets (i.e., the

avoidance data from each organism) that enter the models together may provide

evidence that they avoid palindromes with some common trend. Furthermore, since

these avoided palindromes are made up of DNA code which could correspond to

certain translatable codons, we analyzed the distribution of amino acids found in the

palindromic DNA code, to be compared to that of genomic tRNA content.

8.3.3 An Analysis Of tRNAs

To determine the amount of avoided (and possibly absent) codon content in the

palindromic sequences and genomes, we analyzed the tRNA content of each organism

in Table 8.1. We compared this tRNA content with the codons from the avoided

palindromic code. Chloroplasts and mitochondria were excluded from this study as

they do not encode restriction-modification systems [101]. We parsed the Genbank

records of each organism for its tRNA code. To get the exact tRNA codons, we

employed the online Genomic tRNA Database [53] to BLAST these fragments over

bacterial code where the tRNA was known.

8.3.4 Biological Importance

Since any encountered DNA triplet may be translated into a codon, we maintain

that certain codons may also be under-expressed in the genome. If there are codons

missing, then there may not be much evolutionary purpose for the host to maintain

the corresponding tRNA content. We shall call this phenomenon the pathway of

reduction which is described by a reduction of genetic material beginning at the

avoided palindromes, continuing to the codons, and finally ending at the missing

tRNA content.

The relationships between the organisms of this study are shown in Figure 8.1

which we obtained from [309]. In Gelfand and Koonin’s paper, the authors organized
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length of the words of the list. For example, there are 4 ∗ 4 ∗ 1 ∗ 1 = 4
4
2 = 42 = 16

possible palindromic words of length-4. Not all of the possible palindromes make up

biologically relevant restriction sites although many happen to have length-6. In our

study, we selected data from biologically relevant motifs.

8.3.5 Model Building By Stepwise Regression

Linear regression models are used to describe, control and/or predict relations

between variables. In our analysis, we only built models to determine which

predictors are significant to the response variable. The variables in model may show

that a relationship exists, but we note that this relation does not necessarily imply

causation, only that there is a statistical correspondence described by the data sets

of both variables.

To determine the statistically significant trends which exist across the avoidance

data sets from the genomes, we built stepwise regression models to automate the

process. We treated our independent variables as potential predictors of one

dependent variable. From any set of p − 1 predictors, there are 2p−1 alternative

models that can be constructed. This calculation is based on the concept that each

predictor can either be included or excluded from the model. Since our pool

contained eight sets of palindromic avoidance data, a total of

2p−1 = 28−1 = 27 = 128 possible models would have to be tested. Therefore, in light

of the many different models which would have to be created and tested in the data

(i.e. for each dependent variable, choose all other variables separately as

independents to check for significance), the automated stepwise regression analysis

by SPSS software suite (IBM Corp. Released 2010. IBM SPSS Statistics for

Windows, Version 19.0. Armonk, NY: IBM Corp.) was desirable.

During stepwise regression model building, each dependent variable (i.e., the

data set from palindromic avoidance by organism) was placed into a model with
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another variable from the pool. If the corresponding p-value of the test-statistic was

significant, then there was a presumed relation between the variables of the model.

If another variable was introduced into the model having test statistic indicating a

“better” relationship, then the previous variable would be excluded. After the

removal of the former variable, if the new test statistic is still significant (to indicate

a better model), then the new model would contain only the recently added

variable. After each predictor variable has been tested by this modeling process,

only the most significant predictors remain with the dependent variable.

Incidentally, the search for the best model may sometimes be misleading since the

good models from the pool are disqualified when a better model is found. Below in

Table 8.2 we give the SPSS syntax code that we used in our study.

Table 8.2: Our SPSS code for stepwise regression. We did nine experiments where
each organism was a Dependent variable to be regressed over all the others of the
pool (the Predictors variables).

REGRESSION

/DESCRIPTIVES MEAN
STDDEV CORR SIG N

/SELECT=id EQ 2

/MISSING LISTWISE

/STATISTICS COEFF OUTS R
ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT
{DependentVariable} (i.e.
MitMP)

/METHOD=STEPWISE
{Predictors}(i.e Ssp HI EC
MJ BS MG ChlorMP).
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8.4 Results

8.4.1 Predictor Significance

Figure 8.3: Palindrome Avoidance Data, Length-4. Our notation, * and ** specifies
a significance at the α = 0.01 and α = 0.05 levels, respectively. The listed value is
the unstandardized b coefficient. The variable names are given in Table 8.1.

The graphs created from the regression model outputs are shown in Figures 8.3

and 8.4 (upper and lower). An arrow points to a dependent variable from a predictor

variable. This connection indicates that a relationship exists (i.e., a model is formed)

between the variables. In particular, a dependent variable is a function of its predictor

variable(s) and this extent is noted by the un-standardized coefficients (i.e., b values

which function as regression weights) next to each arrow head. All exhibited variables

had significant p-values. The α-value significance of each relationship is indicated by

* or ** for α = 0.01 or α = 0.05, respectively.

To illustrate an example of how to read the graphs, we turn to Figure 8.3. The

variable names are given in Table 8.1. Here we note the predictor variable, Ssp

(Synechocystis sp.), has an arrow to its dependent variable, HI (Haemophilus

influenzae). Next to the head of the arrow between these variables, we note, b=

0.069 * to signify that this model by regression analysis has an unstandardized

coefficient (b) of 0.069 and was significant at α = 0.01 due to the single asterisk (*).

In Figures 8.3 and 8.4 (upper and lower), all model-building tests are described.

In Figures 8.3 and 8.4 (lower), we note that these graphs are much smaller than the

one in Figure 8.4 (upper) containing data of length-5 palindromic avoidance which
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Figure 8.4: Palindrome Avoidance Data, Length-5 (upper) and Length-6 (lower).
Our notation, * and ** specifies a significance at the α = 0.01 and α = 0.05 levels,
respectively. The listed value is the unstandardized b coefficient. The variable names
are given in Table 8.1.
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contains predictors pointing to several different dependents simultaneously (i.e., the

predictor HI points to three dependents at the same time, and the predictors EC and

ChlorMP point to two dependent variables to indicate relationships). In Figure 8.3

there is one predictor, Ssp, is pointing to two dependents. In Figure 8.4 (upper), HI

points to three dependents. A multi-directional arrow between two data sets may

be suggestive of a much closer relationship than when there is only a unidirectional

arrow. These close relationships indicate variables having very similar patterns of

palindromic avoidance.

Of these significant predictors for palindromes of length-4, there were three cases

of significance at the α = 0.01 and two at the α = 0.05 levels. Interestingly, for the

length-4 palindrome data, there were three organisms having no significant predictors

that were not included in any models. For the avoidance data concerning motifs

of length-5 in Figure 8.4 (upper), we note that there were six predictors having a

significance at α = 0.01 and six at α = 0.05. For palindromes of length-6, all

predictors were significant at the α = 0.05 level. The smaller the α value for the

model, the better the evidence of the relationships between the data sets. If we ignored

the b values contained in these models which often describe a positive relationship

between the data sets, the fact that there are three occurrences of α = 0.01 in Figure

8.3 and six in Figure 8.4 (upper), indicates a strong general connection in the data.

All models in Figure 8.4 (lower) were not as significant and may be because length-6

palindromes often make-up the unique organismal restriction sites, seen in Figure 8.2.

8.4.2 An Analysis By Transfer RNA Composition

We formulated Table 8.3 showing which amino acids where obtained from the DNA

of the avoided palindromes. We note that as the palindromes get longer, there were

generally more triplets found (these numbers are given in the table) and variety

(length of the table) of amino acids to be found. In the table, the gray cells indicate
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Table 8.3: A complete listing all codons for amino acids (AAs) that were extracted
from the DNA of the avoided palindromes (APs). The columns contain the counts
of codons correlating to each extracted amino acid. The gray cells indicate that a
triplet from the AP code was also missing a corresponding tRNA (listed in Table 8.4)
according to our analysis using BLAST. These cells are evidence for the pathways of
reduction of our study.

In Len 4 APs Count In Len 5 APs Count In Len 6 APs Count

A 3 A 2 A 15
D 1 E 2 C 2
G 1 D 3 E 3
I 1 G 6 D 5

STOP 1 F 1 G 9
L 1 I 2 F 1
P 1 L 2 I 5
R 3 N 1 H 3

Q 1 K 1
P 6 STOP 2
S 2 M 2
R 3 L 7
T 2 N 2
W 1 Q 2
V 2 P 10

S 10
R 17
T 5
W 2
V 7
Y 4
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Table 8.4: The tRNAs which were absent across all organisms of our study according
to a BLAST analysis. The above tRNAs, by extension from reduced codon content
according to avoided palindromic DNA, are the end-points of the pathway of
reduction.

Amino Acid Codons Length 4 Length 5 Length 6
missing codons missing codons missing codons

Cysteine (C) 2 tgt
Phenylalanine (F) 2 ttt ttt
Leucine (L) 6 tta, ttg tta, ttg tta, ttg
Asparagine (N) 2 aat aat
Serine (S) 6 tcc, tcg, tct tcc, tcg, tct
Tryptophan (W) 1 tgg tgg
Tyrosine (Y) 2 tat, tac

which of the extracted triplets were correlated to absent tRNA content, according to

our analysis using BLAST. Additionally, Table 8.4 provides the absent tRNAs which

were correlated to the amino acids. These absent tRNAs are the end-points to the

pathway of reduction since they extend from avoided material.

In Table 8.3, we note the evidence of the pathway. Extracted from the length-4

palindromic content, leucine (L) has a triplet encoded by the avoided palindromic

content, a missing codon (gray cell) and two absent tRNAs (noted in Table 8.4). In

the larger palindromes (lengths-5 and 6), there are several cases of missing codons

(gray cells) to indicate pathways of reduction. For instance, in the table for length-5

palindromes, we note that phenylalanine (F), leucine (L), asparagine (N), serine (S),

and tryptophan (W) were included in the avoided palindromic DNA and had missing

correlated tNRAs (noted in Table 8.4).

In the length-6 set, we note many generally higher numbers of triples extracted

from the avoided palindromes. This is so because the palindromes are much longer

and may also be due to there being more length-6 restriction sites than any other

size (see Figure 8.2). For instance, cysteine (C), phenylalanine (F), leucine (L),

asparagine (N), serine (S), Tyrosine (Y) and Tryptophan (W) showed evidence of
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pathways since they have missing tRNA material which could be traced back to the

avoided palindromes. Interestingly, by the codon table in any biology text book,

Tryptophan (W) and Tyrosine (Y) have only one available triplet and tRNA. The

triplets were in the avoided palindromic DNA and the tRNA was absent according

to our BLAST analysis. Here, it would appear that both were examples of absent

tRNAs extended from avoided palindromes of length 5 (only Y) and length 6 (W and

Y). In another case, half of the tRNAs of serine (S) were absent in all genomes and

ten of its triplets were found in the length-6 avoided palindromes.

8.4.3 Available tRNAs

In our analysis, we were able to determine the available (present) tRNAs in the

genomes which code for the amino acids. For instance, across all genomes, Cycsteine

(C) : {tgc}, Phenylalanine (F) : {ttc}, Leucine (L) : {cta, ctc, ctg, ctt},
Asparagine (N) : {aac}, Serine (S) : {tca, agc, agt}, Tryptophane (W) :{∅}, and
Tyrosine (Y) : {∅}.

8.5 Discussion

The arrows in Figures 8.3 and 8.4 (upper and lower), connect variables which have a

common general avoidance of palindromic content. We note that Figure 8.4 (upper,

palindromes of length 5) shows the most connections between variables. This may

be because this size of palindrome (length-5) is not as avoided as are lengths-4 and

6 which tend to make up restriction sites. This lack of high avoidance, may provide

more numerical data to be applied to making the graph. In Figures 8.3 (length-4)

and 8.4 (lower, length-6), there may have been so much motif avoidance that there

was not much data to graph.

If palindromic avoidance is a result of restriction modification pressures alone,
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then odd-length motifs may not endure the same evolutionary stresses as would the

the motifs of even-length. For instance, an even-length palindrome is the same motif

on both strands at the same location of two complementary DNA sequences. This is

not the case for the odd-length palindromes which are actually not words that are

equivalent to themselves when in reversed and complemented forms. On

complementary strands, the odd-length palindrome on one strand is a different word

by one base. Here, we claim that there are restriction modification pressures (and

others that are unknown) which may limit the population sizes of the palindromes

and bring avoidance qualities to the genome.

Palindromes contain codons embedded in their sequences which correlate to unique

tRNAs. We noted that there exist connections between avoided palindromic content

and these corresponding tRNAs which make up the pathways of reduction. A good

example of this pathway concerns Leucine that can be fabricated by six different

codons according to a codon table. In all three sets in Tables 8.3 and 8.4, we noted

that the palindromes contained codons for constructing leucine. Two tRNAs (TTA and

TTG) were consistently absent from the entire set of organisms to create a pathway

of reduction. Consulting Subsection 8.4.3 (Available tRNAs) we note that neither

of these codons was present in the study’s genomes. This indicates a carry-down of

avoidance from the palindromes to tRNAs.

Tryptophan has only one correlating codon TGG which was found once and twice

in the length-5 (CCTGG) and length-6 (CCATGG and TGGCCA) data, respectively. This

tRNA was completely absent (a pathway) in both of these sets, but not in the length-

4 set. Serine also indicated a pathway existence since three of its codons were found

in the palindromes and only three tRNAs were present in the genomes.
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8.6 Conclusions

After we intersected all the codon lists taken from avoided palindromes over our data

sets, we discovered that there were several codons and tRNAs which were omitted

across all genomes. For instance, two of the six codons for leucine (L) were absent

in all genomes, however all palindrome sets (lengths 4, 5 and 6) contained DNA code

which was associated with this amino acid. Similarly, three of the six serine (S)

codons were encoded by the palindromes (including tcc) which has no correlating

tRNA. This finding marks another pathway of reduction for this amino acid. Most

notable, the pathway can be observed in the tryptophan and tyrosine for which their

single codons are encoded in the palindromes and their tRNAs are absent in our

genome set.

From the above discussion, we can see that a pathway exists which begins at

avoided palindromic code and continues past the lost codons to their absent but

correlating tRNAs. We note that the pathway suggests that the avoided

palindromes of Koonin and Gelfand’s study is actually a much deeper study than

previously thought. As with any scientific research project, there are usually more

questions than conclusions at the end. In this study, we asked whether the missing

palindromes were only a part of the avoidance question. We concluded that there

was a string of missing genetic material down to the tRNA level which we called the

pathway of reduction.

On a final note, organisms are often unable to manufacture all the amino acids

that they require to live. With this analysis and perhaps in lieu of other forms of

study, we may be able to predict their nutritional requirements to be able to restrict

or even prevent growth of organisms causing serious health concerns (bacteria during

the course of an infection, for example).
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We shall meet in the place where

there is no darkness.

George Orwell, 1984

Chapter 9

Evidence Of Post-translational

Modification Bias Extracted From

The tRNA And Corresponding

Amino Acid Interplay Across A

Set Of Diverse Organisms

9.1 Abstract

A post-translational modification (PTM) describes a form of biosynthesis for the

task of initializing proteins for specific functions. PTMs are complexes which are

involved in developing or customizing proteins to increase their functional diversity.

In times of protein stress, PTMs may be involved in altering protein structures to
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allow for better chances of survival. Once the stress-condition has elapsed, PTMs are

able to transform the protein’s structure back to its original form for the continued

survival of the protein. PTMs are not applied uniformly across organismal proteins

and differing PTM preferences and usages may often exist between proteins of the

same organism. Here, we study the frequency of factors (PTM predominance and their

associated active sites, tRNAs and amino acids) which likely influence a PTM bias.

We extract and study these factor frequencies across both mitochondrial (Mt) and

non-Mt proteins of nine diverse organisms (closely following two, Arabidopsis thaliana

and Caenorhabditis elegans, due to space limitations) to illustrate their remarkable

differences which may strongly influence natural PTM selection. By the work in this

contribution of the thesis, we offer evidence to argue that this PTM bias may be the

result of these factors which combine in a poorly understood system to affect and

control PTM interactions. Our analysis is made up of an application of frequency

information concerning PTMs, active sites, tRNA and amino acids and is used to

create network models for the clear visualization of its mechanisms for this PTM

natural selection.

9.2 Introduction

9.2.1 PTM Bias

It is extremely likely that all proteins in nature undergo some level of

post-translational modification (PTM) for a structural, and therefore functional,

alteration. Such an alteration may occur where a specific amino acid or active site is

triggered by a complex to induce changes in enzymatic activity, localization, or to

be marked for degradation, as noted in the case of a failing protein [32]. Proteins may

also be altered without the aid of enzymes such as in deamidation, glycation and

isomerisation.
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The modification may be necessary for the survival of the protein during times

of stress. To add functional diversity and adaption to their alternative

environments [271], proteins may respond to stresses by a transformation of structure

and hence, function. For instance, a protein stress may result from an event or

treatment which leads to failure when the protein is forced to sustain duties under

unnatural circumstances. Exposure to severe heat or lack of moisture, for example,

may cripple cellular proteins when they are unused to these conditions. PTMs

imply a transformation by biosynthesis to initialize proteins for specific functions

and allow for the regulation of protein activity. PTMs may be employed by cellular

mechanisms to quickly alter stressed proteins (or proteins which are unable to

handle their tasks) to enable them to maintain their duties and sustain life under

diverse environmental conditions. This immediate change is thought to allow for

rapid adaptation since a new protein will not have to be regrown (from DNA) to

cope with the new environment. In addition, when the stress is removed, the

protein may undergo another modification to restore it to its original form [20].

During severe types of stress, interestingly, it may be likely that PTMs enjoy an

interplay with other post-transcriptional regulatory mechanisms. This may help to

explain why there are so many different types of PTMs in nature – about 87308

different PTMs have been experimentally identified in [148].

Since countless and diverse proteins depend on PTMs such as acetylation,

glycosylation and phosphorylation, they are likely to be ubiquitous across all

domains of life and are also likely to share a universal common ancestor. In fact,

lysine acetylation is likely used for much gene expression regulation and may be

evolutionarily conserved from bacteria to mammals [326]. Furthermore, a method to

quickly adapt protein complexes is thought to be a major aid to large-scale survival

and evolution.

The protein sequences of our study were downloaded from the Uniprot
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Table 9.1: Diverse organisms of the study. The two PTMs indicated are the two most
frequently encountered (from both Mt and non-Mt sequences simultaneously).

Organism N. Seqs. Top PTMs

Mustard Plant 707 Glycosylation
Arabidopsis thaliana Phosphoserine
Nematode worm 199 Glycosylation

Caenorhabditis elegans Lipidation
Domestic Dog 60 Glycosylation
Canis familiaris Phosphoserine

Zebrafish 202 Glycosylation
Danio rerio Phosphoserine
Human 1027 Phosphoserine

Homo sapiens Glycosylation
House Mouse 973 Phosphoserine
Mus musculus Glycosylation
European rabbit 46 Glycosylation

Oryctolagus cuniculus Phosphoserine
Norway Rat 571 Glycosylation

Rattus norvegicus Phosphoserine
Bakers Yeast 1056 Phosphoserine

Saccharomyces cerevisiae Glycosylation

9.2.2 tRNA Bias

In a general sense, each amino acid has a corresponding tRNA which enables their

incorporation into a protein complex. Going back further, each tRNA is signaled at

the DNA level by a unique codon and we note from the codon table that there is

often a multitude of codons (each interacting with a unique tRNA) to place the same

particular amino acid. For instance, lysine (K) has two DNA codons AAA and AAG,

each of which interact with a unique tRNA, correlated with the same amino acid

(K). Since there is a selection of codons available for many of the amino acids, it is

not surprising that over evolutionary time, an organism-specific tRNA preference (or

bias) has been introduced to prefer one codon over another for a specific amino acid.

In the 1980’s, codon bias was explored in yeast in [22]. In early works of Ikemura

et al., it was observed that tRNA usage varied between organisms [131;132;141]. For
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instance, experiments over E. coli confirmed an adaptation to the codon pool in

nature and inspired the plausible explanation of the presence of codon usage bias in

highly expressed genes.

To address this phenomenon, it was suggested more recently by [270] that codon

usage patterns may likely be influenced by natural selection for particular codons

that are translated more accurately and/or efficiently in bacteria. To explore this

phenomenon more deeply, the authors introduced a population genetics-based model

for quantifying how natural selection may play a role and concluded that species

exposed to selection for rapid growth have more rRNA operons, more tRNA genes

and a highly selected codon usage bias. Another explanation for this tRNA bias may

stem from the contributions of mutations, drifts and other general factors of natural

selection. Although variation in mutational bias is very likely a strong influence of

codon usage, translational selection may act as a weak additional factor to influence

synonymous codon usage [74]. In [31], it was suggested that a bias may have resulted

from avoided DNA motifs, resembling restriction enzymes, which could otherwise

contribute negatively to the genome.

9.2.3 Amino Acid Bias

A prominent study of nucleotides and amino acid bias was performed by [276] which

surveyed the genes in 21 completely sequenced eubacterial and archaeal genomes, as

well as, the Saccharomyces cerevisiae genome and two Plasmodium falciparum

chromosomes. In their study, the authors observed a nucleotide bias which encoded

biased proteins on a genome-wide scale and noted a positive correlation between the

degree of amino acid bias and the magnitude of protein sequence divergence.

Furthermore, due to the imposed selective constraints of inhabiting harsh

environments, in [277], an amino acid bias (among other factors) was found to aid in

the survival of thermophiles in high temperature environments.
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An amino acid bias may impact sequence diversity which is necessary for protein

folding, function and evolution. Interestingly, in [308], it was noted that natural

protein sequences are statistically indistinguishable from strings of amino acids

which have been randomly placed, with the exception of larger additions of leucine

(most abundant) and lesser additions of tryptophan and cysteine (least abundant).

Although randomly placed, amino acid abundances are fairly well conserved across

organisms to indicate a mechanism to explain this seemingly random nature. In [160]

a simple model is presented to help explain these relative abundances of amino acids

across a diverse set of proteomes. The model follows a premise that there may be a

trade-off between the minimization of protein synthesis cost and the degree of

achieved protein sequence diversity in natural proteomes. In their study, the

authors suggest that this cost, derived from amino acid decay during protein

modifications, maintains a particular distribution which is economical (implying

biological stability) for an often changing biological setting. Therefore, to maximize

sequence entropy, for the production of proteins that ameliorate survival rates, an

amino acid bias may be important for evolution.

9.3 Methods

9.3.1 Diverse Organisms

The organisms of our study were diverse and represented a wide spectrum of

biology [309] as shown in the taxonomy tree of Figure 9.2. We focus only on the

results and graphs for the data originating from Arabidopsis thaliana and

Caenorhabditis elegans.

The protein data was downloaded from the Uniprot Knowledge Base [9], dated

11 June, 2014. Having both mitochondrial (Mt) and non-Mt origins (according to

Uniprot), were divided the protein data into these two sets. Unlike the Mt genome
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information. Also in this table, we provide the top two most frequently occurring

PTMs (first and second rankings) that were found across each organismal protein

set. These PTMs are often the same across all organisms (glycosylation,

phosphoserine and lipidation), yet their ranks differ between sets to suggest a subtle

PTM bias.

9.3.2 Computing Frequencies

A frequency analysis is well suited for comparing large datasets [28;30]. To calculate

the PTM frequencies, we parsed the Uniprot protein records concerning protein

modification. Nearly all protein records contained information about PTM usage

and its active site. To find the PTM information, we isolated the amino acid

modifications and the modified residue information in each protein record.

According to Uniprot, glycosylation was listed as carbohyd and so each encountered

carbohyd was counted accordingly. A count of PTM type was created for each

organism and the PTM frequencies were calculated from this information in each of

the Mt and non-Mt protein datasets for each organism. We used this information to

populate Table 11.1.

The frequency calculations for PTMs, active sites and the amino acids will now

be discussed. Across each organism j, the frequency of a particular PTM(i,j) and

its associated active site, actSite(i,j), were calculated by Equations 11.1 and 11.2,

respectively. We note the use of the count() function which determines the number

of occurrences of the element in the current dataset. Across all PTMs of organism j,

the frequency of a particular PTMi,j may be found by the following.

freq(PTM(i,j)) =
count(PTM(i,j))∑N(PTMs)

i=1 count(PTM(i,j))
(9.1)

Across all active sites found associated with the PTMs of organism j, the frequency
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of a particular site, actSitei,j, may be found by the following.

freq(actSite(i,j)) =
count(actSite(i,j))∑N(actSites)

i=1 count(actSite(i,j))
(9.2)

The amino acid frequency magnitudes in the protein sequences of organism j (for

which PTM details were available by Uniprot), were calculated using the following

equation. We note that this frequency is normalized by the concatenated lengths of

protein sequences of the organism.

freq(SeqASite(i,j)) =
count(aminoAcid(i,j))

|∑NProteins

i=1 Seq(i,j)|
(9.3)

9.3.3 Network Models

In this work, we applied normalized frequency information to network analysis as it

allowed us to conveniently compare magnitudes (and perhaps degrees of correlation)

between the variables of our study (i.e., PTMs, active sites and their associated

tRNAs across our organismal protein data). Our network analysis yielded network

models which clearly describe the relationships and connections between these three

elements in both the Mt and non-Mt protein data. For each organism, we show the

network models which illustrate the prominence of PTM, tRNA frequencies, as well

as, the magnitudes of this PTM-tRNA pairing across the entire set of proteins.

Reading the Network Models: In Figures 9.7 to 9.10, the left-side nodes

are sized represent the PTM frequency magnitudes (Equation 11.1). The edges of

the nodes (both thin to thick), represent the frequency magnitudes of the PTM

active sites (Equation 11.2). The right side nodes represent the tRNAs and their

typeface sizes represent the tRNA frequencies which were taken directly from the

Codon Usage Database (http://www.kazusa.or.jp/codon/ [206]) which offers codon

usage information by organism. Since codon usage is closely connected to tRNA
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usage, this data is well suited for our purposes. Larger frequency magnitudes of

tRNA are indicated by the larger typefaces.

Heatmaps: Later on, we will introduce the heatmaps of Figures 9.5 and 9.6

which describe the frequencies of the amino acids making up the active sites of the

protein sequence data. Equation 11.3 was applied to prepare theses heatmaps.

9.4 Results and Discussion

In Table 11.1, we provided a listing of organisms which are a part of our study. We

listed the number of protein sequences that we analyzed. We also listed the top two

most frequently occurring PTMs for each organism (combined Mt and non-Mt data).

This information was gained by a simple tally of PTMs concerned with the proteins

of each organism and the highest frequencies indicate PTMs which are likely playing

big roles in organismal protein survival.

Interestingly, our preliminary study noted an apparent preference for individual

PTMs across the organisms. For instance, we noted that although glycosylation and

phosphoserine were popular PTMs for many organisms, they do not appear to

always achieve the same first and second rankings in the organisms. In other words,

PTM rankings were often different between organisms. In addition, we noticed that

Caenorhabditis elegans was the only organism of our set which had a high frequency

for lipidation.

Across each organism, proteins having PTM information from Uniprot were

analyzed for their PTM frequencies (we attributed general higher frequencies to an

increased prominence). In Figures 9.3 and 9.4, we summarize PTM frequencies for

Mt and non-Mt data. The organisms are displayed along the bottom and along the

left, we note the PTMs found in the organismal proteins. The displayed frequencies

met our criteria of having a value of at least 0.1. Although our analysis found many
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other PTMs involved with each organism having low frequencies, a threshold was

used to help focus on the highly occurring data. The shaded cells visually indicate

the frequency magnitudes that are defined in the legends. The degree of shade has

been normalized between graphs and so a direct comparison is possible.

Cells of equal shades show similar PTM frequency values between organisms.

For instance, shown in Figure 9.3, phosphoserine appeared to have a relevance to

most organisms. This suggested that this PTM may have had a very early

beginning in evolutionary history since it is so well conserved in the Mt genome

(that is already highly conserved). In Figure 9.4, we noted that phophoserine was

also a prominent PTM for nearly all organismal non-Mt proteins. In addition to

phosphoserine, glycosylation was also found to play a prominent role in both the Mt

and non-Mt protein datasets. This finding corroborates the results of Table 11.1

where nearly all organisms were closely associated with these two PTMs.

In the heatmaps in Figures 9.5 (Mt) and 9.6 (non-Mt), we present the amino acid

frequencies across all the organisms. The frequencies were calculated using Equation

11.3 and describe the prominence of the amino acids in the protein sequences. Since

active sites are a subset of the set of amino acids, we may determine that their

reduced frequencies could be linked to reduced tRNA frequencies. We note that cells

of equivalent shades show similar values between organisms. Across all organisms, we

only focused on amino acids having frequency values which were greater than 0.1. We

used these values to determine the impact of tRNA frequencies on the active sites. In

general, we noted from the heatmaps that the amino acid frequencies for lysine (K)

and serine (S) indicated a predominance across all organisms. This predominance was

also noted in our network models which are discussed below. In Mt proteins, Figure

9.5 illustrates that many fewer amino acids had elevated frequencies than those of

the non-Mt set of Figure 9.6.

The larger number of elevated amino acids in non-Mt appeared to support the
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figures as well. These PTMs of the non-Mt sets, which are able to interact with a

multitude of different active sites, suggest that there may be a protein-level bias of

PTM. This bias may affect the active site interaction pathways or mechanisms

which do not exist in the Mt data. Here we imply that different active sites may be

biochemically similar across different proteins of the same organism which enable

this phenomenon [272].

It is well-known that Mt export much of their protein production to their host

cells. In fact, Mt are only able to produce a very limited number of their own proteins

which may help to explain why there were so few unique Mt PTMs compared to those

of the non-Mt. This discrepancy may also be attributed to the highly conserved

nature of Mt genetics requiring only a few PTMs for its regulation and perhaps stress

response. On the other hand, the host responsible for creating most of the proteins in

the cell, may require a wider variety of PTMs to support the diverse functionality of

its proteins. Furthermore, since Mt live inside the cell where there are perhaps fewer

stresses, they may not need as many PTMs to modify proteins for stress responses.

The cell, on the other hand, under the constant threat of stress, may rely more on its

PTMs for its response tactics.

In addition to having many more PTMs in the non-Mt sets, there were more

active sites available than in Mt, as mentioned earlier. We have also discussed that

some PTMs are able to interact with a multitude of different active sites. For

example, glycosylation is a critical function of the biosynthetic secretory pathway in

the endoplasmic reticulum and Golgi apparatus. Nearly half of all cellular proteins

typically expressed in the cell may undergo such a modification by this PTM during

their lifetime. We note that glycosylation is active in both the MT and non-Mt sets

of the following organisms: Arabidopsis thaliana, Canis familiaris, Homo sapiens,

Mus musculus, Rattus norvegicus and Saccharomyces cerevisiae, (Arabidopsis

thaliana, Figures 9.7, 9.8 and Caenorhabditis elegans, Figures 9.9, 9.10).
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In these Mt sets, this PTM typically interacts with only one active site (except for

Homo sapiens, Mus musculus and Rattus norvegicus). However, in the non-Mt data,

this PTM generally interacts with several different active sites of the same organism.

Since nearly half of all cellular proteins are thought to undergo such a modification

during their lifetime, interactions with different active sites may be necessary to

accommodate all the diverse protein functionalities. The observation of the use of

different active sites describes a clear bias.

Also in Arabidopsis thaliana of Figures 9.7 and 9.8, a PTM may appear to be

more active in Mt protein than in non-Mt protein. For example, glycosylation, N6-

(pyridoxal phosphate)lysine and N6-lipoyllysine appear to be prominent PTMs in

Mt but not in non-Mt. This may be explained by the density of non-Mt networks

that hosts many other PTMs which may be able to assume the same PTM duties

in Mt. In both sets, phosphoserine appears to be prominent which may indicate

that this PTM is useful to both by performing some unique task. For instance,

serine (and threonine) phosphorylation is known to directly result in the formation

of multimolecular signaling complexes [319]. Phosphoserine may be involved with the

formation of these specific signaling complexes which are later controlled by kinases

and binding modules for regulation and thus, is equally important in both.

9.4.1 Notable PTMs

The most frequently occurring PTM in our network models was phosphoserine

among both the Mt and the non-Mt proteins. This particular PTM represents the

phosphorylation of serine base in a protein’s amino acid sequence and is one of the

most common modifications to proteins that can alter functionality. Among other

sites such as threonine, tyrosine and histidine residues, serine is the most common

type of phosphorylation. Serine phosphorylation like other phosphorylations can

cause structural changes in proteins to activate or deactivate them.
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of Figure 9.4 appeared to be associated with only glycosylation and phosphotheonine.

In our discussion, we noted that Mt proteins tended to have many fewer PTMs

than the non-Mt proteins. Here we observed that the non-Mt networks were more

dense with more PTM interactions than Mt models. This, we suggested, may have

been attributed to the fact that Mt have highly conserved genetics which may make

better use of fewer PTMs which have been there since early life. Mt also import

many of their proteins from the nuclear mechanisms of their hosts. This observation

sponsors evidence that there is less need of PTMs in Mt proteins because they do not

require them to modify many proteins. Since Mt may not experience many different

kinds of protein stress by being protected inside a cell, there may be no need for PTMs

(again) to regulate and respond to stresses. Because non-Mt proteins have many more

PTMs than Mt proteins, there is reason to suggest that the PTMs are available to

respond to stresses which may constantly threaten the cell. In addition, since most

of the non-Mt and Mt proteins are made by nuclear processes, these added PTMs,

found associated to non-Mt proteins, may be available to help with this production.

In this study, the evidence for this PTM bias is clearly presented by these findings

and others.

PTMs interact with proteins at specific physical locations (active sites) and were

also found to be affected by the bias (noted by the tRNA and amino acid frequencies).

In addition, the heatmaps of Figures 9.5 (Mt) and 9.6 (non-Mt), illustrated that there

is much discrepancy between the active site occurrence across the organisms. For

instance, in Figure 9.5 (Mt), lysine (K) and serine (S) were common active sites for

many of the organisms. In all the Mt and non-Mt network models we noted that

lysine and serine often interacted with only one PTM in Mt models. However, in

the non-Mt models, these two were often linked to PTMs which also interacted with

other active sites as well.

The active sites are also simple amino acids and we investigated their amino acid
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frequencies. In our data, we noted that their frequencies were not uniform and that the

tRNAs which are associated to each amino acid were also not of uniform distribution.

In our network models, the edge widths between the PTM (left) and tRNA nodes

(right) described the amino acid frequency magnitudes. Here we observed from these

differing edge widths that there is another bias which may impact the PTM bias.

In conclusion, unlike the network models of the non-Mt proteins, those of the

Mt data were less dense and were always filled with fewer PTMs which appeared to

interact with few active sites. These Mt networks appeared to us to be more efficient

since their PTMs may have had more established roles than those of the non-Mt

networks. In contrast, the roles of PTMs in non-Mt networks were seemingly ad-hoc

and contained many unique PTMs which appeared to interact at times with many

different active sites but often infrequently. This suggests that these non-Mt networks

might be filled with PTMs which may have part-time roles in protein regulation.

Many of these PTMs appeared to have low frequencies of occurrence which supports

the notion that they were themselves modified complexes for some fleeting purpose.

In our extended work, we intend to provide all the graphs and figures of the

organisms of this study which we were unable to include due to space limitations.

In this work, we intend to investigate the PTMs which appear to be dormant. In

another future work, we will investigate some of the factors that may cause them to

begin regulation (in non-Mt), to compare these kinds of roles with equivalent ones

in Mt. In addition, we intend to further study these PTM biases across extreme life

forms (animals, plants, fish and insects) to determine whether some of the bias may

also be explained by life style factors as well.
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Any fool can know. The point is to

understand.

Albert Einstein

Chapter 10

A Content And Structural

Assessment Of Oxidative Motifs

Across A Diverse Set Of Life Forms

10.1 Abstract

Exposure to weightlessness (microgravity) or other protein stresses are detrimental

to animal and human protein tissue health. Protein damage has been associated

with stress and is linked to aging and the on-set of diseases such as Alzheimer’s,

Parkinsons, sepsis, and others. Protein stresses may cause alterations to physical

protein structure, altering its functional identity. Alterations from stresses such as

microgravity may be responsible for forms of muscle atrophy (as noted in returning

astronauts), however, protein stresses come from other sources as well.

Oxidative carbonylation is a protein stress which is a driving force behind protein
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decay and is attracted to protein segments enriched in R,K,P,T,E and S residues.

Since mitochondria apply oxidative processes to produce ATP, their proteins may be

placed in the same danger as those that are exposed to stresses. However, they do

not appear to be impacted in the same way.

Across fourteen diverse organisms, we evaluate the coverage of motifs which are

high in the amino acids thought to be affected by protein stresses such as oxidation.

For this contribution of the thesis, we study RKPT and PEST motifs which are

both responsible for attracting forms of oxidation across mitochondrial and

non-mitochondrial proteins. We show that mitochondrial proteins have fewer of

these oxidative sites compared to non-mitochondrial proteins. Additionally, we

analyze the oxidative regions to determine that their motifs preferentially tend to

make-up the connection points between the four kinds of structures of folded

proteins (helices, turns, sheets, and coils).

10.2 Introduction

10.2.1 The Effects Of Weightlessness On Mitochondrial

Function

The effects of exposure to microgravity or weightlessness for extended periods of

time have proven to have negative impacts on mitochondrial protein function. For

instance, in Philpott et al. [230] it was found that morphological changes were

observed in the left ventricle of rat hearts after space flight for 12.5 days. After this

short time in weightlessness aboard the Cosmos 1887 bio-satellite, many of the rats

in the experiment acquired damaged and irregular-shaped mitochondria and

generalized myofibrillaredema which contributed to heart failures and death.

Mitochondria, which are unable to orient themselves in the cell, have been

studied [57] where these dynamics were linked to several major neurodegenerative
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diseases-including Alzheimers, Huntingtons, Parkinsons and other diseases. The

animals also exhibited myofibrils (rod-like units of muscles) which were abnormal

after this short time of exposure. In addition, the rats in the study by Philpott et

al. (1990) exhibited loss of filament protofibrils (e.g., actin and myosin). The

literature notes that protofibrils may be responsible for cell death in the organism,

as noted in Caughey and Landsbury [50] and may have been implicated as the toxic

species responsible for cell dysfunction and neuronal loss such as in Alzheimer’s

disease and other protein aggregation diseases, explored in [110].

Oxidative stresses on Earth may be very similar to those noted during space

flight due to naturally created free radicals and reactive oxygen species, as noted by

Nikawa et al. [209]. In their study it was discovered that altered gravity conditions may

be responsible for the onset of skeletal muscle atrophy in rat models, where rats were

subjected to two forms of simulated weightlessness and also to actual space-flight

conditions. Their study concluded that the distribution of muscular mitochondria

had become diminished as a consequence of the damage to muscle fibers in all three

conditions. They suggested that the muscular atrophy could be traced down to the

interactions of free radicals and reactive oxygen species as a result of space-flight

stresses.

Since stresses and their accompanying free radical and reactive oxygen specie

damage also exist on Earth, the study of their interaction sites in protein may

provide insight into how similar damage may be incurred in space and on Earth. In

this contribution, we show that there are generally less oxidative motifs in

mitochondrial protein (from our data set of enzymatic and non-enzymatic proteins)

than in non-mitochondrial proteins (for the same two sub groups of protein). We

draw our evidence from the reduced occurrence of carbonylation motif hot-spots

which were defined by [195]. We contrast the scarcity of mitochondrial protein

oxidative sites by showing that nuclear protein code contains many motifs which
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were probably not lethal to the cell since they continued to exist, or were embedded

in folded protein at locations where they were allowed to prevail.

We analyze the functional make-up of the existing regions of oxidation in

mitochondrial and non-mitochondrial protein to determine that the oxidative sites

tend to be located in the connection points between two structural events in folded

proteins (helices, turns, sheets, and coils). We determine that these functional

regions hold some protein structural importance which may explain why they still

exist in mitochondrial protein which produces high levels of dangerous oxidative

activity.

10.2.2 Carbonylation And PEST Protein Regulation

Mechanics

RKPT Sequences and General Carbonylation: Carbonyl derivatives are the result of

direct metal-catalysed oxidation interaction with the carbonylatable amino-acid side

chains of arginine (R), lysine (K), threonine (T) and proline (P) residues and were

explored in [195]. Carbonyl derivatives of cysteine, histidine, and lysine may also be

formed by the adduction of reactive aldehydes which are derived from the metal-

catalysed oxidation of polyunsaturated fatty acids. In [70], it was noted that the

residues of lysine carbonyl derivatives may be formed by secondary reactions with

reactive carbonyl compounds on carbohydrates and advanced glycation/lipoxidation

end products.

Proteolysis is the process of naturally removing proteins that are non-functional

due to stresses of aging and related kinds of natural damage. Here, a region of

protein sequence signals a natural removal by cellular processes. The literature

suggests that the age of the protein may not always be the needed trigger for

protein carbonylation [171]. The same authors also studied insulin resistance (e.g., a

symptom of protein degeneration) in mouse models in which they discovered that
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mice, having an over-expression of the human catalase gene to mitochondria, are

protected from an age-induced decrease in muscle mitochondrial function and

muscle insulin resistance. Furthermore, the study suggested that age-associated

reductions in mitochondrial function are due to organelle-generated reactive oxygen

species production, contributing to the pathogenesis of age-associated muscle insulin

resistance (protein degeneration). We note that insulin-resistance, and perhaps the

above-mentioned diseases associated with aging, may be avoided by therapies that

reduce mitochondrial oxidative damage.

Previously mentioned, aging or non-functional proteins are marked for destruction

to avoid risks of failing protein in tissues. Oxidative carbonylation may not always

be beneficial when it is due to environmental stresses that could create ailments such

as: Alzheimers, cancer, cataractogenesis, diabetes, sepsis and others. Carbonylation

may be central to these misfortunes since they all exhibit marked protein structures

for degradation.

PEST Sequences: PEST sequences are hydrophilic, at least 12 amino acids in

length and are rich in proline (P), glutamic acid (E), serine (S), and threonine (T).

As in the case of carbonylation motifs, these regions also contain proline and

threonine which may be attractors of protein degradation due to an associated short

intracellular half-life. In Rechsteiner and Rogers [240], it was noted that PEST

sequences are involved in proteolytic signaling for rapid protein degradation by

cellular regulation and its associated control systems. The PEST sequences typically

signal the protein which contains the motif(s) for quick proteolytic degradation by

the 26S ubiquitin proteasome system. It was also noted that this mechanism is

active after the ubiquitination at the lysine residues within the PEST sequence.

Rechsteiner and Rogers [240] maintained that the PEST sequence generally acts as a

signal peptide since its phosphorylation is likely necessary for protein degradation

noted in Salmerón et al. [255]. These sequences have also been noted to be a
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stabilizing factor for L-type calcium channel proteins explored in Rogers et al. [250].

PEST sequences are involved in the regulation of proteins in plants, [167].

Dehydration responsive element binding is an important transcription factor that

regulates environmental (abiotic) stress tolerance in plants. It was noted in Sakuma

et al. [254] that a central region of the DREB2A transcription factor in Arabidopsis,

acting as a negative regulatory domain, and when deleted, activates its protein

under stress conditions and also allows for the up-regulation of genes associated with

salt or heat-stress responsive genes. Furthermore, the authors have suggested that

this mechanism involves a PEST sequence acting as a negative regulatory domain

that contains phosphorylation target sites for protein kinases such as PKC and CK2.

10.2.3 Mitochondria

Mitochondria play a part in cellular signaling, cellular differentiation and are able to

initiate cellular death. Because they are important to the cellular house-keeping and

the general health of the cell, any alterations to prevent normal function in

mitochondria may be lethal to the cell. The host is also at risk in the event of the

dysfunction of the organelle – functional mitochondrial respiration and energy

homeostasis are critical for normal heart function and skeletal muscle

maintenance, [140]. General muscular atrophy is also a result of impaired

mitochondria, [198]. Interruptions to normal mitochondrial function are often

associated to other ailments and disorders such as myopathies and

cardiomyopathies, diabetes mellitus, neurodegenerative illnesses such as Alzheimers

disease, diabetes, [171] and aging, [61;73;300;301].

Mitochondria are also responsible for the energy production of eukaryotic cells.

In their absence, the cell would depend entirely on the anaerobic glycolysis as a

source of ATP (Adenosine triphosphate). When glucose is converted to pyruvate by

glycolysis, only a marginal quantity of total free energy is released from the glucose
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which makes this an inefficient process for energy production. In the metabolism of

sugars by mitochondria, the pyruvate is imported into the organelle where it is

oxidized by molecular oxygen to carbon dioxide and water. The release of free

energy from this operation makes an efficient process: 30 molecules of ATP are

produced for each molecule of oxidized glucose, where as, only two molecules are

released by glycolysis in absence of the energy-making organelles. Mitochondria are

mobile, able to change shape in the cytoplasm, and are able to drift around the cell

while apparently associated with the microtubules. In some cells, they have been

observed to anchor themselves to cellular locations where large amounts of ATP are

necessary, such as in-between the myofibrils in a cardiac muscle cells or at the base

of the flagellum of sperm cells.

In muscle cells, much ATP energy is required for function which is provided by

the mitochondrial matrix enzymes of inner membrane along the respiratory chain.

Since the mitochondria produce these sizable amounts of energy by oxidation

processes, it is likely that proteins (or regions along the proteins) which attract

oxidative carbonylation would not provide an evolutionary advantage and may be

removed due to evolutionary pressures. Furthermore, since mitochondria are able to

merge with other like-organelles, a failure in energy production may be introduced

to the unified pair to provide negative impacts to both of the original organelles. On

the other hand, such a point of oxidative damage attraction may not be detrimental

to other kinds of proteins (e.g., nuclear) which do not function with such a

significant profile in the cell. In this case, these carbonylation sites may be allowed

to exist, especially if they occur in the middle of a folded protein where they cannot

communicate with outside agents of biochemistry.
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10.3 Methods

10.3.1 Protein Sequence Data From Organisms

We are interested in determining the general trends of motifs which attract

carbonylation across a wide set of organismal protein sequence data. In Tables 10.1

and 10.2 we give a complete listing of all the organisms that provide the sequence

data for both our mitochondrial and non-mitochondrial (enzymatic and

non-enzymatic) protein comparative sequence analysis, as well as the number of

protein sequences in all sets. This organismal set was chosen for two main reasons:

(1) the sequence data for the organisms and as well as their mitochondrial genomes

were freely available for download from the public international database, Uniprot

(Protein Knowledgebase (UniProtKB), www.uniprot.org/); (2) these organisms

represent a diverse group of life forms which may be sent on missions in space by

NASA. For instance, during a mission of long duration, it may be desirable to send

plants into space to provide much-needed nutrition for the crews. The animal,

reptile and insect organisms provide more evidence from a wider variety of protein

data which can be used for further comparison. By studying these organisms, we set

the stage to understand how oxidation from microgravity or zero-gravity may affect

them.

The source of protein sequence data for this study came from the 3rd May, 2013

release of curated protein definitions from the UniProt-SwissProt knowledge base [88]

(http://www.uniprot.org/). Within these protein definitions, the annotation

keyword Mitochondrion is applied to proteins considered local to this organelle. The

existence of an enzyme number was used to determine whether a particular protein

is an enzyme. The BioPerl package (http://www.bioperl.org/) supports

processing Swiss-Prot files and can extract protein sequences, annotation keywords

and general information for each curated protein. We used the protein definitions
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Table 10.1: The data used for the study. Organismal mitochondrial and non-mitochondrial
protein which was divided into enzymatic and non-enzymatic data sets. The numerical
values indicate the number of protein sequences that were selected from each of the four
groups.

Organism Mt Mt Non-Mt Non-Mt
Enzym. Non-enzym. Enzym. Non-enzym.

African clawed frog
Xenopus laevis 61 108 615 2587

Amoeba
Acanthamoeba castellanii 12 20 3 14

Mustard Plant
Arabidopsis thaliana 247 460 3997 7520

Aspergillus
Aspergillus fumigatus 31 56 453 341

Bakers Yeast
Saccharomyces cerevisiae 296 760 1506 5238

Domestic Dog
Canis familiaris 30 30 163 580

Fruit Fly
Sophophora melanogaster 81 123 721 2273

Table 10.2: The data used for the study. Organismal mitochondrial and non-mitochondrial
protein which was divided into enzymatic and non-enzymatic data sets. The numerical
values indicate the number of protein sequences that were selected from each of the four
groups.

Organism Mt Mt Non-Mt Non-Mt
Enzym. Non-enzym. Enzym. Non-enzym.

House Mouse
Mus musculus 415 558 3300 12352

Human
Homo sapiens 431 596 3496 15744

Maize
Zea mays 17 21 231 449

Norway Rat
Rattus norvegicus 274 297 1771 5516
European rabbit

Oryctolagus cuniculus 22 24 251 592
Nematode worm

Caenorhabditis elegans 87 112 774 2458
Zebrafish

Danio rerio 70 132 560 2136
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from the Swiss-Prot release to create and populate our own SQLite database

containing the protein information. Based on their genus and species, the protein

sequences for the 14 target organisms of the study were extracted from the

database. These protein sequences were partitioned into four protein classes based

on the four possible combinations of the mitochondrial and enzyme properties.

For each target organism, four combined sequences were created for the four

protein classes. Each combined sequence consisted of all the proteins of the same

protein class for the particular organism. Note that a delimiter character was

inserted between individual protein sequences to prevent new motifs from appearing

in the joins (e.g., between protein sequences) in their concatenated sequence. This

delimiter served to increase the size of each protein by one which caused the

coverage percent of motifs to be slightly underestimated for all cases. The protein

definitions are almost all larger than 100 amino acids and thus the added space adds

no more than 1% to the size of each protein. In addition, although the current

contribution reports results over protein data where a sequence similarity may exist

across some of the sequences, we also provide all results in the supplementary data

using protein where the sequence similarity has been reduced by less than by 40

percent. These supplementary results are available from the publisher’s website.

10.3.2 RKPT Motifs - Attractors Of Oxidative

Carbonylation

We now discuss the carbonylation content which we study across the concatenated

protein content. Carbonylation and other forms of oxidative damage to cellular and

mitochondrial proteins leave observable traces in the protein code, [212;289]. In the

study by Maisonneuve et al. [195], a system of rules was created to find carbonylation

sites (e.g., profiles of oxidation attractors) in protein sequence data. The authors

built these rules on the concept that carbonyl derivatives may be formed by direct
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metal-catalyzed oxidation attacks on the carbonylatable amino-acid side chains of

arginine (R), lysine (K), threonine (T) and proline (P) residues (amino acids) in a

protein sequence. These rules help to describe how to profile the RKPT-enriched

carbonylation sites to be able to detect sites which are susceptible to oxidative

attraction.

Maisonneuve et al. suggested that their profile system could be used to generate

motifs which are known to attract types of oxidation. Since mitochondria produce

free radicals and reactive oxygen species (known agents of oxidation) as a result of

respiration, a study of the quantity of sites that could initiate oxidation would help

to explain why these proteins do not appear to oxidize more readily. By finding that

this content is generally lower in mitochondrial proteins than in non-mitochondrial

proteins, our study provides a deeper understanding into how nature may resist

natural dangers. Furthermore, since free radicals and reactive oxygen species are

also thought to be initiators of protein damage during other exposures to stresses

such as microgravity [209], a study of content may explain where these protein

failures are likely to occur.

We used these rules to create profiles of the protein sequence sites of oxidative

damage. Although [195] observed that aspartic acid (D), glutamic acid (E), tyrosine

(Y), histidine (H) and cysteine (C) may be located near the hot-spot carbonylation

motifs, we were only studying a distribution of 256 motifs themselves from an

exhaustive list. We required the full set because the authors found that their rules

do not always predict the oxidative nature of motifs by an analysis using mass

spectrometry. By the same method, we created an alternative set of motifs

attracting oxidation (PEST sequences) which are rich in proline (P), glutamic acid

(E), serine (S), and threonine (T).
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10.3.3 A Sequence Analysis By l-Word Proportions

We used proportions (for example, the coverage of a particular motif in the

concatenated sequence data), not frequencies, to determine impact of these motifs.

A statistical tool was developed in Bonham-Carter et al. [28;30] that is able to

determine the coverage across sequence material by an analysis of content of an

arbitrarily selected motif set across a wide set of sequence data. Using this tool, the

measurements of potential carbonylation sites were automatically normalized to

allow comparison of the motif content between the sequences. To determine

coverage of a particular motif in a sequence, we applied the following equation:

mi in SL = (count(mi) ∗ |mi|) / |SL|, where mi is a motif, SL is a sequence,

count(mi) represents the number of occurrences of mi found in SL, and |mi| and
|SL| are the lengths of the motif and the sequence, respectively. A proportion was

computed for each of the n motifs of a set to create an n-length vector which would

be processed by heatmaps. Each vector represented the coverage of the 256 RKPT

motifs with respect to a particular protein class (mitochondrial, non-mitochondrial:

enzymatic and non-enzymatic). By the same method, four vectors of size 256 are

also created for the PEST motifs with respect to each organism.

The Kruskal-Wallis one-way analysis of variance by ranks and its post-hoc pairwise

comparison tests are sufficient to order the motif coverage over our sequence data (e.g.,

smallest to largest coverage). Traditional statistical tests such as the ANOVA test

of means could also be applied to our data, however, we could not be sure that each

test assumption (normally distributed, for example) could always be met with our

biological data and so non-parametric tests were appropriate.
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10.4 Cluster Analysis

The l-word analysis developed in Bonham-Carter et al. [28;30] was originally used to

determine similarity between genetic sequence material. We used the author’s method

and tool to create vectors of motif proportion in our protein content. To create these

vectors, the proportions of motifs from each RKPT and PEST set across each of the

four protein class sequences is calculated and normalized. These vectors were then

clustered and illustrated by heatmaps also used by the above authors.

The heatmaps helped to visualize the proportions of oxidative motifs across our

protein samples. In each graphic, there are four different classes of proteins shown for

the organism (the enzymatic and non-enzymatic content for each of mitochondrial and

non-mitochondrial sets). Running along the bottom of the figures are the proportions

(coverages) of the RKPT or PEST motif set. The size of the proportion for each motif

across each of the protein classes are illustrated by the brightness of cell colors directly

above each motif. The lighter colored cells indicate larger proportions for a particular

motif where-as darker cells indicate that the proportion is either zero (dark blue) or

nearly-zero.

Reduced Mitochondrial Oxidative Content: For both of our motif sets (RKPT

and PEST) we noted that there was an overwhelming reduction of oxidative motif

content in the mitochondrial (enzymatic and non-enzymatic) content. For instance,

in the RKPT trials, all but three organisms indicated this reduction in

mitochondrial protein content. Across the heatmaps of nearly all organisms of both

the RKPT and PEST experiments we noted that in the mitochondrial proteins,

there were generally more darker cells (indicating reduced motif proportions and

absences). By contrast, the non-mitochondrial proteins tended to have many lighter

colors to imply that these proteins contained many more motifs and generally higher

concentrations. We note that this evidence suggests that mitochondrial proteins

have fewer sites where oxidative carbonylation is likely to be initiated. Interestingly,
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Table 10.3: RKPT: First and Second subtrees of all the data when clustered together.
RKPT1st PEST1st

Mito non-Mito Mito non-Mito
Enzy 1 9 0 6
Non-Enzy 7 13 5 12

RKPT2nd PEST2nd

Enzy 14 5 14 8
Non-Enzy 6 1 9 2

in the first subtree of the RKPT motif set, summarized in Table 10.3 (RKPT1st),

and that of the PEST motif set (PEST1st) the counts of the mitochondrial (both

enzymatic and non-enzymatic) sequence data was eight (RKPT) versus five (PEST).

The counts of the non-mitochondrial sequences for the same two subtrees were: 22

(RKPT) and 18 (PEST). Conversely, in the second two subtrees summarized in Table

10.3 (RKPT2nd) and (PEST2nd), there were 20 (RKPT) and 23 (PEST) mitochondrial

(enzymatic and non-enzymatic), however there were six (RKPT) and 10 (PEST) non-

mitochondrial (enzymatic and non-enzymatic) sequences. These findings suggest that

the mitochondrial and non-mitochondrial sequence data (both enzymatic and non-

enzymatic), had very comparable motif composition in terms of the RKPT and PEST

sets, taken across in the protein sequence data.

10.4.2 Statistical Analysis

All 256 RKPT-enriched motifs are considered equally likely to promote

carbonylation, we examine the coverage percentages of all such motifs to a

particular combined protein class sequence in a single vector of 256 percentages. We

are interested whether the percentages vary based on protein class. Populations

with significantly higher percentages would represent a protein class that is more

susceptible to carbonylation. A similar argument can be made for PEST motifs.

The resulting data sets of coverage percentages by the RKPT and PEST motifs did
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not follow a standard distribution – many of the 256 motifs had a zero coverage

percentage. The resulting distributions of values were skewed by the abundance of

zero values which created non-normal distributions. These distributions necessitated

non-parametric tests of analysis. For each organism, we examined the data sets

using the non-parametric Kruskal-Wallis rank test which was used primarily for

comparing the distributions of multiple populations. Gao’s nonparametric multiple

comparison procedure was used for this purpose.

The result of the non-parametric Kruskal-Wallis rank test comparing the RKPT

motif coverage rate of the four protein classes in all fourteen target organisms was

that the null hypothesis was rejected for each organism using a 5% error allowance

(α = 0.05). This indicates that the distributions of coverage values are not

considered to be equivalent in any of the organisms. The result of Gao’s

non-parametric multiple comparison post-hoc tests showed that in 13 of 14

organisms, the RKPT-coverage ratios in the mitochondrial proteins (both types)

were found to differ significantly from those in the non-mitochondrial proteins.

Between the two types of mitochondrial proteins (enzymatic and non-enzymatic),

there was never a statistically significant difference in their RKPT-coverage ratios.

In 13 of 14 cases, we noted that the mitochondrial proteins had RKPT-coverage

ratios less than that of their non-mitochondrial counterparts (shown by comparison

of the left and right sides of Table 10.4).

Rankings of Oxidative Content: The premise of this contribution is that

mitochondrial protein sequence data holds the least oxidative motifs since oxidation

is commonly performed in this organelle. In Table 10.4, we show the rankings from

lowest to most oxidative motifs for both RKPT and PEST, according to our

analysis. When we were ranking, if there was a tie between protein sequences, then

we assigned the averages of all ranks of the tied sequences. In the case of amoeba,

our Kruskal-Wallis results were inconclusive since all values were just above zero
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Table 10.4: Ranking scores from lowest to highest PEST and RKPT (oxidative
carbonylation) content of the four protein classes: ME mitochondrial enzymatic, MN
mitochondrial non-enzymatic, NE non-mitochondrial enzymatic, NN non-mitochondrial
non-enzymatic.

ME MN NE NN

Organism PEST RKPT PEST RKPT PEST RKPT PEST RKPT

African clawed 1.5 1.5 1.5 1.5 3 4 4 3
Amoeba 3 2 1.5 4 1.5 1 4 3
Aspergillus 2 1.5 1 1.5 3 3 4 4
Bakers yeast 1 1 2 2 3 3 4 4
Domestic dog 1.5 1.5 1.5 1.5 3 4 4 3
European rabbit 1.5 1.5 1.5 1.5 3 4 4 3
Fruit fly 1.5 1.5 1.5 1.5 3 3 4 4
House mouse 1 1 3 2 2 3 4 4
Human 1 1 3 3 2 2 4 4
Maize 1.5 1.5 1.5 1.5 4 3 3 4
Mustard plant 1 3 2 1 3 2 4 4
Nematode worm 1 1 2 2 3 3 4 4
Norway rat 1 1 3 3 2 2 4 4
Zebrafish 2 1.5 1 1.5 3 3 4 4
Averages 1.46 1.46 1.86 1.96 2.75 2.86 3.93 3.71

and too low to be accurately determined. For their ranking, we examined the

RKPT and PEST heatmaps for the organism and made our rankings from the

observed number of motifs contained in the protein samples. By our premise, we

note that the average rankings of the mitochondrial enzymatic sequence data (ME)

for RKPT and PEST were both 1.46. However, for the mitochondrial

non-enzymatic (MN) data, we noted that the averages increased slightly for each:

1.96 (RKPT) and 1.86 (PEST). The mitochondrial values are much smaller than

those of the non-mitochondrial sequences – the non-mitochondrial enzymatic (NE)

sequence data had average rankings of: 2.86 (RKPT) and 2.75 (PEST). The

non-mitochondrial non-enzymatic (NN) sequence appeared to contain the most

oxidative motifs from the entire set: 3.71 (RKPT) and 3.93 (PEST).

Individual Residues: We noted from the average content of the RKPT and PEST

sequence motifs increased in the mitochondrial to non-mitochondrial (both, enzymatic
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may incite oxidative activity in mitochondrial proteins, we now examine the kinds of

structural features occurring at these RKPT and PEST oxidation-attracting regions.

As implied already, one of the features of proline (P) in the RKPT and PEST data

sets is that it is able to provide a flexible joint-like feature in the protein secondary

structure. This amino acid is also likely to attract oxidative activity. Since the folded

state of a protein is critical to its functional role, motifs which may allow for the

alteration of the protein structure may be dangerous yet, necessary commodities.

In this case, the proline component of the RKPT and PEST motif sets could be a

necessary risk for the protein since it may have helped to determine some functional

importance.

Natural selection has appeared to favor the reduction in sites which are susceptible

to oxidative activity in mitochondria. This may be due to the fact that mitochondria

perform many oxidative reactions related to respiration which expose its proteins to

large amounts of stress. It is therefore logical that regions which are not necessary to

the protein’s structure may not be conserved especially when they may cause danger.

We suspect that these sites, although dangerous, may have been retained for some

reason such as their structural contributions to the protein formation.

In the next part of the study, we show that the few oxidative sites found in

mitochondrial protein may also originate in regions where the oxidative content is

unable to react when in contact with stress. In this work, we study the structural

compositions of the regions of the sites and take into account their proportions (e.g.,

coverage) to show that they are often found to make-up the bends or joining regions

that separate different states (e.g., the coils, sheets, helices and turns) of a folded

protein. To show their bending or joining regions, we compare the number of

oxidative motifs to all the other sequence content, across mitochondrial and

non-mitochondrial protein. We utilize non-parametric Kruskal-Wallis rank tests to

compare the proportions of structural features between these sets to draw our
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conclusions. Below, we list the individual tests (1 through 9) for our study where we

weigh oxidation on one hand to non-oxidation on the other across mitochondrial

and non-mitochondrial protein data. In Section 10.5.2, we explain the outcomes and

significance of this work.

1. RKPT oxidative regions within mitochondria compared to non-oxidative regions

within mitochondria

2. PEST oxidative regions within mitochondria compared to non-oxidative regions

within mitochondria

3. RKPT oxidative regions within non-mitochondria versus non-oxidative regions

within non-mitochondria

4. PEST oxidative regions within non-mitochondria versus non-oxidative regions

within non-mitochondria

5. RKPT oxidative regions within mitochondria compared to oxidative regions

within non-mitochondria

6. PEST oxidative regions within mitochondria compared to oxidative regions

within non-mitochondria

7. RKPT oxidative regions versus PEST oxidative regions in mitochondria

8. RKPT oxidative regions versus PEST oxidative regions in non-mitochondria

9. All words from mitochondria compared to all words from non-mitochondria

protein content

We first describe the method utilized to obtain the structural features located

within the oxidative and non-oxidative protein of mitochondrial and

non-mitochondrial sequence data. The Garnier tool [97], available in Emboss’
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Figure 10.5: The flowchart for the method (Part 1). Here we describe our method
using an sample protein sequence which is processed by EMBOSS’ protein prediction
tool to ascertain the protein’s functional structure (C = Coils, E = Sheets, H =
Helices, T = Turns). The individual locations where oxidation sites were detected
are extracted from the structural sequence to uncover the structure-feature words at
these locations. These words are then used to build a new sequence containing all
oxidation site structural information.

bioinformatics toolkit [243], is a prominent software for the convenient prediction of

protein secondary structural sequences [232;330]. Each organismal protein of our study

was applied to this tool to determine a likely protein structure. We refer to the

structural sequence as a that which was prepared by Garnier to predict the

structures of the protein. This sequence is comprised of the alphabet {C, E, H and

T} for {Coils, Sheets, Helices and Turns}, respectively. The term, word is reserved

for regions which have been isolated from this structural sequence and are composed

of protein structural information at oxidative sites. We use the term, motif, to

imply a region that is made up of amino acid information and is derived from a

protein sequence. We will use these two terms in the description of our method.

In each protein, we determined the locations of the oxidation of the RKPT and

PEST motifs. Since the relationship between an amino acid sequence (protein) and

a structural sequence is one-to-one, we determine their structural nature from the
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structural sequences. At each oxidation site of length-4 (according to the location of

the motif in original protein sequence), we recorded the length-4 word with a length-2

flanking region at both ends from the structural sequence. By adding this flanking

region, we amassed more information concerning its structure. Each structural word

was recorded and then removed from the structural sequence which we maintained

for further testing. To avoid introducing new words into the sequence from its joining

regions, we inserted a delimiter at the locations in the structural sequences. The

words that were removed were recorded in lists and were later used to create a new

sequence where each listed word was placed adjacently with the next listed word,

separated by delimiters. In Figure 10.5, we see the words of length-4 (and its length-

2 flanking regions) being extracted from a structural sequence. These extracted words

are shown to be used to create a new sequence which only contains the structural

details of the oxidative regions. The structural sequences (devoid of oxidative motifs

) are also maintained for later use.

10.5.1 Grouping Structural Elements

We define a grouping to be a specific word cluster where all members share a common

prominent structure (e.g., a coil, helix, sheet or turn). In order to quantify the

groupings which were derived from the sequence containing only structural content

from the oxidative regions, we employed a sliding-window which moved from left to

right down the sequence to extract all words of length-2 through 8. For each obtained

word of a set for a particular length, we extracted its proportion (e.g., the sequence

coverage) using the same equation as the one mentioned above in Section 10.3.3.

This proportion was used to drive our non-parametric statistical tests which are

discussed later. We extracted the word groupings (the dominant structural groups)

by determining the most abundant character in the words using a majority ruling.

In the case where there was a tie between two abundant characters in a word we
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helices and turns were the most abundant kinds of structural features making up

RKPT oxidative regions. These features, by comparison, were not prominant in the

non-oxidative regions. In Figure 10.8, CH (coils and helices) were the most prominent

groupings of the PEST oxidative regions. From these two tests, we esteem that helices

which become curves (or curves which become helices) are very important structures

making up the oxidative regions. We suggest that any oxidative regions which are

located in mitochondrial protein may have survived so long by virtue of the fact that

they were likely hidden deep within helices and curves and were therefore unable to

interact with agents of carbonylation when under conditions of stress. All graphs

concerning this work are available in the supplementary data.

In the tests of oxidative regions within non-mitochondria compared to

non-oxidative regions within non-mitochondrial protein, of Figures 10.9 and 10.10,

we note the appearance of a length-4 grouping, CEHT. We note that this word

implies that all four structures were found close to each other that made up some of

the oxidative regions in non-mitochondrial proteins. In Figures 10.9 and 10.10,

curves and helices (especially for PEST motifs) were again important features in

non-mitochondria which may appear to attract the oxidative motifs . Since complex

structures of length-4 were not found mitochondrial oxidative motifs (from Figures

10.7 and 10.8) we may conclude that mitochondrial oxidative content was not found

in these features. This adds support to a notion that oxidative regions exist in the

simple joins between two kinds of basic structures.

In the tests of oxidative regions within mitochondria compared to the oxidative

regions within non-mitochondria (Figures 10.11 and 10.12) we determine that RKPT

motifs appeared to form joins of helices and turns (or vice versa) in mitochondria

since HT in Figure 10.11 was exceptionally prominent. This supports the preference

of the motif set for helices and turns of Figure 10.7. In the PEST motif set of non-

mitochondria, joins between coils and helices were important structural features in
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and PEST motif sets, which are responsible for types of protein carbonylation and

degradation, would not enrich or positively contribute to the survival rates of the

associated organelles. In this case, we maintain that they would likely be avoided by

the protein sequence structure and may even be removed by evolutionary processes.

We also note that there was no significant difference between the word proportions

for structures mitochondrial and non-mitochondrial proteins. The differences only

became visible when comparing the oxidative and non-oxidative content. We noted

that the joining points where structural elements met were generally found in the

oxidative regions of both protein sets. We found that there was a lower percentage of

these joining-regions in the mitochondrial set compared to the non-mitochondrial set.

For instance, in mitochondria, the largest percentage of structural joins in the RKPT

oxidative set tended to be made up of helices joining with turns (see Figure 10.7).

However, the PEST set was found in fewer types of joining regions with the largest

percentage occurring in the joins of coils to helices. There are four types of structural

elements and every possible join between them occurs in the RKPT regions. This is

not the case for the PEST content which was contained in four of the six possible

joins (see Figure 10.13). In particular, this set is missing the HT variety of join which

is the prominent in the RKPT regions.

Oxidation sites in non-mitochondrial protein may not be exposed to a constant

source of oxidative carbonylation. For this reason, their numbers may not have the

same evolutionary pressures to be reduced as imaginable in mitochondria. On a

final note, these sites in non-mitochondrial proteins may also reside deep within the

cell where they are protected from the sources of oxidation. In future works, we

will study a wider variety of proteins from diverse organisms and tissues-types to

determine levels of carbonylation content. We esteem that similar tissue-types may

have comparable levels of oxidative motifs .
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10.8 Article Details

This contribution was published in Computers in biology and medicine, 2014

• Bonham-Carter, Oliver, Jay Pedersen, and Dhundy Bastola. “A content and

structural assessment of oxidative motifs across a diverse set of life forms.”

Computers in biology and medicine 53 (2014): 179-189.
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Life is really simple, but we insist

on making it complicated.

Confucius

Chapter 11

A Study of Bias And Increasing

Organismal Complexity From

Their Post-Translational

Modifications And Modification

Site Interplays

11.1 Abstract

Post-translational modifications (PTMs) are important steps in the biosynthesis of

proteins. Aside from their integral contributions to protein development that

perform specialized proteolytic cleavage of regulatory subunits, the covalent

addition of functional groups of proteins, or the degradation of entire proteins,
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PTMs are also very involved in enabling proteins to withstand and recover from

temporary environmental stresses (i.e., heat shock, microgravity and many others).

The literature supports evidence of thousands of recently discovered PTMs,

many of which may likely contribute similarly (perhaps, even, interchangeably) to

protein stress response. Although there are many PTM actors upon the biological

stage, our study determines that these PTMs are generally cast into

organism-specific, preferential roles. For this contribution of the thesis we study the

PTM compositions across the mitochondrial (Mt) and non-Mt proteomes of eleven

diverse organisms to illustrate that each organism appears to have a unique list of

PTMs, and an equally unique list of PTM-associated residue modification sites

(MSs) where PTMs interact with protein.

Despite the present limitation of available of PTM data across different species, we

apply existing and current protein data to illustrate particular organismal biases. We

explore the relative frequencies of observed PTMs, the MSs, and general amino acid

compositions of Mt and non-Mt proteomes. We apply this data to create networks

and heatmaps to illustrate the evidence of bias. We show that the number of PTMs

and MSs appears to grow along with organismal complexity which may imply that

environmental stress could play a role in this bias.

11.2 Introduction

11.2.1 PTMs

It is extremely likely that all proteins naturally undergo some level of structural

and, therefore, functional alteration by post-translational modification (PTMs).

Although many thousands of PTMs have been discovered (7,308 experimentally

identified PTMs and 234,938 putative modifications on 530,264 proteins according

to [148]), there are some (i.e., acetylation, glycosylation, phosphorylation, proteolysis,
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lipidation, methylation, nitrosylation, ubiquitination, and others) which commonly

interact with proteins at specific modification sites (MSs). The amino acids are at

precise locations of the protein chain and their interactions with PTMs inspire

changes in protein conformations. PTMs have been shown to play prominent roles

in protein alteration for destruction [32;34], general regulation [224;312] and stress

response [177;227;281]. In this way, PTMs are able to greatly expand the functional

diversity of the proteome and disprove the one-gene-one-protein hypothesis.

To add functional diversity and adaption to their alternative environments [271],

proteins may respond to stresses by a transformation of structure and hence,

function. For instance, a protein stress may result from an event or treatment which

leads to protein failure when the protein is forced to sustain its duties under

unnatural circumstances such as environmental stress. Across seemingly all

proteins, PTMs offer an extremely rapid solution for withstanding naturally

occurring environmental stresses such as microgravity [17], drought [108], thermic

shock [223;283] and others. Stress responses resulting from the proteins themselves are

also conducted by phosphorylation as in the case of initiation and regulation of

tumor suppression by the p53 complex [177] and SUMOylation for its response to

oxidative stress [227]. Furthermore, by intervening with PTM function, therapies may

be created to treat types of cancer [266] or be used to maintain cellular

homeostasis [87;281]. A modification is immediate as it does not necessitate the

re-synthesis of a new protein to cope with environment stresses. Once the stress is

removed, PTMs are often able to restore the protein to its previous conformation [20].

11.2.2 Biases

PTMs also show evidence of preferential treatment. Discussed in Khoury et al. [148],

PTM activities from acetylation, glycosylation and phosphorylation were frequently

observed in their data, however, there were many PTMs which were rarely exerted
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(i.e., FAD, bromination and many others). A PTM bias between related proteins

may conveniently be observed using public data such as UniProt [9]. For example,

Sir1, also known as the NAD-dependent protein deacetylase sirtuin1, is a regulatory

protein found in human and mouse. The Sir1 Human (UniProt: Q96EB6) and Sir1

Mouse (UniProt: Q923E4) had a listing of 19 and 13 observed PTM interactions,

respectively. Although there were 16 phosphorylation sites in Sir1 Human and only

10 in Sir1 Mouse, acetylation was observed only in mouse protein. Here, we note that

these two similar proteins offer high granularity evidence for the existence of PTM

bias between human and mouse.

11.2.2.1 Research Statement

In this contribution, we extend and advance our earlier study, [35], which described

some of the initial patterns of PTM bias inherent in some of the organisms of the

present study. We studied the proteomes of eleven diverse organisms shown in Table

11.1 to show that each organism has unique PTM biases and an associated MS bias.

We present evidence that the number of observed PTMs and MSs by organism appears

to increase with organismal complexity. To clearly describe these biases, we employ

heatmaps and networks which are built from relative frequency data that we harvested

from parsing data available from UniProt. Since mitochondria (Mt) have unique

genomes and therefore unique proteomes, we extend our study of protein PTM biases

to these organelles to describe their PTM and MS biases by organism. Since Mt

are highly conserved across biology, we show that their PTM employment is not a

conserved entity. Finally, we show that the trends of increasing PTM and MS bias

are both observed in Mt and non-Mt with similar degrees of clarity.
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11.3 Methods

For the organisms of Table 11.1, protein data was downloaded in June 2015 from

UniProt, a public protein knowledge base that provides curated data. At the time of

our study, our downloaded set was the most currently available. The curated protein

records were divided into Mt and non-Mt sets, depending on their origins for each

organism. For every protein of each set, the PTM data was assembled – the type

and number of PTM as well as their associated MSs which were often unique to each

particular PTM. In Figure 11.1 (created by http://bioinformatics.psb.ugent.

be/webtools/Venn/), we illustrate the counts of PTMs which were obtained across

the organismal Mt and non-Mt sets, taken all together. Since the organization of the

Mt genome is highly conserved in insects, as in most other bilateral animals [37;168], we

maintain that the patterns that we were able to find in Mt may likely be extended to

other types of organisms as well, although the nuclear proteins may not be similar.

We noted that there were often cases where a specific PTM type was given by

UniProt that actually fell into a more general category. For example,

N-acetylalanine and N-acetylaspartate are actually two specific types of acetylation.

There were many other cases where specific PTMs (often specifically named due to

their associated MSs) could be reduced to more general denominations. In order to

simplify PTM quantifications during our analysis, we followed the PTM conversion

documentation available by UniProt to record the general PTM denominations.

These frequently occurring PTMs describe evidence of PTM bias even from a high

granularity. Specifically, the order of the first and second most frequently observed

PTMs (generally, glycosylation and phosphorylation) were not unanimously

conserved across the organisms, as noted in Table 11.1.
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11.3.1 Organismal Protein Samples

In Table 11.1, we indicate the actual number of proteins analyzed as well as the

two most commonly occurring PTMs from the Mt and non-Mt protein sets of each

organism. In the second and third columns of Table 11.2, we display the number of

processed Mt and non-Mt UniProt protein records, respectively. In the fourth column,

we present the size of the exhaustive list of organism-specific (curated) proteins from

UniProt from the time of our study. In this column, there are records containing

PTM information, as well as many where PTMs are not discussed. By comparing

the numbers of records where PTM information is known to the numbers where it is

lacking, it is obvious that much work is yet to be done to complete our knowledge of

PTMs.

In the fifth column we illustrate an estimation for the number of scientific

articles available from the National Center for Biotechnology Information (NCBI),

where PTM information may be extracted to populate protein records with PTM

information (likely by UniProt and others). To estimate the number of NCBI

articles, we applied the text mining analysis implemented in [27;47] that served to

locate all article abstracts containing relevant keywords: protein names, PTM types

and other words for syntax.

The organisms were diverse and represented a wide spectrum of biology [309]. We

divided the protein data between Mt and non-Mt sets. Unlike the Mt genome which

may be highly conserved across biology, the non-Mt protein is generally more diverse

and may be more revealing of natural bias from organism to organism. Proceeding

protein by protein for each organism, we determined the types of PTMs, the count of

each and their associated MS type. We note that although there are many different

kinds of PTMs in nature, we restricted our study only to those PTMs that have been

observed to interact with single amino acids (i.e., a length-1 motif) along the protein

sequence (a single MS). Figure 11.2 describes the procedure for capturing the data
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Table 11.2: The table to show the number of protein records by organism available
for our work. The second and third columns display the number of Mt and non-Mt
UniProt protein records, respectively. The forth column describes the exhaustive
number of protein records where PTM are discussed in some of the articles. The fifth
column provides an estimation of the number of scientific articles from the literature
that may have been sources of PTM information for protein records. This data was
furnished by text mining the NCBI body of literature.

Organism Unique
PTM
records
(Mt)

Unique
PTM
records
(non-
Mt)

Total
protein
records
(Mt and
non-Mt)

Total
NCBI
articles

A. thaliana 116 3809 13943 260
A. nidulans 4 283 914 21
C. elegans 16 711 3537 339

C. familiaris 24 613 812 2
D. rerio 22 611 2945 8

H. sapiens 589 11419 20207 191
M. musculus 564 10032 16718 21
O. cuniculus 30 661 889 0
R. norvegicus 374 5115 7923 7
S. cerevisiae 212 3005 7900 461

X. laevis 22 692 3394 67
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Figure 11.2: All Mt and non-Mt proteins were examined in each organism of our study.
We recorded the protein type (Mt or non-Mt), the PTMs of the protein and their associated
MSs. This information was used to assemble relative frequency data.

which we then used to calculate frequencies (explained in Section 11.3.2). We note

that the data used to calculate these frequencies may have had incomplete references

due to the general difficulties of extracting PTM information from physical protein

samples in a wet lab. In light of such a limitation, however, we believe that the

design of this study is still worthy of providing detailed patterns of PTM bias across

the organismal data. Furthermore, as more data becomes available, our method may

again be applied to discover new patterns.

11.3.2 Computing Frequencies

Due to the common hardships of applying limited computing resources to processing

voluminous quantities of data, a statistical analysis is often appropriate [28;30].

Furthermore, frequency analysis is especially well suited for comparing large

datasets and discovery as it embraces convenient techniques of network analysis to
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ascertain natural patterns [33;296]. Here we discuss the collection of frequency

information which is later used to build networks to discover PTM and MS biases.

We used relative frequencies to determine all PTM occurrence magnitudes for

elements that have been observed to interact within the Mt and non-Mt proteomes

of an organism. We note that frequency distributions are collected in isolation for

each proteome of each organism. This implies that the frequency distribution of any

proteome may be compared to any other distribution. All records of proteins were

downloaded from UniProt which were parsed using an in-house program. Across

all the organisms of Table 11.1, we made a tally of the number of PTMs and MSs

that had been observed throughout the proteins of each proteome for each organism.

Additionally, we also collected the occurrence magnitudes for each non-MS amino

acid for the later comparison of MS distributions to ordinary amino acids in each

proteome.

We note that PTMs have specific names which generally imply information about

their MSs. In our work, we generalized the PTM names into basic rubrics (i.e.,

N-acetylalanine, N-acetylaspartate, N-acetylatedlysine and N-acetylcysteine are all

kinds of acetylation) since we were also collecting the associated information about

MSs. Once all the proteins of an organism were parsed for their PTM, MS and

amino acid tallies, we applied this data to three equations to derive relative frequency

information. Using Equation 11.1, we calculated the PTM frequencies. This equation

determined the occurrence magnitude of each unique type of PTM by dividing the

number of its counts into the combined number of all observed PTMs by proteome.

For example, glycosylation generally appeared many times in a proteome and our

calculation combined all its observations by proteome to create one relative frequency

value.

The information concerning PTM and MS interactions was recorded. Similar to

how we calculated PTM frequencies, we employed Equation 11.2 to calculate MS
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Figure 11.3: An example of how relative frequency information was extracted from protein
data. For each organism, all Mt and non-Mt protein records were queried to ascertain
their observed PTMs that have been curated by UniProt. The type and count of each
PTM, including its associated MS was recorded to calculate frequencies by Equations 11.1
and 11.2. Not shown, the occurrence magnitudes of all amino acids (non-MSs) were also
obtained and applied to Equation 11.3 to determine the general amino acid compositions
of each proteome.
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frequencies. The relative frequency of a particular MS type was found by dividing

its tally into the combined number of all observed MSs by proteome. Visualized

in Figure 11.3, a count of each PTM type was created for each organism and the

PTM frequencies were calculated from this information in each of the Mt and non-

Mt protein datasets for each organism. We used this information to populate Table

11.1. We noted an apparent preference for individual PTMs across the organisms.

For instance, although glycosylation and phosphoserine were popular PTMs for many

organisms, they do not appear to always achieve the same first and second rankings

in the organisms. In addition, we noticed that Caenorhabditis elegans was the only

organism of our set which had a high frequency for lipidation and Aspergillus nidulans

was the only organism to exhibit methylation.

We now discuss the equations. Across each organism j, for a specific element i

(i.e., PTM, MS, or Amino Acid), the relative frequency of a particular PTM(i,j) and

its associated modification site, MS(i,j), were calculated by Equations 11.1 and 11.2,

respectively. We note the use of the count() function which determines the number

of occurrences of the element in the current dataset. Across all PTMs of organism j,

the relative frequency of a particular PTMi,j may be found by the following;

freq(PTM(i,j)) =
count(PTM(i,j))∑N(PTMs)

i=1 count(PTM(i,j))
(11.1)

Across all reactive sites found associated with the PTMs of organism j, the

frequency of a particular amino acid modification site, MSi,j, may be found by the

following equation.

freq(MS(i,j)) =
count(MS(i,j))∑N(MS)

i=1 count(MS(i,j))
(11.2)

The counts of each amino acid of each proteome were also tallied to determine

relative frequencies for each organism, j. Akin to simply placing all the protein
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sequences of a proteome end-to-end to create one sequence, Seq, we determined the

amino acid composition and frequencies using Equation 11.3.

freq(AA(i,j)) =
count(AA(i,j))

|∑NProteins

i=1 Seq(i,j)|
(11.3)

11.3.3 Building Heatmaps And Networks

Heatmaps: A heatmap is a color-coded matrix of numerical values which have been

clustered across the top and the side. We used heatmaps to determine the amino acid

compositions across proteomes for comparison to the PTMs biases in their proteomes.

Heatmaps are useful in comparing different large sets of data together in terms of their

frequency or other numerical information. Our general heatmaps of Figures 11.4 and

11.5 were created from the relative frequency data from Equations 11.1 and 11.2,

respectively, and applied to the method described by [155]. Equation 11.3 was utilized

to calculate the frequency of occurrence of each amino acid, regardless of also being

an MS. These results are shown in Figure 11.6.

Since PTMs (i.e., phosphorylation and others, for example) may interact with

several different MSs simultaneously [323], we determined that the details of their

relationships would be obvious when described in networks where individual

interactions between PTMs and MSs may be explored in detail.

Networks: Our networks were built from relative frequency data by applying

Equations 11.1 and 11.2 using [261]. In the networks of each proteome, we determine

the frequency magnitude by the size of the node: larger nodes describe more common

occurrences. The left and right sides of the networks represent the PTM and MS

populations (respectively) which were found in a proteome. The edges between the

PTMs and MSs were calculated by the product of the PTM and MS frequencies. Since

an interaction is not mutually exclusive, this calculation describes the interaction

magnitude between the pair. Here, we note that the heavier edge weights describe
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In Figure 11.4, we display the Mt and non-Mt heatmaps. Here, the counts of

PTMs were eight and three for Mt and non-Mt, respectively. It is interesting to note

that in non-Mt, the three PTMs, glycosylation, phosphorylation and methylation

are some of the more adaptive PTMs that are able to modify many different types

of proteins [211] and have been observed to commonly interact together. We note

from these heatmaps that related organisms generally appeared to have similar

types and frequencies of PTMs. For example, the mammals of our data, Rattus

norvegicus (rat), Mus musculus (mouse), Oryctolagus cuniculus (rabbit) and Homo

sapiens (human) are closely clustered according to their PTM frequencies. In

non-Mt, all mammals, including Canis familiaris (dog), were clustered together

with the inclusion of Saccharomyces cerevisiae (yeast). Although Mt are highly

conserved across organisms, we find that there is enough difference between PTM

populations in the data to suggest that sequence similarity may not play much of a

role. Extending this idea to the non-Mt protein data, we suggest that the clustering

of mammal data in Figure 11.4 could be due to environmental conditions.

Mt is highly conserved across organisms and so we may expect to see less

diversity in PTMs in this set, however we found that of the eight PTMs (shown in

Figure 11.4), only glycosylation and phosphorylation were also common to the

non-Mt set. The other PTMs may be involved in Mt-specific activities such as lipoyl

for metabolism [256] and acetylation that has been known to target large

macromolecular complexes involved in diverse cellular processes for regulation [63].

In Figure 11.5 we note the associated amino acids which play roles as MSs in Mt

and non-Mt. No frequency threshold was necessary since nearly all amino acids had

strong frequencies (note the warmer colors). We observed that there was much more

variety in selection for MSs in the non-Mt set than the Mt set. This signifies that

there is more promiscuity in terms of PTMs interacting with diverse MSs in non-Mt

and suggests that amino acids may have few restrictions in terms of their roles with
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ubiquitination [107]. In [43] and [173], phosphorylation has been observed to disrupt

FoxOs interaction with 14-3-3 proteins (likely at ww-domains [263]) to allow nuclear

translocation of FoxO [2] and initiate programmed cell death (apoptosis).

PTMs that influence domains have been studied in the context of heart failure and

arrhythmia as a result of functional defects in cardiac type 2 ryanodine receptors on

the internal sarcoplasmic reticulum (SR). Specifically, the disease of this contractile

protein (muscular) machinery has been attributed to regulation failure of the Calcium

(Ca2+) release channels in the SR. Shao et al. discovered that carbonylation (a PTM)

may be responsible for the (Ca2+) dysfunction which was observed to disable two main

lysine amino acid sites (at positions 2190 and 2887), flanking the RyR2 (ryanodine

receptor: a Ca2+ release channel) subdomain site [269]. By disabling these lysine sites,

the N-terminal and central protein domains of RyR2 (near two subdomains at position

2000 - 2500 and 2234 - 2750) were observed to be destabilized and unable to properly

regulate Ca2+ for normal muscle function.

In a related study, [268], the activity of SERCA2a (a protein that undergoes a

series of timed conformational changes to hydrolyze ATP and transport Ca2+ [290])

was studied in heart tissue. Here, the authors found that Ca2+ transport (regulated

by the SERCA2a) may be reduced or disabled when amino acid sites are neutralized.

For instance, four sites were studied which reside in the protein’s domains; A-domain:

{R164}, N-domain: {K476, K481}, and P-domain: {R636}. The study found that

Ca2+ transport was reduced or prevented by the paired modification (carbonylation

/ charge neutralization by conversion to glycines) of {R164, K481}, {K476, R636},
and {R164, R636} (carbonylation / charge neutralized by conversion to tyrosines)

to suggest that these amino acids behave as functional switches. In addition, the

carbonylation / charge neutralization of {R164, K476, K481, R636} by conversion

to tryptophan (which also increased the hydrophobic bulk of the sites), reduced the

ability of SERCA2a to transport Ca2+. The above two findings support the notion
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elements.

11.4.4 Pearson’s And Kendall-Tau Correlation

Due to the insufficient number of data points, we used both parametric (Pearson’s)

and non-parametric (Kendall-tau) correlation tests to calculate a statistic between

the set of organism rankings and the sets of PTM and MS counts, for each protein

type (i.e., Mt and non-Mt). We tested Hypothesis 5, 6, 7 and 8 and our summarized

data can be found in Table 11.3. In the table, we show that the set of complexity

rankings (1 through 11) is consistently correlated to PTMs of Mt protein and MSs of

non-Mt protein.

Null Hypothesis 5. No relationship exists between the organism rank and the PTMs

in Mt.

Null Hypothesis 6. No relationship exists between the organism rank and the MSs

in Mt.

Null Hypothesis 7. No relationship exists between the organism rank and the PTMs

in non-Mt.

Null Hypothesis 8. No relationship exists between the organism rank and the MSs

in non-Mt.

11.4.4.1 Mt And Non-Mt Networks

Although there were often cases of common PTMs observed between Mt proteomes

(i.e., phosphorylation and acetylation), the Mt networks themselves presented a

decided difference between kinds and types of PTM usages. In terms of PTM and

MS connections from organism to organism, we found low to high levels of

interactions between these nodes. For instance, in Figure 11.8 (Aspergillus nidulans)
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Table 11.3: The Pearson and Kendall-tau correlation values of implied organism
complexity, and PTM and MS magnitudes. In this table, we assigned complexity
values based on inspection of the general number of connections between PTMs and
MSs in the networks. We computed a parametric (Pearson) and a non-parametric
(Kendall-tau) correlation coefficient between the set of organism ranks and the set
of PTM counts for each protein type (i.e., Mt and non-Mt). These two different
correlation tests were employed to provide a wider view of correlation between the
limited number of data points of each set. Three out of the four Pearson and Kendall-
tau rank correlation tests were found to be significant. However, in both tests, the
Mt and non-Mt PTMs were consistently correlated with the organism rankings. The
Mt and non-Mt MSs were correlated, but not consistently across both tests.

Mt Non-Mt
PTMs MSs PTMs MSs

Hypothesis 5 6 7 8
Pearson Correlation 0.970 0.935 0.850 0.40
Significance (p < α) 0.01 0.05 0.01 0.05
Pearson correlation significant? yes yes yes no
Kendall tau Rank Correlation 0.661 0.213 1.000 0.841
2-Sides p-Value 0.006 0.441 0.000 0.001
Significance (p < α) 0.01 0.05 0.01 0.05
Kendall-tau correlation significant? yes no yes yes

(fungi), the Mt proteome had only two Mt PTMs (methylation and

pyridoxalphosphate) which interacted at the same lysine site. This was a sharp

contrast to the Mt proteome of Homo sapiens (Figure 11.12), where over 20 Mt

PTMs were observed interacting with a host of different types of MSs and seven (of

this set) were observed to interact only with lysine. In Figure 11.9, Caenorhabditis

elegans (worm), has six Mt PTMs interacting with a variety of MSs, of which four

interacted with lysine. In Figure 11.7, Arabidopsis thaliana (mustard plant), had 14

Mt PTMs, of which five interacted with lysine. The networks describe many other

similar features in terms of PTMs and MSs to show that the employment of PTMs

in the above fungi, worm and human proteomes are quite different.

For each organism, the rule of always having fewer Mt PTMs when compared

to non-Mt data had few exceptions. Such an exception may be noted between the

comparison of Mus musculus (mouse) and Rattus norvegicus (rat) of Figures 11.13
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and 11.15, respectively, which showed that mouse had more Mt PTMs but less non-Mt

PTMs than Rat.

From their enlarged node sizes throughout nearly all Mt networks, acetylation and

phosphorylation were prominent PTMs (often including glycosylation) that tended

to interact with a few specific MSs. In the non-Mt networks, glycosylation and

phosphorylation, were prominent PTMs which tended to interact with a diverse set

of MSs. We refer the reader once again to the Figures 11.4 and 11.5 (heatmaps of

PTM and MS compositions, respectively) to note the prominence of the above PTMs.

We direct the reader to Table 11.5 and Figure 11.18 to show that higher organisms

tended to utilize more PTMs and associated MSs than the others.

Table 11.4: A ranking of proteomes in terms of number of unique PTMs observed (Mt and
non-Mt). The gray fields indicate that the ranking is not the same for both the Mt and
non-Mt sets. The majority of proteomes have the same ranking in both sets.

Mt Rank Org Non-Mt Rank Org

2 A. nidulans 14 A. nidulans
4 X. laevis 22 D. rerio
6 C. elegans 27 C. elegans
8 C. familiaris 34 S. cerevisiae
9 D. rerio 37 X. laevis
11 O. cuniculus 42 C. familiaris
15 A. thaliana 46 A. thaliana
16 S. cerevisiae 49 O. cuniculus
31 R. norvegicus 114 R. norvegicus
33 M. musculus 131 M. musculus
34 H. sapiens 157 H. sapiens

In Table 11.4, the proteomes have been ranked according the number of observed

PTM types. We note that the majority of the proteomes have a similar ranking

(see the non-gray cells). We also note that the organisms appear to become more

complex as more PTMs are observed in the proteomes. For example, in Figure 11.9,

Caenorhabditis elegans has fewer PTMs than the mammals such as Canis familiaris

and Homo sapiens of Figures 11.10 and 11.12, respectively.
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We remark here that inequality may be the result of the types of environmental

stresses which each organism may encounter in its environment. Since PTMs enable

proteins to adapt to stress, the number of PTMs in an organism’s proteome could be

a measurement of the kinds of stresses to which the organism may respond. It may be

that there are many habitats where humans and mammals may thrive but are quite

lethal to Aspergillus nidulans, Arabidopsis thaliana, Caenorhabditis elegans and Danio

rerio, such as arid environments. The correlation, between the number of individual

PTMs and organismal complexity may help to explain why the environments of lower

organisms appear to be specialized in terms of warmth, moisture, humidity and others,

in addition to the availability of food sources. Furthermore, in Figure 11.7, we note

that Arabidopsis thaliana has more PTMs than Caenorhabditis elegans (Figure 11.16).

This could be explained by the concept that plants and fungi cannot easily remove

themselves from their hostile environments and must, therefore, be able to survive

their stresses by applying their arsenal of PTMs. In Table 11.5, we note the counts

of PTMs and MS which exist according our data and UniProt. This data is also

displayed in Table 11.5 and as a scatter plot in Figure 11.18.

Table 11.5: The number of PTMs and MSs, associated with each organism.
Organisms without PTM or MS data are absent from this list. These results are
displayed as a scatter plot in Figure 11.18.

Num Organism PTMs
in Mt

MSs in
Mt

PTMs in
Non-Mt

MSs in
Non-Mt

1 A. nidulans 2 0 14 10
2 X. laevis 4 5 26 20
3 C. elegans 7 4 23 19
4 C. familiaris 8 10 28 20
5 D. rerio 9 7 20 17
6 O. cuniculus 10 9 38 20
7 S. cerevisiae 14 10 23 16
8 A. thaliana 15 11 30 15
9 R. norvegicus 24 14 53 20
10 M. musculus 25 14 52 20
11 H. sapiens 26 14 56 20
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Figure 11.18: The number of PTMs and MSs, associated with each organism. This data
is also shown in Table 11.5.

11.4.5 Bias Analysis Using Gene Ontologies

Environmental stresses may force proteins to alter their conformation by PTMs during

stress responses. Because each protein has a specific function, they are likely to react

in diverse ways to stresses. Some proteins, such as those which are found in Mt,

may also have evolved adaptations to easily cope with types of oxidative stress [34].

To determine the types of PTMs which are involved with particular stresses, we

studied the Homo sapiens Mt and non-Mt proteins for their functions, as a function

of their PTM interactions. We chose acetylation and phosphorylation since they

were commonly encountered PTMs and would likely to be found in many different

proteins. We made a list of all Mt and non-Mt proteins which were found to interact

with acetylation (at least once) and another list of Mt and non-Mt proteins interacting

only with phosphorylation (at least once). Using the method by [303] we extracted a
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list of functions from each protein on the acetylation and phosphorylation lists and

applied them to Venn diagrams, found in the supplementary data: Figures 1 and 2,

and in Tables 1 to 16.

We determined that PTMs interacted with proteins which had some function in

stress response. According to the diagrams, in Mt proteins, both acetylation and

phosphorylation appeared to interact with proteins handling oxidative stress.

Acetylation alone was specific to oxidative stresses responses where-as,

phosphorylation alone was specific to general cellular responses to oxidative stresses.

This is logical to have these PTMs in Mt proteins since these organelles produce

cellular energy by oxidative processes.

In the non-Mt proteins, we noted that acetylation was involved uniquely with

proteins which regulated cellular responses to stress, signaled apoptosis as a response

to oxidative stress and was involved with the cellular response to heat. On the other

hand, phosphorylation was typically involved with proteins which function to regulate

cellular processes and control kinase signaling pathways, in addition to some general

cellular responses to stresses. In the supplementary data, we provide this general

functions information for our protein data.

11.4.6 Poisson Approximation By The Chen-Stein Method

Here we discuss the increasing complexity of the networks of each organism of

Figure 11.7 to Figure 11.17. The complexity of a particular network increases

according to the number of connections that exist between the PTMs and the MSs.

Following a statistical approach similar to [11;236], we provide p-values to support the

notion that higher organisms tended to have more complex networks (i.e., having

more interactions between their PTMs and MS nodes).

We now describe the test. Because more complex networks are characterized by

having more PTMs, MSs and the connecting edges between them (PTM-MS pairs),
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we used the unique counts of these elements to compare the complexities of

networks across the organisms by an, “all-against-all” test. The data we collected is

the following: counts of MSs (Mt and non-Mt), counts of PTMs (Mt and non-Mt)

and counts of PTM-MS pairs (Mt and non-Mt). All this raw data is available in the

supplementary data.

We discuss the test for the connecting edges between the PTM-MS pairs. For

each of the sets of data, and that of Acanthamoeba castellanii for comparison, one

count total for each of the 12 organisms was given. Let x1, x2, ..., x12 denote these

12 counts. We assume each xi is the sum of independent Bernoulli (binary) random

variables. The numbers of such random variables equals the number of the (PTM,

MS) combinations, which we will denote N .

We calculate each xi by the following. Where, i = 1, 2, ..., 12, and j = 1, 2, ..., N ,

we used the following equation.

Bi,j =

⎧⎪⎪⎨
⎪⎪⎩
1 if PTM acts upon MS

0 otherwise

xi =
N∑
j=1

Bi,j, (11.4)

It is well known that if N is large, we may approximate the distribution ot xi

by either the Poisson distribution or a normal distribution. We also assume that

independence of x1, x2, ..., xN . For each pair of organisms (I and J) and provided

that not both xi and xj equal zero, we compute an absolute Z-value |ZI,J | where,

ZI,J =
xi − xj√
xi + xj

(11.5)

Here we used the consistent approximation that the variance of xi is (or is very

close to) xi. In fact, xi is an estimated upper bound on the variance of xi since this



235

variance is less than the mean of this variable. We therefore note that the |ZI,J | value
is a conservative test statistic.

We have also used a Bonferroni inequality adjustment for simultaneous comparison

of all 66 pairs of organisms, which makes these statistical tests even more conservative.

The Poisson approximation element of the test can be used even in some cases of

dependence. The conservative nature of the tests should allow for more than just

slight dependence. Organisms I and J were considered different in terms of their

complexity if the two-sided p-value was less that α
66
, where α is the level of significance.

For our purposes, alpha = 0.05 was sufficient and the p-value for a single test for a

particular pair I,J is given by the following.

p-value = 2

∫ ∞

|ZI,J |

1√
2π

exp−x2

2 dx (11.6)

We noted that a majority of the p-values were less than α
66

= 0.00076 and we

therefore concluded that most pairs of organisms differed in complexity. In Table

11.6, for the (PTM, MS) connections of the Mt organismal proteins, nearly all the

p-values were significant to describe major differences in network complexities. Here,

these tables are read starting from an organism in the left column which is compared

to those in its row. A significant value supports the notion that there are more edges

in the network of the former organism than the latter. Only three tests were not

significant (i.e., Aspergillus nidulans by Oryctolagus cuniculus, Caenorhabditis elegans

by Xenopus laevis and Homo sapiens by Mus musculus). In these three tests, it was

found that the latter of the pair of organisms presented a more complex network

than the former according to the (PTM, MS) edges. In Table 11.7, we note the

results for the non-Mt data. Only two tests (Aspergillus nidulans by Saccharomyces

cerevisiae and Danio rerio by Oryctolagus cuniculus) were not significant to support

a departure of complexities between networks. The full results for the general PTM

and MS complexity comparisons using this same statistical test are offered in the
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supplementary data.

Table 11.6: The p-values of from our Poisson approximation by the Chen-Stein Method
over (PTM, MS) pairs in Mt networks. Significant p-values (i.e., values less than α

66) are
denoted by stars (*) to suggest that these pairs of organisms differ in complexity according
to their networks.

Ac Af At Ce Cf Dr Hs Mm Oc Rn Sc Xl

A. castellanii * none * * * * * * * * *
Af * * * * * * 0.147 * * *
At * * * * * * * * *
Ce * * * * * * * 0.155
Cf * * * * * * *
Dr * * * * * *
Hs 0.057 * * * *
Mm * * * *
Oc * * *
Rn * *
Sc *
Xl

Table 11.7: The p-values of from our Poisson approximation by the Chen-Stein Method
over (PTM, MS) pairs in non-Mt networks. Significant p-values (i.e., values less than α

66) are
denoted by stars (*) to suggest that these pairs of organisms differ in complexity according
to their networks.

Ac Af At Ce Cf Dr Hs Mm Oc Rn Sc Xl

Ac * * * * * * * * * * *
Af * * * * * * * * 0.40 *
At * * * * * * * * *
Ce * * * * * * * *
Cf * * * * * * *
Dr * * 0.002 * * *
Hs * * * * *
Mm * * * *
Oc * * *
Rn * *
Sc *
Xl
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11.4.7 Protein Isoforms In Organsims

Since much evolutionary time separates the complex organisms from the lower ones,

conserved yet divergent isoform proteins are likely to exist. These isoforms may have

originated from paralogous and alternatively spliced mRNA to create alternative gene

products and functions from single coding sequences. It is known that alternative

splicing is likely to encourage transcriptome diversity [38]. For instance, in [44], it was

discussed that alternative splicing may have led to the larger divergence noted between

the higher and lower organisms. In our own study, we also noted a wider divergence

in PTM and MS usages between the higher and lower organisms.

During this evolutionary time, there is more opportunity for the generation of

isoforms which may utilize PTMs in diverse ways. For instance, in Figure 11.19, we

note that the mammals, notably Homo sapiens, Mus musculus, Rattus norvegicus,

have more isoform proteins than the other organisms according to UniProt. To

gather these results, we searched for all proteins corresponding to each organism

and then we counted the number of isoforms. In addition to their abilities to

respond to stresses, increasing PTM populations by organismal complexity may also

be explained by their involvements with specific isoform-specific functionalities such

as RAS protein isoforms [1] and 14-3-3 protein isoforms [252]. Also in Figure 11.19, we

note that Arabidopsis thaliana had a large number of isoforms (compared to the

others) which may help to explain its complicated networks shown in Figure 11.7.

11.4.8 Notable PTMs

The most frequently occurring PTM in our network models was phosphoserine,

among both the Mt and the non-Mt proteins. This particular PTM represents the

phosphorylation of serine base in a protein’s amino acid sequence and is one of the

most common modifications to proteins that can alter functionality. Among other

sites such as threonine, tyrosine and histidine residues, serine is the most common
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Figure 11.19: The number of isoforms of the organisms in our study. These counts were
prepared by querying all organismal proteins in UniProt and then determining how many
isoform proteins were present. The increasing number of isoforms may help to explain the
increasing number of PTMs in higher organisms. Note that Aspergillus nidulans has been
omitted due to the lack of isoform information.

type of phosphorylation. Serine phosphorylation like other phosphorylations can

cause structural changes in proteins to activate or deactivate them.

Glycosylation is the result of a carbohydrate molecule that is added to a

hydroxyl group, or another functional group of another molecule, (a glycosyl

acceptor) in protein. The majority of the proteins synthesized in the rough

endoplasmic reticulum undergo glycosylation. Although we found traces of

glycosylation in the Mt proteomes of our data, we generally found more

glycosylation in the non-Mt proteomes. In plants, however, Mt have the function of

photo respiration requiring glycosylation. Although there may be other more

pertinent reasons, the rich glycosylation observed in the Mt proteome of Arabidopsis
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thaliana (of Figure 11.7) may be due to performing aerobic respiration.

Interestingly, no glycosylation was observed in the Mt proteome of Caenorhabditis

elegans of Figure 11.9.

Acetyllysine is another important PTM that adds an acetyl group to a lysine

residue in proteins. The acetylation of lysine (K) residue is considered as a regulating

mechanism for various epigenetic factors [41;118]. We observed higher amount of N6-

acetyllsine in Mt proteins and was conserved across Homo sapiens, Mus musculus,

Oryctolagus cuniculus and Rattus norvegicus.

11.5 Conclusions

A bias is a preferential treatment of some element. Despite the present limitation

of available PTM data across different species, our goal was to describe biases of

PTM usage inherent to organisms using the most current available data. In this

contribution, we used basic frequency information to produce evidence of the bias in

the usage of PTMs, MSs and amino acids. We applied this frequency data (PTMs and

MSs) to create heatmaps and networks which gave clear details about the differences

between organismal proteomes. From the heatmaps and the networks, we noted that

PTMs and MSs have very different compositions between proteomes. We observed

that the non-Mt networks were generally more dense and more populated by PTMs

and MSs than the Mt network of the same organism.

We noted that an organism’s PTM and MS bias is not likely explained by its amino

acid composition (from Figure 11.6) since the compositions were too similar between

all organisms. Instead, this bias must come from another source which we suggested

was related to environmental stress response. Since PTMs enable stress response in

protein, our study supports the notion that the environmental stresses of its habitat

may likely play a role in an organism’s PTM and MS bias. This finding is strengthened
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by the discussion of the high number of PTMs and MSs that were observed in the

networks of Arabidopsis thaliana and Aspergillus nidulans (Figures 11.7 and 11.8,

respectively). We note that the survival of these, and other plant organisms, may be

based on their ability to tolerate their environmental stresses. Furthermore, we noted

that the organismal complexity increased in tandem with the number of observed

PTMs in both the Mt and non-Mt proteomes. This, we speculated, may be due in

part to the ability of the more complicated organisms to inhabit regions that host a

wider variety of environmental stresses than those habitats of the less complicated

organisms, with the exception of plants.

Our study showed that PTMs such as acetylation and phosphorylation were

common to the Mt proteomes and glycosylation and phosphorylation were

prominent across the non-Mt proteomes. Although many of the PTMs were

common throughout our organismal data shown in Table 11.1, we noted that the

individual organisms tended to interact with MSs in different ways. For instance, in

all networks (Mt and non-Mt) the PTMs themselves did not interact consistently

with the same MSs, across the organisms. In non-Mt proteomes, we observed that

PTMs were more promiscuous in their interactions with MSs and often a particular

PTM would interact with several different MSs simultaneously. This was generally

not the case in the Mt networks. Here these PTMs tended to interact with the same

MSs across the organisms. This finding may be partially explained by the conserved

nature of Mt but says nothing about the environmental stresses which the organelles

may have to tolerate from the organism’s habitat. Importantly, the differences in

the frequencies of PTM and MS usage across the data may suggest a unique

organismal mechanism which supports our contention that environmental stress is

likely the motivator of bias.

In future work, we intend to investigate the influence of stress on PTMs. In

particular, in protein stress response systems, we intend to study the relationships
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between stresses and the PTMs of proteins which are related to specific functional

groups across this and other organismal data.

11.6 Article Details

This contribution was published in Briefings in Bioinformatics, 2016.

• Oliver Bonham-Carter, Ishwor Thapa, Steven From and Dhundy Bastola, “A

study of bias and increasing organismal complexity from their post-translational

modifications and reaction site interplays”, Briefings in Bioinformatics, 2016,

bbv111.
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It is a capital mistake to theorize

before one has data. Sherlock

Holmes, A Study in Scarlett

(Arthur Conan Doyle).

Chapter 12

A Text Mining Application For

Linking Functionally

Stressed-Proteins To Their

Post-Translational Modifications

12.1 Abstract

In the proteome, stresses may work against optimal protein function and PTMs

play roles in protein stress responses. Many peer-reviewed articles are available to

bioinformatics research in the literature, however, the details of stress, protein and

their PTM interactions have been scattered throughout the literature and these

concepts are mentioned amongst the other details of respective studies. In each

publication, for instance, there are many small pieces of knowledge which could be
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combined to build a better understanding. Since it is impossible to harvest all of its

available knowledge using manual means, text mining methods are an attractive

approach to assemble ideas from articles where these concepts may not have been a

main focus.

In this contribution of the thesis we present a text mining method to harvest and

assemble a knowledge base relating to the relationships of stresses, proteins and PTMs

from the literature. Although we also studied the stresses, proteins and PTMs which

were associated with apoptosis, diabetes and Parkinson’s diseases in the literature, to

introduce our method, we address these concepts as they are related to Alzheimer’s

disease. We use the results from our text mining tool to process article abstracts to

build networks which suggest how functional proteins may be linked to environmental

stresses and their PTMs. We discuss how networks of biologically relevant keywords

may eventually be used to describe directions in research which could be further

explored to forecast new trends of studies. We also show how our method may help

to predict stress, protein and PTM associations which may be included in these future

studies.

12.2 Introduction

Post-translational modifications (PTMs) are steps in biosynthesis that alter a

protein’s physical confirmation. Since the protein structure and function are

intimately connected, a change in its conformation will lead to a new function. In

the human proteome, where more than 400 human PTMs have been observed [148], it

is very likely that all proteins are regulated by PTMs at some point in their lives.

Apart from preparing proteins for particular duties in specific locals, one of the

most fascinating aspects of PTMs is that they generally enable stress responses

throughout seemingly all proteins. For example, PTMs enable tolerance to heat



244

shock in eukaryotic cells [157], resistance to types of aging [81] and are active in

overcoming the stress caused by reactive oxygen species [306]. When a protein is

exposed to stress, common PTMs such as phosphorylation, for example, may

rapidly phosphorylate specific amino acids of the protein to initiate physical

changes. Once the stress has elapsed, these sites are often dephosphorylated to

return the protein back to its original conformation.

Apoptosis, as well as ailments such as Alzheimer’s, Parkinson’s diseases, and

diabetes, are characterized by the alteration of proteins where PTMs also play

roles [104;297]. In the diseases, it has been suggested that proteins have succumb to

environmental stresses and failed due to faults in PTM-driven stress responses. For

example, mitochondrial (Mt) disorders stemming from protein misfolding

(implicating PTM failures) are also linked to the onset of Alzheimer’s disease [285].

The studies of PTMs have gained much traction and the beginnings of a firm

knowledge base has already begun. In spite of this effort, there is much to learn

about the relationships between stresses, proteins, and PTMs, and about how they

are connected to the ailments (such as those described above). Although there are

prominent studies coming out which focus on these actors upon the stages of other

ailments, it is hard to find many such studies which bring all these elements

together. Fortunately in the literature, there are countless articles where stresses,

proteins and PTMs have been mentioned in studies where these concepts are

relevant but not primary focuses. As it is impractical to manually read all papers

where some mention of these elements may be found, text mining is used to harvest

this knowledge.

Previous text mining tools have concentrated on extracting information for

convenient use (text summarization, document retrieval), assessing document

similarity (document clustering, key-phrase identification), and extracting

structured information (entity extraction, information extraction) [310].
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Unfortunately, many of these tools are unable to capture the relevance from

bioinformatics studies where the main goals of text mining are to discover inherent

relationships between the located concepts. Furthermore, these relationships may

remain elusive due to the high volumes of domain-specific literature to process, the

complexities of managing many hundreds of keywords to be retrieved in the corpus

and the extreme difficulty of finding the connections between these keywords to

discover relationships. There are, however, many good text mining software tools

available in bioinformatics, such as gene searching [12], retrieval of protein

relationships [246], for example. However, the lack of interoperability between many

of these unique tools (i.e., incompatible output formats) frustrates the ability to use

multiple tools during single studies.

In this contribution, we describe a novel text mining method, called Lister which

was further applied from a previous study [47]. We show how this method meets our

stringent demands of being customizable, able to work with large sets of data and

is suitable for finding connections between tiny pieces of relevant information (i.e.,

stresses, proteins, and PTMs, as in our field of study). Our method may process a

corpus of seemingly any size. We show how open source database software is applied

to organize and find connections and patterns between the harvested concepts and

details. Applying our work to proteins which are associated to Alzheimer’s disease, we

use network models to visualize the discovered connections and patterns. In addition

to determining these relationships in the data, we explain how our method may be

used to predict new studies which could contribute profoundly to a scientific field

using linked knowledge from previous works in the literature. Finally, we discuss how

this contributed knowledge may originate from the related and unrelated work, in

terms of a literature review of a novel study.
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12.3 Methods

Text Mining: Our text mining method (called, Lister) is built from open source

software (Python https://www.python.org/ and Sqlite3

https://www.sqlite.org/). Lister provides convenient customization and its

output has been especially formatted to create input files for populating the Sqlite3

database. In time, we plan to release the Lister’s source code to the community.

The corpus data for our work was downloaded from NCBI (URL: ftp://ftp.

ncbi.nlm.nih.gov/pub/pmc/) and is their most recent compilation (dated: 27 June

2015). Uncompressed, there are about 100 GB of articles to process (about 1, 137, 842

articles). Our method is different from traditional approaches to text mining since

we determine associations between keywords by employing a supervised, bag-of-words

approach to isolate all articles containing particular user-selected keywords. Lister

was designed to scan only the abstracts of these articles as they are typically relevant

summaries that have been carefully written to reflect their article’s contents and

include all non-ambiguous and relevant keywords. All records are in an nxml format

for convenience.

Lister scans all abstracts to find the occurrence of selected keywords across several

different and, perhaps, unrelated articles. A relationship has been predicted to exist

between these keywords when they are all found in the same article(s). This implies

that these keywords where relevant to some study where they all played a role. Several

keywords which are found together in a bioinformatics article is very likely to signify

that these were actors for roles of an experiment. For example, in bioinformatics,

learning that a particular protein and a stress have been found in the same article

is very likely to suggest that the protein has been studied in some context of the

stress. Furthermore, if it is found that a type of PTM is also mentioned in the text,

then we have reason to suggest that the PTM may be a part of the stress response

for the protein. In general, we have evidence to suggest that the stress, protein and
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PTM are likely to share some form of relationship. Although further exploration is

necessary to determine the exact details of the discovered relationship, this is not

a limitation because all relationships, no matter their strengths, may be important

parts of a rigorous review. Furthermore, many discoveries have been by suggested by

simple guilt by association scenarios.

The associations between keywords are made by connecting their sources. Since

each article from NCBI has a unique PMID number (identification reference for

PubMed citations), all encountered keywords are recorded with the PMID number

of the article where they were found. Our method connects these keywords to each

other by finding the intersections of the lists of PMID numbers from each keyword.

Database Support: Databases allow for finding connections by queries in their

data. For this task, we used Sqlite3, which was chosen for its simplicity, power,

open source nature and ability to keep an entire database in a single file. Sqlite3 is

also provides for a convenient way to setup and populate a base from the outputs

of Lister by use of a basic script. For an occurrence of a keyword in the text, a

database table held the PMID number, article references, the occurrence number, and

its associated blurb of text. The database had six main tables: Protein Function

(the functional group from which our proteins were extracted), Mt Proteins, non-Mt

Proteins, PTM-General (general PTM names such as acetylation or phosphorylation)

and PTM-Specific (specific cases of general PTMs). The table for Stress concerns

the types of stresses that we had observed from a manual literature review. Since

any type of relationship may be found with the use of an appropriate query, there are

countless ways to exploit this information for a variety of studies.

Keywords: Our interest was to find the relationships between the

non-organism-specific proteins associated with the ailment groups (i.e., Alzheimer’s,

in addition to apoptosis, diabetes and Parkinson’s), their stresses and their

corresponding PTMs according to the literature. Since proteins associated with
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apoptosis and the ailments tended to include Mt proteins, our study included these

complexes, in addition to non-Mt proteins. Lister was designed to use user-specified

keywords and so each table of our database contained the results from each set of

keywords. The PTMs that we were interested in studying were those that interact

with proteins at a modification site which is made-up of only one residue. These

keywords are: {acetylation, glycosylation, methylation, phosphorylation, and others}.
The types of stresses that we were interested in were: {carbonylation, cold/heat

shock, oxidation, microgravity and others}. The protein keywords came from our

previous work [32;34]. The number of unique keywords we employed were the

following: {stresses: 45, general PTMs: 33, specific PTMs: 29, Mt proteins: 589,

and non-Mt proteins: 10,041}. We amassed a total of 1976 (Mt) and 36,854

(non-Mt) references of our proteins.

Networks: To find the associations between our keywords, we built networks

from the output of our text mining system using [261]. There are three types of nodes

featured in each of our networks: green pentagons (PTMs), red circles (protein types),

and blue squares (stresses). An edge connecting nodes signifies that at least one study

exists where the keywords have been mentioned in an abstract. The networks that we

are primarily interested in studying are those featuring cliques – where all keywords

are included in a common abstract or have the same article PMID. Each network we

created concerns a specific ailment group of proteins. For instance, the proteins of

Figure 12.1 have been ordered according to their relationship to abstracts concerning

Alzheimer’s and we call this network an ailment protein network (APN) to describe

the linked keywords by ailment according to the literature. APN networks provide

strong evidence for a relationship between nodes because they imply that studies

exist to link its elements. In addition, discussed in Section 12.4, we may study these

networks to infer trends in bioinformatics research and likely predict the publication

of future studies where these keywords are included all together.
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12.4 Results And Discussion

In our previous work [32;34;35], we used public databases to determine PTM

interactions and their frequencies of occurrence in proteomes. Although the data of

this study is from a corpus of disconnected literature, and not a database of

observed PTM interactions with proteins, we note that there are several

fundamental similarities between the observations of this current work and those of

our previous studies. For instance, we note from the results of our text mining

method that the commonly encountered PTMs, acetylation, glycosylation and

phosphorylation and often, methylation, are often present in each the ANPs (both in

the Mt and non-Mt networks). This observation agrees with the fact that these

PTMs are also very commonly encountered across organisms in nature. Since we

have made the same discovery of PTM compositions in protein from two separate

sources, we have a reason to suggest that other findings may be discovered here

which are also biologically relevant using our text mining system.

We note that an edge between nodes signifies that a study exists where the nodes

representing both keywords are included in the abstract of the study. In the Mt APN

of Alzheimer’s disease (Figure 12.1, left), there were fewer proteins found to be linked

to PTMs than the number of proteins in the non-Mt network. This is consistent with

our work in [34]. Two reasons may explain this largely unequal number of proteins.

The first reason is that Mt produce a limited number of their own proteins internally,

while the rest are synthesized by nuclear mechanisms of the cell. Although this

phenomenon may be well known to any student of biology, it is also an observation

in the output of this text mining task. The second reason for fewer Mt proteins in

Alzheimer’s disease may be explained by the science itself. Perhaps fewer proteins

have been observed thus far to explain this lack of documentation. Proteomics (or the

study of proteins with a focus on structures and functions) is a young and developing

field which is only just able to answer its research questions thanks to advancing
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technologies. The lack of proteins in the Mt network may also indicate that there is

much more work to be done in this discipline in order to discover proteins that are

connected to Alzheimer’s disease.

We noted the similarity between the APNs (both Mt and non-Mt) of Alzheimer’s

and Parkinson’s diseases. For instance, in the Mt network of Figure 12.1, left, we

note the appearance of the protein OGT (the forth node down in protein types)

which has been recently studied by [169] where the abnormal glycosylation by OGT of

an essential mammalian enzyme (O-linked β-N-acetylglucosamine transferase), has

been linked to insulin resistance, diabetes, cancer and neurodegenerative diseases

including Alzheimer’s disease (in human and other models). In the Mt APN of

Parkinson’s disease (not shown due to space limitations), OGT also appeared. In

both networks (Alzheimer’s and Parkinson’s) this protein is connected to the same

PTM and stress: glycosylation and oxidative stress, respectively. There are similar

findings in diabetes and Parkinson’s disease networks. This describes an overlap

between both ailments. Furthermore, this common protein may imply that there

could be a wealth of information from one type of study which could be used to

complement another

By following the work of one type of ailment, we may likely be able to infer

observations for other ailments where these keywords are included. Sadly,

accustomed as we are to reading only the journals which discuss our keywords in

particular settings, we often maintain our ignorance of the real purpose of our work

which is to understand the mechanism. Thanks to the conserved nature of biology,

many of the discoveries concerning one kind of function may also be applied to

other functions after a simple text mining operation which is able to connect the

ideas from the corpus.
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APNs, we explained that an edge between nodes signifies that a study exists where the

connected nodes are both mentioned and we described how missing edges may likely

predict the beginning of new studies to complete similar cliques where the connections

between two of the three nodes (keywords) are already known for other ailments. We

suggest that understanding these links will enrich the study of these ailments.

In the future, we intend to extend our Lister tool to add statistical power into

its framework. This enhanced analysis would allow the use of our tool to discern

between strong and weak types of relationships between keywords. We also expect to

publish all results from this work in a more expansive article which will also include

other applications of Lister. Finally, we plan to make our tool open source and to

release it to the bioinformatics community in hopes that it can be used to build more

connections among the literature and help predict new and parallel studies.

12.6 Article Details

This contribution was published in the IEEE International Conference on

Bioinformatics and Biomedicine (Semantics and Ontology Track), 2015

• Oliver Bonham-Carter and Dhundy Bastola, “A text mining application for

linking functionally stressed-proteins to their post-translational

modifications”, 2015 IEEE International Conference on Bioinformatics and

Biomedicine (Semantics and Ontology Track), 2015.
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What makes the desert beautiful is

that somewhere it hides a well.

Antoine de Saint-Exupery

Chapter 13

PTM Tracker: A System For

Determining Trends Of PTM

Modification Sites Relative To

Protein Domains

13.1 Abstract

Post-translational modifications (PTMs) increase protein functional diversity by

modifying an amino acid at specific locations called modification sites (MSs) in

protein. It is believed that domains are being influenced by PTMs at interacting

MSs to determine the unique functional changes in protein and, in this scenario, it

is likely that the exact position of the MS, relative to the domain, plays a major

part in structural changes by PTM influence. In this study, we present a system
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called “PTM Tracker”, built from two main parts to study the general distances of

MS amino acids which are relative to protein functional domains. In the first part,

we apply our system to illustrate that unique organisms appear to have

distinguishing locations where PTMs may be found in the proteome. These crowded

locations of MS sites (called, “neighbourhoods”) are relative to protein domains.

We describe how these MS neighbourhoods may be a conserved extension of the

already-conserved domain. Since specific protein domain types may be found in

diverse proteins, the second part of our system studies MS neighbourhood clusters,

relative to user-selected domains. From the study of many different proteins

containing the same domain type, we conclude trends to suggest that MS

neighbourhoods have specific locations in protein, relative to the domains

(where-ever the domain occurs naturally), with which they are likely to interact. We

conclude that the study of these distances may help to understand interaction

mechanisms and describe types of protein folding requirements.

13.2 Introduction

Post-translational modifications (PTMs) are steps in biosynthesis to regulate protein

and enable them to perform specialized tasks within the cell. PTMs broaden the

functional diversity of the proteome, by interacting with protein domains to initiate

specific functions such as regulation [268] in both, mitochondrial (Mt) and non-Mt

protein. PTMs are also involved in stress response as they allow for the adaptation of

protein to function in short-term, stressed situations and once the stress has elapsed,

PTMs generally restore the protein to its original conformation state.

Protein, such as the Tau variety, stabilize microtubules and are highly regulated

by PTMs. This type of protein is also closely linked to the onset of Alzheimer’s

disease [46] and its improper regulation by PTMs may strongly contribute to the
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onset of disease [197]. Alzheimer’s is only one of many ailments (i.e. Parkinson’s,

Huntington’s and other age-related disorders) and it is necessary to study and

understand the roles played by PTMs during the regulation of protein function.

Since cellular stress appears to demand much PTM activity, the onset of these

diseases may be partially explained by studying the role of PTMs as initiated by

stress.

The functions of proteins are controlled by a diverse assortment of PTMs from

specific binding sites that control domains. Studies of the influence of PTMs on

protein domains may be facilitated by many database-driven tools such as

UniProtKB [39], SysPTM 2.0 [181], PhosphoSiteSlus [125], dbPTM [129] and others.

However, considering that domains are distinct, highly conserved, functional and/or

structural units in a protein, which could be found in a variety of diverse biological

contexts, an analysis may be complicated when individual proteins are studied in

isolation.

We present a system called (“PTM Tracker”) which allows for the study of PTM

relations with general and specific protein domains, regardless of the individual

proteins where they are encountered. Since PTMs occur at specific amino acid

modification sites (MS) in protein, our system focuses on this phenomenon and

allows us to study the actual distances between the MSs and the domains that they

likely influence. For instance, an MS may have to be located at a specific location in

the sequence to ensure that it is able to influence in the domain for function. Here

we suggest that this distance between MS and domain is a conserved part of the

domain. Furthermore, we suggest that common domains, even if originating from

diverse organismal protein, may also conserve this spacing of MSs for function. Our

method exploits this likely conserved spacing to describe unique clusters of MSs

(called neighbourhoods) which are common when studying like-domains, regardless

of their origins. We note that these MSs are curated and have been observed in the
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literature to interact with at least one of these domains [148].

Our system has two main applications: (1) to study the distances between MSs and

all domains located in an organism’s proteome, and (2) to study the distances between

MSs and user-selected domains which are encountered in a wide variety proteins (Mt

and non-Mt). In Section 13.3.1 we detail this organism-specific study to show that

organisms exhibit general trends of MS spacings which are likely an extended part

of their PTM bias as described in [34;35]. We study the MSs of sequences relative to

the domains in locations situated before (upstream), inside and after (downstream)

of encountered domains in protein. The general trends become apparent when we

consider increasingly larger sets of protein which serve to eclipse noise. In Section

13.3.2, we discuss the MS neighbourhoods which were uncovered by studying specific

domains, across all proteins of our data. Here we discuss the global observations of

particular domains that appear to have distinct preferences for MSs at predictable

locations.

PTM Tracker allows for an in-depth study of these MS distances, with a focus

on domains. The aim of this work is to provide an analysis platform for the study

of mechanisms where PTMs influence domain function. Furthermore, we imply that

the understanding of these PTM-domain relations may likely help to explain some of

the reasons for a potential protein failure or disorder.

13.3 Methods

Following our previous work of PTM involvement with proteomes [34;35], we limited the

current study to the same protein data of the 11 organisms listed in Table 13.1. The

protein data was downloaded from the UniProt Knowledge Base [65] protein database

in March 2016. The details of each organism’s protein were contained in a record

from which we extracted the sequence, and the observed types of PTMs with the
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Table 13.1: Diverse organisms of the study. The number of MS encountered in Mt and
non-Mt are shown in the organism’s row.

Organism Common Name Mt nonMt

A. thaliana Mustard Plant 138 11086
C. elegans Nematode worm 9 2403
C. familiaris Domestic Dog 130 2599
D. rerio Zebrafish 33 1916
H. sapiens Human 3285 50871
M. musculus House Mouse 3413 42470
O. cuniculus European rabbit 221 2788
R. norvegicus Norway Rat 2684 22021
S. cerevisiae Bakers Yeast 412 10520
X. laevis African clawed frog 13 2086

protein (i.e., acetylation) at specific amino acid MSs. We also collected a listing of

observed protein domains as well as their exact locations in the sequence. We note

that any mention of an MS suggested that it likely played some role to influence at

least one of the domains in the protein.

Mitochondria (Mt) is responsible for the cellular energy production and is highly

conserved across organisms. In spite of its conserved nature, organismal Mt, in

addition to non-Mt protein, show striking differences in PTM usage (bias) across

organisms [36]. Since domains may simultaneously exist in Mt or non-Mt proteins, we

created two classes to organize each type of protein for a comparative study. We

note that UniProt conveniently labels Mt protein when the origins are known,

however the lack of this label does not necessarily imply that the protein is not Mt.

13.3.0.1 PTMs

In each protein record, are the details of all its observed PTMs. For instance, we

counted 47 (Mt) and 249 (non-Mt) unique individual PTM MS types from our 11

organisms. Because some of these PTMs may be categorized into more general classes

of common PTMs (i.e., N6-acetyllysine is actually a general type of acetylation), we
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have considered most of these specific instances of PTMs by their more general types

(i.e., in this case, all types of acetylation are considered as, simply, acetylation).

Here, we focus on acetylation, although any PTM could be studied with this

method. We chose this particular PTM since there is currently lots of available

data to our study (via UniProt) thanks to recent bio-medical work in Bioinformatics.

Interestingly, since acetylation plays a role a great variety of unrelated organisms,

by evolutionary time, this PTM may be one of the oldest and also more critical for

supporting life [298]. PTMs such as phosphorylation, glycosylation and methylation are

also becoming popular research interests and data (i.e., concerning mechanisms and

domain influence) is currently increasing. We hope to integrate this knowledge into

our future studies of MS neighbourhoods.

13.3.0.2 Modification Sites

In our study, we consider only those PTMs which modify a protein at a single point

(i.e., an MS). In each record from UniProt, we collected a list of all MSs which have

been observed to be modified. Acetylation typically interacts with lysine but may also

modify protein at other types of amino acid MSs, as well. Although our method is

capable of studying any particular kind of amino acid MS, our study focused on lysine,

in addition to all other amino acids (i.e., MSs) which are involved with acetylation.

13.3.0.3 Domains

Our research of protein domains fits into two categories: (1) the organism-centric

study of PTM distances (i.e., in this work, acetylation) to any, non-particular,

encountered domain in the proteome (discussed in Section 13.3.1) and, (2) the

domain-centric study of PTM distances (i.e., acetylation) relative to a selected

domain, across any proteome where it is naturally encountered (discussed in Section

13.3.2).
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Across the proteins of our 11 organisms, we counted 264 and 2402, unique Mt and

non-Mt domains, respectively. We chose a set of sample domains to study which were

also observed in at least four different organisms. We note here, that the domains from

Mt and non-Mt may not necessarily originate from the same organisms. Any domain

that we studied was isolated from the proteins of at least four different organisms.

This was done to gain a general pattern of how the domain was employed in all

its proteomes. In addition to the conserved domains, we maintain by our results

that particular MS usages are also conserved. For this reason, our study paid close

attention to all MSs of the proteins where the domains were encountered since they

may play roles in domain function.

13.3.0.4 Plots

In the organism-centric plots, all domains from a particular organism and involved

with acetylation, were retained. In Section 13.3.1.1, we describe the neighbourhoods

to be regions where the MSs of a particular PTM are generally found. These regions

are relative to domains and, as noted in Figure 13.1, may be found before, inside

and after the protein domains. For neighbourhoods found before or after domains,

the distances of MSs were measured leading-away from the domain’s beginning or

ending positions, respectively. For MSs encountered inside domains, its distance to

the domain-end position was collected. In our plots, created by the “NetworkX”

Python library [262], the x-axis represents its distance from a domain position in a

protein sequence. The y-axis represents the total number (i.e., the magnitude) of

all occurrences of MSs at particular locations. All measurements of MSs relative to

domains are represented in separate plots for which proportional values (explained

later) have been calculated to enable their cross-comparisons with other protein sets.
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13.3.0.5 Heatmaps

It was important to determine the natural amino acid compositions of regions where

MS neighbourhoods were encountered. We collected each segment of protein (i.e.,

the before, inside and after regions of the sequence as displayed in Figure 13.1) and

the frequency for each of the 20 amino acids (not including the stop codons) was

calculated. These values were then applied to Pheatmap R-statistic library [155] to

create heatmaps to visualize amino acid compositions across the organisms.

13.3.1 Organism-Centric Study Of PTM Distances

We assumed that PTMs occur at specific amino acid MSs to influence domains and

our work concerns only the patterns of distance between MSs and these domains. This

part of the method allows for the study of all domains of an organism. Building from

the work of [35], we note that this approach also describes any biases which may exist

between organisms in connection to PTM usage. Other types of PTM usage biases

have been uncovered and are discussed in [34]. We maintain that the trends found in

the spacing of the MS neighbourhoods are another form of usage bias. To determine

this bias, we applied our system to three types of locations in protein sequences which

are described below.

13.3.1.1 Three Criteria Of Proximity

We established three neighbourhoods where MSs may be found (i.e., before, inside

or after) any domain in the same protein sequence. In Figure 13.1, the starting and

ending locations of protein domains in sequences are defined as, domStart and

domEnd. The MS positions are defined as, MSLoc, and the length of the entire

protein sequence is defined as, seqLen. Also shown in Figure 13.1 are the chunks of

sequence code from which we conducted an amino acid composition analysis

(discussed in Section 13.4.0.3.
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Figure 13.1: The description of where the distances of PTMs are found: before, inside
and after a protein domain. The amino acid residues for each region were collected
and analyzed for composition. The MSs are shown inside the diamonds and the
arrows-above describe the collected distances.

13.3.1.2 MSs Found Before A Domain

If an MS was found to occur before, or upstream of a domain, we measured its distance

from the start of the domain. Therefore, this measurement represents the number of

amino acids lying between the MS and the domain’s starting position (down-stream).

We may expect to find noise in cases of MS-domain measurements where the two

(i.e., domains and PTMs) do not naturally relate, however, we may draw a consensus

from the resounding patterns of MSs if many PTMs influence function. Equation

13.1 creates a proportional measurement value allowing for a comparison between

samples. Although this equation also calculates distances from amino acid residues

on both sides of the domStart, we only apply this equation for MSs occurring before

a domain. These distance values are proportional and allow for comparisons across

proteins since they have been calculated by dividing their value by the length of the

region.

13.3.1.3 MSs Found Inside A Domain

If the PTM was located inside a domain, then we measured its distance between the

beginning of the domain to the domain’s end (hence, inside the domain). Therefore,

this measurement represents the number of amino acids lying between the MS and the
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domain-end, inside the domain. The equation is shown in Equation 13.2. We chose

the end of the domain from which to measure this distance so as to move downstream

from the position of the MS. We note that the domain sizes are proportional to each

other since we used the lengths of the domains to calculate this proportional value.

13.3.1.4 MSs Found After A Domain

Defined in Equation 13.3 is the distance of particular MSs to the end, or downstream,

of encountered domains in the sequence. Therefore, this measurement represents the

number of amino acids lying between the domain-end and the MS located down-

stream and after the domain. This calculation implies the number of amino acids

downstream and after the domain. These distance values are also proportional and

allow for comparisons across proteins since they have been calculated using the region

length.

Distbefore =
MSLoc

domStart
(13.1)

Distinside =
(domEnd−MSLoc)

(domEnd− domStart)
(13.2)

Distafter =
MSLoc

(seqLen− domEnd)
(13.3)

13.3.2 Domain-Centric Study Of PTM Distances

Next, we apply our method to investigate the MS neighbourhoods, involved with

specific (“user selected”) domains. We note that a specific domain is likely to be

very conserved and available in other protein samples of un-related organisms. This

part of our system aims to give a global overview of the distance patterns from the

neighbourhoods and their domains.
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13.3.2.1 MSs Found Relative To Domains

To achieve our results concerning amino acid residue positions, we traversed all

proteins (from the organisms of our data) containing a domain of interest. We

collected the beginning and ending positions of the domain in the protein sequences,

along with the locations of all MSs of a PTM which were contained in the UniProt

protein records. We applied Equation 13.4 below, to determine the distances

between the elements (i.e., MSLoc, domStart or domEnd) of a protein sequence.

This approach provides a global view of the proteins containing particular domains.

By tracking the MS - domain distances of many different proteins, we uncover the

MS neighbourhoods. We may encounter noise from some of the MSs which do not

necessarily interact with a chosen domain, however this noise is minor when

compared to the results of the actual domain-interacting MSs. To demonstrate this

approach, we choose the domain, atp-grasp2, which may be found in both Mt and

non-Mt organismal proteins.

Distelement =
Elementposition

seqLen
(13.4)

13.4 Results And Discussion

It is possible that a protein record from UniProt may list multiple domains and

modification sites involved with acetylation, as shown in Figure 13.2. We record the

distance between the MS to each of its domains in separate steps. In addition, there

may be cases where a single domain is influenced by two different MSs, as shown in

Figure 13.3. Here, each MS is processed separately for the same domain. We are

aware that noise from “false positives” may be introduced where recorded distances

have no biological meaning. However, there are enough cases of conserved distances

(of biological meaning) that general patterns are likely to become visible.
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Figure 13.4: How to read plots containing organismal MS information occurring before
domains. The domain start is imagined to be at the far right and the green bars
describe the MS neighbourhoods which are located upstream of the domain. The
magnitude is understood to be the number of other MSs for acetylation (or any
single PTM of interest) found at the same locations. The plots for showing MS
neighbourhoods inside and after the domains of a particular organism are similar.
The plot in this example describes that MSs are found in three general locations (i.e.,
neighbourhoods) before all domains of a particular organism.

13.4.0.1 Graphical Interpretation - Organism-Centric Study Of PTM

Distances

In Figure 13.4, we describe how to read the plots containing information of the MS

neighbourhoods encountered before all domains of a particular organism. The

proportional value of the location of an MS is calculated to allow for a cross

comparison between proteins. The domain start locations are imagined to occur on

the far-right. In the figure, we note that there are three MS neighbourhoods where

populations of MSs are situated just before the domain starting positions. The

green bar on the far left implies that the largest population of MSs are found at the

start of the protein and are relatively far away from the beginning of domains.

Reading the plots describing the MSs occurring inside and after domains is
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Figure 13.21: A heatmap of amino acid composition of Mt and Non-Mt protein in
MS neighbourhoods before the domains. We note that the amino acid compositions
are very similar across the samples.
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Figure 13.22: A heatmap of amino acid composition of Mt and Non-Mt protein in
MS neighbourhoods inside the domains. We note that the amino acid compositions
are very similar across the samples.
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Figure 13.23: A heatmap of amino acid composition of Mt and Non-Mt protein in
MS neighbourhoods after the domains. We note that the amino acid compositions
are very similar across the samples.
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Never, never, never give up.

Winston Churchill

Chapter 14

Conclusions

Signals are all around us: they are found where ever there is life, in its movements

and mechanisms. At the global level, signals of ourselves are left behind us where ever

we go: we mark our journeys as we walk across beaches, just as we leave digital traces

of ourselves at each Internet site that we visit. In biology, signals are also left behind

as a by-product of all mechanisms. In the case of a beating heart, for example, the

blood-pumping action creates sounds and distinctive electrical impulses, which may

be surveyed and measured to determine and track the health of the heart. At the

cellular level, signals also travel between cells during inter-cellular communication.

For instance, a neuron is a type of an electrically excitable cell that processes and

transmits information through electrical and chemical signals. Pathways, serving

important biological functions, are created from the neural networks that are formed

from interacting cells having the ability to send and receive valuable signals.

The existence of a mechanism may be recognized by the basic truth that all

mechanisms release signals. In this thesis, we studied signals occurring from
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processes at the DNA, RNA and protein levels to detect mechanisms. At the DNA

level, we investigated some of the restriction enzymatic defense systems which rely

on palindromic motif for function. Here, we uncovered a wealth of evidence to

suggest that DNA motif biases exist between coding and non-coding regions of

DNA. In the tRNA level, we determined that the biases of DNA may introduce

biases in transfer RNA mechanisms, as well. At the protein level, biases were also

found to result out of necessity and may improve survival for types of tissues. For

instance, in Mt where oxidation prevails, proteins were found to be structurally

different from non-Mt proteins: Mt proteins tended to have fewer “RKPT” regions

(i.e., sites enriched in arginine; R, lysine; K, proline; P, and threonine; T residues),

and also fewer “PEST” regions (i.e., sites enriched in proline; P, glutamic acid; E,

serine; S, and threonine; T residues). The mechanism behind this bias was reasoned

to be one of protection for Mt proteins since these RKPT and PEST regions tended

to attract alteration from oxidation, having fewer of these regions near sources of

oxidation may be a naturally selected method to prevent types of protein

degeneration.

It was not the scope of this work to fully explain the functions of mechanisms

from their signals. Our focus, instead, was to create the basis and technology to

detect the existence of mechanisms according to some of their signals. In many cases,

our interests in signal detection was reserved to specific fields such as protein stress

response systems where we crafted special techniques to isolate some of the tell-

tail patterns of mechanisms from sources of “big-data” and other public knowledge.

Our analysis provided evidence to confirm the existences of mechanisms and also

to infer some of their functional abilities. In all our contributions of this thesis,

we maintained plausible rationals behind these mechanisms which were based on

pairing the signals, gathered using computational instrumentation, to likely biological

concepts and philosophies. We ventured further to explain some of the reasons for
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their existence which were aligned with natural evolution and formed from their

environmental influences and general biological systems.

14.1 Gains From The Contributions

• In Chapter 4 we described some of the mathematics and statistics which may be

conveniently used by bioinformaticians to determine the informational content

of sequences (DNA, RNA and protein) to help differentiate them from each

other. In this chapter, we argue that techniques from dynamic programming

are becoming obsolete due to the larger sizes of sequences that are necessary to

compare. Although heuristics may be applied, there will be a time when even

this approach will become obsolete. It is therefore necessary that techniques

from mathematics and statistics be applied to handle this voluminous data.

Many of the mathematical concepts that we discussed were for obtaining signal

frequencies in large data sets. Once these frequencies where collected, then

other concepts were recommended for comparative analyses between the sets.

This contribution was aimed at putting the power of these tools in the hands

of community members who may not be aware of the benefits from this type of

mathematical and statistical analysis.

• In Chapter 5 we isolated some of the signals that concerned palindromic DNA

motifs. A palindrome, we noted, is a DNA word that appears the same forward

and backward in bound DNA. The palindrome also marks the specific region

where a restriction enzyme may cut the DNA. These motifs occur naturally in

viral genomes. During a common virus attack, the virus’ strategy is to mix its

DNA with that of the host so that the host will continue to create new viral

bodies at the cell’s expense. To prevent the attack, the host cell will deploy

restriction enzymes to lacerate the invading DNA at locations of the motifs and
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stop the threat. Since these same motifs may also appear in the host’s genetic

code, self-motifs are methylated to prevent them from also being cleaved.

In our work, we used non-parametric tests to discover that there were more

of these palindromic motifs in the non-coding regions of the host’s DNA when

compared to the coding-regions (i.e., where the genes are generally found). We

concluded that methylation to protect these regions in host-DNA may fail and

a cut in coding regions would be fatal. In addition, we speculated that coding

regions have a stringent syntax for the code which would not be favorable to

any modifications, whether random or from viral infection.

• In Chapter 6 we developed a pre-processing step for sequence assembly tasks

to hurry the assembly process. During a sequence assembly task, reads, or

chunks of DNA, must be put back together like a jigsaw puzzle to make larger

subsequences called contigs. There are many computing resources required for

this task and so we developed a pre-processing step to reduce the necessary time

to assemble the entire DNA sequence.

This pre-processing step was developed from our observation that

informational content is not consistent throughout an organism’s DNA.

Instead, there are regions where the frequencies of particular words are higher

and so our method exploited this concept to localize many of the reads before

they were assembled using the local motif frequencies. Having knowledge of

where these subsequences may fit before using “shot-gun” methods to test for

adjacency, was found to reduce the amount of time to assemble the reads and

contigs of an entire sequence.

• DNA is converted to protein via transcription and translation. Both of these

mechanisms are simply the conversion of information from one form to another.

In computer security, encryption is also a process of information conversion.
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In Chapter 7, we used transcription and translation to convert plain-text into

encrypted data by a system which functions similarly to the mechanism of

protein synthesis in biology. By following the central dogma of biology, we

showed how it was possible to use an ancient mechanism to encrypt and decrypt

modern data.

• In Chapter 8 we returned to DNA research were we show that the trends of

DNA palindromic word placement influence the structure of transfer RNAs.

For instance, tRNAs are responsible for moving a specific amino acid into the

protein sequence. Each tRNA also has a particular DNA triplet (instructions

in the code) that it follows to perform this task. When there are few triplet

codes for a particular amino acid, then there are a reduced number of tRNAs

available in an organism’s genome. We found this trend across eight organisms

where we concluded that biases in DNA equated to biases in tRNA populations

of an organism.

• In Chapter 9 we returned to tRNA signals to study their patterns of availability

in the genome of nine organisms. We noted that the biases of the tRNA were

carried into the protein level where they influenced PTM interactions with the

protein amino acids. For instance, each PTM must physically interact with a

specific amino acid modification site (MS). Since each amino acid must be placed

in the protein sequence by a tRNA that is associated with a particular amino

acid, fewer tRNAs for an amino acid may reduce the numbers of this amino acid

in the protein. If these reduced amino acids happen to also be the MS for a

specific PTM (i.e., lysine is the MS of acetylation), then there will also be fewer

tasks performed by the interacting PTM due to a lack of available modification

sites for PTMs in the protein. In this study, we studied the frequency factors

(PTM predominance and their associated active sites, tRNAs and amino acids)
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which likely influence a PTM bias. Our study was performed across both Mt

and non-Mt proteins to offer evidence to argue that this PTM bias may be the

result of these factors which combine in a poorly understood system to affect

and control PTM interactions.

• In Chapter 10 we studied the stress response systems employed by Mt protein.

As Mt produce energy by cellular respiration, they also produce internal

oxidation which become dangerous sources of protein stress. Interestingly,

these proteins do not appear to suffer as a result of this stress. In our work,

we investigated the structural signals of protein to describe that there were

many fewer regions (enriched in specific amino acids) in Mt where oxidation

could potentially damage the protein. Similar to having fewer dangerous

places around where accidents may happen, Mt protein appears to have

evolved conformational changes to prevent chronic oxidation from causing

stress-related damage. In comparison, there was no evidence to suggest that

non-Mt proteins had also evolved this protection.

• In Chapter 11 we determined the biases of PTM usage, modification sites and

amino acid composition across the proteomes of diverse organisms. In this

contribution, we hypothesized that the proteins of Mt (thought to resemble

primitive alphaproteobacteria) contain fewer PTMs than non-Mt proteins (of

advanced life forms). Additionally, the trend of increasing number of nuclear

encoded protein PTMs appeared to be correlated with the general complexity

of the organism. For instance, we noted that higher organisms tended to have

many more interactions between their PTMs and MS in their proteomes than

the number of these interactions in the lower orders of organisms. We concluded

that higher organisms may apply more types of PTMs to inhabit more varied

terrains and, higher degrees of hostility of environments. Since PTMs are active



291

in many types of protein stress responses, we reasoned that having more types

of available PTMs, would theoretically offer better survival chances in habitats

having more diverse types of stresses.

• In Chapter 12 we presented a text mining tool to mine public, peer-reviewed

literature for relationships between the actors of stress response mechanisms

(i.e., proteins, stress types and PTM types). The contribution of this project

was the development of a highly customizable text mining tool (called Lister)

which is able to process the abstracts of the entire PubMed corpus to

determine which actors are linked (i.e., are found having some form of

relationship according to the studies from the literature). Our tool reads

abstracts and performs direct (i.e., all actors are found in same article) and

indirect linking (i.e., connections are made but not all actors are found in the

same articles).

We studied relationships between keywords concerning stress-types, protein-

types and known PTMs. This work allowed us to determine which proteins

had been studied (and were therefore, associated in light of particular stress

types) to particular stresses and PTMs. This information, in turn, gave us an

idea about which players may likely be involved with a stress-response system.

We assume that any paper where some or all of our stress response actors are

mentioned together is significant and describes that they are associated.

• A Protein domain is a conserved part of a given protein sequence and

(tertiary) structure that can evolve, function, and exist independently of the

rest of the protein chain. Each domain forms a compact three-dimensional

structure and often can be independently stable and folded Protein domains

are important to PTM research as they are thought to be altered by PTMs

during protein stress responses. In Chapter 13 we studied the location of PTM
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MSs in relation to the protein domains with which they are likely to interact.

Since domains are highly conserved, we suggest that their extended

mechanisms involving PTMs are also likely to be conserved. We discovered

that, for each type of PTM, there were basic distances between MSs and

domains which were highly conserved. This suggests that the domains, in

addition to the spacings from their modification sites, are likely equally

conserved in the proteome. Understanding the conserved nature of the local

and extended mechanisms of PTM protein domains alterations may help us to

understand more about their roles across biology in terms of general stress

responses.

In this work we presented a new tool (called PTM-Tracker) to analyze the

distances between the domain and the MSs. The analysis of these distances

presents major trends which we described in our work. We noted that these

recognizing these trends may be used to isolate similar types of mechanisms in

other biological samples in the case of conserved functionalities.

14.2 Concluding Thoughts

We studied signals to learn and explain the mechanisms that created them. It is by

understanding these signals, and ultimately understanding their meanings, that we

may begin to understand the mechanisms of their interaction. In particular, our focus

was set on protein stress response systems and all efforts to study signals at the DNA,

tRNA and protein levels were developed for the study of these stress response systems

where PTMs, MSs, as well as, types of stresses and proteins were major actors in the

response. All the contributions of this thesis are included to show that our techniques

are applicable and have sufficient sensitivity to collect measurements of signals which

are appropriate to study protein stress response systems.
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In the former part of our work, we developed the methods and tools to discover

signals from biological systems to detect the existence of biological mechanisms. In

this thesis, we used these signals to gain ideas about the purpose and function of

(known and unknown) mechanisms. this insight was made in context with the

biological events at play and also with a concentration on the philosophies of

evolutionary biology. In the latter part of our work, we apply our knowledge of

detecting and exploring the natural signals pertaining to proteins, PTM influences

and stress factors, to understand more about their particular mechanisms. To gain

insight into their mechanisms, we approached these signals with three main lenses :

1. We performed a quantitative study (Chapter 11), involving frequencies and

statistical data to ascertain the patterns from the data. In the data, we

discovered that complex organisms such as H. Sapiens have many more PTM

and modification interactions than more simple organisms such as pond

dwelling C. elegans.

2. We performed an information-based study (Chapter 13) of signals from

curated literature to determine how keywords concerning stresses, proteins

and PTMs are associated according to the literature. Here we maintain that

any connection from one keyword to another may likely represent a

relationship which has been supported by some peer-reviewed study. We note

that more research is continually emerging in the literature which will help our

technique to grow and provide more comprehensive relationship information

from the expanding literature. To determine how keywords concerning

stresses, proteins and PTMs are related, we developed a text-mining method

(called, Lister) to process countless articles to to gather this relationship

information. We note that the provided knowledge of actors and their are

associations will provide insight into where to begin new research into

particular types of protein stress response systems.
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3. We performed a study of protein domains in relation to MSs, and hence

PTMs, with which they are likely associated (Chapter 10 and 13. The focus of

this work was to uncover the extended conserved elements of the domain-MS

alteration systems which may play significant roles in stress-response systems.

We discovered that the domain and its general distances to an MS appeared

to be a generally conserved phenomenon across the proteins of organisms and

also across similar domains (from diverse, non-organism-centric, proteins).

Generally, conserved mechanisms may be considered to carry a universal

importance to explain why the mechanism has been conserved. Finding

common patterns, in connection to these conserved systems (and domains)

suggests that conservation may be extended to further reaches of the known

systems. Since the resolution of stress has been linked to domain processes, we

suggest that any common patterns between domains and MS may suggest

knowledge may be gained by further study of these stress response systems.

Following the above three approaches, knowledge concerning biological

mechanisms from their signals will emerge. Although the full details of the

mechanism may take years to completely uncover, the analysis of its signals will

help to guide the context and limit the search space for a more explicit study of the

mechanism. Furthermore, it is often because of the detection of its signal that there

was any initial notion the mechanism’s existence. In these cases, we may extend the

work (or leave it for others) to further explore the functions of these unknown

mechanisms, in efforts to place this new knowledge into the hands of the

bioinformatics and life-sciences research community.
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Figure 14.1: Lenses for different depths of field and levels of granularity.

14.3 Future Works

Shown in Figure 14.1, a particular camera lens is selected for its depth of field and

levels of granularity which conform to the specifications of the task. In scientific

work, instruments also exist which contain diverse types of lenses to achieve higher

(or lower) depths of field for the discovery of patterns embedded in the data to study

phenomena. Summarized in Section 14.2, we discussed three such lenses that we used

to discover signals from PTM mechanisms to study types of stress responses. In the

future work, each of these lenses will be polished for extra clarity in spotting more

diverse types of signals in our efforts to broaden the basis of our knowledge of stress

response systems.

In the first lens, more statistical tests will be applied to larger sets of data to gain

a firmer understanding of the prevailing trends. Larger sets of data will be applied to

find trends from PTM and MS interactions and will give us a better, and more global,

view for when we begin to compare and contrast mechanisms and PTM interactions

in new organisms.

In the second lens, text mining has been utilized to extract information from the

literature concerning the relationships between proteins, PTMs and stresses. This
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work will be extended to include smarter systems for determining the relationships

between the actors in PTM mechanisms. For instance, the algorithm could record

all particular relationships, in addition to the types of articles where they originate.

Only those relationships which are mentioned in prominent articles from a certain

number of impact-factor journals would be recorded. In addition, we can extend our

statistical analysis to better rank the importance of the members of the relationships

which stem from in-direct linking (i.e., where the actors are not all found in the same

articles but have been found to be associated across several unrelated ones.).

In the third lens, there can be a more rigorous examination into the PTM - domain

interaction. If the MS and a particular domain type must be separated by a certain

distance (i.e., a distinct number of amino acids), then this distancing suggests that

protein folding may play a role in this conserved system. This work will be expanded

to include concepts from protein folding to help explain why such a placement of an

MS from a domain is of such importance.
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[7] Antink, C.H., Brüser, C. & Leonhardt, S. (2015). Detection of heart
beats in multimodal data: a robust beat-to-beat interval estimation approach.
Physiological measurement , 36, 1679. 22

[8] Apostolico, A. & Giancarlo, R. (1986). The Boyer Moore Galil String
Searching Strategies Revisited. Siam J. Comput., 15, 98–105. 38

[9] Apweiler, R., Bairoch, A., Wu, C.H. et al. (2004). UniProt: the universal
protein knowledgebase. Nucleic acids research, 32, D115–D119. 8, 150, 153, 207
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[76] Domazet-Lošo, M. & Haubold, B. (2011). Alignment-free detection of
local similarity among viral and bacterial genomes. Bioinformatics , 27, 1466–
1472. 41, 66, 69, 70

[77] Dong, H., Nilsson, L. & Kurland, C.G. (1996). Co-variation of tRNA
Abundance and Codon Usage in¡ i¿ Escherichia coli at Different Growth Rates.
Journal of molecular biology , 260, 649–663. 132

[78] Dong, Y., Graziane, N., Graziane, N. & Dong, Y. (2016). Fast and Slow
Synaptic Currents. Electrophysiological Analysis of Synaptic Transmission,
111–120. 27

[79] Dores-Silva, P., Minari, K., Ramos, C., Barbosa, L. & Borges, J.

(2013). Structural and stability studies of the human mtHsp70-escort protein
1: An essential mortalin co-chaperone. International journal of biological
macromolecules , 56, 140–148. 196

[80] Douglas W Bryant Jr., W.K.W. & Mockler, T.C. (2009). QSRA – a
quality-value guided de novo short read assembler. BMC Bioinformatics , 10.
83

[81] Du Toit, A. (2014). Post-translational modification: Sweetening protein
quality control. Nature Reviews Molecular Cell Biology , 15, 295–295. 244

[82] Duarte, M.R. (2003). Prickly food: snakes preying upon porcupines.
Phyllomedusa: Journal of Herpetology , 2, 109–112. 24



304

[83] Dunker, A.K., Bondos, S.E., Huang, F. & Oldfield, C.J. (2014).
Intrinsically disordered proteins and multicellular organisms. In Seminars in
cell & developmental biology , Elsevier. 10

[84] Eddy, S.R. (2004). What is dynamic programming? Nature biotechnology , 22,
909–910. 39

[85] Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic acids research, 32, 1792–1797. 93

[86] Elgendi, M., Norton, I., Brearley, M., Fletcher, R.R., Abbott,

D., Lovell, N.H. & Schuurmans, D. (2015). Towards Investigating Global
Warming Impact on Human Health Using Derivatives of Photoplethysmogram
Signals. International journal of environmental research and public health, 12,
12776–12791. 22

[87] Feng, Y., Yao, Z. & Klionsky, D.J. (2015). How to control self-digestion:
transcriptional, post-transcriptional, and post-translational regulation of
autophagy. Trends in cell biology , 25, 354–363. 206
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[283] Späth, G.F., Drini, S. & Rachidi, N. (2015). A touch of Zen:
post-translational regulation of the Leishmania stress response. Cellular
microbiology , 17, 632–638. 206
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