4,257 research outputs found

    Modeling of complex-valued Wiener systems using B-spline neural network

    No full text
    In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate Bspline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gaussā€“Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches

    Synchronization of decentralized event-triggered uncertain switched neural networks with two additive time-varying delays

    Get PDF
    This paper addresses the problem of synchronization for decentralized event-triggered uncertain switched neural networks with two additive time-varying delays. A decentralized eventtriggered scheme is employed to determine the time instants of communication from the sensors to the central controller based on narrow possible information only. In addition, a class of switched neural networks is analyzed based on the Lyapunovā€“Krasovskii functional method and a combined linear matrix inequality (LMI) technique and average dwell time approach. Some sufficient conditions are derived to guarantee the exponential stability of neural networks under consideration in the presence of admissible parametric uncertainties. Numerical examples are provided to illustrate the effectiveness of the obtained results.&nbsp

    Static anti-windup compensator design for locally Lipschitz systems under input and output delays

    Get PDF
    This paper proposes a static anti-windup compensator (AWC) design methodology for the locally Lipschitz nonlinear systems, containing time-varying interval delays in input and output of the system in the presence of actuator saturation. Static AWC design is proposed for the systems by considering a delay-range-dependent methodology to consider less conservative delay bounds. The approach has been developed by utilizing an improved Lyapunov-Krasovskii functional, locally Lipschitz nonlinearity property, delay-interval, delay derivative upper bound, local sector condition, L2 gain reduction from exogenous input to exogenous output, improved Wirtinger inequality, additive time-varying delays, and convex optimization algorithms to obtain convex conditions for AWC gain calculations. In contrast to the existing results, the present work considers both input and output delays for the AWC design (along with their combined additive effect) and deals with a more generic locally Lipschitz class of nonlinear systems. The effectiveness of the proposed methodology is demonstrated via simulations for a nonlinear DC servo motor system, possessing multiple time-delays, dynamic nonlinearity and actuator constraints

    Stability Analysis for Delayed Neural Networks Considering Both Conservativeness and Complexity

    Get PDF

    Improved results on an extended dissipative analysis of neural networks with additive time-varying delays using auxiliary function-based integral inequalities

    Get PDF
    The issue of extended dissipative analysis for neural networks (NNs) with additive time-varying delays (ATVDs) is examined in this research. Some less conservative sufficient conditions are obtained to ensure the NNs are asymptotically stable and extended dissipative by building the agumented Lyapunov-Krasovskii functional, which is achieved by utilizing some mathematical techniques with improved integral inequalities like auxiliary function-based integral inequalities (gives a tighter upper bound). The present study aims to solve the Hāˆž,L2āˆ’Lāˆž H_{\infty}, L_2-L_{\infty} , passivity and (Q,S,R) (Q, S, R) -Ī³ \gamma -dissipativity performance in a unified framework based on the extended dissipativity concept. Following this, the condition for the solvability of the designed NNs with ATVDs is presented in the form of linear matrix inequalities. Finally, the practicality and effectiveness of this approach were demonstrated through four numerical examples

    An improved stability criterion for linear time-varying delay systems

    Get PDF
    This paper considers the stability problem of linear systems with time-varying delays. A modified Lyapunovā€“Krasovskii functional (LKF) is constructed, which consists of delay-dependent matrices and double integral items under two time-varying subintervals. Based on the modified LKF, a less conservative stability criterion than some previous ones is derived. Furthermore, to obtain a tighter bound of the integral terms, the quadratic generalized free-weighting matrix inequality (QGFMI) is fully applied to different delay subintervals, which further reduces the conservatism of the stability criterion. Finally, three numerical examples are presented to show the effectiveness of the proposed approach
    • ā€¦
    corecore