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Abstract

This paper is concerned with the stability analysis of Lur’e systems with sector-bounded nonlinearity and two additive
time-varying delay components. In order to accurately understand the effect of time delays on the system stability, the
extended matrix inequality for estimating the derivative of the Lyapunov-Krasovskii functionals (LKFs) is employed
to achieve the conservatism reduction of stability criteria. It reduces estimation gap of the popular reciprocally convex
combination lemma (RCCL). Combining the extended matrix inequality and two types of LKFs lead to several stabil-
ity criteria, which are less conservative than the RCCL-based criteria under the same LKFs. Finally, the advantages
of the proposed criteria are demonstrated through two examples.
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1. Introduction

For considering the trade-off between the accurate modeling ability of nonlinear systems and the easy-to-analyze
characteristic of linear systems, Lur’e systems with linear and sector-bounded nonlinear elements provide an effective
way to model the practical systems, such as neural networks, Chua’s circuits, quadruple-tank process systems [1–
6]. The stability is the basic requirement for the systems, while this requirement may not be guaranteed due to the
existence of time delays in communication channels [7–9]. Therefore, understanding the effect of delays on system
stability is an important issue and has become a hot topic in the past few decades [10]. Main attention of those
researches has been paid to the systems with single delay, which is combined all possible delays arising in the total
communication channel. While signals transmitted in many systems may experience several different channels (for
example, signals from sensors to controllers and from controllers to actuators) and successive delays with different
properties could be induced [11]. Hence, it is also an important issue to analyze the stability of the systems with
additive delay components.

The researches of the systems with additive delays were started from the continuous linear systems [11]. For the
Lur’e systems, the related researches have mainly focused on different neural networks. In [12], the neural network
with two additive delay components was proposed firstly to model different properties of delays. After that, many
results for the analysis and design of similar models were reported. By constructing a Lyapunov-Krasovskii functional
(LKF) and using a convex polyhedron method to estimate its derivative, two stability criteria were established in
[13]. Tian et al. gave improved stability criteria by combining several useful techniques [14]. In [15], two stability
criteria were developed through the free-weighting-matrix (FWM) approach and the Jensen inequality, respectively,
and the relationship between them was discussed. In [16], the reciprocally convex combination lemma and the convex
polyhedron method respectively led to two stability criteria with different computation burdens. Several techniques
for the stability analysis of neural networks were reviewed and compared with each other in [17]. The LKFs with
more general form, including triple and quadruple integral terms, were constructed to obtain stability criteria for
neural networks with additive delays in [18] and [21]. In [22], the Wirtinger-based integral inequality, together with
an augmented LKF, was applied to develop robust stability criteria for uncertain neural networks. The dynamic
delay interval based LKF was developed in [23] to greatly reduce the conservatism of the resulting stability criteria.
Very recently, the free-matrix-based integral inequalities developed in [26] and [27] were respectively extended to
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the stability/dissipativity analysis of neural networks with additive delays in [28] and the robust stability analysis of
neural networks with Markov jump parameters [5].

Since the time delays arising in the communication channels are usually time-varying, the popular investigation
framework for this type of time-delay system is to combine the LKF with the linear matrix inequality (LMI) [29, 30].
The aforementioned results are all obtained in this framework and the efforts were devoted to reduce the conservatism
of the obtained stability criteria. During the estimation of derivative of the LKFs, bounding integral terms and elimi-
nating time-varying delays are two key issues related to the conservatism of criteria [31]. Up to now, most researches,
including but not limited to the ones reviewed above, have focused on bounding the integral terms via various integral
inequalities, such as Jensen inequality [14–20], FWM-based approach [12–14, 17, 28], and Wirtinger-based inequality
[22–24]. The elimination of the time-varying delays is usually achieved through the direct enlargement [12, 18], the
convex combination technique [13–15, 17] and/or the reciprocally convex combination lemma [14, 16, 17, 22, 23, 25].
Very recently, a relaxed integral inequality was reported in our work [32], which combines the bounding of integral
terms and the elimination of time-varying delays in the denominator so as to achieve the decrease of estimation gap.
Moreover, an extended matrix inequality was developed in recent work [40], and similar results were obtained com-
pared with [32]. It is expected that the stability criterion of the systems with additive delays will also be improved by
following this idea. This motivates the current research.

This paper investigates the stability of Lur’e type nonlinear systems with two additive delay components and aims
to develop stability criteria with less conservatism. To achieve the objective, two types of LFKs are summarized and
combined with the extended matrix inequality. The comparison of the results shows the advantages of the proposed
methods.

The remainder of the paper is organized as follows. Section II gives problem formulation. In Section III, several
stability criteria are established. Two examples are studied to demonstrate the benefits of the proposed criteria in
Section IV. Conclusions are presented in Section V.

Notations: Throughout this paper, the superscripts T and −1 mean the transpose and the inverse of a matrix,
respectively; Rn denotes the n-dimensional Euclidean space; Rn×m is the set of all n × m real matrices; ∥ · ∥ refers
to the Euclidean vector norm; P > 0 (≥ 0) means that P is a real symmetric and positive-definite (semi-positive-
definite) matrix; diag{· · · } denotes a block-diagonal matrix; col{x, y} = [xT , yT ]T ; symmetric term in a symmetric
matrix is denoted by ∗; and Sym{X} = X + XT . Matrices, if the dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider the following Lur’e system with additive time-varying delay components:
ẋ(t)=A0x(t)+A1x(t−d1(t))+A2x(t−d1(t)−d2(t))
+W0 f (Wx(t)) +W1 f (Wx(t − d1(t)))
+W2 f (Wx(t − d1(t) − d2(t)))

x(t)=ϕ(t), t ∈ [−d, 0]

(1)

where x(t)= [x1(t) x2(t) · · · xn(t)]T is the state vector; W, Wi, and Ai, i = 0, 1, 2 are constant matrices with appropriate
dimensions; d1(t) and d2(t) are time-varying delays satisfying

0 ≤ d1(t) ≤ d1, |ḋ1(t)| ≤ µ1 (2)

and

0 ≤ d2(t) ≤ d2, |ḋ2(t)| ≤ µ2 (3)

where di and µi, i = 1, 2, are constant, let d(t) = d1(t) + d2(t) and d = d1 + d2; the initial function ϕ(t) is a continuous
differentiable vector-valued function defined on the interval [−d, 0]; and f (·)= [ f1(·) f2(·) · · · fn(·)]T is the nonlinear
function and assumed to satisfy the following restriction [42]:

fi(0) = 0



and

σ−i ≤
fi(s1) − fi(s2)

s1 − s2
≤ σ+i , s1 , s2 (4)

and

δ−i ≤
fi(s)

s
≤ δ+i , s , 0 (5)

where σ−i , σ+i , δ−i , and δ+i are known real constants. Let Σ1 = diag{σ+1 , · · · , σ+n }, Σ2 = diag{σ−1 , · · · , σ−n }, ∆1 =

diag{δ+1 , · · · , δ+n }, and ∆2 = diag{δ−1 , · · · , δ−n }.

Remark 1. System (1) gives a general form of Lur’e systems and covers many widely studied systems (such as neural
networks, genetical regulation networks, Chua’s circuits, etc.) as special cases and it can be converted to each of
them via the choice of related matrices, W, Wi, and Ai, i = 0, 1, 2.

This paper aims to develop new stability criteria with less conservatism to understand the effect of time delays
on the stability of system (1). Specifically, the key problem concerned for achieving this aim is to develop a new
technique to estimate the following two integral terms:

S(t) =
∫ α2(t)

α3(t)
ẋT (s)Rẋ(s)ds

+

∫ α1(t)

α2(t)
ẋT (s)Rẋ(s)ds (6)

where R > 0 is the symmetric matrix, αi(t), i = 1, 2, 3 are time-varying, α2(t) includes the time-varying delays, and
α1(t) and α3(t) satisfy α1(t) − α3(t) = c with c being constant.

The Wirtinger-based integral inequality to be used is given in the following lemma.

Lemma 1. [34] For symmetric matrix R > 0, scalars a and b with a < b, and vector ω such that the integration
concerned is well defined, the following inequality holds

(b − a)
∫ b

a
ω̇T (s)Rω̇(s)ds ≥ χT

1 Rχ1 + 3χT
2 Rχ2 (7)

where χ1 = ω(b) − ω(a) and χ2 = ω(b) + ω(a) − 2
b−a

∫ b
a ω(s)ds.

For comparison study, the simple form of reciprocally convex combination lemma [35] is summarized as the
following matrix inequality (named as RCMI in the subsequent sections):

Lemma 2. [36] For a real scalar α ∈ (0, 1), symmetric matrices R1 > 0 and R2 > 0, and any matrix S satisfying[R1 S
∗ R2

]
≥ 0, the following matrix inequality holds

[ 1
α

R1 0
0 1

1−αR2

]
≥

[
R1 S
∗ R2

]
(8)

An extended matrix inequality (named as ERCMI in the following sections) shown as following:

Lemma 3. [40] For a real scalar α ∈ (0, 1), symmetric matrices R1 > 0 and R2 > 0, and any matrices S 1 and S 2, the
following matrix inequality holds [ 1

α
R1 0
0 1

1−αR2

]
≥

[
R1 + (1−α)T1 (1−α)S 1+αS 2

∗ R2 + αT2

]
(9)

where T1 = R1 − S 2R−1
2 S T

2 and T2 = R2 − S T
1 R−1

1 S 1,



Remark 2. Currently, an improved RCMI was developed in [41] and is shown below:[ 1
α

R 0
0 1

1−αR

]
≥

[
R + (1 − α)T3 S

∗ R + αT4

]
(10)

where, T3 = R−S R−1S T and T4 = R−S T R−1S . Clearly, the ERCMI is of less conservatism compared with inequality
(10) and the RCMI:

• On one hand, the ERCMI includes the inequality (10) and the RCMI as a special case, respectively. By setting
R1 = R2, S 1 = S 2 or S 1 = S 2, T1 = T2 = 0, the ERCMI can be rewritten as the inequality (10) or the popular
RCMI.

• On the other hand, the restriction
[

R S
∗ R

]
≥ 0 of the popular RCMI is relaxed in inequality (9). Therefore, extra

freedom can be provided by the ERCMI which possibly reduces the conservatism.

3. Main Results

In this section, several stability criteria are established by combining the RCMI and ERCMI with two types of
LKFs.

3.1. Stability criteria based on the first LKF

Box I

d3(t) = d1(t) + d2, f (s) = f (Wx(s))

v1(t) =
∫ t

t−d1(t)

x(s)
d1(t)

ds, v2(t) =
∫ t−d1(t)

t−d(t)

x(s)
d2(t)

ds, v3(t)=
∫ t−d(t)

t−d3(t)

x(s)
d2−d2(t)

ds, v4(t)=
∫ t−d3(t)

t−d

x(s)
d1−d1(t)

ds

ξ1(t) = col {x(t), d1(t)v1(t), d2(t)v2(t), (d2 − d2(t))v3(t), (d1 − d1(t))v4(t)} , ξ2(t) = col{x(t), f (t)}
ζa(t) = col {x(t), x(t − d1(t)), x(t − d(t)), x(t − d3(t)), x(t−d), v1(t), v2(t), v3(t), v4(t), f (t), f (t−d1(t)), f (t−d(t))}

As mentioned in [31], the integral terms are always included in the LKFs and their integration ranges (upper/lower
limits of integration) are linked to the conservatism of the obtained criterion. For system (1), many time instants can
be used as the limits of integration, such as t, t − d1(t), t − d1, t − d2(t), t − d2, t − d(t), t − d1(t)− d2, t − d2(t)− d1, and
t − d. The relationships among them are given as follows:

t > t − d1(t) > t − d1 > t − d2(t) − d1 > t − d

t > t − d2(t) > t − d2 > t − d1(t) − d2 > t − d

t > t − d2(t) > t − d(t) > t − d2(t) − d1 > t − d

t > t − d1(t) > t − d(t) > t − d1(t) − d2 > t − d (11)

As mentioned in [37], the LKF including integral terms with tighter integration ranges has the potential to reduce the
conservatism. Moreover, system (1) includes the state at instant t − d(t). Then, the relationship shown in (11) is used
to construct single integral terms of the LKFs. That is, the first type of LKF is given as follows:

Va(t) = V1(t) + V2(t) + V3(t) + V4(t) (12)



where

V1(t) = ξT1 (t)Pξ1(t)

V2(t) =
∫ t

t−d1(t)
ξT2 (s)Q1ξ2(s)ds +

∫ t−d1(t)

t−d(t)
ξT2 (s)Q2ξ2(s)ds

+

∫ t−d(t)

t−d3(t)
xT (s)Q3x(s)ds +

∫ t−d3(t)

t−d
xT (s)Q4x(s)ds

V3(t) = 2
n∑

i=1

∫ W2i x

0

[
λ1i(δ+i s− fi(s))+λ2i( fi(s)−δ−i s)

]
ds

V4(t) =
∫ 0

−d

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ

and P > 0, Qi > 0, i = 1, 2, 3, 4, and R > 0 are the symmetric matrices with approximate dimension; and Li =

diag{λi1, λi2, · · · , λin} > 0, i = 1, 2 are the symmetric diagonal matrices; and other notations are listed in Box I.
Based on LKF (12) and Wirtinger-based inequality (7), two stability conditions of system (1) are obtained through

inequalities (8) and (9), respectively, and summarized in the following theorem.

Theorem 1. For given integers h1, h2, µ1, and µ2, system (1) with time-varying delay satisfying (2) and (3) is asymp-
totically stable, if the one of the following conditions holds

C1. (9)-based condition: if there exist positive-definite symmetric matrices P ∈ R5n×5n, Qi ∈ R2n×2n, i = 1, 2,
Q j ∈ Rn×n, j = 3, 4, and R ∈ Rn×n, positive-definite diagonal matrices Li ∈ Rn×n, i = 1, 2, H j ∈ Rn×n,
and G j ∈ Rn×n, j = 1, 2, 3, and any matrices Xi,Yi ∈ R2n×2n, i = 1, 2, such that the following holds for
(ḋ1(t), ḋ2(t)) ∈ Ω2 (Note that Ψ1(d1(t), d2(t), ḋ1(t), ḋ2(t)) is simplified as Ψ1):Ψ1|d1(t)=0,d2(t)=0 ET

1 X2 ET
2 Y2

∗ −d1R̃ 0
∗ ∗ −d2R̃

 < 0 (13)

Ψ1|d1(t)=0,d2(t)=d2 ET
1 X2 ET

3 YT
1

∗ −d1R̃ 0
∗ ∗ −d2R̃

 < 0 (14)

Ψ1|d1(t)=d1,d2(t)=0 ET
4 XT

1 ET
2 Y2

∗ −d1R̃ 0
∗ ∗ −d2R̃

 < 0 (15)

Ψ1|d1(t)=d1,d2(t)=d2 ET
4 XT

1 ET
3 YT

1
∗ −d1R̃ 0
∗ ∗ −d2R̃

 < 0 (16)

C2. (8)-based condition: if there exist positive-definite symmetric matrices P ∈ R5n×5n, Qi ∈ R2n×2n, i = 1, 2, Q j ∈
Rn×n, j = 3, 4, and R ∈ Rn×n, positive-definite diagonal matrices Li ∈ Rn×n, i = 1, 2, H j ∈ Rn×n, and G j ∈ Rn×n,
j = 1, 2, 3, and any matrices X,Y ∈ R2n×2n, such that the following holds for (d1(t), d2(t), ḋ1(t), ḋ2(t)) ∈ Ω:[

R̃ X
∗ R̃

]
> 0 (17)[

R̃ Y
∗ R̃

]
> 0 (18)

Ψ2(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0 (19)

where the related notations are given in Box II.



Box II: notations used in Theorem 1

Ω =
{
(d1(t), d2(t), ḋ1(t), ḋ2(t))

∣∣∣d1(t) ∈ {0, d1}, d2(t) ∈ {0, d2}, ḋ1(t) ∈ {−µ1, µ1}, ḋ2(t) ∈ {−µ2, µ2}
}

Ω1 =
{
(d1(t), d2(t))

∣∣∣d1(t) ∈ {0, d1}, d2(t) ∈ {0, d2}
}
, Ω2 =

{
(ḋ1(t), ḋ2(t))

∣∣∣ḋ1(t) ∈ {−µ1, µ1}, ḋ2(t) ∈ {−µ2, µ2}
}

Ψ1(d1(t), d2(t), ḋ1(t), ḋ2(t))

=



4∑
i=1
Φi+FT

1 PF2+FT
2 PF1+eT

s (dR)es− 1
d1

[
E1
E4

]T[2R̃ X1
∗ R̃

][
E1
E4

]
− 1

d2

[
E2
E3

]T[2R̃ Y1
∗ R̃

][
E2
E3

]
, if d1(t)=0, d2(t)=0

4∑
i=1
Φi+FT

1 PF2+FT
2 PF1+eT

s (dR)es− 1
d1

[
E1
E4

]T[R̃ X2
∗ 2R̃

][
E1
E4

]
− 1

d2

[
E2
E3

]T[2R̃ Y1
∗ R̃

][
E2
E3

]
, if d1(t)=d1, d2(t)=0

4∑
i=1
Φi+FT

1 PF2+FT
2 PF1+eT

s (dR)es− 1
d1

[
E1
E4

]T[2R̃ X1
∗ R̃

][
E1
E4

]
− 1

d2

[
E2
E3

]T[R̃ Y2
∗ 2R̃

][
E2
E3

]
, if d1(t)=0, d2(t)=d2

4∑
i=1
Φi+FT

1 PF2+FT
2 PF1+eT

s (dR)es− 1
d1

[
E1
E4

]T[R̃ X2
∗ 2R̃

][
E1
E4

]
− 1

d2

[
E2
E3

]T[ R̃ Y2
∗ 2R̃

][
E2
E3

]
, if d1(t)=d1, d2(t)=d2

Ψ2(d1(t), d2(t), ḋ1(t), ḋ2(t)) =
4∑

i=1

Φi + FT
1 PF2 + FT

2 PF1 + eT
s (dR)es −

1
d1

[
E1
E4

]T[ R̃ X
∗ R̃

][
E1
E4

]
− 1

d2

[
E2
E3

]T[ R̃ Y
∗ R̃

][
E2
E3

]

Φ1 =

 e1
e10

e5


T Q1 0

0 −Q4


 e1

e10

e5

−(1−ḋ1(t))

 e2
e11

e4


T Q1−Q2 0

0 Q3−Q4


 e2

e11

e4

−(1−ḋ(t))
[

e3
e12

]T(
Q2−

[
Q3 0
0 0

])[
e3
e12

]

Φ2 = S ym
{[

(∆1We1−e10)T L1+(e10−∆2We1)T L2
]
Wes

}
, Φ3 = S ym

 3∑
i=1

[∆1Wei−ei+9]T Hi [ei+9−∆2Wei]


Φ4 = S ym


2∑

i=1

[
Σ1W(ei − ei+1) − (ei+9 − ei+10)

]T Gi
[
(ei+9 − ei+10) − Σ2W(ei − ei+1)

]
+
[
Σ1W(e1 − e3) − (e10 − e12)

]T G3
[
(e10 − e12) − Σ2W(e1 − e3)

]


F1 = col {e1, d1(t)e6, d2(t)e7, (d2 − d2(t))e8, (d1 − d1(t))e9}

F2 = col
{
es, e1 − (1 − ḋ1(t))e2, (1 − ḋ1(t))e2 − (1 − ḋ(t))e3, (1 − ḋ(t))e3 − (1 − ḋ1(t))e4, (1 − ḋ1(t))e4 − e5

}
Ei =

[
ei − ei+1

ei + ei+1 − 2ei+5

]
, i = 1, 2, 3, R̃ =

[
R 0
0 3R

]
ei = [0n×(i−1)n In×n 0n×(12−i)n], i = 1, 2, · · · , 12, es = A0e1 + A1e2 + A2e3 +W0e10 +W1e11 +W2e12

Proof: The condition that P, Qi, i = 1, 2, 3, 4, R, and L j, j = 1, 2, are positive-definite matrices leads that the LKF
satisfies Va(t) ≥ ϵ||x(t)||2 with ϵ > 0.

The derivative of V1(t) along the solution of system (1) can be obtained as

V̇1(t) = 2


x(t)

d1(t)v1(t)
d2(t)v2(t)

(d2 − d2(t))v3(t)
(d1 − d1(t))v4(t)


T

P



×


ẋ(t)

x(t) − (1−ḋ1(t))x(t − d1(t))
(1−ḋ1(t))x(t − d1(t)) − (1−ḋ(t))x(t − d(t))
(1−ḋ(t))x(t − d(t)) − (1−ḋ1(t))x(t − d3(t))

(1−ḋ1(t))x(t − d3(t)) − x(t − d)


= ζT

a (t)(FT
1 PF2 + FT

2 PF1)ζa(t) (20)

where F1 and F2 are defined in Box II.
The derivative of V2(t) along the solution of system (1) can be obtained as

V̇2(t) = ξT2 (t)Q1ξ2(t) − xT (t − d)Q4x(t − d)

− (1 − ḋ1(t))ξT2 (t − d1(t))(Q1 − Q2)ξ2(t − d1(t))

− (1 − ḋ(t))ξT2 (t − d(t))Q2ξ2(t − d(t))

− (1 − ḋ(t))xT (t − d(t))Q3x(t − d(t))

− (1 − ḋ1(t))xT (t − d3(t))(Q3 − Q4)x(t − d3(t))

= ζT
a (t)Φ1ζa(t) (21)

where Φ1 is defined in Box II.
The derivative of V3(t) along the solution of system (1) can be obtained as

V̇3(t)=2
{
[∆1Wx(t)− f(t)]TL1+[ f(t)−∆2Wx(t)]TL2

}
Wẋ(t)

= ζT
a (t)Φ2ζa(t) (22)

where Φ2 is defined in Box II.
The derivative of V4(t) along the solution of system (1) can be obtained as

V̇4(t) = dẋT (t)Rẋ(t) −
∫ t

t−d
ẋT (s)Rẋ(s)ds (23)

Under the assumption on the nonlinear function, (4) and (5), the following inequalities hold:

hi(s) =2
[
∆1Wx(s)− f (s)

]T Hi
[
f (s)−∆2Wx(s)

] ≥ 0

g j(s1, s2) =2
[
Σ1W(x(s1)−x(s2))−( f (s1)− f (s2))

]T G j

× [
( f (s1)− f (s2))−Σ2W(x(s1)−x(s2))

] ≥ 0

where Hi = diag{h1i, h2i, · · · , hni} ≥ 0, i = 1, 2, 3 and G j = diag{g1 j, g2 j, · · · , gn j} ≥ 0, j = 1, 2, 3. Thus, the following
inequalities hold:

h1(t) + h2(t − d1(t)) + h3(t − d(t))

= ζT
a (t)Φ3ζa(t) ≥ 0 (24)

g1(t, t − d1(t)) + g2(t − d1(t), t − d(t)) + g3(t, t − d(t))

= ζT
a (t)Φ4ζa(t) ≥ 0 (25)

where Φ3 and Φ4 are defined in Box II.
Based on (11), the R-dependent integral term in (23) can be divided into the following four parts:

V̇4a(t) :=
∫ t

t−d1(t)
ẋT (s)Rẋ(s)ds +

∫ t−d3(t)

t−d
ẋT (s)Rẋ(s)ds

V̇4b(t) :=
∫ t−d1(t)

t−d(t)
ẋT (s)Rẋ(s)ds +

∫ t−d(t)

t−d3(t)
ẋT (s)Rẋ(s)ds



Based on Wirtinger-based inequality, the following holds∫ t

t−d1(t)
ẋT (s)Rẋ(s)ds ≥ 1

d1(t)

[
η1(t)
η2(t)

]T [
R 0
0 3R

] [
η1(t)
η2(t)

]
=

1
d1(t)
ζT

a (t)ET
1 R̃E1ζa(t)

where [
η1(t)
η2(t)

]
=

[
x(t) − x(t − d1(t))

x(t) + x(t − d1(t)) − 2v1(t)

]
= E1ζa(t)

Similarly, it follows from Wirtinger-based inequality that∫ t−d1(t)

t−d(t)
ẋT (s)Rẋ(s)ds ≥ 1

d2(t)
ζT

a (t)ET
2 R̃E2ζa(t)∫ t−d(t)

t−d3(t)
ẋT (s)Rẋ(s)ds ≥ 1

d2 − d2(t)
ζT

a (t)ET
3 R̃E3ζa(t)∫ t−d3(t)

t−d
ẋT (s)Rẋ(s)ds ≥ 1

d1 − d1(t)
ζT

a (t)ET
4 R̃E4ζa(t)

Thus, V̇4a(t) and V̇4b(t) can be rewritten as

V̇4a(t) ≥ ζT
a (t)

[
E1
E4

]T[ 1
d1(t) R̃ 0

0 1
d1−d1(t) R̃

][
E1
E4

]
ζa(t) (26)

V̇4b(t) ≥ ζT
a (t)

[
E2
E3

]T[ 1
d2(t) R̃ 0

0 1
d2−d2(t) R̃

][
E2
E3

]
ζa(t) (27)

Then, applying matrix inequalities (8) and (9) to estimate above two terms, respectively, leads to two conditions
of Theorem 1.

Case I: For any matrices Xi and Yi, i = 1, 2, using (9) to estimate V̇4a(t) and V̇4b(t) yields

V̇4a(t)+ V̇4b(t) ≥ ζT
a (t)

{
1
d1
Φ̃6a +

1
d2
Φ̃6b

}
ζa(t) (28)

where

Φ̃6a

=

[
E1
E4

]T  R̃ + (d1−d1(t))
d1

T1
(d1−d1(t))

d1
X1 +

d1(t)
d1

X2

∗ R̃ + d1(t)
d1

T2

[E1
E4

]
Φ̃6b

=

[
E2
E3

]T  R̃ + (d2−d2(t))
d2

T3
(d2−d2(t))

d2
Y1 +

d2(t)
d2

Y2

∗ R̃ + d2(t)
d2

T4

[E2
E3

]
T1 = R̃ − X2R̃−1XT

2 , T2 = R̃ − XT
1 R̃−1X1

T3 = R̃ − Y2R̃−1YT
2 , T4 = R̃ − YT

1 R̃−1Y1

By combining (20)-(28), the derivative of Va(t) is given as

V̇(t) ≤ ζT
a (t)Ψ̃1(d1(t), d2(t), ḋ1(t), ḋ2(t))ζa(t)



where

Ψ̃1(d1(t), d2(t), ḋ1(t), ḋ2(t))

=

4∑
i=1

Φi + FT
1 PF2 + FT

2 PF1 + eT
s (dR)es −

Φ̃6a

d1
− Φ̃6b

d2

It can be easily found that Ψ̃1(d1(t), d2(t), ḋ1(t), ḋ2(t)) can be represented as the following form:

Ψ̃1(d1(t), d2(t), ḋ1(t), ḋ2(t))

= Γ1 + ḋ1(t)Γ2 + ḋ2(t)Γ3 + d1(t)[Γ4 + ḋ1(t)Γ5 + ḋ2(t)Γ6]

+ d2(t)[Γ7 + ḋ1(t)Γ8 + ḋ2(t)Γ9]

where Γi, i = 1, 2, · · · , 9 are time-independent matrix-combinations. Similar to the idea of [17] [Eqs. (59)-(62)
therein], the following holds for time delays satisfying (2):

Ψ̃1(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0 (29)

when it holds for (d1(t), d2(t)) ∈ Ω1, i.e.,

Ψ̃1(0, 0, ḋ1(t), ḋ2(t)) < 0
Ψ̃1(0, d2, ḋ1(t), ḋ2(t)) < 0
Ψ̃1(d1, 0, ḋ1(t), ḋ2(t)) < 0
Ψ̃1(d1, d2, ḋ1(t), ḋ2(t)) < 0

Similarly, it is also easy to find that (29) holds for all time-varying delays satisfying (2) and (3) when above four
inequalities hold for (ḋ1(t), ḋ2(t)) ∈ Ω2.

In (28), Φ̃6a and Φ̃6b can be rewritten as

Φ̃6a=



[
E1
E4

]T[2R̃−X2R̃−1XT
2 X1

∗ R̃

][
E1
E4

]
, if d1(t)=0[

E1
E4

]T[ R̃ X2
∗ 2R̃−XT

1 R̃−1X1

][
E1
E4

]
, if d1(t)=d1

Φ̃6b=



[
E2
E3

]T[2R̃−Y2R̃−1YT
2 Y1

∗ R̃

][
E2
E3

]
, if d2(t)=0[

E2
E3

]T[ R̃ Y2
∗ 2R̃−YT

1 R̃−1Y1

][
E2
E3

]
, if d2(t)=d2

Based on Schur complement, for the case of d1(t) = 0, d2(t) = 0, the condition Ψ̃1(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0 is
equivalent to inequality (13), i.e.,

(13)⇔ Ψ̃1(0, 0, ḋ1(t), ḋ2(t)) < 0 (30)

Similarly, the follow relationships are true:

(14) ⇔ Ψ̃1(0, d2, ḋ1(t), ḋ2(t)) < 0 (31)
(15) ⇔ Ψ̃1(d1, 0, ḋ1(t), ḋ2(t)) < 0 (32)
(16) ⇔ Ψ̃1(d1, d2, ḋ1(t), ḋ2(t)) < 0 (33)

Combining (30)-(33) yields

(13) − (16)⇔ Ψ̃1(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0



which implies V̇a(t) ≤ −ϵ||x(t)||2 for a sufficient small scalar ϵ > 0. Therefore, when (13)-(16) hold for (ḋ1(t), ḋ2(t)) ∈
Ω2, system (1) is asymptotically stable.

Case II: When (17) and (18) hold, using RCMI (8) to estimate V̇4a(t) and V̇4b(t) yields

V̇4a(t) + V̇4b(t) (34)

≥ ζT
a (t)


[

E1
E4

]T [
R̃ X
∗ R̃

][
E1
E4

]
+

[
E2
E3

]T [
R̃ Y
∗ R̃

][
E2
E3

] ζa(t)

Then, combining (20)-(27) and (34) leads to

V̇a(t) ≤ ζT
a (t)Ψ2(d1(t), d2(t), ḋ1(t), ḋ2(t))ζa(t)

where Ψ2(d1(t), d2(t), ḋ1(t), ḋ2(t)) is defined in Box II.
Similar to the proof of Theorem 1.C1, the following holds for all time-varying delays satisfying (2) and (3):

Ψ2(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0

when it holds for (d1(t), d2(t), ḋ1(t), ḋ2(t)) ∈ Ω. Therefore, when (17)-(19) hold, V̇a(t) ≤ −ϵ ||x(t)||2 for a sufficient
small scalar ϵ > 0, which shows the asymptotically stable of system (1). The proof of Theorem 1 completes. �

Remark 3. In the above proof, the only difference for developing two conditions is that different matrix inequalities
are used to estimate the single integral terms (V̇4a(t) and V̇4b(t) in (26) and (27)). Thus, the advantages of the ERCMI
(9) compared with the popular inequality (8) can be found through the comparison of the results provided by those
criteria. Furthermore, by following the same lines in [32] [proof of Theorem 2 therein], it can be proved in theoretical
that Theorem 1.C1 is less conservative than Theorem 1.C2.

3.2. Stability criteria based on the second LKF
Very recently, a dynamic delay interval method was developed in [23] to improve the stability criteria of system

(1). The main characteristic of this method is that the upper/lower bounds of double integral terms of the LKF are
extended into the time-varying delays combination, instead of their bounds used in most literature. Based on this type
of LKF, this subsection develops enhanced stability criteria by replacing the RCMI used in [23] with the ERCMI. For
using this method, set A1 = W1 = 0.

Construct the following LKF candidate:

Vb(t) = V̄1(t) + V̄2(t) + V3(t) + V̄4(t) (35)

where V3(t) is defined in (12), and

V̄1(t) =ξT3 (t)P̄ξ3(t)

V̄2(t) =
∫ t

t−a(t)
ξT2 (s)R1ξ2(s)ds +

∫ t−a(t)

t−d(t)
ξT2 (s)R2ξ2(s)ds

+

∫ t

t−b(t)
ξT2 (s)R3ξ2(s)ds

V3(t) =2
n∑

i=1

∫ W2i x

0

[
λ1i(δ+i s− fi(s))+λ2i( fi(s)−δ−i s)

]
ds

V̄4(t) =
∫ 0

−a(t)

∫ t

t+θ
ẋT (s)Z1 ẋ(s)dsdθ

+

∫ −a(t)

−b(t)

∫ t

t+θ
ẋT (s)Z2 ẋ(s)dsdθ

and P̄ > 0, Ri > 0, i = 1, 2, 3, and Zi > 0, i = 1, 2 are the symmetric matrices with approximate dimension; and other
notations are listed in Box III (Note that the notations given in Box I are not listed in Box III).



Remark 4. Worth mentioning, if the LKF Vb(t) was employed, some integral terms multiplied by −(1− ȧ(t)) would be
produced. For possibly bounded by integral inequality method, the variable (1− ȧ(t)) is required to be greater than 0.
Therefore, some restrictions on α, β, µ1, and µ2 are needed and the detailed descriptions are expressed in Box III.

Box III

a(t) = αd1(t)+βd2(t), b(t)=d−α(d1−d1(t))−β(d2−d2(t)), (α,β)∈
N =

{
(α, β)

∣∣∣α∈ [0, 1], β∈ [0, 1]
}
, i f µ1+µ2<1

N ∩ {(α, β)|αµ1 + βµ2 < 1}, i f µ1+µ2≥1

f (s) = f (Wx(s)), v5(t) =
∫ t

t−a(t)

x(s)
a(t)

ds, v6(t) =
∫ t−a(t)

t−d(t)

x(s)
d(t) − a(t)

ds, v7(t)=
∫ t−d(t)

t−b(t)

x(s)
b(t) − d(t)

ds

ξ3(t) = col {x(t), a(t)v5(t), (d(t) − a(t))v6(t), (b(t) − d(t))v7(t)} , ξ2(t) = col{x(t), f (t)}
ζb(t) = col {x(t), x(t − a(t)), x(t − d(t)), x(t − b(t)), v5(t), v6(t), v7(t), f (t), f (t−a(t)), f (t−d(t)), f (t−b(t))}

Based on LKF (35) and Wirtinger-based inequality (7), two stability conditions of system (1) are obtained through
matrix inequalities (8) and (9), respectively, and summarized in the following theorem.

Theorem 2. For given integers h1, h2, µ1, µ2, α, and β, system (1) with time-varying delays satisfying (2) and (3) is
asymptotically stable, if the one of the following conditions holds

C1. ERCMI-based condition: if there exist positive-definite symmetric matrices P̄ ∈ R4n×4n, Ri ∈ R2n×2n, i = 1, 2, 3,
and Zi ∈ Rn×n, i = 1, 2, positive-definite diagonal matrices Li ∈ Rn×n, i = 1, 2, H j ∈ Rn×n, and G j ∈ Rn×n,
j = 1, 2, 3, 4, and any matrices Xi ∈ R2n×2n, i = 1, 2, such that the following holds for (ḋ1(t), ḋ2(t)) ∈ Ω2 (Note
that Ψ3(d1(t), d2(t), ḋ1(t), ḋ2(t)) is simplified as Ψ3):[

Ψ3|d1(t)=0,d2(t)=0 (1 − ȧ(t))ET
2 X2

∗ −(1 − ȧ(t))ρZ̃2

]
< 0 (36)


Ψ3

∣∣∣{ d1(t) = 0
d2(t) = d2

(1−ȧ(t))ET
2 X2 (1−ȧ(t))ET

3 XT
1

∗ (ȧ(t)−1)ρ
τα

Z̃2 0

∗ ∗ (ȧ(t)−1)ρ
τβ

Z̃2

<0 (37)


Ψ3

∣∣∣{ d1(t) = d1
d2(t) = 0

(1−ȧ(t))ET
2 X2 (1−ȧ(t))ET

3 XT
1

∗ (ȧ(t)−1)ρ
τβ

Z̃2 0

∗ ∗ (ȧ(t)−1)ρ
τα

Z̃2

<0 (38)

[
Ψ3|d1(t)=d1,d2(t)=d2 (1 − ȧ(t))ET

3 XT
1

∗ −(1 − ȧ(t))ρZ̃2

]
< 0 (39)

C2. RCMI-based condition: if there exist positive-definite symmetric matrices P̄ ∈ R4n×4n, Ri ∈ R2n×2n, i = 1, 2, 3,
and Zi ∈ Rn×n, i = 1, 2, positive-definite diagonal matrices Li ∈ Rn×n, i = 1, 2, H j ∈ Rn×n, and G j ∈ Rn×n,
j = 1, 2, 3, 4, and any matrices X ∈ R2n×2n, such that the following holds for (d1(t), d2(t), ḋ1(t), ḋ2(t)) ∈ Ω:[

Z̃2 X
∗ Z̃2

]
> 0 (40)

Ψ4(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0 (41)



Box IV: notations used in Theorem 2

Ψ3(d1(t), d2(t), ḋ1(t), ḋ2(t))

=



∑
i=1,3,4,5

Φ̄i+Φ2 − (1−ȧ(t))
(1−α)d1+(1−β)d2

[
E2
E3

]T [
2Z̃2 X1
∗ Z̃2

][
E2
E3

]
, when d1(t) = 0, d2(t) = 0

∑
i=1,3,4,5

Φ̄i+Φ2 − (1−ȧ(t))
(1−α)d1+(1−β)d2

[
E2
E3

]T [
(1+τβ)Z̃2 τβX1+ταX2
∗ (1+τα)Z̃2

][
E2
E3

]
, when d1(t) = d1, d2(t) = 0

∑
i=1,3,4,5

Φ̄i+Φ2 − (1−ȧ(t))
(1−α)d1+(1−β)d2

[
E2
E3

]T [
(1+τα)Z̃2 ταX1+τβX2
∗ (1+τβ)Z̃2

][
E2
E3

]
, when d1(t) = 0, d2(t) = d2

∑
i=1,3,4,5

Φ̄i+Φ2 − (1−ȧ(t))
(1−α)d1+(1−β)d2

[
E2
E3

]T [
Z̃2 X2
∗ 2Z̃2

][
E2
E3

]
, when d1(t) = d1, d2(t) = d2

Ψ4(d1(t), d2(t), ḋ1(t), ḋ2(t)) =
∑

i=1,3,4,5

Φ̄i+Φ2 −
(1 − ȧ(t))

(1 − α)d1 + (1 − β)d2

[
E2
E3

]T [
Z̃2 X
∗ Z̃2

][
E2
E3

]

Φ̄1 =

[
e1
e8

]T

(R1 + R3)
[

e1
e8

]
−(1−ȧ(t))

[
e2
e9

]T

(R1 − R2)
[

e2
e9

]
−(1−ḋ(t))

[
e3
e10

]T

R2

[
e3
e10

]
−(1−ḃ(t))

[
e4
e11

]T

R3

[
e4
e11

]

Φ2 = S ym
{[

(∆1We1−e8)T L1+(e8−∆2We1)T L2
]
Wes

}
, Φ̄3 = S ym

 4∑
i=1

[∆1Wei−ei+7]T H̄i [ei+7−∆2Wei]


Φ̄4 = S ym


3∑

i=1

[
Σ1W(ei − ei+1) − (ei+7 − ei+8)

]T Ḡi
[
(ei+7 − ei+8) − Σ2W(ei − ei+1)

]
+
[
Σ1W(e1 − e3) − (e8 − e10)

]T Ḡ4
[
(e8 − e10) − Σ2W(e1 − e3)

]


Φ̄5 = FT
3 P̄F4 + FT

4 P̄F3 + eT
s
[
a(t)Z1 + (b(t) − a(t))Z2

]
es − (1 − ȧ(t))

ET
1 Z̃1E1

αd1 + βd2

F3 = col {e1, a(t)e5, (d(t) − a(t))e6, (b(t) − d(t))e7}
F4 = col

{
es, e1 − (1 − ȧ(t))e2, (1 − ȧ(t))e2 − (1 − ḋ(t))e3, (1 − ḋ(t))e3 − (1 − ḃ(t))e4

}
Ei =

[
ei − ei+1

ei + ei+1 − 2ei+4

]
, i = 1, 2, 3, Z̃ j =

[
Z j 0
0 3Z j

]
, j = 1, 2

ei = [0n×(i−1)n In×n 0n×(11−i)n], i = 1, 2, · · · , 11, es = A0e1 + A2e3 +W0e8 +W2e10

τα =
(1−α)d1

(1−α)d1+(1−β)d2
, τβ =

(1−β)d2

(1−α)d1+(1−β)d2
, ρ = (1 − α)d1 + (1 − β)d2

where the related notations are given in Box IV.

Proof: The condition that P̄, Ri, i = 1, 2, 3, Z j, and L j, j = 1, 2, are positive-definite matrices leads that the LKF
satisfies Vb(t) ≥ ϵ||x(t)||2 with ϵ > 0.

The derivative of V̄1(t) along the solution of system (1) can be obtained as

˙̄V1(t) = 2ξT3 (t)P̄ξ̇3(t) = ζT
b (t)(FT

3 P̄F4 + FT
4 P̄F3)ζb(t) (42)

where F3 and F4 are defined in Box IV.



The derivative of V̄2(t) along the solution of system (1) can be obtained as

˙̄V2(t) = ζT
b (t)Φ̄1ζb(t) (43)

where Φ̄1 is defined in Box IV. (Note that ȧ(t) = ḃ(t)).
The derivative of V3(t) along the solution of system (1) can be obtained as

V̇3(t)=2
{
[∆1Wx(t)− f(t)]TL1+[ f(t)−∆2Wx(t)]TL2

}
Wẋ(t)

= ζT
a (t)Φ2ζa(t) (44)

where Φ2 is defined in Box IV.
The derivative of V̄4(t) along the solution of system (1) can be obtained as [23]

˙̄V4(t) =ẋT (t)
[
a(t)Z1+(b(t)−a(t))Z2

]
ẋ(t)−(1−ȧ(t))

×
[∫ t

t−a(t)
ẋT (s)Z1 ẋ(s)ds+

∫ t−a(t)

t−b(t)
ẋT (s)Z2 ẋ(s)ds

]
(45)

Under the assumption on the nonlinear function, (4) and (5), the following inequalities hold:

hi(s) =2
[
∆1Wx(s)− f (s)

]T Hi
[
f (s)−∆2Wx(s)

] ≥ 0

g j(s1, s2) =2
[
Σ1W(x(s1)−x(s2))−( f (s1)− f (s2))

]T G j

× [
( f (s1)− f (s2))−Σ2W(x(s1)−x(s2))

] ≥ 0

where Hi = diag{h1i, h2i, · · · , hni} ≥ 0, i = 1, 2, 3, 4 and G j = diag{g1 j, g2 j, · · · , gn j} ≥ 0, j = 1, 2, 3. Thus, the
following inequalities hold:

h1(t) + h2(t − a(t)) + h3(t − d(t)) + h4(t − b(t))
= ζT

a (t)Φ̄3ζa(t) ≥ 0 (46)
g1(t, t − a(t)) + g2(t − a(t), t − d(t))

+g3(t − d(t), t − b(t)) + g4(t, t − d(t))
= ζT

a (t)Φ̄4ζa(t) ≥ 0 (47)

where Φ̄3 and Φ̄4 are defined in Box IV.
The Z1-dependent term in (45) is estimated as [23]:

∫ t

t−a(t)
ẋT (s)Z1 ẋ(s)ds ≥ ζT

b (t)
 ET

1 Z̃1E1

αd1 + βd2

 ζb(t) (48)

For the Z2-dependent term in (45), it follows from Wirtinger-based inequality that∫ t−a(t)

t−b(t)
ẋT (s)Z2 ẋ(s)ds

=

∫ t−a(t)

t−d(t)
ẋT (s)Z2 ẋ(s)ds +

∫ t−d(t)

t−b(t)
ẋT (s)Z2 ẋ(s)ds

≥ζT
b (t)

[
E2
E3

]T[ 1
d(t)−a(t) Z̃2 0

0 1
b(t)−d(t) Z̃2

][
E2
E3

]
ζb(t) (49)

Then, applying two matrix inequalities to estimate above term, respectively, leads to two conditions of Theorem 2.
Case I: By using (9), Z2-dependent integral term in (45) can be estimated as∫ t−a(t)

t−b(t)
ẋT (s)Z2 ẋ(s)ds ≥

ζT
b (t)Φ̃6(a(t), d(t), b(t))ζb(t)

(1−α)d1+(1−β)d2
(50)



where

Φ̃6(a(t), d(t), b(t))

=

E2

E3

TZ̃2+
b(t)−d(t)
b(t)−a(t) T̄1

b(t)−d(t)
b(t)−a(t) X1+

d(t)−a(t)
b(t)−a(t) X2

∗ Z̃2+
d(t)−a(t)
b(t)−a(t) T̄2


E2

E3


=

[
E2

E3

]T [
Z̃2+(1−τ(t))T̄1 (1−τ(t))X1+τ(t)X2

∗ Z̃2+τ(t)T̄2

][
E2

E3

]
τ(t) =

(1−α)d1(t)+(1−β)d2(t)
(1−α)d1+(1−β)d2

T̄1 = Z̃2 − X2Z̃−1
2 XT

2 , T̄2 = Z̃2 − XT
1 Z̃−1

2 X1

Then, combining (44) and (42)-(50) yields

V̇b(t) ≤ ζT
b (t)Ψ̃3(a(t), b(t), ȧ(t), ḋ(t))ζb(t)

where

Ψ̃3(a(t), b(t), ȧ(t), ḋ(t)) =
∑

i=1,3,4,5

Φ̄i+Φ2−
(1−ȧ(t))
ρ

Φ̃6

Similar to the idea of [17] [Eqs. (59)-(62) therein], the following holds for time-varying delays satisfying (2):

Ψ̃3(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0 (51)

when it holds for (d1(t), d2(t)) ∈ Ω1, i.e.,

Ψ̃3(0, 0, ḋ1(t), ḋ2(t)) < 0
Ψ̃3(0, d2, ḋ1(t), ḋ2(t)) < 0
Ψ̃3(d1, 0, ḋ1(t), ḋ2(t)) < 0
Ψ̃3(d1, d2, ḋ1(t), ḋ2(t)) < 0

And (51) holds for all time-varying delays satisfying (2) and (3) when above four inequalities hold for (ḋ1(t), ḋ2(t)) ∈
Ω2.

When d1(t)=0, d2(t)=0, Φ̃6(a(t), d(t), b(t)) is given as

Φ̃6 =

[
E2
E3

]T [
2Z̃2−X2Z̃−1

2 XT
2 X1

∗ Z̃2

][
E2
E3

]
Based on Schur complement, Ψ̃3(0, 0, ḋ1(t), ḋ2(t)) < 0 is equivalent to (36), i.e.,

(36)⇔ Ψ̃3(0, 0, ḋ1(t), ḋ2(t)) < 0

When d1(t)=0, d2(t)=d2, Φ̃6(a(t), d(t), b(t)) is obtained as

Φ̃6 =

[
E2
E3

]T [
(1+τα)Z̃2 ταX1+τβX2
∗ (1+τβ)Z̃2

][
E2
E3

]
−

[
E2
E3

]T [
ταX2Z̃−1

2 XT
2 0

∗ τβXT
1 Z̃−1

2 X1

][
E2
E3

]



where

τα =
(1−α)d1

(1−α)d1+(1−β)d2
, τβ =

(1−β)d2

(1−α)d1+(1−β)d2

Based on Schur complement, Ψ̃3(0, d2, ḋ1(t), ḋ2(t)) < 0 is equivalent to (37), i.e.,

(37)⇔ Ψ̃3(0, d2, ḋ1(t), ḋ2(t)) < 0

Similarly, the following relationships can be found

(38) ⇔ Ψ̃3(d1, 0, ḋ1(t), ḋ2(t)) < 0
(39) ⇔ Ψ̃3(d1, d2, ḋ1(t), ḋ2(t)) < 0

Thus,

(36) − (39)⇔ Ψ̃3(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0

which implies V̇b(t) ≤ −ϵ||x(t)||2 for a sufficient small scalar ϵ > 0. Therefore, when (36)-(39) hold for (ḋ1(t), ḋ2(t)) ∈
Ω2, system (1) is asymptotically stable.

Case II: When (40) holds, applying RCMI (8) to estimate Z2-dependent integral term in (45) yields

∫ t−b(t)

t−a(t)
ẋT (s)Z2 ẋ(s)ds ≥

ζT
b (t)

[
E2
E3

]T[ Z̃2 X
∗ Z̃2

][
E2
E3

]
ζb(t)

(1−α)d1+(1−β)d2
(52)

Therefore, by combining (44), (42)-(48), and (52), the derivative of Vb(t) is obtained as

V̇b(t) ≤ ζT
b (t)Ψ4(a(t), d(t), b(t), ȧ(t), ḋ(t))ζb(t)

where Ψ4(a(t), d(t), b(t), ȧ(t), ḋ(t)) is defined in Box IV.
Similar to the proof of Theorem 1.C1, the following holds for all time-varying delays satisfying (2) and (3):

Ψ4(d1(t), d2(t), ḋ1(t), ḋ2(t)) < 0 (53)

when it holds for (d1(t), d2(t), ḋ1(t), ḋ2(t)) ∈ Ω. Therefore, when (40) and (41) hold, V̇b(t) ≤ −ϵ ||x(t)||2 for a sufficient
small scalar ϵ > 0, which shows the asymptotically stable of system (1). This completes the proof Theorem 2. �

Remark 5. In the above proof, the LKF used has included more information of time-varying delays themselves,
instead of their bounds, and two preset scalars, α and β, have divided the time-varying delays into several parts, both
of which will improve the results, as shown in [23]. However, it is required that 1 − ȧ(t) > 0 during the estimation of
Zi-dependent terms in the procedure of proof. This requirement reduces the available choice range of α and β for the
case of µ1 + µ2 > 1 such that the feasibility of LMI-based conditions will greatly decrease, which will be shown in the
example studies section.

Remark 6. Except for the two types of LKFs utilized in this paper, some other LKF methods, such as multipe integral
approach [43] and relaxed condition LKF method [44, 45], were proposed for the stability analysis of linear time-
delay systems. Very recently, the flexible terminal method was employed to develop less conservative stability criteria
for recurrent neural networks with time-varying delay [46]. The effectiveness of the above methods were proved in
respective literature, it can be predicted that the applications of these methods to the stability analysis of Lur’e systems
with additive components are also able to give further improved results. And this work will be done in the future.



4. Case study

In this section, several examples are used to demonstrate the advantages of the proposed criteria.
Example 1. Consider the following neural network [17]:

u̇(t) = Au(t) + Bg(u(t)) +Cg(u(t − d1(t) − d2(t))) + J (54)

with the following parameters

A =
[
−2 0
0 −2

]
, B =

[
1 1
−1 −1

]
, C =

[
0.88 1

1 1

]
g(u) =

[
0.4 tanh(u1)
0.8 tanh(u2)

]
This example is used to compare the proposed criteria with the ones of literature. As discussed in [17], by using

transformation x(t) = u(t) − u∗ with u∗ being the equilibrium point of (54), system (54) can be rewritten as (1) with
A0 = A, A1 = A2 = 0, W0 = B, W1 = 0, W2 = C, W = I, Σ1 = ∆1 = diag{0.4, 0.8}, and Σ2 = ∆2 = diag{0, 0}. For three
cases: µ1 = 0.7 and µ2 ∈ {0.1, 0.2, 0.7}, the maximal upper bounds of d2 with respect to d1 ∈ {0.8, 1.0, 1.2} calculated
by the different criteria are listed in Table 1, where ‘—’ indicates the results not reported in literature, and the number
of decision variables are also given. The results of Theorem 2 listed are chose from all values calculated by setting
two scalars (α, β) ∈ {

(α, β)
∣∣∣α ∈ {0.1, 0.2, · · · , 0.9}, β ∈ {0.1, 0.2, · · · , 0.9}}.

Table 1: The maximal upper bounds of d2 for various d1 and µi (Example 1).

Criteria d1, µ1=0.7, µ2=0.1 d1, µ1 = 0.7, µ2 = 0.2 d1, µ1 = 0.7, µ2 = 0.7 No. of variables0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

Theorem 1 [14] 2.016 1.820 1.619 0.870 0.671 0.471 —- —- —- 71n2 + 10n
Theorem 2 [16] 1.952 1.799 1.644 1.136 0.945 0.720 —- —- —- 325.5n2 + 40.5n
Theorem 1 [17] 1.966 1.835 1.680 1.129 0.960 0.774 —- —- —- 47.5n2 + 23.5n
Theorem 3.1 [21] 2.854 2.485 2.457 1.985 1.888 1.620 —- —- —- 228.5n2 + 27.5n
Corollary 1 [28] 3.121 2.911 2.715 1.837 1.636 1.437 —- —- —- 65n2 + 21n
Theorem 1 [23] 18.134 16.335 14.537 8.447 6.647 4.848 1.080 0.879 0.695 16n2 + 14n
Theorem 1.C2 3.004 2.661 2.377 1.658 1.504 1.360 1.521 1.394 1.273 26n2 + 14n
Theorem 1.C1 3.211 2.883 2.596 1.738 1.582 1.435 1.584 1.452 1.329 34n2 + 14n
Theorem 2.C2 19.617 17.821 16.025 10.827 9.028 7.229 1.583 1.237 1.031 19n2 + 16n
Theorem 2.C1 19.962 18.164 16.367 11.111 9.312 7.515 1.617 1.305 1.085 23n2 + 16n

The results show that the proposed criteria not only provide less conservative results but also require the less
number of decision variables in comparison with the ones developed through FWM approach [14, 17, 28], the convex
polyhedron method [16], and the LKF with triple and quadruple integral terms [21]. Moreover, the results provided by
two conditions of Theorems 1 and 2 show that the first condition provides less conservative results, which shows the
advantages of the ERCMI compared with the popular RCMI, as summarized in Remark 2. Compared with Theorem
1, Theorem 2 greatly improves the existing results for the case of µ1 + µ2 < 1 (i.e., µ1 = 0.7, µ2 ∈ {0.1, 0.2}) while the
improvement become small for the case of µ1 + µ2 > 1 (i.e., µ1 = µ2 = 0.7). The reason has been analyzed in Remark
5.

Simulation tests for three cases are carried out: Case I: External input: J = [0.1, 0.6]T ; Delays: d1(t) = 4
5 sin( 7

4 t)+
4
5 , d2(t) = 19.962

2 cos( 0.2
19.962 t) + 19.962

2 ; and initial values: u(0) = [0.2, 0.5]T ; Case II: External input: J = [0.4, 0.1]T ;
Delays: d1(t) = sin2( 7

20 t), d2(t) = 9.312 cos2( 0.05
9.312 t); and initial values: u(0) = [0.1, 0.6]T ; Case III: External input:

J = [0.1, 0.5]T ; d1(t) = 0.12(3 sin( 7
6 t) + 4 cos( 7

6 t) + 5), d2(t) = 0.1085(4 sin( 1.4
1.085 t) + 3 cos( 1.4

1.085 t) + 5); and initial
values: u(0) = [0.4, 0.2]T . From Table 1, the neural networks for the above cases are stable. The responses for three
cases are shown in Fig. 1. The result shows that the neural network with given conditions is stable at its equilibrium
point. Thus, the results are in accord with the results listed in table.
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Figure 1: State trajectories of the neural networks.

Figure 2: Schematic representation of the quadruple-tank process

Example 2. Consider the qudruple-tank process shown in Fig. 2. The objective is to control the water level in the
two lower tanks using two pumps [38]. If the transport delays due to the flow of water before reaching the target tanks
are taken into account, then the linearized state-space equation can be given as [39]:

ẋ(t) = A0x(t) + A1x(t − τ1(t)) + B1u(t − τ2(t)) + B2u(t − τ3(t))

where x(t) = col{h1, h2, h3, h4} with hi, i = 1, 2, 3, 4 being the water level of tank i; τ1(t) is the transport delay of
water-flow from outlet of Tank 3/4 to Tank 1/2, τ2(t) is the transport delay of water-flow from Pump 1/2 to Tank 1/2,
and τ3(t) is the transport delay of water-flow from Pump 1/2 to Tank 4/3; the state-feedback controller is designed as
u(t) = Kx(t); γ1 (γ2) in figure is the ratio of water diverted to Tank 1 (Tank 2) rather than to Tank 4 (Tank 3); and

A0 = diag{−0.0021,−0.0021,−0.0424,−0.0424}

A1=


0 0 0.0424 0
0 0 0 0.0424
0 0 0 0
0 0 0 0

 , B1=


0.1113γ1 0

0 0.1042γ2
0 0
0 0


B2 =


0 0
0 0
0 0.1042(1 − γ2)

0.1113(1 − γ1) 0


K =

[
−0.1609 −0.1765 −0.0795 −0.2073
−0.1977 −0.1579 −0.2288 −0.0772

]



Due to the limited area of the hose and the capacity of the pumps, the output of the controller has a threshold
value. Thus, the state-feedback control law is rewritten as [5]

u(t) = Kg(x(t)) (55)

where

f (x(t)) = col{ f1(x1(t)), f2(x2(t)), · · · , f4(x4(t))}
fi(xi(t)) = 0.01(|xi(t) + 1| − |xi(t) − 1|), i = 1, 2, 3, 4

For simplifying analysis, let τ1(t) = τ2(t) = d1(t) and τ3(t) = d1(t) + d2(t). Then, the closed-loop system can be
represented as system (1) with A0 = A0, A1 = A1, A2 = 0, W0 = 0, W1 = B1K, W2 = B2K, W = I, Σ1 = ∆1 =

diag{0.02, 0.02, 0.02, 0.02}, and Σ2 = ∆2 = diag{0, 0, 0, 0}.
Let µ1 = µ2 = 10E + 5 to cover more types of time-varying delays. The maximal upper bounds of d2 with respect

to d1 ∈ {1.0, 1.5, 2.0, 2.5} calculated by Theorem 1 are listed in Table 2. The results show that the maximal upper
bounds of d2 increase as the increase of γi, i = 1, 2.

Table 2: The maximal upper bounds of d2 for various d1 calculated by Theorem 1.C1 (Example 2).

γ1/γ2
d1

1.0 1.5 2.0 2.5
0.1/0.1 2.09 1.15 0.71 0.57
0.333/0.307 2.37 1.15 0.71 0.57

5. Conclusions

This paper has investigated the stability of Lur’e systems with two additive delay components. The extended
matrix inequality (named as ERCMI) has been employed to reduce the estimation gap of popular reciprocally convex
combination lemma. As a result, several stability criteria with less conservatism have been established by using
the ERCMI, together with two types of LKFs. Finally, the advantages of the extended matrix inequality and the
corresponding criteria have been demonstrated via two examples.
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