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Abstract—This paper investigates delay-dependent stability for
continuous neural networks with a time-varying delay. The paper
aims at deriving a new stability criterion considering tradeoff
between conservativeness and calculation complexity. A new
Lyapunov-Krasovskii functional (LKF) with simple augmented
terms and delay-dependent terms is constructed and its derivative
is estimated by several techniques, including free-weighting
matrix and inequality estimation methods. Then the influence of
the techniques used on the conservativeness and the complexity is
analyzed one by one. Moreover, useful guidelines for improving
criterion and future work are briefly discussed. Finally, the
advantages of the proposed criterion compared with the existing
ones are verified based on three numerical examples.

Index Terms—Delayed neural networks, delay-dependent sta-
bility, Lyapunov-Krasovskii functional, conservativeness, calcu-
lation complexity

I. INTRODUCTION

NEURAL networks have been successfully applied in im-
age processing, pattern recognition, associative memory,

optimization problem, etc. [1]–[3]. Since most applications
of neural networks are closely dependent on their dynamic
behaviors, especially on stability, it is an important job to
check stability of the concerned system. During the implemen-
tation of artificial neural networks, the finite switching speed
of amplifiers and the inherent communication time between
neurons inevitably introduce time delays, which might cause
oscillation, divergence, and even instability. Therefore, the sta-
bility of the delayed neural networks (DNNs) is an important
problem and has received considerable attention. The delay-
dependent stability criteria have obtained more attention since
they are less conservative and the delays encountered in neural
networks are usually not very big.

A. Brief review of related researches

Delay-dependent criteria are usually derived via the Lya-
punov theory and have a certain degree of conservativeness,
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how to reduce the conservativeness is the main research direc-
tion in recent years. The conservativeness is usually indexed
via the acceptable delay region provided by the corresponding
criteria [65]. The conservativeness-reducing has been achieved
mainly from two phases: choosing a candidate Lyapunov-
Krasovskii functional (LKF) and estimating its derivative [47].
The research of delay-dependent stability of the DNNs is
briefly reviewed at first from those two phases.

On one hand, most of the LKFs constructed to discuss the
DNNs can be summarized as the following form:

VF (t) = VNQ(t) + VIQ(t) + VAF (t) (1)

where VNQ(t), VIQ(t), and VAF (t) are the non-integral
quadratic term, the integral quadratic term, and the activation
function based term, respectively. Obviously, the more general
form of the LKF is, the less conservativeness of the criterion
is. Thus, constructing a more general LKF is an effective
way to reduce conservativeness. The following summarizes
the researches based on the different construction of LKF (1).

(1) The non-integral quadratic term VNQ(t)

• simple form only containing current state vector [4]–[10],
[13]–[15], [21]–[30], [35]–[39], [47]–[50], [69];

• augmented form including current state vector, delayed
state vector, and integral of state vectors, etc. [11], [12],
[16]–[20], [31]–[34], [40]–[46].

(2) The integral quadratic term VIQ(t)

• based on domain of integration (the upper/lower limit of
integration): simple form using whole delay interval (e.g.∫ t

t−d(t)
,
∫ t

t−h
etc.) [4]–[8], [11], [17], [24]–[36], [40]–

[46], [68]; and delay-partitioning-based form using delay
subintervals (e.g.

∫ t− i+1
m h

t− i
mh

[9], [15], [19]–[23], [37]–[39],

[48]–[50], [73],
∫ t

t− i
mh

[12]–[14], and
∫ t− i+1

m d(t)

t− i
md(t)

[10],
[16], [18], [47], [72]).

• based on integrand: simple form [4]–[10], [26], [27], [29],
[30], [36], [37], [40], [41], and augmented form [11]–
[25], [28], [31]–[35], [38], [39], [42]–[50], [73].

• based on multiple integration: simple form containing
single and double integral terms [4]–[9], [12]–[19], [21]–
[27], [30], [36]–[40], [45], [47]–[50]; and improved form
with triple integral [10], [11], [20], [28], [29], [32]–[35],
[43] and/or quadruple integral terms [42], [44].

(3) The activation function based term VAF (t)

• simple form without the information of the slope of
activation function [4]–[9], [11], [14]–[18], [23], [24],
[30]–[32], [39];
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• improved form containing slope information, σ+
i , σ

−
i

[10], [13], [19]–[22], [25]–[29], [33]–[38], [41]–[49].
On the other hand, to describe the final criterion in the form

of linear matrix inequalities (LMIs), the estimation operation
is necessary during the treating of the LKF’s derivative. The
original form of the derivative can be summarized as follows:

V̇F (t) = VNI(t) + VI(t) (2)

where VNI(t) and VI(t) are the sum of the non-integral terms
and the integral terms, respectively. The estimation of V̇F (t)
refers to the following three key steps:

(1) Using new terms to estimate the integral terms VI(t)

• recombination method: rewriting the original integral
term to obtain related non-integral terms via adding zero-
value terms, mainly including He’s free-weighting matrix
(FWM) technique based on Newton-Leibniz formula [4]–
[7], [10], [11], [14], [18], [20], [22]–[24], [30], [32], [47],
[48] and Kwon’s FWM-based zero-value equality based
on Integration-By-Part [33], [34], [42]–[45];

• bounding method: replacing the original integral terms
directly by non-integral terms via inequalities, such as,
Jensen’s inequality [8], [12]–[17], [19], [21], [23], [26]–
[29], [33]–[39], [42]–[45], [47]–[50], Wirtinger’s inequal-
ity [41], [43], [46], [67], [73], and other inequalities [10],
[25], [29], [31], [41].

(2) Dealing with d(t) and h−d(t)

• enlarging both d(t) and h− d(t) to upper bound, h [4],
[5], [8], [12], [14]–[17], [21], [26], [27], [36], [40], [50];

• using the improved FWM approach [5]–[7], [10], [11],
[20], [22]–[24], [26], [39], [47], [48];

• applying convex combination technique for d(t) and
h − d(t) included in the numerator [9], [19], [25], [26],
[28], [30]–[32], [41], [43], [47] and reciprocally convex
combination technique for d(t) and h− d(t) included in
the denominator [13], [33]–[35], [37], [38], [41]–[49];

• Injecting the d(t) and h − d(t) via defining v1 =∫ t

t−d(t)
x(s)
d(t) ds and v2 =

∫ t−d(t)

t−h
x(s)
d(t) ds [22], [43].

(3) Adding terms via the information of activation function
• simple form considering the whole interval of the slope

[σ−
i , σ

+
i ] [4]–[32], [34]–[42], [45]–[50]:

• slope-partitioning-based form introducing subintervals of
the slope [σ−

i ,
σ−
i +σ+

i

2 ] ∪ [
σ−
i +σ+

i

2 , σ+
i ] [33], [43], [44].

Unlike most publications, in which the researches are usual-
ly surveyed from the method-applied point of view, the above
discussion firstly summaries the background based on the key
steps of criterion-deriving. The methods are commonly devel-
oped only for single step, and some useful treatments without
specific name may be ignored, thus the above summarization
can review the background more comprehensive and systemat-
ic than the method-based review does. More importantly, both
the conservativeness and the complexity of the final criterion
are dependent on all treatments, the above summarization
gives mainly optional treatments for each step, and it helps
researchers to choose suitable treatments by simultaneously
considering the target (aim at reducing conservativeness only
or both conservativeness and complexity) and the characteristic
of different treatments.

B. Problems need more investigation

Although various techniques have been developed for dis-
cussing the DNNs, there still exists problems that require
further investigation, as summarized by the following aspects.

(1) Objective: Most researches focus on reducing conserva-
tiveness, while the calculation complexity is only considered in
a few literature, in which the ones just discuss how to avoid
too many decision variables by using inequality technique,
instead of the FWM approach, to estimate derivative of the
LKFs and choosing suitable number of delay subintervals for
delay-partition method. However, there is no result on the
consideration of tradeoff between the conservativeness and the
complexity. In fact, during the application of LMI-based crite-
ria to large-scale physical systems, the calculation complexity
is also a very important issue [55]–[59]. A criterion with too
much complexity will become useful only for small scale
numerical examples [65]. The criteria considering both the
conservativeness and the complexity need more investigation.

(2) Construction of the LKF: The recent researches
tend to use LKFs with more general form to achieve the
conservativeness-reducing, while the techniques for construct-
ing such LKFs usually increase both decision variables to be
determined and the dimension of the LMI-based conditions,
which are two key factors related to calculation complexity
[60]. For delay-partitioning-based constructing method, the
opposite relationship between the conservativeness and the
complexity can be predicted, which depends on the number of
subintervals partitioned, and two subintervals are advised and
used in recent years [9], [10], [16], [20], [22], [37], [38], [47]–
[49]. For augmentation based constructing method, however,
the relationship between the conservativeness/complexity and
the information of augmentation (which state-based vector
and how many vectors are used for augmenting) is not very
obvious. Moreover, the work [47] finds that the new LKF, de-
veloped in [27] via introducing slope information and used in
[37], [38], [48], [49], has no contribution on conservativeness-
reducing (see Section III in [47]). Thus, when the complexity
becomes an issue in consideration, the analysis of contribu-
tion for different treatments should be further investigated to
achieve conservativeness-reducing with lower calculation cost.

(3) Estimation of the LKF’s derivative: Various techniques
have been applied for this problem, and five types commonly
used are compared with each other in our previous work [47].
Recently, two new techniques, including Wirtinger’s inequality
considered as the most effective way to direct estimate single
integral terms [51] and the Kwon’s FWM-based zero-value
equality used widely in recently [33], [34], [42]–[44], have
been developed to further improve the results. The previous
work usually improves the results by using a better technique,
while it may be difficult to judge which is better for some
existing techniques [47] and there may exist drawbacks for
each technique. Then a problem arises, i.e., whether one can
use several techniques together to realize respective advantages
and also to overcome their drawbacks, while few related results
have been obtained.

(4) Evaluation the contribution of techniques: The criteria
are usually obtained by using many techniques, including the



3

techniques for constructing LKF and the ones for estimating its
derivative. Most publications commonly check the advantages
of the criteria compared with the existing ones from the
combined effect of all techniques. It cannot review different
levels of contributions from each technique. However, when
the complexity is in consideration, the investigation of the
contributions of each technique is necessary in order to find
which technique can reduce the conservativeness obviously but
not introduce too much complexity.

C. Contributions of the paper

This paper further investigates the stability of continuous
DNNs and aims to find possible solutions of the problems
mentioned above. The detailed contributions of the paper are
summarized as follows:

(1) Objective: In this paper, the main attention is paid to
derive a stability criterion considering the tradeoff between the
conservativeness and the calculation complexity, since it is an
important problem for the LMI-based method [65]. Moreover,
for the complexity of criterion, beside the number of decision
variables, the dimension of the LMI-based conditions is also
taken into account during the construction of LKF, since it
is a key factor for calculation complexity and is even more
important than the number of the decision variables [60].

(2) Construction of the LKF: A new augmented LKF con-
structing method is discussed in consideration of the tradeoff
between the conservativeness and the calculation complexity.
Firstly, several parts of simple form LKF (the non-integral,
single integral, and double integral terms) are augmented via
introducing additional vectors, and two new delay-dependent
non-integral terms are introduced firstly. Secondly, the reasons
of those treatments are discussed one by one theoretically and
the contributions to reduce conservativeness are verified via
numeral examples.

(3) Estimation of the LKF’s derivative: How to estimate
the LKF’s derivative considering both the conservativeness
and the complexity via the combination of several effective
techniques is investigated. Firstly, for the estimation of single
integral term with augmented integrand, Wirtinger’s inequality
and Kwon’s zero-value equality methods are used together to
avoid the drawbacks that will be caused if only the one of
them is used. Secondly, for the treatments of double integral
terms and d(t)/hd(t) information, the combination of different
techniques is used to make the enlargement procedure and the
number of decision variables as small as possible.

(4) Evaluation the contribution of techniques: The con-
tributions of the techniques used are analyzed from theo-
ry analysis and example verification. On one hand, simple
theory analysis is carried out to show how each technique
provide contributions. On the other hand, based on three
examples, three indexes which indicate the improvements of
the conservativeness- and complexity-reducing, are calculated,
and it can be found, from the results, which technique has more
contribution and is worthy of more deeply study.

The remainder of the paper is organized as follows. Sec-
tion II gives the problem formulation and preliminary. In
section III, a new stability criterion is derived by using

several new techniques; the contributions of techniques are
analyzed one by one based on theory analysis; and some
techniques that can provide further improvements and future
work are summarized. In Section IV, three numerical examples
are considered to demonstrate the benefits of the proposed
criterion. Conclusions are given in Section V.

Notations: Throughout this paper, the superscripts T and −1
mean the transpose and the inverse of a matrix, respectively;
Rn denotes the n-dimensional Euclidean space; Rn×m is the
set of all n × m real matrices; ∥ · ∥ refers to the Euclidean
vector norm; P > 0 (≥ 0) means that P is a real symmetric
and positive-definite (semi-positive-definite) matrix; diag{· · ·}
denotes a block-diagonal matrix; symmetric term in a sym-
metric matrix is denoted by ∗; and Sym{X} = X +XT .

II. PROBLEM FORMULATION AND PRELIMINARY

This section describes the problem to be investigated and
gives related preliminary.

A. Problem formulation
Consider the following generalized DNNs [25], [47]:

ẏ(t) = −Ay(t)+W0g(Wy(t))+W1g(Wy(t− d(t)))+J (3)

where y(t) = [y1(t) y2(t) · · · yn(t)]
T is the state vector

associated with the n neutrons; g(·) = [g1(·) g2(·) · · · gn(·)]T
represents the neutron activation function with g(0)=0; A=
diag{a1, a2, · · · , an}>0; W , W0 and W1 are the connection
weight matrices; J=[J1 J2 · · · Jn]

T is a vector representing
the bias; and d(t) is a time-varying delay satisfying

0 ≤ d(t) ≤ h, ḋ(t) ≤ µ (4)

The neuron activation function is assumed to be bounded and
satisfies the following condition:

σ−
i ≤ gi(s1)− gi(s2)

s1 − s2
≤ σ+

i , s1 ̸= s2, i = 1, 2, · · · , n (5)

where σ−
i and σ+

i are known real constants.
Based on the assumption on the activation function, there

exists an equilibrium point y∗ for the neural network, i.e., 0 =
−Ay∗ +W0g(Wy∗)+W1g(Wy∗)+ J . Using transformation
x(t) = y(t)− y∗ [65], one can shift the equilibrium point y∗

of (3) to the origin and rewrite system (3) as [30]:

ẋ(t) = −Ax(t) +W0f(Wx(t)) +W1f(Wx(t− d(t))) (6)

where f(.) = [f1(.) f2(.) · · · fn(.)]
T and fi(W2ix(t)) =

gi(W2ix(t) + W2iy
∗) − gi(W2iy

∗) with fi(0) = 0 and W2i

denoting the i-th row vector of the matrix W . Then,
fi(s1)−fi(s2)

s1−s2
=

gi(s1 +W2iy
∗)− gi(s2 +W2iy

∗)

s1 +W2iy∗ − (s2 +W2iy∗)

Thus, it follows from (5) and fi(0) = 0 that [33], [34]

σ−
i ≤ fi(s1)− fi(s2)

s1 − s2
≤ σ+

i , s1 ̸= s2 (7)

σ−
i ≤ fi(s)

s
≤ σ+

i , s ̸= 0 (8)
This paper aims to derive a delay-dependent stability cri-

terion of DNN (3) to determine the acceptable delay region
guaranteeing the stability of the DNN. The conservativeness
and the calculation complexity will be considered simultane-
ously during the deriving of the criterion.
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B. Preliminary

The following notations and lemmas are introduced at first
for simplifying the expression of subsequent parts:

hd(t) := h− d(t), f(t) := f(Wx(t))

xd(t) := x(t−d(t)), fd(t) :=f(Wx(t−d(t)))

xh(t) := x(t−h), fh(t) := f(Wx(t−h))

v1(t) :=
∫ t

t−d(t)
x(s)
d(t) ds , v2(t) :=

∫ t−d(t)

t−h
x(s)
hd(t)

ds

v3(t) :=
∫ t

t−d(t)
f(s)ds , v4(t) :=

∫ t−d(t)

t−h
f(s)ds

v5(t) := d(t)v1(t), v6(t) := hd(t)v2(t)

ε1(t) := [xT (t) fT (t)]T , ε2(t) :=[xT (t) ẋT (t)]T

ε3(t) := [xT (t)
∫ t

t−h
xT (s)ds ]T , ε4(t) := [xT (t) vT2 (t)]

T

ξ1(t) :=[xT (t) xT
d (t) x

T
h (t)]

T , ξ2(t) :=[fT (t) fT
d (t) fT

h (t)]T

ξ3(t) := xd(t)+x(t)−2v1(t), ξ4(t) := xh(t)+xd(t)−2v2(t)

ξ(t) := [ξT1 (t) ξT2 (t) vT1 (t) vT2 (t)]
T

es := [−A 0 0 W0 W1 0 0 0]

e0 := [0 0 0 0 0 0 0 0]

ei := [0n×(i−1)n In×n 0n×(8−i)n], i = 1, 2, · · · , 8
ξd(t) := [xT (t) vT2 (t) εT1 (t− d(t))]T , ed0 := [0 0 0 0]

edi := [0n×(i−1)n In×n 0n×(4−i)n], i = 1, 2, · · · , 4
Σ1 := diag{σ+

1 , · · · , σ+
n }, Σ2 := diag{σ−

1 , · · · , σ−
n }

Σ := diag
{
max{|σ+

1 |, |σ
−
1 |}, · · · ,max{|σ+

n |, |σ−
n |}

}
Lemma 1: (Jensen’s inequality [63], [64]) For any matrix

R ∈ Rn×n, R = RT > 0, scalars a < b, vector ω : [a, b] 7→
Rn such that the integration concerned are well defined, then

(b−a)

∫ b

a

ωT (s)Rω(s)ds≥
(∫ b

a

ω(s)ds
)T

R
(∫ b

a

ω(s)ds
)
(9)

(b− a)2

2

∫ b

a

∫ b

θ

ωT (s)Rω(s)dsdθ (10)

≥
(∫ b

a

∫ b

θ

ω(s)dsdθ
)T

R
(∫ b

a

∫ b

θ

ω(s)dsdθ
)

Lemma 2: (Extended Wirtinger’s inequality [51]) For any
matrix R ∈ Rn×n, R = RT > 0, any differentiable function
ω : [a, b] 7→ Rn, the following inequality holds∫ b

a

ω̇T(s)Rω̇(s)ds ≥ 1

b− a

[
ς1
ς2

]T [
R 0
0 3R

] [
ς1
ς2

]
(11)

where ς1 = ω(b)− ω(a) and ς2 = ω(b) + ω(a)− 2
∫ b

a
ω(s)
b−a ds.

Lemma 3: (Reciprocally convex combination lemma [61])
For any vectors β1 and β2, symmetric matrix R, any matrix

S, and real scalar 0 ≤ α ≤ 1 satisfying
[R S
∗ R

]
≥ 0, then the

following inequality holds,

1

α
βT
1 Rβ1 +

1

1− α
βT
2 Rβ2 ≥

[
β1

β2

]T [
R S
∗ R

] [
β1

β2

]
(12)

III. A NEW STABILITY ANALYSIS METHOD

This section presents a new method for deriving stability
criterion from two aspects, including the LKF constructing and
its derivative estimating. Then, the influence of each technique

used on the conservativeness and the complexity is discussed
in detail, guidelines of improving criteria are summarized, and
brief discussions of techniques that can further improve results
and future work are also given.

A. Derivation of stability criterion
This part will derive a criterion based on Lyapunov theory

step by step, that is, after constructing a candidate LKF, the
asymptotical stability criterion is component of the conditions
guaranteeing the positive and the decreasing of the LKF.

Step 1: Construct a candidate LKF. Firstly, a commonly
used simple LKF candidate (before augmented) is given:

V̄ (t) = V̄1(t) + V̄2(t) + V̄3(t) + V4(t) + V5(t) (13)

where

V̄1(t) = xT (t)P̄ x(t)

V̄2(t) =

∫ t

t−d(t)

[
xT (s)Q̄111x(s) + fT (s)Q̄122f(s)

]
ds

+

∫ t−d(t)

t−h

[
xT (s)Q̄211x(s) + fT (s)Q̄222f(s)

]
ds

V̄3(t) = h

∫ 0

−h

∫ t

t+θ

ẋT (s)Z̄ẋ(s)dsdθ

V4(t) =

∫ t

t−h

∫ t

θ

∫ t

s

ẋT (u)Q3ẋ(u)dudsdθ

V5(t) = 2

n∑
i=1

∫ Wix

0

[
λ1i(σ

+
i s−fi(s))+λ2i(fi(s)−σ−

i s)
]
ds

and P̄ , Q̄i11, Q̄i22, i = 1, 2, Z̄, and Q3 are the symmetric
matrices; and Λi = diag{λi1, λi2, · · · , λin}, i = 1, 2 are the
symmetric diagonal matrices.

Secondly, a new LKF candidate is constructed based on
V̄ (t). On the one hand, by using the augmented idea proposed
in [62], three parts of the above LKF are augmented as:

V1(t) = εT3 (t)Pε3(t)

V2(t) =

∫ t

t−d(t)

εT1 (s)Q1ε1(s)ds+

∫ t−d(t)

t−h

εT1 (s)Q2ε1(s)ds

V3(t) = h

∫ 0

−h

∫ t

t+θ

εT2 (s)Zε2(s)dsdθ

where P , Qi, i = 1, 2, and Z are the symmetric matrices, and

Z = Za + Zb, Za =
[
Z1 0
0 Z2

]
, Zb =

[
Z3 Z12

∗ Z4

]
(14)

On the other hand, based on the idea of [52]–[54], two time-
varying delay dependent terms are introduced:

V6(t) = d(t)xT (t)P1x(t) + hd(t)ε
T
4 (t)P2ε4(t) (15)

where P1∈Rn×n and P2∈R2n×2n are symmetric matrices.
Finally, the following augmented LKF will be applied:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t)(16)

Step 2: Summarize the conditions to guarantee the positive
of the LKF. The candidate LKF will be positive via letting
each term of the LKF be positive, i.e.,

P > 0; Pi > 0; Λi > 0, i = 1, 2 (17)

Qj > 0, j = 1, 2, 3; Z =
[
Z1 + Z3 Z12

∗ Z2 + Z4

]
> 0 (18)
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That is, for a sufficient scalar ϵ1 > 0

(17), (18) ⇒ V (t) ≥ ϵ1||x(t)||2 (19)

Step 3: Derive the conditions for the negative of the LKF
derivative. Firstly, differentiating V (t) considering (6) yields

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t)(20)

where

V̇1(t) = 2εT3 (t)P ε̇3(t)

= 2
[

x(t)
d(t)v1(t) + hd(t)v2(t)

]T
P
[

ẋ(t)
x(t)− xh(t)

]
V̇2(t) = εT1 (t)Q1ε1(t)−εT1 (t−h)Q2ε1(t−h)

+[1− ḋ(t)]εT1 (t− d(t))[Q2 −Q1]ε1(t− d(t))

V̇3(t) = εT2 (t)[h
2Z]ε2(t)− h

∫ t

t−h

εT2 (s)Zε2(s)ds

= εT2 (t)[h
2Z]ε2(t)− h

∫ t

t−h

εT2 (s)(Za + Zb)ε2(s)ds

V̇4(t) =
h2

2
ẋT (t)Q3ẋ(t)−

∫ t

t−h

∫ t

θ

ẋT (s)Q3ẋ(s)dsdθ

=
h2

2
ẋT (t)Q3ẋ(t)−

∫ t

t−d(t)

∫ t

θ

ẋT (s)Q3ẋ(s)dsdθ

−
∫ t−d(t)

t−h

∫ t−d(t)

θ

ẋT (s)Q3ẋ(s)dsdθ

−hd(t)

∫ t

t−d(t)

ẋT (s)Q3ẋ(s)ds

V̇5(t) =2
{
[Σ1Wx(t)−f(t)]TΛ1+[f(t)−Σ2Wx(t)]TΛ2

}
Wẋ(t)

V̇6(t) = ḋ(t)xT (t)P1x(t) + 2d(t)xT (t)P1ẋ(t)

−ḋ(t)εT4 (t)P2ε4(t) + 2hd(t)
[ x(t)
v2(t)

]T
P2

[ ẋ(t)
v̇2(t)

]
= ḋ(t)

[
xT(t)P1x(t)−εT4 (t)P2ε4(t)

]
+2d(t)xT(t)P1ẋ(t)

+2hd(t)

[
x(t)
v2(t)

]T
P2

[
ẋ(t)

(1−ḋ(t))xd(t)−xh(t)+ḋ(t)v2(t)
hd(t)

]
Secondly, combining similar terms and estimating them. For

estimating the V̇ (t), the following conditions are assumed:

Zi > 0, i = 1, 2, Q3 ≥ 0, Φ1 =
[
Z2 S1

∗ Z2

]
≥ 0 (21)

Φi+1 =
[
hZ3 hZ12 +Ri

∗ hZ4

]
> 0, i = 1, 2 (22)

Φ4 =
[
Z2 + Z4 S2

∗ Z2 + Z4

]
> 0 (23)

where Si, i = 1, 2 are any n× n matrices. Three methods are
applied to estimate three single integral terms in V̇ (t). For the
Za-dependent term, using (21) and Lemmas 1-3 yields

−h

∫ t

t−h

εT2 (s)Zaε2(s)ds

= −h

∫ t

t−d(t)

xT (s)Z1x(s)ds− h

∫ t−d(t)

t−h

xT (s)Z1x(s)ds

−h

∫ t

t−d(t)

ẋT (s)Z2ẋ(s)ds− h

∫ t−d(t)

t−h

ẋT (s)Z2ẋ(s)ds

≤ −d(t)vT1 (t)[hZ1]v1(t)− hd(t)v
T
2 (t)[hZ1]v2(t)

− h

d(t)

[
x(t)−xd(t)

ξ3(t)

]T[
Z2 0
0 3Z2

][
x(t)−xd(t)

ξ3(t)

]
− h

hd(t)

[
xd(t)− xh(t)

ξ4(t)

]T [
Z2 0
0 3Z2

] [
xd(t)− xh(t)

ξ4(t)

]
(24)

≤ −d(t)vT1 (t)[hZ1]v1(t)−hd(t)v
T
2 (t)[hZ1]v2(t)

− h

d(t)
(x(t)−xd(t))

TZ2(x(t)−xd(t))−3

[
ξ3(t)
ξ4(t)

]T
Φ1

[
ξ3(t)
ξ4(t)

]
− h

hd(t)
(xd(t)− xh(t))

TZ2(xd(t)− xh(t)) (25)

For Zb-dependent term, the following FWM-based zero-value
term is defined based on Integration-By-Part [33], [34]:

0=xT (t)R1x(t)−xT
d (t)R1xd(t)−2

∫ t

t−d(t)
xT (s)R1ẋ(s)ds(26)

+xT
d (t)R2xd(t)−xT

h (t)R2xh(t)−2

∫ t−d(t)

t−h
xT (s)R2ẋ(s)ds

where Ri, i = 1, 2 are the n × n symmetric matrices. Then,
adding it into the Zb-dependent term in V̇3(t) yields

−h

∫ t

t−h

εT2 (s)Zbε2(s)ds (27)

= xT (t)R1x(t)+xT
d (t)(R2 −R1)xd(t)− xT

h (t)R2xh(t)

−
∫ t

t−d(t)

εT2 (s)Φ2ε2(s)ds−
∫ t−d(t)

t−h

εT2 (s)Φ3ε2(s)ds

where Φi, i = 2, 3 are defined in (22). Then, based on (22),
using Lemma 1 to estimate Φ2- and Φ3-dependent terms yields

−
∫ t

t−d(t)

εT2 (s)Φ2ε2(s)ds−
∫ t−d(t)

t−h

εT2 (s)Φ3ε2(s)ds

≤ − 1

d(t)

[
d(t)v1(t)

x(t)− xd(t)

]T
Φ2

[
d(t)v1(t)

x(t)− xd(t)

]
− 1

hd(t)

[
hd(t)v2(t)

xd(t)− xh(t)

]T
Φ3

[
hd(t)v2(t)

xd(t)− xh(t)

]
= −d(t)vT1 (t)(hZ3)v1(t)−2vT1 (t)[hZ12+R1](x(t)−xd(t))

−hd(t)v
T
2(t)(hZ3)v2(t)−2vT2(t)[hZ12+R2](xd(t)−xh(t))

− h

d(t)
(x(t)−xd(t))

TZ4(x(t)−xd(t))

− h

hd(t)
(xd(t)−xh(t))

TZ4(xd(t)−xh(t)) (28)

Based on the (23) and Lemma 3, the sum of the h
d(t) - and

h
hd(t)

-dependent terms in (25) and (28) can be estimated as:

−
[
x(t)−xd(t)
xd(t)−xh(t)

]T
Φ4

[
x(t)−xd(t)
xd(t)−xh(t)

]
(29)

For Q3-dependent single integral term, using −hd(t)
d(t) ≤ −hd(t)

h
and Lemma 2 yields

−hd(t)

∫ t

t−d(t)

ẋT (s)Q3ẋ(s)ds (30)

≤ −hd(t)

h

[
x(t)− xd(t)

ξ3(t)

]T[
Q3 0
0 3Q3

][
x(t)− xd(t)

ξ3(t)

]
(31)
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Based on (21), using Lemma 1 to estimate two double integral
terms in V̇4(t) yields

−
∫ t

t−d(t)

∫ t

θ

ẋT (s)Q3ẋ(s)dsdθ−
∫ t−d(t)

t−h

∫ t−d(t)

θ

ẋT (s)Q3ẋ(s)dsdθ

≤ − 2

d2(t)

∫ t

t−d(t)

∫ t

θ

ẋT (s)dsdθ Q3

∫ t

t−d(t)

∫ t

θ

ẋ(s)dsdθ

− 2

h2
d(t)

∫ t−d(t)

t−h

∫ t−d(t)

θ

ẋT (s)dsdθQ3

∫ t−d(t)

t−h

∫ t−d(t)

θ

ẋ(s)dsdθ

= − [x(t)−v1(t)]
T
(2Q3) [x(t)−v1(t)]

− [xd(t)−v2(t)]
T
(2Q3) [xd(t)−v2(t)] (32)

The ḋ(t)-dependent terms in V̇ (t) can be combined and
estimated as follows:

ḋ(t)ξTd (t)Φ5ξd(t) ≤ µξTd (t)Φ5ξd(t)

where

Φ5 =

[
ed3
ed4

]T
(Q1 −Q2)

[
ed3
ed4

]
+ eTd1P1ed1 −

[
ed1
ed2

]T
P2

[
ed1
ed2

]
−Sym

{[
ed1
ed2

]T
P2

[
ed0

ed3 − ed2

]}
> 0 (33)

Thirdly, by taking into account the assumption of the
activation function, (7) and (8), the following inequalities hold:

hi(s) :=2 [Σ3Wx(s)−f(s)]
T
Hi [f(s)−Σ2Wx(s)]≥0

ui(s1, s2) :=2 [Σ3W (x(s1)− x(s2))−(f(s1)− f(s2))]
T
Ui

× [(f(s1)− f(s2))−Σ2W (x(s1)− x(s2))]≥0

where

Hi = diag{h1i, h2i, · · · , hni} ≥ 0, i = 1, 2, 3 (34)
Uj = diag{u1j , u2j , · · · , unj} ≥ 0, j = 1, 2, 3 (35)

Thus, the following inequalities hold:

h1(t)+h2(t−d(t))+h3(t−h) ≥ 0 (36)
u1(t, t−d(t))+u2(t−d(t), t−h)+u3(t, t−h) ≥ 0 (37)

Fourthly, using (20), (25)-(33), (36), and (37) and combin-
ing the d(t)- and hd(t)-dependent terms yield

V̇ (t) ≤ ξT (t)Γ(d(t))ξ(t) (38)

where

Γ(d(t)) = Ξ0 + µΞ1 + d(t)Ξ2 + hd(t)Ξ3

Ξ0 = Sym

{[
e1
e0

]T
P

[
es

e1 − e3

]
+

[
e1
e8

]T
P2

[
e0

e2 − e3

]}

+

[
e1
e4

]T
Q1

[
e1
e4

]
−

[
e3
e6

]T
Q2

[
e3
e6

]
+

[
e2
e5

]T
(Q2 −Q1)

[
e2
e5

]
+

[
e1
es

]T
(h2Z)

[
e1
es

]
+ eTs

(h2Q3

2

)
es

+Sym
{
[(Σ1We1−e4)

TΛ1+(e4−Σ2We1)
TΛ2]Wes

}
−3

[
e1 + e2 − 2e7
e2 + e3 − 2e8

]T
Φ1

[
e1 + e2 − 2e7
e2 + e3 − 2e8

]
+eT1 R1e1 + eT2 (R2 −R1)e2 − eT3 R2e3

−
[
e1 − e2
e2 − e3

]T
Φ4

[
e1 − e2
e2 − e3

]
−2(e1−e7)

TQ3(e1−e7)− 2(e2−e8)
TQ3(e2−e8)

−Sym

{
2∑

i=1

eTi+6(hZ12 +Ri)(ei − ei+1)

}

+

3∑
i=1

Sym
{
(Σ1ei −ei+3)

THi(ei+3−Σ2ei)
}

+
2∑

i=1

Sym
{
[Σ1(ei − ei+1)−(ei+3 − ei+4)]

TUi

×[(ei+3 − ei+4)−Σ2(ei − ei+1)]}
+Sym

{
[Σ1(e1 − e3)−(e4 − e6)]

TU3

×[(e4 − e6)−Σ2(e1 − e3)]}

Ξ1 =
[
e2
e5

]T
(Q1 −Q2)

[
e2
e5

]
+ eT1P1e1 −

[
e1
e8

]T
P2

[
e1
e8

]
−Sym

{[
e1
e8

]T
P2

[
e0

e2 − e8

]}
Ξ2 = Sym

{[ e0
e7

]T
P
[ es
e1−e3

]
+eT1 P1es

}
−heT7 (Z1 + Z3)e7

Ξ3 = Sym

{[ e0
e8

]T
P
[ es
e1−e3

]
+
[e1
e8

]T
P2

[ es
e0

]}
−heT8 (Z1+Z3)e8

− 1

h

[
e2 − e1

e1 + e2 − 2e7

]T[Q3 0
0 3Q3

][
e2 − e1

e1 + e2 − 2e7

]
Finally, by using convex combination and following the

treatment in [47], the V̇ (t) is negative if the follows hold:

Φ6 := −Γ(d(t))|d(t)=0 = −Γ(0) > 0 (39)
Φ7 := −Γ(d(t))|d(t)=h = −Γ(h) > 0 (40)

Therefore, summarize the required conditions of Step 3 yields

(21)−(23), (33)−(35), (39), (40)⇒V̇ (t)<−ϵ2||x(t)||2, ϵ2>0
(41)

Step 4: Summarize the stability criterion. Based on the
above discussions, the following theorem can be summarized
by combining conditions (19) and (41):

Theorem 1: For given scalars h and µ, if there exist n×n
symmetric matrices Zi, i = 1, 2, 3, 4, Q3, P1, R1, R2; 2n× 2n
symmetric matrices P , P2, Q1, Q2; n × n diagonal matrices
Λ1,Λ2, Uj , Hj , j = 1, 2, 3; and n × n matrices Z12, S1, S2,
such that the following LMIs hold

P > 0;Z =

[
Z1 + Z3 Z12

∗ Z2 + Z4

]
> 0 (42)

Pi > 0, Zi ≥ 0, Λi ≥ 0, i = 1, 2; Qj ≥ 0, j = 1, 2, 3(43)
Uk ≥ 0;Hk ≥ 0; k = 1, 2, 3 (44)
Φl > 0, l = 1, 2, · · · , 7

where Φ1 is given in (21), Φ2 and Φ3 are given in (22),
Φ4 is given in (23), Φ5 is given in (33), Φi, i = 6, 7 are
given in (39) and (40), respectively, then DNN (3) with time
delay satisfying (4) and activation function satisfying (5) is
asymptotically stable.

B. Discussions on the techniques used for criterion-deriving
This subsection gives some discussions on the techniques,

whose influence on the conservativeness and the complexity
is analyzed in detail.
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(1) From the LKF-constructing point of view: Unlike the
work of [12]–[16], [18]–[23], [37]–[39], [47]–[50], this pa-
per does not follow the delay-partitioning idea to construct
LKF, since the relationship between the conservativeness and
the complexity can be easily predicted and two subintervals
are advised in recent years [9], [10], [16], [20], [22], [37],
[38], [47]–[49]. Meanwhile, the recent researches based on
augmenting LKFs [16]–[20], [31]–[34], [40]–[45] just simply
increase the complexity of the LKFs via lots of vectors,
which greatly increases the calculation time due to too many
decision matrices introduced. The main techniques of LKF-
constructing in this paper, which are concerned with both the
conservativeness and the complexity, are listed as follows:

• Technique 1.1: augmenting the original non-integral ter-
m, V̄1(t), in (13) by introducing new vector

∫ t

t−h
x(s)ds;

• Technique 1.2: augmenting the original double integral
term, V̄3(t), in (13) by adding vector x(s), especially the
introduction of the Z12-dependent cross term;

• Technique 1.3: introducing the delay-dependent terms,
V6(t), based on the idea of [52]–[54].

The advantages of techniques related are analyzed as follows:
Firstly, the advantage of Technique 1.1 is analyzed from

LMIs (39) and (40). The feasibility of those LMIs is dependent
on the cross terms existing in ξT (t)Γ(d(t))ξ(t), i.e.,

ξT (t)eTi Xij(d(t))ejξ(t), i, j ∈ {1, 2, · · · , 8} (45)

where Xij(d(t)) is the related matrix for cross terms, which
consists of matrices to be determined and the system matrices.
It is clear that the feasibility of the LMIs will be increased if
all possible cross terms exist, i.e.

Xij(d(t)) ̸= 0, ∀i, j ∈ {1, 2, · · · , 8} (46)

When Technique 1.1 is not used (i.e., P = diag{P̄ , 0}), all
existing cross terms are summarized as follows:

Xij(d(t)) ̸= 0 when

 i = 1, 2, 3 j = 1, 2, · · · , 8;
i = 4, 5, 6 j = 1, 2, · · · , 6;
i = 7, 8 j = 1, 2, 3, 7, 8

When Technique 1.1 is used, the connection between v1,2(t)
and ẋ(t) is constructed, which leads to the cross term
vTi (t)P22ẋ(t), and due to ẋ(t) including f(t) and fd(t), thus
the following new cross terms are obtained:

ξT (t)eTi Xij(d(t))ejξ(t) ̸= 0 when

{
i = 4,5 j = 7, 8;
i = 7, 8 j = 4,5

The new cross terms introduced by the usage of Technique 1.1
provide more freedom and help to reduce the conservativeness.
To verify its contribution clearly, the criterion for the case
without such technique is given as follows:

Corollary 1: The stability criterion obtained from Theo-
rem 1 by setting P = diag{P̄ , 0}.

Remark 1: In the existing literature using augmented LKF-
s [17]–[20], [32]–[34], [40]–[45], the simple non-integral term
in V̄1(t) is usually augmented by simply introducing lots of
state-based vectors, which greatly increases the number of
decision variables and the dimension of the obtained LMI-
based condition (The usage of x(t−d(t)) and x(t−h) introduces
ẋ(t−d(t)) and ẋ(t−h) into ξ(t) in (38), thus the dimension of

Γ(d(t)) will increase). As a result, the calculation complexity
will be greatly increased. Since the complexity should be con-
sidered, this paper provides a guideline to augmented this term,
i.e., checking the status of cross terms existing in LMI-based
conditions and introducing necessary augmented vectors. In
fact, this guideline can be used to explain the contribution
of the (37), which is firstly developed in [34] and is helpful
to reduce conservativeness, which is shown from comparison
of Theorems 1 and 2 in [34]. It is easy to find that the
(37) introduces the cross terms ξT (t)eTi Xij(d(t))ejξ(t), i =
1, 2, 4, 5, j = 6; i = 2, j = 4; i = 3, j = 4, 5, which do not
appear if (37) is not used.

Secondly, the advantage of Technique 1.2 is analyzed based
on LMI (22), i.e., Φ2,3 > 0. If Technique 1.2 is not used, then
there is no Z12-dependent cross term, i.e., Zb = diag{Z3, Z4}.
Thus, the conditions Φi > 0, i = 2, 3 will reduce to

Φ̄i =
[hZ3 Ri−1

∗ hZ4

]
> 0, i = 2, 3 (47)

The non-diagonal blocks of Φ̄i and Φi are respectively

Φ̄i : Ri−1, i = 2, 3 (48)
Φi : hZ12 +Ri−1, i = 2, 3 (49)

Obviously, the former is required to be strict symmetric to
guarantee the holding of (26), while the later can be non-
symmetric. That is to say, the usage of Technique 1.2 relaxes
the constraint condition. To simplify the verification of this
technique, the following corollary is given.

Corollary 2: The stability criterion obtained from Theo-
rem 1 by setting Z12 = 0.

Remark 2: In [33], [34], there are some LMI conditions
that require the non-diagonal terms be symmetrical, thus the
results are more conservativeness. In fact, the above analysis
gives another guideline to construct LKFs, namely, checking
the constraint of the each location in LMI-based conditions and
augmenting suitable quadratic terms to relax the constraint.

Thirdly, the advantage of Technique 1.3 is analyzed from
the point of view of the matrix in the non-integral terms in
the LKF. When Technique 1.3 is not applied, all non-integral
terms in LKF are given as

V1(t) = εT3 (t)Pε3(t) =

[
x(t)
v1(t)
v2(t)

]T

P̂

[
x(t)
v1(t)
v2(t)

]
(50)

where

P̂ =

P11 d(t)P12 hd(t)P12

∗ d2(t)P22 hd(t)d(t)P22

∗ ∗ h2
d(t)P22

 , P =

[
P11 P12

∗ P22

]
When the delay-dependent terms V6(t) is introduced via
Technique 1.3, all non-integral terms in LKF become as

V1(t) + V6(t) =

[
x(t)
v1(t)
v2(t)

]T

P̌

[
x(t)
v1(t)
v2(t)

]
(51)

where

P̌ =P̂+

d(t)P1+hd(t)P211 0 hd(t)P212

∗ 0 0
∗ ∗ hd(t)P222

, P2=

[
P211 P212

∗ P222

]
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It can be found, from the comparison of P̌ and P̂ , that P̌ has
more general form than P̂ does since the constraint of some
locations is relaxed, such as location (1,1), P11 = d(t)P11

h +

hd(t)
P11

h in P̂ is relaxed by d(t)P11+hP1

h + hd(t)
P11+hP211

h

in P̌ , which will lead to the cross terms in obtained criterion
with more general form. To simplify the verification of this
technique, the following corollary is given.

Corollary 3: The stability criterion obtained from Theo-
rem 1 by setting Pi = 0, i = 1, 2.

Remark 3: Compared with the similar quadratic terms
used in [66], V7(t) = ξT1 (t)(d(t)P1 + hd(t)P2)ξ1(t), which
is developed mainly for reducing conservativeness, the V6(t)
is improved in consideration of both the complexity and the
conservativeness. Firstly, the vectors x(t− d(t)) and x(t− h)
are excluded to avoid increasing the dimension of the LMI
conditions, as mentioned in Remark 1; Secondly, the P2-
dependent term is included the v2(t), the usage of which
does not increase the dimension of the LMI conditions and
provides many new across terms, ξT (t)eTi Xij(d(t))ejξ(t), i =
1, 2, · · · , 5, j = 8; In order to avoiding the difficulty in dealing
with the ḋ(t)-dependent terms, the P1-dependent term of V6(t)
is just chose as single form, instead of an augmented form
similar to the P2-dependent term. In addition, the V6(t) is
more general than the similar one used in [31], which can
only lead to the P1-dependent term.

(2) From the estimation of LKF’s derivative point of view:
This part analyzes the techniques used for estimating the
derivative of the LKF, including two techniques for single
integral terms, a new way for triple integral term, and four
techniques for treating d(t) and h−d(t).

Firstly, the single integral term (Z-dependent term) is treat-
ed by applying two techniques, shown as follows:

• Technique 2.1: applying Jensen’s and Wirtinger’s in-
equalities to evaluate the Za-dependent term;

• Technique 2.2: introducing Kwon’s FWM-based zero
equality to treat the Zb-dependent term.

As mentioned in Section I, two types of methods have been
proposed for treating single integral terms. The one is the
inequality-based bounding technique. The other is the recom-
bination technique based on FWM, including He’s and Kwon’s
zero-value equalities, i.e.,

He′s : 0 = ηT1 (t)Ω(N)η1(t) + 2

∫ b

a

ηT2 (t)Nẋ(s)ds (52)

Kwon′s : 0 = ηT3 (t)Ω(R)η3(t) + 2

∫ b

a

xT (s)Rẋ(s)ds(53)

He’s zero-value equality is developed based on Newton-
Leibniz formula, and the problem is that the optimal dimension
of N is difficult to determine [47]; while the Kwon’s zero-
value equality is presented based on the Integration-By-Parts,
and its drawback is that the symmetric requirement of the
R is too strict. Theorem 1 uses both Wirtinger’s inequality
and Kwon’s zero-value equality, and such treatment avoids
their drawbacks. Specifically, Z-dependent term is divided
into two parts, Za- and Zb-dependent terms. On one hand,
due to the separating of Z12-dependent cross term from Za-
dependent term, it can be estimated via both Jensen’s and
Wirtinger’s inequalities. On the other hand, due to the existing

of Z12-dependent cross term in Zb-dependent term, the strict
constraint condition in (47) caused by symmetric requirement
of the R, is relaxed (see the analysis for Corollary 2). To verify
the contribution of those two techniques, the criteria obtained
only using the one of them are given. The criterion only using
Technique 2.1 can be obtained by letting Zb = 0, R1,2 = 0;
and the criterion only using Technique 2.2 can be obtained by
letting Za = 0, S1 = 0.

Corollary 4: The stability criterion obtained from Theo-
rem 1 by setting Z3,4 = 0, Z12 = 0, R1,2 = 0.

Corollary 5: The stability criterion obtained from Theo-
rem 1 by setting Zi = 0, i = 1, 2, S1 = 0.

Remark 4: Recently, the double integral term in the form
of V3(t)=h

∫ 0

−h

∫ t

t+θ
εT2 (s)Zε2(s)dsdθ is usually introduced

into an augmented LKF [16], [28], [31], [32], [34], and
Wirtinger’s inequality is known as the most effective technique
for estimating single integral term, h

∫ t

t−h
ẋT (s)Z22ẋ(s)ds,

[51]. However, the integral term, h
∫ t

t−h
εT2 (s)Zε2(s)ds, in

V̇3(t) is difficultly estimated directly by using Wirtinger’s
inequality due to the existing of xT (s)Z12ẋ(s). In order to
overcome this problem, this paper divides Z into two parts,
Za and Zb. Then, non-diagonal matrix, Z12, can be treated
using Kwon’s FWM-based equality method, and the diagonal
matrices, Z11 =Z1+Z3 and Z22 =Z2+Z4, are respectively
treated by using inequality bounding and Kwon’s FWM-based
equality methods (The optimal separation of Z11, Z22 can be
achieved since the optimal values of Zi, i = 1, 2, 3, 4 can be
found via LMI).

Secondly, for the double integral term (Q3-dependent term),
two types of methods have been used in the recent researches:

• Non-partition/one-step-enlargement method [10], [20],
[29], [32]–[34], [44], non-partition means the domain
of integration is [t − h, t], and one-step enlargement
means only one time enlargement is carried out, i.e., Q3-
dependent term is treated by

−
∫ t

t−h

∫ t

θ

ẋT (s)Q3ẋ(s)dsdθ (54)

≤ − 2

h2

∫ t

t−h

∫ t

θ

ẋT (s)dsdθ Q3

∫ t

t−h

∫ t

θ

ẋ(s)dsdθ

• One-partition/two-step-enlargement method [28], [35],
one partition means the domain of integration is
[−h,−d(t)]∪[−d(t), 0], and two-step enlargement means
just two times enlargement are carried out, i.e., Q3-
dependent term is treated by

−
∫ t

t−h

∫ t

θ

ẋT (s)Q3ẋ(s)dsdθ

=−
∫ 0

−d(t)

∫ t

t+u

ẋT (s)Q3ẋ(s)dsdu−
∫ −d(t)

−h

∫ t

t+u

ẋT (s)Q3ẋ(s)dsdu

≤ − 2

d2(t)

∫ 0

−d(t)

∫ t

t+u

ẋT (s)dsdu Q3

∫ 0

−d(t)

∫ t

t+u

ẋ(s)dsdu

− 2

h2−d2(t)

∫ −d(t)

−h

∫ t

t+u

ẋT (s)dsdu Q3

∫ −d(t)

−h

∫ t

t+u

ẋ(s)dsdu

≤− 2

h2

[ ∫ 0

−d(t)

∫ t

t+θ
ẋ(s)dsdθ∫ −d(t)

−h

∫ t

t+θ
ẋ(s)dsdθ

]T[
Q3 S0

∗ Q3

][ ∫ 0

−d(t)

∫ t

t+θ
ẋ(s)dsdθ∫ −d(t)

−h

∫ t

t+θ
ẋ(s)dsdθ

]
.
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where S0 is any n × n matrix. Obviously, the for-
mer does not consider the information of d(t), and the
later requires multi-step enlargement. Moreover, both of
them lead to d2(t)-dependent terms due to existing of∫ 0

−d(t)

∫ t

t+θ
ẋT (s)dsdθQ3

∫ 0

−d(t)

∫ t

t+θ
ẋ(s)dsdθ. In this paper,

Q3-dependent term is divided into three parts via considering
the d(t), each of which needs one step enlargement (see
(30) and (32)), i.e., it is a one-partition/one-step-enlargement
method.

Thirdly, four techniques are used to treat the d(t) and hd(t)
in the deriving procedure, summarized as follows:

• In (25) and (29): Lemma 3 is used to deal with the d(t)-
and hd(t)-dependent terms, which only introduces two
n× n matrices S1 and S2, less than the FWM approach
does [6], [7], [11], [24];

• In (30), −hd(t)
d(t) is enlarged into −hd(t)

h ;
• In (32): The d(t) and h − d(t) are separated from the

matrix to be determined (Q3) and injected into vi(t), i =
1, 2, and this technique is simpler and more effective than
methods requiring enlargement;

• In (39) and (40): The related terms are treated by the
convex combination technique to avoid the enlargement
and the introducing of the extra matrix.

C. Some guidelines for criterion-deriving

This subsection summarizes simple guidelines to derive
more effective criterion from different considerations. Assume
the derivative of the simple LKF, V̄ (t), can be estimated as

˙̄V (t) < ϑT
0 (t)Θ0(d(t))ϑ0(t) (55)

where ϑ0(t) is state-based vector, for DNN (3), vectors ξ1(t)

and ξ2(t), which must appear in ˙̄V 2(t), are basic components
of ϑ0(t), and the usage of the Wirtinger’s inequality, currently
the most effective bounding technique, must lead to v1(t) and
v2(t). Therefore, the ϑ0(t) with the lowest dimension should
be ξ(t) as used in this paper. Clearly, the final stability criterion
requires Θ0(d(t)) < 0, and the conservativeness-reducing is
mainly achieved by making it more relaxable.

1) Only considering the conservativeness: based on the
existing literature and the discussion in this paper, the possible
ways that can reduce conservativeness are summarized as
follows:

• Ways well-studied: Constructing LKFs with more general
forms, and estimating the LKF’s derivative with less
enlargement.

• ways summarized in this paper: Introducing absent cross
terms into LMI conditions (Technique 1.1), and weaken-
ing the constraint of matrices in LMI conditions (Tech-
nique 1.2).

By applying those treatments, the (55) will be replaced by

V̇d/a(t)≤
[
ϑ0(t)
ϑ1(t)

]T{[
Θ0(d(t)) 0

0 0

]
+Θ1(d(t))

}[
ϑ0(t)
ϑ1(t)

]
(56)

where ϑ1(t) is caused by the delay-partition terms (for exam-
ple x(t − h/2) etc.) and the augmented terms (for example,
x(t−d(t)) and x(t−h) etc.) By adding Θ1(d(t)), the original

condition Θ0(d(t)) < 0 may be relaxed so as to achieve the
conservativeness-reducing.

2) Considering both the conservativeness and the complex-
ity: in this paper, a useful guideline to derive criterion for this
case is summarized as follows:

• Avoiding the extending of the ϑ0(t) as much as possible
during LKF-constructing and its derivative estimating;

• Introducing new cross terms that are less constraint and/or
that are absent in original condition, Θ0(d(t)) < 0.

Then the (55) will be replaced by

V̇p(t) ≤ ϑT
0 (t) [Θ0(d(t)) + Θ2(d(t))]ϑ0(t) (57)

where Θ2(d(t)) is added to relax condition Θ0(d(t)) < 0 and
reduce the conservativeness.

D. Techniques for further improvement and future work

This paper has further investigated some problems men-
tioned in our previous publication [47], including investigation
of an effective augmented LKF and discussion the combination
effect of different methods during estimating the derivative of
LKF, and has given a new stability criterion (Theorem 1).
By considering the tradeoff between the conservativeness
and the complexity, many techniques, which are reviewed in
Section I and benefit to conservativeness-reducing, have not
been applied during the deriving of the criterion. When the
researchers pay more attention to the conservativeness than to
the complexity, many techniques can be applied to achieve this
aim and some of them are listed as follows:

1) From the LKF point of view: Constructing more general
LKFs, such as augmented LKFs, delay-partition-based LKFs,
and LKFs with more multiple integral terms and/or activation
function information.

2) From the LKF estimation point of view: Relaxing the
positive conditions of the LKF by requiring the sum of all or
some terms, instead of each term, together be positive [71].

3) From the LKF’s derivative estimation point of view: Di-
viding the activation function into several subintervals similar
to the delay-partition method [33], [34] (Note that the usage
of this technique in some existing literature is unsuitable, see
Remark 5 for detail). Choosing different β1 and β2 during
the usage of Lemma 3, for example, the h

d(t) - and h
hd(t)

-
dependent terms in (24) can be estimated directly via setting

β1 =
[
x(t)−xd(t)

ξ3(t)

]
and β2 =

[
xd(t)−xh(t)

ξ4(t)

]
, but not

estimated after being divided.
4) From the requirement of LMI-based conditions point

of view: Introducing cross terms with less constraint to
provide more free connections among different state-based
vectors, for example, it can be found, from the discussion
of Technique 1.1, that there still does not exist connection
between fh(t) and vi(t), i = 1, 2, and it also can be found,
from the deriving of Theorem 1, that the cross terms among
f(t), fd(t), and fh(t) are only introduced in (37), where the
related matrices Ui, i = 1, 2, 3 are required to be diagonal
and symmetric. Thus, introducing new cross terms with more
freedom on those connections may be helpful.

Remark 5: A new treatment that activation function parti-
tion is assumed to belong to two parts has been developed in
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[33], [34]. Specifically, the activation function is divided into
two subintervals, i.e., σ−

i ≤ fi(s)
s ≤ σ+

i +σ−
i

2 and σ+
i +σ−

i

2 ≤
fi(s)
s ≤ σ+

i , then two cases are respectively discussed during
the estimation of the derivative of LKF. However, it seems that
such treatment is unsuitable. Since different elements of the
activation function may belong to different subintervals, name-
ly, when the one of element, fi(s), belongs to

[
σ−
i ,

σ+
i +σ−

i

2

]
,

the other n − 1 elements, fj(s), j ̸= i, may be bounded by[
σ−
j ,

σ+
j +σ−

j

2

]
or

[σ+
j +σ−

j

2 , σ+
j

]
, thus it is n2 cases, but not two

cases, that should be discussed.
Beside the above technique improvement that can be fur-

ther investigated, there are other issues related to application
extension that can be further studied, for example,

• This paper only considers the cast that the time-varying
delay satisfies (4), how to derive the further results for the
case that lower and upper bounds of ḋ(t) are all available
and the case that the lower bound of d(t) is non-zero will
be investigated.

• Other problems, such as robust stability, exponential
stability, synchronization, etc., can be investigated by
using the techniques proposed.

IV. NUMERICAL EXAMPLES

In this section, the advantages of the proposed criterion
are discussed based on three typical numerical examples from
the conservativeness and the complexity points of view. The
stability criteria published in recent years, especially the ones
obtained by augmented LKF, are used for the comparison.

A. Parameters of the DNNs
Consider DNN (3) with three different sets of parameters:
• Example 1:

A=diag{1.5, 0.7}, W =diag{1, 1}

W0=

[
0.0503 0.0454
0.0987 0.2075

]
, W1=

[
0.2381 0.9320
0.0388 0.5062

]
g(y) =

[
0.3 tanh(y1)
0.8 tanh(y2)

]
, J=

[
0.4
0.2

]
It can be found that σ+

1 =0.3, σ+
2 =0.8; σ−

1 =σ−
2 =0.

• Example 2:

A = diag{7.3458, 6.9987, 5.5949}

W =

[
13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7290 −2.6334 −20.1300

]
W0=diag{0, 0, 0},W1=diag{1, 1, 1}

g(y)=

0.3680 tanh(y1)
0.1795 tanh(y2)
0.2876 tanh(y3)

 J=

 0.1
0.6
0.3


It can be found that σ+

1 = 0.3680, σ+
2 = 0.1795, σ+

2 =
0.2876; σ−

1 =σ−
2 =σ−

3 =0.
• Example 3:

A = diag{1.2769, 0.6231, 0.9230, 0.4480}

W0 =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015



W = diag{1, 1, 1, 1}

W1 =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775


g(y) = [0.1137 tanh(y1), 0.1279 tanh(y2),

0.7994 tanh(y3), 0.2368 tanh(y4)]
T

J = [0.4, 0.2, 0.3, 0.1]T

It can be found that σ+
1 = 0.1137, σ+

2 = 0.1279, σ+
3 =

0.7994, σ+
4 =0.2368; σ−

1 = σ−
2 = σ−

3 = σ−
4 = 0.

B. Calculation results
The results of calculation complexities and delay upper

bounds for different criteria are given in this subsection.
1) The calculation complexity: Since the calculation time of

LMIs is dependent on the maximal order of the LMIs (MOL)
and the total number of the scalar decision variables (NDV),
those factors are considered as the indexes of calculation
complexity [60]. Table I lists the calculation complexities of
the related criteria for the general DNN and the DNNs with
given parameters, respectively, where ‘n’ is the dimension
of the system; and ‘Ex.’, ‘Th.’, and ‘Co.’ indicate Example,
Theorem, and Corollary, respectively.

2) The delay upper bound: The acceptable maximal upper
bounds (AMUBs) of delay for different µ obtained by different
methods are listed in Table II, where ‘—’ indicates that the
AMUBs for the corresponding cases are not given in literature.

Note that the calculated results given in [33], [34] have not
been given in the tables, since an unsuitable treatment has been
applied to derive the criteria in those literature, as mentioned
in Remark 5.

C. Discussions
This subsection gives some discussions and summarizations

based on the above calculated results.
1) The indexes indicating the improvements: In order to

easily estimate the improvements of the proposed method, the
follow three indexes are defined at first.

• The percentage of the conservativeness-reducing (PCR):
the percentage of the increasing of the value calculated by
Theorem 1 compared with the ones calculated by other
criteria, i.e.,

PCR=
AMUBTheorem 1−AMUBother criteria

AMUBother criteria
×100%

• The percentage of the NDV-decreasing (PND): the per-
centage of the decreasing of the NDV of Theorem 1
compared with that of other criteria, i.e.,

PND =
NDVTheorem 1 −NDVother criteria

NDVother criteria
× 100%

• The percentage of the MOL-decreasing (PMD): the per-
centage of the decreasing of the MOL of Theorem 1
compared with that of other criteria, i.e.,

PMD =
MOLTheorem 1 −MOLother criteria

MOLother criteria
× 100%

Based on Tables I and II, the PCRs, PNDs, and PMDs are
calculated and parts of results are listed in Table III.
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TABLE I
THE CALCULATION COMPLEXITIES OF DIFFERENT CRITERIA

Criteria DNN (3) Ex. 1 (n = 2) Ex. 2 (n = 3) Ex. 3 (n = 4)
NDV MOL NDV MOL NDV MOL NDV MoL

[47] (Th.4) 12.5n2 + 23.5n 8n 97 16 183 24 294 32
[28] (Th.1) 63.5n2 + 11.5n 13n 277 26 606 39 1062 52
[31] (Th.1) 30.5n2 + 8.5n 11n 139 22 300 33 522 44
[45] (Co.1) 26n2 + 17n 12n 138 24 285 36 484 48
[43] (Co.1) 38n2 + 19n 11n 190 22 399 33 684 44
Corollary 1 13.5n2 + 14.5n 8n 83 16 165 24 274 32
Corollary 2 14n2 + 16n 8n 88 16 174 24 288 32
Corollary 3 11.5n2 + 13.5n 8n 73 16 144 24 238 32
Corollary 4 12n2 + 14n 8n 76 16 150 24 248 32
Corollary 5 13n2 + 15n 8n 82 16 162 24 268 32
Theorem 1 15n2 + 16n 8n 92 16 183 24 304 32

TABLE II
THE AMUBS h FOR VARIOUS µ

Criteria µ (Ex. 1) µ (Ex. 2) µ (Ex. 3)
0.40 0.45 0.50 0.55 0.0 0.10 0.50 0.10 0.50 0.90

[5], [11], [20], [22] <5.3 <4.5 <4.2 <4.0 — — — — — —
[8], [24], [32] — — — — <1.6 <1.0 <0.43 — — —
[5], [6], [16], [17], [26] — — — — — — — <3.5 <2.6 <2.2
[15], [23], [25], [38] — — — — — — — <4.0 <2.9 <2.5
[11], [34], [48], [49] — — — — — — — <4.2 <3.2 <2.7
[47] (Th.4, ρ = 0.5) 4.5023 3.7588 3.5472 3.4885 1.7683 1.0426 0.4313 3.8739 2.7415 2.3011
[28] (Th.1) 4.5543 3.8364 3.5583 3.4110 — — — 3.623 2.965 2.352
[31] (Th.1) 5.1029 4.1100 3.6855 3.4434 — — — 3.4984 2.7243 2.2029
[45] (Co.1) — — — — 1.8764 1.1127 0.4464 — — —
[43] (Co.1) — — — — 1.5575 0.9430 0.4417 — — —
Corollary 1 5.6504 4.7596 4.4276 4.2450 1.3327 0.8417 0.4327 3.9055 3.0997 2.6944
Corollary 2 7.5919 6.6339 6.2829 6.0999 1.8874 1.1023 0.4500 4.2729 3.0666 2.7687
Corollary 3 7.4203 6.6190 6.3428 6.2095 1.5857 0.9567 0.4432 4.1838 3.1510 2.8347
Corollary 4 7.5049 6.5563 6.2069 6.0237 1.8835 1.1001 0.4489 4.2732 3.0666 2.7648
Corollary 5 5.4065 4.6401 4.3715 4.2224 1.4877 0.8994 0.4330 3.8554 3.0278 2.6526
Theorem 1 7.6697 6.7287 6.4126 6.2569 1.8886 1.1163 0.4506 4.2993 3.1577 2.8371

TABLE III
THE PCRS, PNDS AND PMDS FOR VARIOUS CASES

Criteria Ex. 1 (%) Ex. 2 (%) Ex. 3 (%)
PCRµ∈{0.4,0.45,0.5} PND PMD PCRµ∈{0.0,0.1,0.5} PND PMD PCRµ∈{0.1,0.5,0.9} PND PMD

[47] (Th.4) 70.35 79.01 80.77 -5.15 0 6.80 7.06 4.47 0.00 0 10.98 15.18 23.29 3.40 0
[28] (Th.1) 68.40 75.39 80.21 -66.78 -38.46 — — — — — 18.66 6.49 20.62 -71.37 -38.46
[31] (Th.1) 50.30 63.71 73.99 -33.81 -27.27 — — — — — 22.89 15.90 28.78 -41.76 -27.27
[45] (Co.1) — — — — — 0.65 0.32 0.94 -35.78 -33.33 — — — — —
[43] (Co.1) — — — — — 21.25 18.37 2.01 -54.13 -27.27 — — — — —
Corollary 1 35.73 41.37 44.83 10.84 0 41.71 32.62 4.13 10.90 0 10.08 1.87 5.29 10.94 0
Corollary 2 1.02 1.42 2.06 4.54 0 0.06 1.27 0.13 5.17 0 0.61 2.97 2.47 5.55 0
Corollary 3 3.36 1.65 1.10 26.02 0 19.10 16.68 1.66 27.08 0 2.76 0.21 0.08 27.73 0
Corollary 4 2.19 2.62 3.31 21.05 0 0.27 1.47 0.37 22.00 0 0.61 2.97 2.61 22.58 0
Corollary 5 41.86 45.01 46.69 12.19 0 26.94 24.11 4.06 12.96 0 11.51 4.29 6.95 13.43 0

2) Comparison and analysis: This part observes the com-
parisons from the above three tables and gives some analysis.

On one hand, the comparisons of the results obtained by
Theorem 1 and the existing criteria show the improvements
of the proposed method.

• The AMUBs calculated by Theorem 1 are bigger than the
ones provided by other criteria for all cases, and the PCRs
are over 5% for most cases, which show that Theorem 1
has less conservativeness.

• The NDVs and MOLs of Theorem 1 are smaller than the
ones of other criteria for most cases (except for two cases

of Th.4 in [47]), and PNDs and PMDs are all bigger than
25% for those cases, which shows that Theorem 1 will
spend less time on the calculation and is more suitable
for high-dimension systems.

• Although the NDV of Th.4 in [47] for EX. 3 is smaller
than that of Theorem 1 (294 < 304), the usage of Th.4
in [47] requires to tune a parameter, ρ, which is a time-
consuming procedure.

On the other hand, the comparisons of the results obtained
by theorem and corollaries verify the benefits of the techniques
discussed in Section III.B.
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Fig. 1. State trajectories of the DNN of Example 1.

• The AMUBs by Theorem 1 are bigger than the ones
by corollaries, which show that techniques mentioned in
Section III.B indeed reduces the conservativeness. The
results obtained by Theorem 1 are obviously bigger than
the ones of Corollaries 1, 3, and 5, that is to say, the
contribution of Techniques 1.1, 1.3, and 2.1 are more
obvious.

• The MOLs for corollaries and theorem are same. From
five corollaries, it is found that Technique 1.3 intro-
duces the most additional decisions, the related PND
for any dimension, n, must be small than 30.5% due to
15n2+16n−(11.5n2+13.5n)

11.5n2+19.5n < 3.5n2

11.5n2 <30.5%.
• By considering the PCRs and the PNDs, it can be found

that Techniques 1.1 and 2.1 are more effective and worthy
of further investigation.

D. Simulation verification

From the parameters of the DNNs, the
equilibrium points of them can be obtained as
y∗ = [0.6760, 0.9077]T , y∗ = [0.0071, 0.1110, 0.0216]T ,
and y∗ = [0.1501, 0.3471, 0.3037, 0.2401]T , respectively.
From Table II, the DNNs are stable for the cases: Example
1, µ = 0.4, and h = 7.6697; Example 2, µ = 0.1, and
h = 1.1163; and Example 3, µ = 0.1, and h = 4.2993. Thus,
simulation studies for the following three cases are given:

• Example 1: y(t) = [0.8, 0.5]T , t ∈ [−7.6697, 0]; d(t) =
7.2697 + 0.4 sin(t);

• Example 2: y(t) = [0.2, 0.5, 0.1]T , t ∈ [−1.1163, 0];
d(t) = 1.0163 + 0.8 sin(t);

• Example 3: y(t) = [0.3, 0.1, 0.2, 0.4]T , t ∈ [−4.2993, 0];
d(t) = 4.1993 + 0.1 sin(t);

The responses of the DNNs are shown in Figs. 1-3, and the re-
sults show that the DNNs are stable at their equilibrium points,
which verifies the effectiveness of the proposed methods.

V. CONCLUSIONS

This paper has further investigated the delay-dependent
stability of continuous DNNs, and a new criterion has been
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Fig. 2. State trajectories of the DNN of Example 2.
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Fig. 3. State trajectories of the DNN of Example 3.

obtained via considering the tradeoff between the conservative-
ness and the calculation complexity. A new augmented LKF
with delay-dependent terms has been developed from the point
of view of the constraint of LMI-based conditions. An effective
method to estimate the LKF’s derivative has been investigated
based on the combination of several techniques. The influence
of techniques used has been analyzed in theory, and some
useful guidelines for criterion-deriving has been summarized.
The advantages of the proposed criterion have been verified
via three numerical examples.
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