63 research outputs found

    Online packet scheduling for CIOQ and buffered crossbar switches

    Get PDF
    We consider the problem of online packet scheduling in Combined Input and Output Queued (CIOQ) and buffered crossbar switches. In the widely used CIOQ switches, packet buffers (queues) are placed at both input and output ports. An N×N CIOQ switch has N input ports and N output ports, where each input port is equipped with N queues, each of which corresponds to an output port, and each output port is equipped with only one queue. In each time slot, arbitrarily many packets may arrive at each input port, and only one packet can be transmitted from each output port. Packets are transferred from the queues of input ports to the queues of output ports through the internal fabric. Buffered crossbar switches follow a similar design, but are equipped with additional buffers in their internal fabric. In either model, our goal is to maximize the number or, in case the packets have weights, the total weight of transmitted packets. Our main objective is to devise online algorithms that are both competitive and efficient. We improve the previously known results for both switch models, both for unweighted and weighted packets. For unweighted packets, Kesselman and Rosén (J. Algorithms 60(1):60–83, 2006) give an online algorithm that is 3-competitive for CIOQ switches. We give a faster, more practical algorithm achieving the same competitive ratio. In the buffered crossbar model, we also show 3-competitiveness, improving the previously known ratio of 4. For weighted packets, we give 5.83- and 14.83-competitive algorithms with an elegant analysis for CIOQ and buffered crossbar switches, respectively. This improves upon the previously known ratios of 6 and 16.24

    Scheduling algorithms for high-speed switches

    Get PDF
    The virtual output queued (VOQ) switching architecture was adopted for high speed switch implementation owing to its scalability and high throughput. An ideal VOQ algorithm should provide Quality of Service (QoS) with low complexity. However, none of the existing algorithms can meet these requirements. Several algorithms for VOQ switches are introduced in this dissertation in order to improve upon existing algorithms in terms of implementation or QoS features. Initially, the earliest due date first matching (EDDFM) algorithm, which is stable for both uniform and non-uniform traffic patterns, is proposed. EDDFM has lower probability of cell overdue than other existing maximum weight matching algorithms. Then, the shadow departure time algorithm (SDTA) and iterative SDTA (ISDTA) are introduced. The QoS features of SDTA and ISDTA are better than other existing algorithms with the same computational complexity. Simulations show that the performance of a VOQ switch using ISDTA with a speedup of 1.5 is similar to that of an output queued (OQ) switch in terms of cell delay and throughput. Later, the enhanced Birkhoff-von Neumann decomposition (EBVND) algorithm based on the Birkhoff-von Neumann decomposition (BVND) algorithm, which can provide rate and cell delay guarantees, is introduced. Theoretical analysis shows that the performance of EBVND is better than BVND in terms of throughput and cell delay. Finally, the maximum credit first (MCF), the Enhanced MCF (EMCF), and the iterative MCF (IMCF) algorithms are presented. These new algorithms have the similar performance as BNVD, yet are easier to implement in practice

    On packet switch design

    Get PDF

    On scheduling input queued cell switches

    Get PDF
    Output-queued switching, though is able to offer high throughput, guaranteed delay and fairness, lacks scalability owing to the speed up problem. Input-queued switching, on the other hand, is scalable, and is thus becoming an attractive alternative. This dissertation presents three approaches toward resolving the major problem encountered in input-queued switching that has prohibited the provision of quality of service guarantees. First, we proposed a maximum size matching based algorithm, referred to as min-max fair input queueing (MFIQ), which minimizes the additional delay caused by back pressure, and at the same time provides fair service among competing sessions. Like any maximum size matching algorithm, MFIQ performs well for uniform traffic, in which the destinations of the incoming cells are uniformly distributed over all the outputs, but is not stable for non-uniform traffic. Subse-quently, we proposed two maximum weight matching based algorithms, longest normalized queue first (LNQF) and earliest due date first matching (EDDFM), which are stable for both uniform and non-uniform traffic. LNQF provides fairer service than longest queue first (LQF) and better traffic shaping than oldest cell first (OCF), and EDDEM has lower probability of delay overdue than LQF, LNQF, and OCF. Our third approach, referred to as store-sort-and-forward (SSF), is a frame based scheduling algorithm. SSF is proved to be able to achieve strict sense 100% throughput, and provide bounded delay and delay jitter for input-queued switches if the traffic conforms to the (r, T) model

    PABO: Mitigating Congestion via Packet Bounce in Data Center Networks

    Full text link
    In today's data center, a diverse mix of throughput-sensitive long flows and delay-sensitive short flows are commonly presented in shallow-buffered switches. Long flows could potentially block the transmission of delay-sensitive short flows, leading to degraded performance. Congestion can also be caused by the synchronization of multiple TCP connections for short flows, as typically seen in the partition/aggregate traffic pattern. While multiple end-to-end transport-layer solutions have been proposed, none of them have tackled the real challenge: reliable transmission in the network. In this paper, we fill this gap by presenting PABO -- a novel link-layer design that can mitigate congestion by temporarily bouncing packets to upstream switches. PABO's design fulfills the following goals: i) providing per-flow based flow control on the link layer, ii) handling transient congestion without the intervention of end devices, and iii) gradually back propagating the congestion signal to the source when the network is not capable to handle the congestion.Experiment results show that PABO can provide prominent advantage of mitigating transient congestions and can achieve significant gain on end-to-end delay

    05031 Abstracts Collection -- Algorithms for Optimization with Incomplete Information

    Get PDF
    From 16.01.05 to 21.01.05, the Dagstuhl Seminar 05031 ``Algorithms for Optimization with Incomplete Information\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Design and analysis of a scalable terabit multicast packet switch : architecture and scheduling algorithms

    Get PDF
    Internet growth and success not only open a primary route of information exchange for millions of people around the world, but also create unprecedented demand for core network capacity. Existing switches/routers, due to the bottleneck from either switch architecture or arbitration complexity, can reach a capacity on the order of gigabits per second, but few of them are scalable to large capacity of terabits per second. In this dissertation, we propose three novel switch architectures with cooperated scheduling algorithms to design a terabit backbone switch/router which is able to deliver large capacity, multicasting, and high performance along with Quality of Service (QoS). Our switch designs benefit from unique features of modular switch architecture and distributed resource allocation scheme. Switch I is a unique and modular design characterized by input and output link sharing. Link sharing resolves output contention and eliminates speedup requirement for central switch fabric. Hence, the switch architecture is scalable to any large size. We propose a distributed round robin (RR) scheduling algorithm which provides fairness and has very low arbitration complexity. Switch I can achieve good performance under uniform traffic. However, Switch I does not perform well for non-uniform traffic. Switch II, as a modified switch design, employs link sharing as well as a token ring to pursue a solution to overcome the drawback of Switch 1. We propose a round robin prioritized link reservation (RR+POLR) algorithm which results in an improved performance especially under non-uniform traffic. However, RR+POLR algorithm is not flexible enough to adapt to the input traffic. In Switch II, the link reservation rate has a great impact on switch performance. Finally, Switch III is proposed as an enhanced switch design using link sharing and dual round robin rings. Packet forwarding is based on link reservation. We propose a queue occupancy based dynamic link reservation (QOBDLR) algorithm which can adapt to the input traffic to provide a fast and fair link resource allocation. QOBDLR algorithm is a distributed resource allocation scheme in the sense that dynamic link reservation is carried out according to local available information. Arbitration complexity is very low. Compared to the output queued (OQ) switch which is known to offer the best performance under any traffic pattern, Switch III not only achieves performance as good as the OQ switch, but also overcomes speedup problem which seriously limits the OQ switch to be a scalable switch design. Hence, Switch III would be a good choice for high performance, scalable, large-capacity core switches
    • …
    corecore