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Online Packet Scheduling

for CIOQ and Buffered Crossbar Switches ∗

Kamal Al-Bawani† Matthias Englert‡ Matthias Westermann§

Abstract

We consider the problem of online packet scheduling in Combined Input and Output Queued
(CIOQ) and buffered crossbar switches. In the widely used CIOQ switches, packet buffers
(queues) are placed at both input and output ports. An N × N CIOQ switch has N input
ports and N output ports, where each input port is equipped with N queues, each of which
corresponds to an output port, and each output port is equipped with only one queue. In each
time slot, arbitrarily many packets may arrive at each input port, and only one packet can
be transmitted from each output port. Packets are transferred from the queues of input ports
to the queues of output ports through the internal fabric. Buffered crossbar switches follow a
similar design, but are equipped with additional buffers in their internal fabric. In either model,
our goal is to maximize the number or, in case the packets have weights, the total weight of
transmitted packets.

Our main objective is to devise online algorithms that are both competitive and efficient. We
improve the previously known results for both switch models, both for unweighted and weighted
packets.

For unweighted packets, Kesselman and Rosén (J. Algorithms ‘06) give an online algorithm
that is 3-competitive for CIOQ switches. We give a faster, more practical algorithm achieving
the same competitive ratio. In the buffered crossbar model, we also show 3-competitiveness,
improving the previously known ratio of 4.

For weighted packets, we give 5.83- and 14.83-competitive algorithms with an elegant analysis
for CIOQ and buffered crossbar switches, respectively. This improves upon the previously known
ratios of 6 and 16.24.

1 Introduction

In the widely used Combined Input and Output Queued (CIOQ) switches, packet buffers (queues)
are placed at both input and output ports. An N × N CIOQ switch has N input ports and N
output ports. Each input port is equipped with N queues, each of which corresponds to an output
port, and each output port is equipped with only one queue. The switching fabric connects the
input ports with the output ports and is used to transfer packets from the queues of input ports
to the queues of output ports. Figure 1 depicts an example of a CIOQ switch.

When a packet arrives at a CIOQ switch, it is first tagged with the following information: the
value that represents its class of service, i.e., its priority, the input port through which it enters the
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Figure 1: CIOQ switch — An example with N = 3

switch, and the output port through which it has to leave the switch. Packets proceed inside the
switch in the following way. They are first stored in the queues of the input ports, such that each
packet is stored in the queue that corresponds to its output port. After that, they are transferred
from input to output ports through the switching fabric, and reside in the queues of the output
ports until they are eventually sent out of the switch. However, queues inside the switch are of
limited capacities and there may be bursts of packets arriving which exceed the capacities. Thus,
queues may overflow. Typically, packets are transferred through the switching fabric with a rate
that is ŝ times the rate of transmission, i.e., they are transferred through the switching fabric over
ŝ cycles of speed in each time slot. We call ŝ the speedup of the switch. It is worth noting here
that we consider non-FIFO queues, i.e., packets can be stored in and released from queues in any
arbitrary order.

Closely related to CIOQ switches, another type of switch architecture, the so-called buffered
crossbar switches, is obtained by adding further queues at the crosspoints of the switching fabric.
More specifically, for every queue at the input ports, an additional queue is placed at the switching
fabric and dedicated to accommodate packets that are transferred from the input queue before
they later on are transferred further to the corresponding output port. The number of those
crossbar queues is proportional to the number of crosspoints, i.e., N2, but it has been shown that
the adoption of crossbar queues significantly decreases the scheduling overhead of CIOQ switches.
Figure 2 depicts an example of a buffered crossbar switch.

Packet scheduling in both CIOQ and buffered crossbar switches has been extensively studied
in the networking literature (see, e.g., [10, 11]). The design and analysis of scheduling algorithms
in that line of research is mostly based on prior assumptions about the traffic distribution, e.g.,
Poisson-like distributions. However, it has been shown that Internet traffics do not necessarily
adhere to such particular distributions (see, e.g., [29, 32]). We do not make any prior assumptions
about the arrival behavior of packets, and instead resort to the framework of competitive analysis
[31], which is the typical worst-case analysis used to assess the performance of online algorithms,
i.e., algorithms whose input is revealed piece by piece over time, and the decision they make in
each time step is irrevocable.

In competitive analysis, the benefit, in our case the switch’s throughput, of an online algorithm
is compared to the benefit of an optimal offline algorithm opt which is assumed to know the
entire input sequence in advance. An online algorithm onl is called c-competitive if, for each input
sequence σ, the benefit of opt over σ is at most c times the benefit of onl over σ. The value c is
also called the competitive ratio of onl.
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Figure 2: Buffered crossbar switch — An example with N = 3

1.1 Our contribution

Our objective in the CIOQ model is twofold: to devise online algorithms that are both competitive
and efficient. All online algorithms known for this problem are based on computing a maximum
matching in each scheduling cycle, and thus are far from being efficient for real-world switches. We
present new algorithms that are significantly more efficient and yet achieve the best competitive
ratios known for this problem.

In each scheduling cycle, a bipartite graph is induced from the current configuration of the
input and output queues, where the vertices of the left-hand side correspond to the input ports,
and the vertices of the right-hand side correspond to the output ports. An edge (i, j) indicates that
a packet can be transferred from the i-th input port to the j-th output port. Clearly, a matching
in this graph corresponds to an admissible schedule for the current scheduling cycle.

We present two online algorithms in this model: Greedy Matching (gm) for the unit-value case,
i.e., where all packets have the same value, and Preemptive Greedy (pg) for the general-value
case. Both algorithms are based on greedy maximal matching computations, i.e., we construct a
matching incrementally by adding edges, one by one, until no more edges can be added. This is much
more efficient than computing the maximum matchings, which have been used in previous works.
Moreover, computing maximal matchings complies more with the current practice in distributed
systems where packet scheduling has to perform in real time.

With respect to competitiveness, we show in Section 2.1 that gm is 3-competitive for any
speedup, and thus it achieves the best competitive ratio known for this problem [23]. In Section
2.2, we show that pg has a competitive ratio of 3 + 2

√
2 ≈ 5.83 for any speedup, which improves

upon the previously known competitive ratio of 6 [24].
To obtain these results in an elegant way, we manipulate the queues of an optimal offline

algorithm such that certain invariants in relation to our online algorithms are maintained. The
techniques we use in the analysis of gm and pg also allow us to achieve improved upper bounds in
the related model of buffered crossbar switches. For the unit-value case of this model, Kesselman et
al. [21] present a greedy algorithm, which we call Crossbar Greedy Unit (cgu), with a competitive
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ratio of 4 for any speedup. We improve on this result and show that cgu is indeed 3-competitive.
For the general-value case, they give an algorithm that is 16.24-competitive for any speedup. We
present a slightly different algorithm, Crossbar Preemptive Greedy (cpg), and show that it achieves
a competitive ratio of ≈ 14.83 for any speedup.

A similar analysis technique has been successfully used by Jeż et al. [19] for other packet
scheduling related problems. However, in that work the buffer is manipulated in such a way that
the optimal algorithm and the online algorithm always have an identical buffer content. In our
proofs, we maintain different invariants.

1.2 Related work

For the general-value case of CIOQ switches with FIFO queues, i.e., packets are stored and released
in order of their arrival, Kesselman and Rosén [23] give two algorithms with competitive ratios of
4 · S and 8 · min{k, 2 logα}, where k is the number of distinct packet values and α is the ratio
between the largest and the smallest packet value. The latter result was improved by Azar and
Richter [7] who give an algorithm with a competitive ratio of 8 for any speedup. Kesselman et
al. [22] show that this algorithm is 7.47-competitive. For the buffered crossbar model with FIFO
queues, Kesselman et al. [20] give a 19.95-competitive algorithm for any speedup.

A simpler model called input queued switches (IQ) consists of m input queues of the same
capacity B and only one output port. It is worth noticing that both the CIOQ and buffered crossbar
models generalize this model, e.g., the CIOQ model reduces to the IQ model if the speedup is 1
and only one input port is in use. Therefore, all lower bounds in the IQ model carry over to the
CIOQ and buffered crossbar models. In the following, we cite the most known results on the IQ
model.

Azar and Richter [6] show that any work-conserving policy for the IQ model is 2-competitive. In
the unit-value case, they provide a lower bound of 2−1/m on the competitive ratio of any determin-
istic algorithm. Albers and Schmidt [3] improve this result and give a policy called semi-greedy
that is 17/9 ≈ 1.89-competitive, for any B with m � B, and 13/7 ≈ 1.86-competitive, for B = 2.
They also give a lower bound of 2 − 1/B on the competitive ratio of any greedy algorithm. Bi-
enkowski [8] presents a lower bound of e/(e − 1) ≈ 1.58 on the competitive ratio of any (even
randomized) algorithm. Azar and Richter [6] give an optimal randomized policy and Azar and
Litichevskey [4] give an optimal deterministic policy matching this lower bound for large B. For
m = 2, Schmidt [30] presents a lower bound of 16/13 ≈ 1.23 on the competitive ratio of any (even
randomized) algorithm, and Bienkowski and Madry [9] give an optimal randomized policy and
Kobayashi et al. [25] give an optimal deterministic policy matching this lower bound.

For the general-value case of the IQ model with m FIFO queues, Azar and Richter [6] give a
generic technique that transforms any single-queue algorithm with a competitive ratio c into an
m-queue algorithm with a competitive ratio 2 c. Given the results of Englert and Westermann [12]
on FIFO single-queue switches, the technique of [6] leads to a competitive ratio of

√
13− 1 ≈ 2.61

for the special case in which each packet can take only the values 1 and α > 1 and a competitive
ratio of 2

√
3 ≈ 3.47 for arbitrary packet values. For two packet values, Kobayashi, Miyazaki, and

Okabe [26] give improved upper bounds for large enough values of B. For arbitrary packet values,
Azar and Richter [5] give an improved upper bound by presenting the 3-competitive Transmit
Largest Head algorithm (tlh). Itoh and Takahashi [18] refine this result and show that tlh is in
fact (3− 1/α)-competitive when the packet values are from the interval [1, α].

The problem of packet scheduling (also known as buffer management) has also been studied
under several other models. For example, the multi-queue model with shared memory [1, 15, 16],
the multi-queue model with class segregation [2], the single-queue (FIFO) model [12], and the
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bounded delay model, where packets have deadlines besides their values [13, 27]. Comprehensive
and up-to-date surveys on this problem and its variants can be found in [14, 17, 28].

1.3 Models and notations

We consider a CIOQ switch with N input ports and N output ports. Each input port has N
queues and each output port has one queue. We call the queues at the input ports the input queues
and those at the output ports the output queues. An input queue that is placed at input port i
(i = 1, . . . , N) and corresponds to output port j (j = 1, . . . , N) is denoted by Qij . An output queue
that is placed at output port j (j = 1, . . . , N) is denoted by Qj . For any input or output queue Q,
the capacity of Q, i.e., the number of packets that can be stored in Q, is denoted by B(Q), and
Q(t) denotes the set of packets that reside in Q at time t. All queues in the switch are non-FIFO,
i.e., packets may be stored in and released from queues in any arbitrary order.

An input instance of this problem is a sequence of packets arriving at the switch in an online
manner, i.e., packets that arrive at time t are not known before t. All packets have the same size.
For each packet p in the input sequence, v(p), arr(p), in(p), and out(p) denote p’s value, arrival
time, input port, and output port, respectively, where in(p) and out(p) take on values between 1
and N .

We denote the arrival of a new packet as an arrival event, the transfer of a packet from an
input queue to an output queue as a scheduling event and the sending of a packet from an output
queue as a transmission event. Therefore, an input sequence σ can be seen as a sequence of arrival,
scheduling and transmission events. The time that precedes the first arrival event of the sequence
is denoted as time 0. We assume that the queues of any algorithm are all empty at time 0.

Continuous time is divided into slots of unit length, and each of these time slots is further
divided into three phases; namely, arrival, scheduling, and transmission phases. For simplicity, we
assume that for any given queue, all events in arrival, scheduling, and transmission phases occur
at different (fractional) times. For example, the arrival events in the first time slot will occur at
distinct time points in the interval (0,1/3), the scheduling events will occur at distinct time points in
the interval (1/3,2/3), and the transmission events will occur at distinct time points in the interval
(2/3,1).

In the arrival phase, arbitrarily many packets arrive at the switch. An arriving packet p is
either accepted and thus inserted in queue Qij , where i = in(p) and j = out(p), or it is rejected,
i.e., discarded.

In the scheduling phase, a set of packets that are stored in input queues are transferred to their
corresponding output queues through the switching fabric. These transfers take place in internal
time cycles which we call the scheduling cycles. We say that a switch has a speedup ŝ when it
is capable of performing ŝ scheduling cycles within a single time slot. We denote the s-th cycle
of time slot T by T [s], for s = 1, . . . , ŝ. In any scheduling cycle, a matching between input and
output ports is computed, such that at most one packet is released from each input port and at
most one packet is admitted to each output port. More specifically, when a packet p is transferred
from queue Qij in scheduling cycle T [s], it is forwarded through the switching fabric to queue Qj ,
and no packet except p is released from input port i or forwarded to output port j in T [s].

Finally, in the transmission phase, at most one packet is sent out from each output queue, i.e.,
transmitted to its next destination on the network.

Preemption is allowed, i.e., a packet that was previously inserted into a queue can be preempted,
i.e., discarded, before it is sent. Therefore, a packet may be lost in one of two occasions: rejection
upon its arrival, or preemption after getting stored in a queue.

The benefit made by an online algorithm onl on an input sequence σ is denoted by onl(σ),
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and is defined as the total value of packets that onl sends from the output queues. We aim at
maximizing this benefit. An algorithm that knows the entire input beforehand and makes the
maximum benefit on any sequence is denoted as opt. An online algorithm onl is c-competitive if
opt(σ) ≤ c · onl(σ) for any input sequence σ.

Buffered crossbar switches are obtained by adding further queues at the crosspoints of the
switching fabric. A crossbar queue that is placed at the crosspoint of input port i (i = 1, . . . , N)
and output port j (j = 1, . . . , N) is denoted by Cij . Again, all queues in the switch are non-FIFO,
i.e., packets may be stored in and released from queues in any arbitrary order.

All other notations and conventions of the CIOQ model hold also for the buffered crossbar
model. However, each cycle of the scheduling phase in the buffered crossbar model is divided into
two subphases: the input subphase and the output subphase. In the input subphase, packets can be
transferred from any input queue Qij to its corresponding crossbar queue Cij , such that at most
one packet is transferred from each input port i. In the output subphase, packets can be transferred
from any crossbar queue Cij to its corresponding output queue Qj , such that at most one packet
is transferred to each output port j.

2 CIOQ switches

2.1 Unit-value case

In this case, all packets have unit value. Thus, our goal is to maximize the number of transmitted
packets. In the following, we present the Greedy Matching algorithm (gm).

• Arrival phase: For every arriving packet p with in(p) = i and out(p) = j, accept p if Qij is
not full; otherwise, reject p.

• Scheduling phase: In every scheduling cycle T [s], a bipartite graph GT [s] = (U, V,E)
is induced from the current configuration of the switch, where U = {u1, . . . , uN}, V =
{v1, . . . , vN}, and an edge (ui, vj) ∈ E if and only if the input queue Qij is not empty
and the output queue Qj is not full at T [s].

A greedy matching MT [s] is then computed on GT [s] in the following way: Start with an
empty matching and iterate over all edges of E. Add an edge e to the current matching if e
does not violate the matching property.

After MT [s] is computed, for each edge (ui, vj) ∈MT [s], the head packet of Qij is transferred
to Qj .

• Transmission phase: For every non-empty output queue Qj , send the packet at the head
of Qj .

The next theorem shows that gm is 3-competitive for any speedup.

Theorem 1. The competitive ratio of gm is at most 3 for any speedup.

From now on, we fix an input sequence σ, and, for any input or output queue Q, we reserve the
notation Q for the online algorithm and use Q∗ to denote the corresponding queue of the offline
algorithm opt.

First, without loss of generality, we assume that opt is greedy in transmission events, i.e, it
sends a packet from an output queue as long as its queue is not empty. Obviously, as opt knows
in advance which packets it is going to send, holding packets back in output queues, rather than
sending them as early as possible, cannot improve its benefit.
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Now, we modify opt in a way that does not decrease its benefit of σ. Specifically, at the end
of each scheduling cycle T [s], i.e., immediately after opt has performed its scheduling policy, we
apply the following two modifications on the configuration of opt in the given order:

Modification 2.1.1. Suppose that gm transfers a packet from Qij and opt does not transfer any
packet from Q∗ij in T [s]. If Q∗ij is not empty in T [s], opt sends a packet p from Q∗ij directly out of
the switch, i.e., through an imaginary channel. In this case, p is called a privileged packet of Type
1 and contributes to the benefit of opt.

Modification 2.1.2. Suppose that opt transfers a packet p to Q∗j and gm does not transfer any
packet to Qj in T [s]. If Qj is not full in T [s], opt sends p directly out of the switch. In this case,
p is called a privileged packet of Type 2 and contributes to the benefit of opt.

Clearly, these modifications do not decrease the benefit of opt. They can only make it stronger
by allowing it to send packets directly from input ports to outside the switch without being enqueued
in output ports. The input and output queues will respectively become shorter in this case and
thus the optimal algorithm may accept more new packets.

Before we continue, we introduce further notations. We call packets that opt schedules through
the normal channels, i.e., they are not privileged, normal packets. We use S∗ and P ∗ to denote
the sets of opt’s normal and privileged packets, respectively. Clearly, the benefit of opt is given
by |P ∗|+ |S∗|. We also use S to denote the set of packets sent by gm. Thus, we want to show that
|P ∗|+ |S∗| ≤ 3 |S|.

We now show how to derive the competitive ratio of 3. First, we show in Lemma 1 how
Modifications 2.1.1 and 2.1.2 are used to preserve the following invariant: At any time, each queue
in gm is not shorter than its counterpart in opt. Therefore, for any transmission event at time t
and output port j, if opt sends a packet from Q∗j at t, gm must also send a packet from Qj at t.
Hence, |S∗| ≤ |S|. After that, we show by Lemma 3 that |P ∗| ≤ 2 |S|. Thus, the proof of Theorem
1 follows directly from these two lemmas.

Lemma 1. For any i, j ∈ {1, . . . , N} and any time t, the following inequalities hold:

I1. |Q∗ij(t)| ≤ |Qij(t)|

I2. |Q∗j (t)| ≤ |Qj(t)|

Proof. Inequalities I1 and I2 can be shown by a simple induction over the event sequence. Let the
induction base be at time 0, i.e., before the sequence starts. All queues are empty at this time and
thus I1 and I2 hold. Assume now that they hold for any time up to some arrival, scheduling, or
transmission event τ . Then we have to show that they still hold right after the event τ .

Assume τ is an arrival event. Clearly, output queues do not change in arrival events and thus
I2 holds for this case. For I1, the only critical case is when the arriving packet is rejected by gm
and accepted by opt. However, the input queue of gm must be full in this case and thus I1 still
holds.

Now, let τ be a scheduling event. Here, the only critical case for I1 is when gm transfers a
packet from Qij while opt does not transfer anything from Q∗ij . However, either Q∗ij is empty in
this case or it cannot happen due to Modification 2.1.1. For I2, the only critical case is when opt
inserts a packet into Q∗j while gm does not insert anything into Qj . However, either Qj is full in
this case or it cannot happen due to Modification 2.1.2.

Finally, assume τ is a transmission event. Clearly, the input queues do not change in transmis-
sion events and thus I1 holds for this case. For I2, the only critical case is when gm sends a packet
from Qj while opt does not send anything from Q∗j . However, since we assume that opt is greedy
at sending, its output queue must be empty in this case and thus I2 still holds.
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The following lemma shows that if Modification 2.1.2 takes place, gm must transfer a packet
from the same input port.

Lemma 2. Suppose that, in T [s], opt transfers a packet p from Q∗ij to Q∗j and gm does not transfer
any packet to Qj. If Qj is not full in T [s], then gm transfers a packet p′ from Qij′ in T [s], where
j′ 6= j.

Proof. Recall the bipartite graph GT [s] and the corresponding matching MT [s] which are induced
from the configuration of gm right before performing the scheduling cycle T [s].

Assume that Qj is not full in T [s]. By Inequality I1 of Lemma 1, since opt transfers p from
Q∗ij in T [s], gm must have at least one packet in Qij . Therefore, an edge (ui, vj) must be in E.
Nevertheless, since gm does not transfer any packet to Qj , (ui, vj) is not in MT [s]. Since MT [s] is a
maximal matching, there must exist an edge (ui, vj′), for j′ 6= j, such that (ui, vj′) ∈MT [s]. Hence,
a packet p′ is transferred from Qij′ in T [s].

Lemma 3. The following inequality holds:

|P ∗| ≤ 2 |S| .

Proof. We carry out the following mapping scheme from P ∗ to S in each scheduling cycle T [s].

1. Let p be a privileged packet of Type 1 that is sent by opt from Q∗ij in T [s]. By Modification
2.1.1, gm transfers a packet p′ from Qij in T [s]. Map p to p′.

2. Let p be a privileged packet of Type 2 that is sent by opt from Q∗ij . By Lemma 2, gm
transfers a packet p′ from Qij′ in T [s], where j′ 6= j. Map p to p′.

Clearly, this mapping scheme is feasible, i.e., each packet p ∈ P ∗ is mapped to a packet q ∈ S.
Furthermore, at most two privileged packets can be mapped to each packet q ∈ S. To see that, let
q be a packet transferred by gm from Qij in a scheduling cycle T [s]. Clearly, q can get mapped
only in T [s], provided that opt sends privileged packets at this time. By Modifications 2.1.1 and
2.1.2, opt can send at most 2 privileged packets from input port i in T [s]: one of Type 1 if opt’s
queue of Q∗ij is not empty, and one of Type 2 if it transfers a packet from another queue Q∗ij′ . Thus,
these two privileged packets are mapped to q.

2.2 General-value case

For the case of arbitrary packet values, we present the Preemptive Greedy algorithm (pg) that is
a variant of a 6-competitive algorithm given by Kesselman and Rosén [24]. We show next that pg
has a competitive ratio of 3 + 2

√
2 ≈ 5.83 for any speedup.

Before we describe pg formally, we introduce further notations. Let gij(t) denote the packet
with the greatest value in Qij at time t, and lij(t) (resp. lj(t)) denote the packet with the least
value in Qij (resp. Qj) at time t. Additionally, let β ≥ 1 be a parameter of the algorithm that will
be determined later.

• Arrival phase: If a packet p arrives at time t with in(p) = i and out(p) = j, accept p if

|Qij(t)| < B(Qij)
∨
v(lij(t)) < v(p) ;

otherwise, reject p. If p is accepted while |Qij(t)| = B(Qij), then lij(t) is preempted. In this
case we also say that p causes the preemption of lij(t) or, to be more concise, that p preempts
lij(t).
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• Scheduling phase: In every scheduling cycle T [s], a weighted bipartite graph GT [s] =
(U, V,E,w) is induced from the current configuration of the switch, where U = {u1, . . . , uN},
V = {v1, . . . , vN}, an edge (ui, vj) ∈ E if and only if

|Qij(T [s])| > 0
∧(
|Qj(T [s])| < B(Qj)

∨
v(gij(T [s])) > β v(lj(T [s]))

)
,

and the weight of (ui, vj) is given by w(ui, vj) = v(gij(T [s])).

A greedy matching MT [s] is then computed on GT [s] in the following way: Start with an
empty matching and iterate over all edges of E in a descending order of their weights. Add
an edge e to the current matching if e does not violate the matching property.

After MT [s] is computed, for each edge (ui, vj) ∈MT [s], the packet gij(T [s]) is transferred to
Qj . If gij(T [s]) is transferred while |Qj(T [s])| = B(Qj), then lj(T [s]) is preempted. Again,
in this case we also say that gij(T [s]) preempts lj(T [s]).

• Transmission phase: For every non-empty output queue Qj , send the packet with the
greatest value in Qj .

As described above, unlike the algorithm given in [24], pg computes a maximal weighted match-
ing in each scheduling cycle rather than a maximum weighted matching.

Theorem 2. For β =
√

2 + 1, the competitive ratio of pg is at most 3 + 2
√

2 ≈ 5.83 for any
speedup.

First, we fix an input sequence σ. Without loss of generality, we make the following assumptions
about opt:

A1. opt is greedy in scheduling and transmission events, i.e, when it transfers or sends a packet
p from an input or output queue, it chooses p as the one with the greatest value in the queue.

A2. opt is work-conserving at output ports, i.e., it sends a packet from every non-empty output
queue in each transmission event.

Obviously, as opt knows in advance which packets it is going to send, it does not matter for opt
in which order these packets are released from queues or when they are transmitted from output
queues. Hence, based on the greediness of pg, we make another harmless assumption:

A3. In all input and output queues, pg and opt store packets in the order of their values, where
the packet with the greatest value is at the queue’s head and the one with the least value is
at the queue’s tail. Ties are broken arbitrarily but consistently.

Assumption A3 is made for ease of exposition, essentially in the statement and proof of Lemma
4 where packets of any queue in pg and opt are shown to be consistently aligned.

Similarly to the unit-value case, we modify opt without decreasing its benefit. Specifically,
at the end of each scheduling cycle T [s], i.e., immediately after opt has performed its scheduling
policy, we apply the following modifications on the configurations of opt:

Modification 2.2.1. Suppose that pg transfers a packet from Qij and opt does not transfer any
packet from Q∗ij in T [s]. If Q∗ij is not empty in T [s], opt sends the head packet p of Q∗ij, i.e., the
packet with the greatest value in Q∗ij, directly out of the switch. In this case, p is called a privileged
packet of Type 1 and contributes to the benefit of opt.
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Modification 2.2.2. If opt transfers a packet p to Q∗j and pg transfers a packet q to Qj in T [s]
with v(q) < v(p), opt sends p directly out of the switch. In this case, p is called a privileged packet
of Type 2 and contributes to the benefit of opt.

Modification 2.2.3. Suppose that opt transfers a packet p to Q∗j and pg does not transfer any
packet to Qj in T [s]. If Qj is not full in T [s] or v(p) > β v(lj(T [s])), opt sends p directly out of
the switch. In this case, p is called a privileged packet of Type 3 and contributes to the benefit of
opt.

Note that Modifications 2.2.2 and 2.2.3 are closely related and dealing with them separately is
only for ease of exposition.

Let δij(k, t) (resp. δj(k, t)) denote the packet at position k in Qij (resp. Qj) at time t, where
position 1 corresponds to the head of the queue. Let δ∗ij(k, t) and δ∗j (k, t) be the corresponding
notations for opt. The following lemma shows that each packet in an opt’s input queue is aligned
to a packet of the same or greater value in the corresponding input queue of pg, and each packet p
in an opt’s output queue is aligned to a packet q in the corresponding output queue of pg, where
v(p) ≤ βv(q).

Lemma 4. For any i, j ∈ {1, . . . , N} and any time t, the following holds:

I1. |Q∗ij(t)| ≤ |Qij(t)| and v(δ∗ij(k, t)) ≤ v(δij(k, t)), for k = 1, . . . , |Q∗ij(t)|

I2. |Q∗j (t)| ≤ |Qj(t)| and v(δ∗j (k, t)) ≤ β v(δj(k, t)), for k = 1, . . . , |Q∗j (t)|

Proof. We show I1 and I2 by induction over the event sequence. Let the induction base be at time
0, i.e., before the sequence starts. All queues are empty at this time and thus I1 and I2 hold.
Assume now that they hold for any time up to some arrival, scheduling, or transmission event τ .
Then we have to show that they still hold right after the event τ . Let t′ be a time just before event
τ (but after the preceding event) and let t be a time just after τ (but before the following event).
In other words, we assume that I1 and I2 hold up to time t′ and want to argue that they also hold
at time t. In the following, we will argue only for I2. The argument for I1 is analogous, and we
will put the main differences between [ ] at the respective positions.

Before we start, we say that a packet p ∈ Q∗j (t̄) is in a legal alignment, if p is aligned at time t̄
to a packet q ∈ Qj(t̄) with v(p) ≤ βv(q). Clearly, it suffices to show that any packet p ∈ Q∗j (t) is
in a legal alignment. We distinguish between two cases:

Case I2.1 p ∈ Q∗j (t
′). Thus, by induction, p is aligned at t′ to a packet q ∈ Qj(t

′) with
v(p) ≤ βv(q) [resp. v(p) ≤ v(q)]. We need to show in this case that p either remains in the same
alignment at t or it changes to another legal alignment. Assumption A3 implies that any packet p
from t′ either remains in its position at time t, moves one step ahead (if a packet that is in front of
p is sent from the queue) or moves one step back (if a new packet is inserted in front of p).

Assume now that p remains in its position at t but q moves. Note that neither q nor any
packet in front of it can be released from the queue at time t; otherwise, by Assumption A2
[resp. Modification 2.2.1], some packet would be also released from Q∗j , which makes p move one
step ahead. Thus, q can only move back at t. In this case, however, the packet q′ that is directly
in front of q is aligned with p. Since v(q) ≤ v(q′), p is again in a legal alignment.

Next, assume that p moves one step ahead at t. In this case, p either remains in a legal alignment
with q (in case q moves ahead as well) or it aligns with a packet that is in front of q at t′ and thus
makes again a legal alignment.

Finally, assume that p moves one step back at t. Thus, a packet p′ must be inserted in front of
p, implying that v(p) ≤ v(p′). Note that the insertion of p′ happens only in one of two cases: (i) if
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a packet r with v(r) ≥ v(p′) is inserted into Qj (by Modification 2.2.2), or (ii) if Qj is full at t and
v(p′) ≤ βv(lj(t)) (by Modification 2.2.3). Let k denote the position of the alignment (p, q) at time
t′. In case (i), either (1) r is inserted in a position k′ ≤ k, and thus p will be aligned again with
q at t, or (2) r is inserted in a position k′ > k, and thus p will be aligned with some packet q′ at
t. By Assumption A3, the second case implies that v(r) ≤ v(q′). Since v(p) ≤ v(p′) ≤ v(r), then
v(p) ≤ v(q′). Hence, p is in a legal alignment in either case.

In case (ii), since Qj is full at t, p must be aligned with some packet q′ at t. By Assumption
A3, v(lj(t)) ≤ v(q′). Moreover, since v(p′) ≤ βv(lj(t)), v(p) ≤ v(p′) ≤ βv(q′). Thus, p makes a
legal alignment with q′. [The respective cases for I1 are: case (i) p′ is also inserted into Qij , thus
r = p′ in the above argument, and case (ii) Qij is full at t and v(lj(t)) ≥ v(p′).]

Case I2.2 p /∈ Q∗j (t′). Thus, p is a new packet that is inserted in the queue at time t. Again,
note that the insertion of p into Q∗j happens only in one of two cases: (i) if a packet r with
v(r) ≥ v(p) is inserted into Qj (by Modification 2.2.2), or (ii) if Qj is full at t and v(p) ≤ βv(lj(t))
(by Modification 2.2.3). In case (ii), since Qj is full at t, p must be aligned with a packet q at t.
Since v(p) ≤ βv(lj(t)), v(p) ≤ βv(q). Thus, p makes a legal alignment with q.

Now, consider case (i). Let k denote the position at which p is inserted. If k = 1, p is aligned
with the most valuable packet in Qj at t. Since r is in Qj at time t, p must be aligned with a packet
of value at least v(r) ≥ v(p). Now suppose k > 1. Let p′ be the packet that is directly in front of
p at t. Clearly, p′ ∈ Q∗j (t′) and v(p) ≤ v(p′). Furthermore, let q′ be the packet aligned with p′ at
time t′. Thus, v(p) ≤ v(p′) ≤ βv(q′). Additionally, let q be the packet at position k in Qj at time
t′ (assume q = ∅, if this is an empty position in Qj).

Note that (1) r is inserted in position k, and thus p will be aligned with r at t, (2) r is inserted
in a position k′ < k, and thus p will be aligned with q′ at t, or (3) r is inserted in a position
k′ > k, and thus p will be aligned with q at t. Clearly, the last case implies that q 6= ∅ and that
v(q) ≥ v(r) ≥ v(p). Therefore, we have v(p) ≤ v(r) in the first case, v(p) ≤ βv(q′) in the second,
and v(p) ≤ v(q) in the third. Hence, p is in a legal alignment in any case.

[The respective cases for I1 are: case (i) p is also inserted into Qij , thus r = p in the above
argument, and case (ii) Qij is full at t and v(lj(t)) ≥ v(p).]

Similarly to the analysis of the unit-value case, granting opt with privileged packets must be
done carefully, so that the total value of privileged packets remains within a certain factor of the
total value of packets that pg sends. Obviously, each privileged packet of Type 1 can be paired
with a packet that pg transfers from the same input queue. In the following two lemmas, we show
that such a pairing is feasible for privileged packets of Types 2 and 3 as well. Of course, as packets
of pg may be preempted after being transferred to output queues, some pairs can be destructed.
However, we will show in Lemma 7 how to fix this problem.

Lemma 5. If opt transfers a packet p from Q∗ij to Q∗j and pg transfers a packet q to Qj in T [s]
with v(q) < v(p), then pg transfers a packet p′ from Qij′ in T [s] with j′ 6= j and v(p′) ≥ v(p).

Proof. Recall the bipartite graph GT [s] and the corresponding matching MT [s] which are induced
from the configuration of pg right before performing the scheduling cycle T [s].

By I1 of Lemma 4, since opt transfers p from Q∗ij in T [s], pg must have at the head of Qij
a packet r with v(r) ≥ v(p). Obviously, v(r) > v(q) and thus q 6= r. As a result, q must be
transferred from an input queue Qi′j with i′ 6= i. Moreover, since q is inserted in Qj , the edge
(ui′ , vj) ∈ E, and either |Qj(T [s])| < B(Qj) or v(q) > βv(lj(T [s])). Thus, it holds also for r
that either |Qj(T [s])| < B(Qj) or v(r) > βv(lj(T [s])). Hence, the edge (ui, vj) ∈ E as well, and
clearly w(ui, vj) > w(ui′ , vj). This implies that (ui, vj) is considered before (ui′ , vj) during the
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computation of MT [s]. However, since (ui, vj) is not in the matching, the node ui must have been
matched before considering (ui, vj), and thus there exists an edge (ui, vj′), for j′ 6= j, that is inserted
in the matching before considering (ui, vj). As a result, a packet p′ is transferred from Qij′ , and it
must hold that w(ui, vj′) ≥ w(ui, vj). Hence, v(p′) ≥ v(r) ≥ v(p).

The proof of the following lemma is analogous to that of Lemma 5.

Lemma 6. Suppose that, in T [s], opt transfers a packet p from Q∗ij to Q∗j and pg does not transfer
any packet to Qj. If Qj is not full in T [s] or v(p) > βv(lj(T [s])), then pg transfers a packet p′

from Qij′ in T [s] with j′ 6= j and v(p′) ≥ v(p).

Now, recall I2 of Lemma 4. It implies that if opt sends a packet of value v from some output
queue at some time, pg must send a packet of value at least v/β from the same output queue at
the same time. Let S (resp. S∗) denote the set of all packets that pg (resp. opt) sends from output
queues. Thus, ∑

p∈S∗
v(p) ≤ β

∑
p∈S

v(p) .

Moreover, let P ∗ denote the set of all privileged packets, of all types, that opt sends directly out
of the switch. The next lemma shows that∑

p∈P ∗
v(p) ≤ 2β

β − 1

∑
p∈S

v(p) .

Thus, we can conclude the competitive ratio of pg as follows

opt(σ) =
∑
p∈S∗

v(p) +
∑
p∈P ∗

v(p)

≤ β
∑
p∈S

v(p) +
2β

β − 1

∑
p∈S

v(p)

=

(
β +

2β

β − 1

)
pg(σ) .

Finally, it is easy to verify that the optimal value for β is
√

2 + 1, resulting in a competitive ratio
of 3 + 2

√
2 ≈ 5.83.

Lemma 7. The following inequality holds:∑
p∈P ∗

v(p) ≤ 2β

β − 1

∑
p∈S

v(p) .

Proof. We consider the following mapping scheme:

1. Let p be a privileged packet of Type 1 that is sent by opt from Q∗ij in scheduling cycle T [s].
By Modification 2.2.1, pg transfers a packet p′ from Qij in T [s], and by I1 of Lemma 4,
v(p) ≤ v(p′). Map p to p′.

2. Let p be a privileged packet of Type 2 that is sent by opt from Q∗ij in scheduling cycle T [s].
By Lemma 5, pg transfers a packet p′ from Qij′ in T [s] with j′ 6= j and v(p) ≤ v(p′). Map p
to p′.
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3. Let p be a privileged packet of Type 3 that is sent by opt from Q∗ij in scheduling cycle T [s].
By Lemma 6, pg transfers a packet p′ from Qij′ in T [s] with j′ 6= j and v(p) ≤ v(p′). Map p
to p′.

4. Let q be a packet that is preempted by pg from an output queue Qj due to accepting another
packet p′. For each privileged packet p that is mapped to q, re-map p to p′.

As shown above, this mapping scheme is feasible, i.e., each packet p ∈ P ∗ is mapped to a packet
p′ ∈ S. Now, it remains to show that the total value of privileged packets that are mapped to each
packet p′ ∈ S is at most 2β

β−1v(p′).

For any packet p′ ∈ S, p′ can get mapped in two events: when it is scheduled and when it
preempts a packet from an output queue.

Assume that p′ is scheduled from Qij′ to Qj′ during scheduling cycle T [s]. Now, assume that
opt transfers a packet from Q∗ij to Q∗j during T [s]. Clearly, we can only send one privileged packet
p1 of Type 1 from Q∗ij′ in T [s] (in case j 6= j′). Furthermore, we can only send from Q∗ij either
a privileged packet p2 of Type 2 (in case pg transfers a packet q to Qj with v(q) < v(p2)), or a
privileged packet p3 of Type 3 (in case pg does not transfer any packet to Qj). Hence, at most
two privileged packets may be sent during T [s] from each input port. Since privileged packets
are mapped only to packets that are transferred by pg from the same input port during the same
scheduling cycle, at most two packets from {p1, p2, p3} can be mapped to p′. Furthermore, as shown
in the mapping scheme above, the value of any of these privileged packets is at most the value of
p′. Thus, the total value of privileged packets that are mapped to p′ when it is scheduled is at most
2 v(p′).

Assume now that p′ is the m-th packet in a chain of packets q0, . . . , qm in which packet qn
preempts packet qn−1, for 1 ≤ n ≤ m. Let x(qn) denote the total value of privileged packets that
are mapped to a packet qn after it preempts qn−1. Thus, the total value of privileged packets that
are mapped to p′ is given by x(qm). Note that q0 does not preempt any packet and thus the total
value of privileged packets that are mapped to q0 is at most 2 v(q0). Thus, x(qm) can be given by
the following recursion:

x(q0) ≤ 2 v(q0) and

x(qn) ≤ 2 v(qn) + x(qn−1) , for 0 < n ≤ m .

Solving this recursion, we obtain that

x(qm) ≤ 2
m∑
n=0

v(qn) .

Note also that v(qn−1) ≤ v(qn)/β, for 1 ≤ n ≤ m. Hence, we can rewrite x(qm) as follows:

x(qm) ≤ 2v(qm)
m∑
n=0

1

βn

<
2β

β − 1
v(qm) .

13



3 Buffered crossbar switches

3.1 Unit-value case

For the case where all packets have unit value, Kesselman et al. [21] considered the following
algorithm, which we call Crossbar Greedy Unit (cgu). Arrival and transmission phases of cgu are
the same as ones of gm (Section 2.1). In a scheduling phase, cgu works as follows.

• Scheduling phase: We divide every scheduling cycle T [s] into two subphases.

– Input subphase: For each input port i, choose an arbitrary input queue Qij that
satisfies

|Qij(T [s])| > 0
∧
|Cij(T [s])| < B(Cij) ,

and transfer its head packet.

– Output subphase: For each output queue Qj , choose an arbitrary crossbar queue Cij
that satisfies

|Qj(T [s])| < B(Qj)
∧
|Cij(T [s])| > 0 ,

and transfer its head packet.

The next theorem shows that cgu is 3-competitive for any speedup.

Theorem 3. The competitive ratio of cgu is at most 3 for any speedup.

First, we fix an input sequence σ. Again, we modify opt in a way that does not decrease its
benefit over σ. Specifically, at the end of each scheduling cycle T [s], i.e., immediately after opt
has performed its scheduling policy, we apply the following modifications on the configuration of
opt in the given order:

Modification 3.1.1. Suppose that cgu transfers a packet from Qij and opt does not transfer any
packet from Q∗ij in T [s]. If Q∗ij is not empty in T [s], opt transfers a packet p from Q∗ij in T [s]. If
C∗ij is not full in T [s], p is transferred to C∗ij. Otherwise, p is sent directly out of the switch. In
either case, p is called a privileged packet and contributes to the benefit of opt.

Modification 3.1.2. Suppose that cgu transfers a packet from Qij and opt does not transfer any
packet from Q∗ij in T [s]. If Q∗ij is empty in T [s] and C∗ij is not full in T [s], a new packet is created
and inserted into C∗ij. Such a new packet is called an extra packet of Type 1 and contributes to the
benefit of opt.

Modification 3.1.3. Suppose that opt transfers a packet from C∗ij and cgu does not transfer any
packet from Cij in T [s]. If Cij is not empty in T [s], a new packet is created and inserted into C∗ij.
Such a new packet is called an extra packet of Type 2 and contributes to the benefit of opt.

Note that extra packets are not used in the analysis of the algorithms presented in Section 2
for the CIOQ model. Furthermore, note that Modification 3.1.1 takes place if Q∗ij is not empty in
T [s] and Modification 3.1.2 takes place if Q∗ij is empty in T [s]. Therefore, Modifications 3.1.1 and
3.1.2 cannot take place together in the same scheduling cycle.

Next, we show how the above modifications are used to show invariants that are different from
the invariants shown in Section 2.1.

Lemma 8. For any time t and any i, j ∈ {1, . . . , N}, the following inequalities hold:
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I1. |Qij(t)| ≥ |Q∗ij(t)|

I2. |C∗ij(t)| ≥ |Cij(t)|

Proof. We show Inequalities I1 and I2 by a simple induction over the event sequence. Let the
induction base be at time 0, i.e., before the sequence starts. All queues are empty at this time and
all the inequalities hold. Assume now that they hold for any time up to some arrival, scheduling, or
transmission event τ . Then we have to show that they still hold right after the event τ . Input and
crossbar queues can change only in arrival and scheduling events. So, we assume that τ is either
an arrival or a scheduling event.

Assume τ is an arrival event. Clearly, crossbar queues do not change in arrival events and thus
I2 holds for this case. For I1, the only critical case is when the arriving packet is rejected by cgu
and accepted by opt. However, the input queue of cgu must be full in this case and thus I1 still
holds.

Now, let τ be a scheduling event. Here, the only critical case for I1 is when cgu transfers a
packet from Qij while opt does not transfer any packet from Q∗ij . However, either Q∗ij is empty in
this case or it cannot happen due to Modification 3.1.1. For I2, the first critical case is when cgu
inserts a packet into Cij while opt does not insert any packet into C∗ij . However, either C∗ij is full
in this case or it cannot happen due to Modification 3.1.2. The second critical case for I2 is when
opt transfers a packet from C∗ij while cgu does not transfer any packet from Cij . However, either
Cij is empty in this case or the size of C∗ij does not decrease due to Modification 3.1.3.

In the following, we use S∗T [s] to denote the set of opt’s normal packets in the input subphase

of T [s]. These are packets that opt schedules through the normal channels, i.e., they are not
privileged, and are part of the original input sequence, i.e., they are not extra. On the other hand,
we use ST [s] to denote the set of packets that cgu schedules in the input subphase of cycle T [s],
i.e., from input queues to crossbar queues.

Lemma 9. For any scheduling cycle T [s], |S∗T [s]| ≤ |ST [s]|.

Proof. We want to show that in the input subphase of any scheduling cycle T [s], if opt transfers
a normal packet from an input port i, cgu also transfers a packet from i.

Assume that opt transfers a normal packet p from Q∗ij (to C∗ij) in T [s]. Thus, by I1 and I2 of
Lemma 8, Qij is not empty and Cij is not full in T [s]. (Note that opt would not schedule a packet
to a full crossbar queue, as all packets are of the same value.) Hence, cgu transfers a packet from
either Qij or another Qij′ in T [s].

Let P ∗T [s] denote the set of opt’s privileged and extra packets (of either type) that occur in a

scheduling cycle T [s].
We consider the following mapping scheme from P ∗T [s] to ST [s]. For packets that are inserted in

cgu’s output queues, we use the notion of a marked packet. Initially, all packets are unmarked.

1. Let p be a privileged packet that is transferred by opt from Q∗ij in scheduling cycle T [s]. By
Modification 3.1.1, cgu transfers a packet q from Qij in T [s]. Map p to q.

2. Let p be an extra packet of Type 1 that is inserted into C∗ij in the input subphase of scheduling
cycle T [s]. By Modification 3.1.2, cgu transfers a packet q into Cij in T [s]. Map p to q.

3. Let p be an extra packet of Type 2 that is inserted into C∗ij in the output subphase of
scheduling cycle T [s]. By Modification 3.1.3, Cij is not empty in T [s], and opt transfers a
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packet p′ to Q∗j . Thus, Q∗j is not full right before T [s]. Now, let q be the first unmarked
packet in Qj , i.e., the nearest to the queue’s head. Map p to q and then mark q. Note that q
can be the packet that cgu may insert into Qj in T [s].

Next, we show that the mapping scheme is feasible, i.e., each packet p ∈ P ∗T [s] is mapped to a
packet q ∈ ST [s]. Clearly, Steps 1 and 2 are feasible. We show now that Step 3 is feasible as well.
Let Mj(t) denote the set of marked packets in Qj at time t, for any 1 ≤ j ≤ N . We first show the
following lemma.

Lemma 10. At any time t, |Mj(t)| ≤ |Q∗j (t)|.

Proof. We show the lemma by induction over scheduling and transmission events. Clearly, Mj(t)
and Q∗j (t) can change only in these events.

Assume first that a transmission event occurs at t. The only critical scenario in this event is
that opt sends a packet from Q∗j while cgu does not send a marked packet. If that happens, then
either cgu sends an unmarked packet or it does not send any packet at all. The first case cannot
happen while |Mj(t)| > 0 since marked packets are always at the front of the queue. The second
case is safe because it implies that Qj is empty and thus |Mj(t)| = 0.

Now, assume that a scheduling event occurs at t. The only critical scenario in this event is that
a packet q is marked in Qj while opt does not insert any packet into Q∗j . However, according to
Step 3 of the mapping scheme, marking q implies that opt transfers a packet p′ from C∗ij to Q∗j .
Thus, this scenario cannot happen in scheduling events.

Now, to show that Step 3 of the mapping scheme is feasible, we need to show that at least
one packet is unmarked in Qj in the scheduling cycle T [s]. For the sake of contradiction, assume
that all packets in Qj are marked or Qj is empty in T [s]. The first thing that follows from this
assumption is that cgu does not insert any packet into Qj in T [s] (because otherwise the inserted
packet would be initially unmarked).

Recall from Step 3 that Cij is not empty in T [s]. Thus, since no packet is inserted into Qj ,
Qj must be full in T [s]. Hence, since all packets are marked by assumption, |Mj(t)| = B(Qj),
where t is the time right before T [s]. Thus, by Lemma 10, |Q∗j (t)| = B(Q∗j ) as well. However, this
contradicts with the fact that opt inserts p′ into Q∗j in T [s]. Hence, at least one packet is unmarked
in Qj in the scheduling cycle T [s], and thus Step 3 is feasible.

Lemma 11. For any scheduling cycle T [s], |P ∗T [s]| ≤ 2 |ST [s]|.

Proof. As shown above, the mapping scheme is feasible for each scheduling cycle T [s]. So, it remains
to show that at most two packets from P ∗T [s] are mapped to any packet q ∈ ST [s].

Consider a packet q ∈ ST [s]. Let Qij be the input queue from which q is transferred in the
scheduling cycle T [s]. By the above mapping scheme, q may get mapped in at most 3 occasions
during its entire lifespan: (i) by a privileged packet p that is transferred from Q∗ij in T [s], (ii) by an
extra packet p′ of Type 1 that is inserted into C∗ij in the input subphase of T [s], and (iii) by an extra
packet of Type 2 that is inserted into C∗i′j in the output subphase of T [s], with i 6= i′. However, as
noted above, Modifications 3.1.1 and 3.1.2 cannot take place together in the same scheduling cycle
and thus p and p′ cannot exist together. Hence, at most two packets are mapped to q.

Now, as cgu does not preempt packets, each packet which cgu schedules in an input sub-
phase must be eventually sent, and thus it contributes to the benefit of cgu. Hence, cgu(σ) =∑

T [s] |ST [s]|. Furthermore, note that opt(σ) =
∑

T [s] |S∗T [s]| + |P
∗
T [s]|. Therefore, the proof of

Theorem 3 follows immediately from Lemmas 9 and 11.
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3.2 General-value case

For the case of arbitrary packet values, we present the Crossbar Preemptive Greedy algorithm
(cpg) that is a variant of a 16.24-competitive algorithm given by Kesselman et al. [21].

Recall the notations gij(t), lij(t), and lj(t) that we used with algorithm pg (Section 2.2). Let
gcij(t) and lcij(t) be the corresponding notations for crossbar queue Cij , i.e., the packet with the
greatest value and the packet with the least value, respectively, in Cij at time t. Additionally, let
β ≥ 1 and α ≥ 1 be two parameters of the algorithm that will be determined later. If β = α, our
algorithm will be the same as the algorithm given in [21]. However, we show that to minimize the
competitive ratio for this algorithm, these two parameters must take on different values.

Arrival and transmission phases of cpg are the same as ones of pg. In a scheduling phase, cpg
works as follows.

• Scheduling phase: We divide every scheduling cycle T [s] into two subphases.

– Input subphase: For each input port i, let J be defined as follows:

J =

{
j : |Qij(T [s])| > 0

∧(
|Cij(T [s])| < B(Cij)

∨
v(gij(T [s])) > β v(lcij(T [s]))

)}
.

If J 6= ∅, choose Qij such that for all j′ ∈ J ,

j ∈ J
∧
v(gij(T [s])) ≥ v(gij′(T [s])) .

Transfer gij(T [s]) to Cij . If |Cij(T [s])| = B(Cij), preempt lcij(T [s]) first. In this case
we also say that gij(T [s]) causes the preemption of lcij(T [s]) or, to be more concise, that
gij(T [s]) preempts lcij(T [s]).

– Output subphase: For each output queue Qj , choose a crossbar queue Cij such that
for all i′ 6= i,

|Cij(T [s])| > 0
∧
v(gcij(T [s])) ≥ v(gci′j(T [s])) .

If the following condition is satisfied

|Qj(T [s])| < B(Qj)
∨
v(gcij(T [s])) > αv(lj(T [s])),

transfer gcij(T [s]) to Qj . If |Qj(T [s])| = B(Qj), preempt lj(T [s]) first. Again, in this
case we also say that gcij(T [s]) preempts lj(T [s]).

Note that all ties in cpg are broken arbitrarily.

Theorem 4. There is a choice for β and α such that the competitive ratio of cpg is at most 14.83
for any speedup.

The analysis of cpg is carried out in a similar way as pg. We extend Assumptions A1 - A3 to
include crossbar queues as well, and modify opt in a slightly different way. Specifically, at the end
of each scheduling cycle T [s], i.e., immediately after opt has performed its scheduling policy, we
apply the following modifications on the configurations of opt:

Modification 3.2.1. Suppose that cpg transfers a packet from Qij and opt does not transfer any
packet from Q∗ij in T [s]. If Q∗ij is not empty in T [s], opt sends the head packet p of Q∗ij, i.e., the
packet with the greatest value in Q∗ij, directly out of the switch. In this case, p is called a privileged
packet of Type 1 and contributes to the benefit of opt.
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Modification 3.2.2. Suppose that opt transfers a packet p to C∗ij and cpg does not transfer any
packet to Cij in T [s]. If Cij is not full in T [s] or v(p) > β v(lcij(T [s])), opt sends p directly out of
the switch. In this case, p is called a privileged packet of Type 2 and contributes to the benefit of
opt.

Modification 3.2.3. Suppose that cpg transfers a packet from Cij and opt does not transfer any
packet from C∗ij in T [s]. If C∗ij is not empty in T [s], opt sends the head packet p of C∗ij, i.e., the
packet with the greatest value in C∗ij, directly out of the switch. In this case, p is called a privileged
packet of Type 3 and contributes to the benefit of opt.

Notice that Modifications 3.2.1 and 3.2.2 occur in the input subphase of T [s], while Modification
3.2.3 occurs in the output subphase.

The following lemma extends Lemma 4 to include crossbar queues. We similarly use γij(k, t)
(resp. γ∗ij(k, t)) to denote the packet at position k in Cij (resp. C∗ij) at time t.

Lemma 12. For any i, j ∈ {1, . . . , N} and any time t, the following holds:

I1. |Q∗ij(t)| ≤ |Qij(t)| and v(δ∗ij(k, t)) ≤ v(δij(k, t)), for any position k = 1, . . . , |Q∗ij(t)|

I2. |C∗ij(t)| ≤ |Cij(t)| and v(γ∗ij(k, t)) ≤ β v(γij(k, t)), for any position k = 1, . . . , |C∗ij(t)|

I3. |Q∗j (t)| ≤ |Qj(t)| and v(δ∗j (k, t)) ≤ αβ v(δj(k, t)), for any position k = 1, . . . , |Q∗j (t)|

Proof. We show I1–I3 by induction over the event sequence. Let the induction base be at time 0,
i.e., before the sequence starts. All queues are empty at this time and thus I1–I3 hold. Assume
now that they hold for any time up to some arrival, scheduling, or transmission event τ . Then we
have to show that they still hold right after the event τ . Let t′ be a time just before event τ (but
after the preceding event) and let t be a time just after τ (but before the following event). In other
words, we assume that I1–I3 hold up to time t′ and want to argue that they also hold at time t. In
the following, we will argue only for I2 and I3. The argument for I1 is the same as in the proof of
Lemma 4.

Before we start with I2, we say that a packet p ∈ C∗ij(t̄) is in a legal alignment if p is aligned
at time t̄ to a packet q ∈ Cij(t̄) with v(p) ≤ βv(q). Clearly, it suffices to show that any packet
p ∈ C∗ij(t) is in a legal alignment. We distinguish between two cases:

Case I2.1 p ∈ C∗ij(t
′). Thus, by induction, p is aligned at t′ to a packet q ∈ Cij(t

′) with
v(p) ≤ βv(q). We need to show in this case that p either remains in the same alignment at t or it
changes to another legal alignment.

The only critical case is when p moves one step back at t (other cases are the same as in the proof
of Lemma 4). In this case, a packet p′ must be inserted in front of p, implying that v(p) ≤ v(p′).
Here, we distinguish between two cases: (i) cpg transfers a packet r to Cij and (ii) cpg does not
transfer any packet to Cij . Let k denote the position of the alignment (p, q) at time t′. In case (i),
due to I1 of this lemma, it must hold that v(p′) ≤ v(r). Now, notice that either (1) r is inserted
in a position k′ ≤ k, and thus p will be aligned again with q at t, or (2) r is inserted in a position
k′ > k, and thus p will be aligned with some packet q′ at t. Clearly, the second case implies that
v(r) ≤ v(q′). Since v(p) ≤ v(p′) ≤ v(r), v(p) ≤ v(q′) ≤ βv(q′). Hence, p is in a legal alignment in
either case.

In case (ii), Cij must be full at t and v(p′) ≤ βv(lcij(t)); otherwise, due to Modification 3.2.2,
opt would not insert any packet in C∗ij . Thus, p must be aligned with some packet q′ at t. Clearly,
v(lcij(t)) ≤ v(q′). Thus, v(p) ≤ v(p′) ≤ βv(q′). Hence, p makes a legal alignment with q′.
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Case I2.2 p /∈ C∗ij(t
′). Thus, p is a new packet that is inserted in C∗ij at time t. Again, we

distinguish between two cases: (i) cpg transfers a packet r to Cij , and (ii) cpg does not transfer
any packet to Cij . In case (ii), Cij must be full at t and v(p) ≤ βv(lcij(t)); otherwise, due to
Modification 3.2.2, opt would not insert any packet into C∗ij . Thus, p must be aligned with a
packet q at t. Clearly, v(lcij(t)) ≤ v(q). Thus, v(p) ≤ βv(q). Hence, p makes a legal alignment
with q.

Now, consider case (i). Due to I1 of this lemma, it must hold that v(p) ≤ v(r). Let k denote the
position at which p is inserted. If k = 1, p is aligned with the most valuable packet in Cij at t. Since
r is in Cij at time t, p is aligned with a packet of value at least v(r) ≥ v(p). Now suppose k > 1. Let
p′ be the packet that is directly in front of p at t. Clearly, p′ ∈ C∗ij(t′) and v(p) ≤ v(p′). Furthermore,
let q′ be the packet aligned with p′ at time t′. Thus, v(p) ≤ v(p′) ≤ βv(q′). Additionally, let q be
the packet at position k in Cij at time t′ (assume q = ∅ if this is an empty position in Cij).

Notice that (1) r is inserted in position k, and thus p will be aligned with r at t, (2) r is inserted
in a position k′ < k, and thus p will be aligned with q′ at t, or (3) r is inserted in a position
k′ > k, and thus p will be aligned with q at t. Clearly, the last case implies that q 6= ∅ and that
v(q) ≥ v(r) ≥ v(p). Therefore, we have v(p) ≤ v(r) in the first case, v(p) ≤ βv(q′) in the second,
and v(p) ≤ v(q) in the third. Hence, p is in a legal alignment in any case.

Before we continue with I3, we say that a packet p ∈ Q∗j (t̄) is in a legal alignment if p is aligned
at time t̄ to a packet q ∈ Qj(t̄) with v(p) ≤ αβv(q). Clearly, it suffices to show that any packet
p ∈ Q∗j (t) is in a legal alignment. We distinguish between two cases:

Case I3.1 p ∈ Q∗j (t
′). Thus, by induction, p is aligned at t′ to a packet q ∈ Qj(t

′) with
v(p) ≤ αβv(q). We need to show in this case that p either remains in the same alignment at t or
it changes to another legal alignment.

The only critical case is when p moves one step back at t (other cases are the same as in the proof
of Lemma 4). In this case, a packet p′ must be inserted in front of p, implying that v(p) ≤ v(p′).
Here, we distinguish between two cases: (i) cpg transfers a packet r to Qj as well, and (ii) cpg
does not transfer any packet to Qj . Let k denote the position of the alignment (p, q) at time t′. In
case (i), due to I2 of this lemma, it must hold that v(p′) ≤ βv(r). Now, notice that either (1) r is
inserted in a position k′ ≤ k, and thus p will be aligned again with q at t, or (2) r is inserted in a
position k′ > k, and thus p will be aligned with some packet q′ at t. Clearly, the second case implies
that v(r) ≤ v(q′). Since v(p) ≤ v(p′) ≤ βv(r), v(p) ≤ βv(q′). Hence, p is in a legal alignment in
either case.

In case (ii), recall that p′ is transferred by opt from C∗ij . Thus, due to I2 of this lemma, Cij is
not empty. Therefore, since cpg does not transfer any packet to Qj in this case, Qj must be full at
t and v(gcij(t)) ≤ αv(lj(t)). Since v(p′) ≤ βv(gcij(t)) (again due to I2), v(p′) ≤ αβv(lj(t)). Now,
since Qj is full at t, p must be aligned with some packet q′ at t. Clearly, v(lj(t)) ≤ v(q′). Thus,
v(p) ≤ v(p′) ≤ αβv(q′). Hence, p makes a legal alignment with q′.

Case I3.2 p /∈ Q∗j (t′). Thus, p is a new packet that is inserted in the queue at time t. Again,
we distinguish between two cases: (i) cpg transfers a packet r to Qj , or (ii) cpg does not transfer
any packet to Qj . In case (ii), recall that p is transferred by opt from C∗ij . Thus, due to I2 of
this lemma, Cij is not empty. Therefore, since cpg does not transfer any packet to Qj in this
case, Qj must be full at t and v(gcij(t)) ≤ αv(lj(t)). Since v(p) ≤ βv(gcij(t)) (again due to I2),
v(p) ≤ αβv(lj(t)). Now, since Qj is full at t, p must be aligned with a packet q at t. Clearly,
v(lj(t)) ≤ v(q). Thus, v(p) ≤ αβv(q). Hence, p makes a legal alignment with q.

Now, consider case (i). Due to I2 of this lemma, it must hold that v(p) ≤ βv(r). Let k denote the
position at which p is inserted. If k = 1, p is aligned with the most valuable packet in Qj at t. Since

19



r is in Qj at time t, p is aligned with a packet of value at least v(r) ≥ v(p)/β. Now suppose that
k > 1. Let p′ be the packet that is directly in front of p at t. Clearly, p′ ∈ Q∗j (t′) and v(p) ≤ v(p′).
Furthermore, let q′ be the packet aligned with p′ at time t′. Thus, v(p) ≤ v(p′) ≤ αβv(q′).
Additionally, let q be the packet at position k in Qj at time t′ (assume q = ∅ if this is an empty
position in Qj).

Notice that (1) r is inserted in position k, and thus p will be aligned with r at t, (2) r is inserted
in a position k′ < k, and thus p will be aligned with q′ at t, or (3) r is inserted in a position k′ > k,
and thus p will be aligned with q at t. Clearly, the last case implies that q 6= ∅ and that v(r) ≤ v(q),
and thus v(p) ≤ βv(q). Therefore, we have v(p) ≤ βv(r) in the first case, v(p) ≤ αβv(q′) in the
second, and v(p) ≤ βv(q) in the third. Hence, p is in a legal alignment in any case.

The following lemma extends the claim of Lemma 6 to crossbar queues concerning the feasibility
of mapping privileged packets of type 2.

Lemma 13. Assume that opt transfers a packet p from Q∗ij to C∗ij in T [s] and cpg does not
transfer any packet to Cij. If Cij is not full in T [s] or v(p) > βv(lcij(T [s])), then cpg transfers a
packet p′ from Qij′ in T [s] with j′ 6= j and v(p′) ≥ v(p).

Proof. Assume that Cij is not full in T [s] or v(p) > βv(lcij(T [s])). By I1 of Lemma 12, since opt
transfers p from Q∗ij in T [s], cpg must have at the head of Qij a packet r with v(r) ≥ v(p). Thus,
if v(p) > βv(lcij(T [s])), then it must also hold that v(r) > βv(lcij(T [s])). Hence, Cij is not full
in T [s] or v(r) > βv(lcij(T [s])), and therefore r is eligible to be transferred to Cij . Nevertheless,
as cpg does not transfer any packet to Cij , another eligible packet p′ must be transferred from
another input queue Qij′ , where j′ 6= j. Obviously, as cpg preferred p′ over r, it must hold that
v(p′) ≥ v(r), and hence v(p′) ≥ v(p).

Now, recall I3 of Lemma 12. It implies that if opt sends a packet of value v from some output
queue at some time, cpg must send a packet of value at least v/(αβ) from the same output queue
at the same time. Let S (resp. S∗) denote the set of all packets that cpg (resp. opt) sends from
output queues. Thus, ∑

p∈S∗
v(p) ≤ αβ

∑
p∈S

v(p) .

Moreover, let P ∗ denote the set of all privileged packets of all types, which opt sends directly out
of the switch. The next lemma shows that∑

p∈P ∗
v(p) ≤ 2αβ + αβ(β − 1)

(α− 1)(β − 1)

∑
p∈S

v(p) .

Thus, we can conclude the competitive ratio of cpg as

opt(σ) ≤
(
αβ +

2αβ + αβ(β − 1)

(α− 1)(β − 1)

)
cpg(σ) .

It can be verified that this competitive ratio is minimized when β = ρ2+ρ+4
3ρ , where ρ = (19 +

3
√

33)1/3 and α = 2
(β−1)2 . The resulting competitive ratio is (χ+4)·ρ2+(χ+16)·ρ+56

12 ≈ 14.83, where

χ = (19− 3
√

33).

Lemma 14. The following inequality holds:∑
p∈P ∗

v(p) ≤ 2αβ + αβ(β − 1)

(α− 1)(β − 1)

∑
p∈S

v(p) .
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Proof. We consider the following mapping scheme:

1. Let p be a privileged packet of Type 1 that is sent from Q∗ij in T [s]. By Modification 3.2.1,
cpg transfers a packet p′ from Qij in T [s], and by I1 of Lemma 12, v(p) ≤ v(p′). Map p to
p′.

2. Let p be a privileged packet of Type 2 that is sent from Q∗ij in T [s]. By Lemma 13, cpg
transfers a packet p′ from Qij′ in T [s] with j′ 6= j and v(p) ≤ v(p′). Map p to p′.

3. Let p be a privileged packet of Type 3 that is sent from C∗ij in T [s]. By Modification 3.2.3,
cpg transfers a packet p′ from Cij in T [s], and by I2 of Lemma 12, v(p) ≤ βv(p′). Map p to
p′.

4. Let q be a packet that is preempted by cpg from a crossbar or an output queue due to
accepting another packet p′. For each privileged packet p that is mapped to q, re-map p to
p′.

As shown above, this mapping scheme is feasible, i.e., each packet p ∈ P ∗ is mapped to a packet
p′ ∈ S. Now, it remains to show that the total value of privileged packets that are mapped to each
packet p′ ∈ S is at most 2αβ+αβ(β−1)

(α−1)(β−1) v(p′).

For any packet p′ ∈ S, p′ can get mapped in four cases: (1) when it is scheduled in an input
subphase, (2) when it preempts a packet from a crossbar queue, (3) when it is scheduled in an
output subphase, and (4) when it preempts a packet from an output queue. We first consider cases
(1) and (2). Assume that p′ is scheduled from Qij′ to Cij′ in the input subphase t. Now, assume
that opt transfers a packet from Q∗ij to C∗ij in the same time. Clearly, if j 6= j′, a privileged packet,
say p1, of Type 1 can be sent from Q∗ij′ in t, and the packet which opt transfers from Q∗ij can
become a privileged packet, say p2, of Type 2. Hence, at most two privileged packets may be sent
in t from each input port i. Since privileged packets of Types 1 and 2 are mapped only to packets
that are transferred by cpg from the same input port during the same input subphase, only p1 and
p2 can be mapped to p′ in t. Furthermore, as shown in the mapping scheme above, the value of any
of these privileged packets is at most the value of p′. Thus, the total value of privileged packets
that are mapped to p′ when it is scheduled in an input subphase is at most 2 v(p′).

Assume now that p′ preempts a packet from Cij′ . Using the same argument of preemption
chains in the proof of Lemma 7, we can show that the total value of privileged packets that are
mapped to p′ when it preempts a packet from Cij′ is at most 2β

β−1v(p′).

Now, we consider cases (3) and (4). In case (3), p′ is scheduled in an output subphase t to
the output queue Q′j . Additionally, assume that opt does not transfer any packet from C∗ij′ in t.
Clearly, a privileged packet, say p3, of Type 3 will be sent in this case from C∗ij′ . Since privileged
packets of Type 3 are mapped only to packets that are transferred by cpg from the same crossbar
queue in the same output subphase, only p3 is mapped to p′ in t. Furthermore, as shown in the
mapping scheme above, the value of p3 is at most β times the value of p′. Thus, the total value
of privileged packets that are mapped to p′ when it is scheduled in an output subphase is at most
(β + 2β/(β − 1))v(p′).

Finally, assume that p′ preempts a packet from Q′j . Again, using the same argument of pre-
emption chains in the proof of Lemma 7, we can show that the total value of privileged packets
that are mapped to p′ when it preempts a packet from Q′j is at most

α

α− 1
·
(
β +

2β

β − 1

)
v(p′) =

2αβ + αβ(β − 1)

(α− 1)(β − 1)
v(p′) .
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4 Conclusion

In this paper, we analyze online algorithms that are both competitive and efficient for the problem
of packet scheduling in two closely related models of network switches, the CIOQ switches and the
buffered crossbar switches. For unweighted packets in the CIOQ model, we give a faster algorithm
that achieves the best known competitive ratio of 3. In the buffered crossbar model, we also show
3-competitiveness, improving the previously known ratio of 4. For weighted packets, we show 5.83-
and 14.83-competitive algorithms for the CIOQ and buffered crossbar switches, respectively, which
improves upon the previously known ratios of 6 and 16.24.

Despite the considerable interest that the switching problem in the CIOQ and buffered crossbar
models has received, no result is known on any randomized algorithm in these models. Furthermore,
we are not aware of any deterministic lower bounds that are especially constructed for these models.

As we show in Section 1.2, several lower bounds that are all strictly below 2 are known for
the IQ model and they apply also to the CIOQ and buffered crossbar models. However, the gap
between these lower bounds and the upper bounds we show in this work is still quite significant,
especially in the general-value case where we show an upper bound of 5.83 in the CIOQ model and
14.83 in the buffered crossbar model. Due to the complex interaction between input and output
queues in these models, we consider this problem as one of the most challenging open problems in
the area of buffer management—it is already intriguing for us whether a lower bound that is only
2 + ε is attainable, even in the unit-value case of the CIOQ model.

Moreover, it is still an open problem whether the upper bounds shown in this paper are tight
for the given algorithms. When applied on the IQ model (i.e., N × 1 switches with speedup 1), our
algorithms gm and pg become the same algorithms given by [6] and [5], respectively, and for those
algorithms asymptotic lower bounds are known: 2 for the unit value case and 3 for the general
value case.

Furthermore, we notice that all the results presented in this paper for the CIOQ and buffered
crossbar models can be generalized to an N ×M switch, where N and M are not necessarily equal.
The focus in the literature on an N ×N architecture seems to be for practical reasons only.

Finally, from a practical point of view, choosing the right values for the parameters β and α
of algorithms pg and cpg can be better based on a prior knowledge of the packet sequence. For
example, and roughly speaking, the competitive ratio of pg consists of two terms, β and 2β/(β−1):
The first term corresponds to the scenario where pg admits to output queues packets which are
considered negligible by opt, and thus whenever pg sends a packet of this kind, opt sends a packet
of a larger value (up to β times the value of the packet neglected by opt). Therefore, if the arrival
rate of such large packets is significantly greater than the arrival rate of small packets, then β should
be chosen sufficiently small. On the other hand, the second term corresponds to the scenario where
pg excessively preempts packets from output queues while buffers can accommodate most of the
packets. Thus, if it is more likely to have this scenario in practice, β should be chosen sufficiently
large.
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