
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-1999

On scheduling input queued cell switches On scheduling input queued cell switches

Shizhao Li
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Li, Shizhao, "On scheduling input queued cell switches" (1999). Dissertations. 986.
https://digitalcommons.njit.edu/dissertations/986

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/986?utm_source=digitalcommons.njit.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ON SCHEDULING INPUT QUEUED CELL SWITCHES

by
Shizhao Li

Output-queued switching, though is able to offer high throughput, guaranteed

delay and fairness, lacks scalability owing to the speed up problem. Input-queued

switching, on the other hand, is scalable, and is thus becoming an attractive alter-

native. This dissertation presents three approaches toward resolving the major

problem encountered in input-queued switching that has prohibited the provision of

quality of service guarantees.

First, we proposed a maximum size matching based algorithm, referred to as

min-max fair input queueing (MFIQ), which minimizes the additional delay caused

by back pressure, and at the same time provides fair service among competing

sessions. Like any maximum size matching algorithm, MFIQ performs well for

uniform traffic, in which the destinations of the incoming cells are uniformly

distributed over all the outputs, but is not stable for non-uniform traffic. Subse-

quently, we proposed two maximum weight matching based algorithms, longest

normalized queue first (LNQF) and earliest due date first matching (EDDFM),

which are stable for both uniform and non-uniform traffic. LNQF provides fairer

service than longest queue first (LQF) and better traffic shaping than oldest cell first

(OCF), and EDDFM has lower probability of delay overdue than LQF, LNQF, and

OCF. Our third approach, referred to as store-sort-and-forward (SSF), is a frame

based scheduling algorithm. SSF is proved to be able to achieve strict sense 100%

throughput, and provide bounded delay and delay jitter for input-queued switches

if the traffic conforms to the (r, T) model.

ON SCHEDULING INPUT QUEUED CELL SWITCHES

by
Shizhao Li

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

May 1999

Copyright © 1999 by Shizhao Li

ALL RIGHTS RESERVED

APPROVAL PAGE

ON SCHEDULING INPUT QUEUED CELL SWITCHES

Shizhao Li

Dr. Nirwan Ansari, Dissertation Advisor 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. John Carpinelli, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Xiaoqiang Chen, Committee Member 	 Date
Member of Technical Staff, Bell Labs, Lucent Technologies, Holmdel, NJ

Dr. Shin Tekinay, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Bulent Yener, Committee Member	 Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Shizhao Li

Degree: Doctor of Philosophy

Date: May 1999

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1999

• Master of Science in Electrical Engineering,
Beijing University of Posts and Telecommunications, Beijing, P. R. China, 1994

• Bachelor of Science in Electrical Engineering,
Shandong University, Jinan, Shandong, P. R. China, 1991

Major: Electrical Engineering

Presentations and Publications:

• S. Li, J. G. Chen, and N. Ansari, "Fair queueing for input-buffered ATM
switches," ICATM'98, France, pp. 252-259, Jun., 1998.

• R. Venkateswaran, S. Li, X. Chen, C.S. R.aghavendra, and N. Ansari,
"Enhanced VC merging mechanisms for multipoint to multipoint commu-
nications," ICCCN'98, Lafayette, Louisiana, pp. 4-11, Oct. 1998.

• S. Li, and N. Ansari, "Scheduling input-queued switches with QoS features,"
ICCCN'98, Lafayette, Louisiana, pp. 107-112, Oct. 1998.

• S. Li, and N. Ansari, "Provisioning QoS features for input-queued switches,"
TEE Electronics Letters, vol. 34, no. 19, pp. 1826-1827, Sept. 17.

• S. Li, and N. Ansari, "Input queued switching with QoS guarantees,"
INFOCOM'99, New York, New York, pp. 1152-1159, Mar., 1999.

• S. Li, J. Li, and N. Ansari, "Earliest Due Date First Matching for Input-Quered
Cell Switches," CISS'99, Baltimore, MD, Mar. 1999.

iv

This work is dedicated to
my family

ACKNOWLEDGMENT

I would like to thank my advisor Dr. Nirwan Ansari for his continuous guidance,

support and encouragement throughout my graduate study at NJIT. I greatly

appreciate the knowledge and insightful comments he has been providing to me.

I feel fortunate that I had a chance to conduct research under such an excellent

advisor. Dr. Xiaoqiang Chen gave me so much help when I worked at Lucent

Technologies as a summer intern, and he continues to give me advice. I am honored

to express my gratitude to him. I would also like to thank Dr. John Carpinelli, Dr.

Sirin Tekinay, and Dr. Bulent Yener for serving on my dissertation committee.

I would also like to thank Dr. Jianguo Chen for all the helpful discussions. Dr.

R. Venkateswaran helped me understand many problems when I worked with him

at Lucent Technologies. I thank Dr. Xueming Lin and Dr. Huaping Liu for helping

me familiarize with the working environment when I first came to the Center for

Communications and Signal Processing.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 1

1.1 Buffering Schemes and its Effects on the Design
of Traffic Scheduling 1.

1.2 Design Criteria for a Traffic Scheduler 4

1.3 Traffic Scheduling in Input-Queued Switches 5

1.3.1 	 Maximum Size Matching Based Algorithms 	 6

1.3.2 	 Maximum Weight Matching Based Algorithms 	 9

1.4 Traffic Scheduling in Output-Queued Switches 	 11

1.4.1 	 Representative Work-conserving Schedulers 	 11

1.4.2 	 Representative Non-work-conserving Schedulers: 	 16

1.5 Traffic Scheduling in Combined Input Output Queued Switches 	 17

1.5.1 	 Algorithm Description 18

1.6 Contributions of the Dissertation 20

2 MIN-MAX FAIR INPUT QUEUEING (MFIQ) 23

2.1 Queueing Analysis 24

2.2 Min-max Fair Input Queueing Algorithm 	 28

2.3 Simulation Results and Performance Comparison 	 31

3 MAXIMUM WEIGHT MATCHING 	 35

3.1 Switch and Traffic Models 	 36

3.2 Longest Normalized Queue First (LNQF) Algorithm 	 38

3.2.1 	 Algorithm Description 38

3.2.2 	 Analysis of Stability 40

3.3 Earliest Due Date First Matching (EDDFM) Algorithm 	 46

3.4 Performance Comparison of Proposed Algorithms 	 47

4 STORE-SORT-AND-FORWARD (SSF)

vii

 	 50

Chapter 	 Page

	4.1	 The Store-Sort-and-Forward Algorithm 	 52

4.1.1 	 Framing Strategy and Cell Admission Policy 	 52

4.1.2 	 The Sorting Algorithm 	 54

	

4.2 	 Algorithm Analysis 	 59

4.2.1 	 Guaranteed QoS 	 59

4.2.2 	 Complexity Issues 63

5 CONTRIBUTIONS ON ATM MULTICASTING 	 70

5.1 Solutions to the Sender Identification Problem 	 72

5.1.1 	 Mechanisms that Prevent Cell Interleaving 	 73

5.1.2 	 Mechanisms that Support ATM Cell Interleaving 	 74

5.2 Comparison between VC-Merge and VP-Merge 76

5.2.1 	 Simulation Study 77

5.2.2 	 Summary of the Results 80

5.3 Improved VC-Merge Mechanisms 	 	 80

5.3.1 	 Multiple VC-merge Mechanisms 	 	 81

5.3.2 	 Simulation Results 	 	 85

5.4 Conclusions 88

6 SUMMARY AND FUTURE RESEARCH 	 89

viii

LIST OF TABLES

Table	 Page

1.1 Comparison of representative work-conserving schedulers for output-
queued switches. L i is the maximum packet size of session i , Lmax is
the maximum packet size among all the sessions, R is the transmission
rate of the switch, and σ i is the bucket depth of session i. 15

1.2 Performance of representative non-work-conserving schedulers for output-
queued switches. T is the frame size and 0 is the constant delay between
an arriving frame and its corresponding departing frame 18

2.1 Statistics of the simulation results: d i is the delay of session i and ri is
the rate of session i. Fs is the instantaneous fairness of the algorithm.
Dmax is the maximum additional delay caused by contentions while
Lagmax is the maximum normalized service lag of the algorithm. . . . 33

3.1 Statistics of the simulation results: d i j is the average delay of the jth
session in VOQ (1, i) 	 48

ix

LIST OF FIGURES

Figure	 Page

1.1 Output buffering architecture 	 2

1.2 Input buffering architecture 3

1.3 Virtual output queueing and input/output contentions 6

1.4 An example of a bipartite graph 	 7

1.5 Two possible matches of a bipartite graph 	 8

1.6 One iteration of the Iterative Round Robin Scheduling algorithm 	 9

1.7 A bipartite graph matching example:(a) 	 the request graph,	 (b)	 a
maximum weight match, and (c) a maximum size match. 	 10

2.1 Virtual output queueing 25

2.2 The discrete time Markov chain for the total queue length of one queue
group 	 26

2.3 Mean queue length of a queue group with ideal throughput 	 27

2.4 Mean queue length of a queue group simulation results 	 28

2.5 The pseudo-code of the min-max fair input queueing algorithm 	 30

2.6 Comparison of normalized service time received by the three sessions: (a)
MFIQ, and (b) reference scheduler 31

2.7 Instantaneous fairness: MFIQ versus reference scheduler 	 32

2.8 Maximum normalized service lag: MFIQ versus reference scheduler	 . . . 34

2.9 Comparison of maximum additional delay: 	 (a) MFIQ, (b) reference
scheduler 34

3.1 Input-queue switch model 37

3.2 Simple ON-OFF traffic model 	 38

3.3 LNQF scheduler 	 	 40

3.4 Comparison of probability of cell overdue 	 47

4.1 An N x N input-queued switch with time axis divided into frames 52

4.2 Time relation between cell arrivals and departures 	 53

Figure 	 Page

4.3 Cells arrived in one frame: (a) original arrival orders. (b) scheduled
transmission orders 	 55

4.4 A single effective move: (a) There is a nonzero element in block D. (b)
The nonzero element is moved to the upper-left corner of block D by
swapping rows 7 and 8, and then columns 7 and 8 58

4.5 A double effective move: (a) Block D has only zeros and there is a
nonzero element in block B corresponding to a nonzero element in
block C. (b) The nonzero element in block C is moved to block D by
swapping columns 5 and 8 59

4.6 A multiple effective move: (a) There are only zero elements in block B
corresponding to the nonzero elements in block C. (b) Residue matrix
F is constructed by swapping columns 2 and 6, and then rows 2 and 6.
There is a nonzero element in G corresponding to a nonzero element
in F. (c) The nonzero element in F can be moved to the zero block
below G by swapping columns 1 and 8. 60

4.7 Two extreme cases of cell transmission: (a) the cell experiences an end-
to-end delay of (n — 1)T + T. (b) the cell experiences an end-to-end
delay of (n 1)T — T 63

	

4.8 Decomposition of a traffic matrix 67

	

5.1 Star configuration 77

5.2 Star Configuration: Case 1: VC-Merge vs VP-Merge 	 78

5.3 Star Configuration: Case 1: VC-Merge vs VP-Merge: Smooth 	 79

	

5.4 Star Configuration: Case 2: VC-Merge vs VP-Merge 81

	

5.5 Star Configuration: Case 3: VC-Merge vs VP-Merge 82

5.6 Comparison of DMVC and FMVC with virtual cut-through VC-Merge 	 85

5.7 Comparison of DMVC and FMVC with increasing number of identifiers 	 86

5.8 Comparison of SMVC with store and forward VC-Merge . . 	 87

xi

CHAPTER 1

INTRODUCTION

Telecommunication networks have been evolving from pure circuit switching based

telephone networks to packet switching based broadband integrated service networks

providing services for transport of voice, audio, images, real-time video, graphics,

data, and other multimedia applications. Different applications have strikingly

different requirements of the quality of service (QoS), and thus the design of traffic

scheduling for switches to satisfy these various requirements is very crucial and

challenging.

1.1 Buffering Schemes and its Effects on the Design
of Traffic Scheduling

The objective of traffic scheduling is to satisfy the requirements of guaranteed

performance such as delay, delay jitter for real-time traffics, and a fair distribution

of the network resources for best effort applications. Scheduling algorithms fulfill

this task by selecting a cell for transmission in the next transmission period for

each output link of the switch among the cells destining for the same output link.

Switch fabric architectures and buffering mechanisms affect the scheduling algorithm

design. An ATM switch typically consists of three parts: input ports, output ports

and a switch fabric. Input ports buffer cells coming from input links while output

ports buffer cells going out to output links. The fabric routes cells from arbitrary

input links to arbitrary output links. Many architectures for switch fabrics have

been proposed in the literature. Shared memory, bus, crossbar, and multistage

networks [1] are among the commonly used architectures.

1

2

Figure 1.1 Output buffering architecture

In general, switch architectures can be categorized into three main types based

on the adopted buffering mechanisms: the input-queued switch in which buffers are

placed at the input side, the output-queued switch in which buffers are placed at

the output side, and the combined input output queued switch in which buffers are

placed at both the input and output sides.

Most of the early studies [2, 3, 4, 5, 6, 7, 8] focused on scheduling output

queued switches (0Q) owing to its conceptual simplicity. By assuming that cells are

readily available to be transmitted to the output links upon entering a switch, as

shown in Figure 1.1, many proposed algorithms are able to provide QoS guarantees

(see [9] for an overview). However, the output queueing architecture suffers from

the scalability problem. Since more than one cell can arrive at the switch in a given

time slot heading for the same output, the fabric and output buffers should have the

capability to accommodate all of the cells to avoid cell loss and to meet certain delay

bounds. In the worst case, an N x N switch has to run N times faster than a single

link when all N inputs receive cells directed to the same output in a time slot. The

buffers, switch fabric, and control system have to be sped up proportionally to the

number of input or output links, and thus severely limiting the switch capacity.

The input queueing (IQ) architecture, on the other hand, has good scalability.

Since buffers are placed at the input of the switch, as shown in Figure 1.2, the fabric

3

Figure 1.2 Input buffering architecture

and buffers can run at the same speed as a single link without causing cell loss.

Owing to its scalability, input queueing is receiving attention in both the research

and commercial communities [10, 11, 12, 13, 14, 15]. Low throughput and no QoS

guarantees are two major problems with the input queueing architecture. Extensive

studies [12, 13, 14, 15, 16, 17] on improving the throughput of an input-queued switch

have been conducted in the literature, and studies on providing QoS guarantees are

still undergoing [18, 19].

There has been a trade off between QoS guarantees and scalability: the input

queueing architecture is scalable but cannot provide guaranteed QoS, while the

output queueing architecture can provide guaranteed QoS but is not scalable. Lately,

there is a trend to adopt combined input output queueing (CIOQ), in which buffers

are placed at both the input and output sides of a switch [20, 21]. It has been proven

in [20] that a speedup of 2 is sufficient for a CIOQ switch to behave identically to

an output-queued switch which employs work-conserving and monotonic scheduling

discipline.

4

1.2 Design Criteria for a Traffic Scheduler

Below is a high-level description of design criteria that switch designers must consider

for the design and implementation of an appropriate traffic scheduler.

• Isolation among flows: A connection sending data at or below its negotiated

rate should not be affected by misbehaving connections which send data at a

rate higher than their negotiated rates.

• End-to-end delay: Real time applications have stringent requirements on the

end-to-end delay. Cells arrived too late may have no use to the applications.

Thus, scheduling algorithms should be able to provide guaranteed end-to-end

delay bound for individual sessions.

• End-to-end delay jitter: The end-to-end delay jitter of a session is defined as

the maximum difference of the delay experienced by any two cells belonging

to the session. Continuous media playback applications usually have stringent

requirements on the delay jitter. Ideally, a network should not introduce any

delay jitter for these applications (i.e., constant delay or zero delay jitter).

• Throughput: Throughput is defined as the highest load under which a switch

can forward without dropping any cell.

• Fairness: If the bandwidth usage of a connection is below its negotiated rate,

the excess bandwidth should be distributed fairly among all connections. The

commonly used fairness is defined as follows [4]: the fairness of a scheduling

algorithm is the maximum difference of the normalized service received by

any two sessions over the interval in which both sessions are continuously

backlogged, i.e.,

5

where Wi(t1 , t2) is the service session received during time interval [t 1 , t21, and

r i is the rate of session i. The smaller the amount, the fairer the algorithm is.

• Scalability: Since there could be thousands of connections sharing the same

link, the algorithm must be scalable.

• Implementation complexity: The high switching speed imposes the scheduling

algorithms to make decisions in a very short time. For example, at the rate

of 622 Mbps, the switch has to make decision within less than 0.7 As. Thus,

scheduling algorithms must have a simple implementation.

1.3 Traffic Scheduling in Input-Queued Switches

One of the major problems with input-queued switches is the head-of-line (HOL)

blocking, which limits the throughput of such a switch to only 58.6% under uniform

Bernoulli traffic when a single FIFO queue is maintained in each input buffer [22].

The throughput can be improved by making more than one cell in the buffer

accessible to the scheduler. A windowed buffer with a size of W, in which any of the

first W cells in the buffer are accessible, can improve the throughput noticeably, even

with a small W. Virtual output queueing, in which an individual FIFO queue corre-

sponding to each output is maintained in each input buffer as shown in Figure 1.3,

is another method to improve throughput. All the cells at the head of the FIFO

queues are accessible to the scheduler, and thus HOL blocking is avoided. However,

contentions still occur when multiple cells try to get through the fabric. Output

contentions occur when more than one cell is directed to the same output link, and

similarly, input contentions occur when more than one virtual output queues (VOQs)

in the same input buffer are non-empty. The contentions limit the throughput of an

6

Figure 1.3 Virtual output queueing and input/output contentions

input-queued switch, and thus constrain the switch from providing QoS guarantees

to the applications.

Note that when more than one cell can be accessed by the scheduler in one input

buffer, selecting different cells for transmission could lead to different throughput,

owing to the inter-dependence of the inputs.

Maximizing the throughput of a switch can be mapped to the maximum

matching problem in a bipartite graph. Algorithms proposed in the literature can be

classified into two categories: maximum size and maximum weight matching based

algorithms.

1.3.1 Maximum Size Matching Based Algorithms

Maximum size matching based algorithms maximize the number of connections

between the input and output ports with the constraint of unique pairing. Repre-

sentative scheduling algorithms include PIM (Parallel Iterative Matching) [1.21,

7

Figure 1.4 An example of a bipartite graph

iSLIP (Iterative Round Robin with slip) [14], and MFIQ (Min-max Fair Input

Queueing) [17]. Figure 1.4 shows a bipartite graph, in which each input port is

represented by a vertex in one group, and each output port is represented by a

vertex in the other group. Each accessible cell is represented by an edge from an

input port vertex in which it is stored to an output port vertex to which it is directed.

Two possible matches of the configuration in Figure 1.4 are shown in Figure 1.5, in

which one achieves the maximum throughput while the other does not.

1.3.1.1 Representative Schedulers: Finding the maximum match may take a

long time [23]. Thus, most proposed mechanisms for matching resort to a maximal

match, which has less complexity but in the worst case contains only 50% of the

possible pairings of the maximum match [12].

Parallel Iterative Matching (PIM) is a three-phase algorithm in finding a

maximal match, consisting of requests, grants, and acknowledgments between the

input and output ports. The complexity of PIM is proven to converge on average in

O(logN) [12]. Many crossbar matching algorithms proposed in the literature [12, 24]

are based on PIM.

McKeown and Anderson [14] later proposed IRRM for an ATM switch, which

was found to have the same performance as PIM, but with a much lower hardware

8

Figure 1.5 Two possible matches of a bipartite graph

complexity. Similar to PIM, the following three steps are iterated for an M input,

N output switch as described in [14]:

1. Each unmatched input sends a request to every output for which it has a queued

cell.

2. If an unmatched output receives any requests, it chooses the one that appears

next in a round-robin scheduler starting from the highest priority element. The

output notifies each input whether or not its request was granted. The pointer

gi to the highest priority element of the round-robin scheduler is incremented

(modulo M) to one location beyond the granted input.

3. If an input receives a grant, it accepts the one that appears next in a round-

robin scheduler starting from the highest priority element. The pointer a i to the

highest priority element of the round-robin scheduler is incremented (modulo

N) to one location beyond the accepted output.

An example of one iteration of the three phases is illustrated in Figure 1.6. In

the example, input port 1 has one or more cells for output ports 1 and 2, input port

2 has one or more cells for output ports 1 and 3, and so on. The grant schedules are

shown for output ports 1 and 2. The accept schedules are shown for input ports 1

and 2. At the end of the first iteration, g1, 9 2 and a l are incremented to 2, and a2

9

Figure 1.6 One iteration of the Iterative Round Robin Scheduling algorithm

is incremented to 4. The basic IRRM algorithm will not perform well for a single

iteration because it does not allow the schedulers to be misaligned. IRRM with slip

(iSLIP) was proposed later to achieve 100% utilization in one iteration. The iSLIP

algorithm is identical to IRRM except that the pointer gi in phase 2 is incremented

if and only if the grant was accepted.

A 320 Gbps crossbar system is currently in development [25] adopting iSLIP

and algorithms of similar nature.

1.3.2 Maximum Weight Matching Based Algorithms

Maximum size matching based algorithms work well for uniformly distributed traffic.

However, it was pointed out that a switch using maximum size matching based

algorithms is not stable for non-uniform traffic [13, 15], i.e., the expected queue

length in the switch, could increase without bound. Maximum weight matching

based algorithms were proposed later to achieve 100% throughput for both uniform

and non-uniform traffic.

Consider the bipartite graph shown in Figure 1.7(a). Associated with each edge

is a weight, which is defined differently for different algorithms. For example, setting

weight as the queue length of the VOQ leads to LQF (Longest Queue First) [13],

and setting weight as the delay time of the head cell in the VOQ leads to OCF

10

Figure 1.7 A bipartite graph matching example:(a) the request graph, (b) a
maximum weight match, and (c) a maximum size match.

(Oldest Cell First) [151. A maximum weight matching algorithm computes a match

which can maximize the aggregate weight. The computational complexity of LQF

and OCF is O(N3 logN). LPF [161 was proposed later to reduce the complexity to

0(N2-5), in which the weight of a VOQ Qi,j is set as follows:

the total number of cells stored at the input side destining for output j

Note that maximum size match in which the maximum number of connections

between inputs and outputs is obtained is a special case of maximum weight matching

in which the weights of the non-empty VOQs are set to 1 and the weights of empty

VOQs are set to 0. A maximum weight match and a maximum size match based on

the same request graph are shown in Figure 1.7(b) and (c), respectively.

11

1.4 Traffic Scheduling in Output-Queued Switches

Since cells arrive in an output-queued switch are immediately available for trans-

mission, the scheduler only needs to resolve the contention among the cells

sharing the same output link. In general, schedulers can be classified into two

types: work-conserving and non-work-conserving. A work-conserving scheduler

is never idle when there are cells buffered in the system, while a non-work-

conserving scheduler could be idle even if there are cells waiting in the buffer.

Generalized Processor Sharing (GPS) [21, Weighted Fair Queueing (WFQ) [2],

Self-Clocked Fair Queueing (SCFQ) [4], Virtual Clock [5], and Weighted Round

Robin (WRR) [26] are examples of work-conserving schedulers, and Hierarchical-

Round-Robin (HRR) [27], Stop-and-Go queueing [28] and Jitter-Earliest-Due-

Date [29] are non-work-conserving schedulers.

1.4.1 Representative Work-conserving Schedulers

In this section, we briefly describe several representative work-conserving scheduling

algorithms. We first present an idealized service discipline GPS and its packet version

WFQ, also called Packetized Generalized Processor Sharing (PGPS), followed by

SCFQ and Virtual Clock.

1.4.1.1 Generalized Processor Sharing: Generalized Processor Sharing

(GPS) is an idealized scheduling discipline, which is defined based on a fluid-model.

Associated with each session is a real number r i , which represents its service share

of the server. It is assumed that in GPS all the flows are serviced simultaneously

with rates proportional to ri , implying that the data unit is infinitely divisible. Let

B(t 1 , t2) be the set of sessions that are backlogged in the time interval (t 1 , t2] and R

be the total rate of the server. The service Wi (t1 ,t2) that a backlogged session i can

12

receive is proportional to its rate ri . If session i is continuously backlogged during

the interval (t 1 , t2], the service it receives is

The minimum service rate offered to session i during that time interval is

where M is the maximum number of sessions which are backlogged in the server

during that time interval. The GPS server serves each backlogged session simul-

taneously; each session is granted a rate equal to the minimum service rate of the

session plus a fair share of the excess bandwidth which is available from sessions

which are temporarily not backlogged. The normalized service time of a session, i,

is defined as the amount of service W i (t i , t2) the session receives during that interval

divided by its rate ri. GPS, with the assumptions that data unit can be infinitely

divisible (infinitesimally small) and all sessions can be served simultaneously, is a

perfect scheduler with ideal fairness (F = 0), and low end-to-end delays.

Many Packet Fair Queueing (PFQ) algorithms [2, 3, 4] were proposed to

emulate the GPS model for scheduling output-queued switches. Each PFQ algorithm

maintains a system potential v(t), which is initialized to be zero whenever the server

becomes idle, and is updated accordingly. In addition, associated with the kth

13

or starting time for transmission. Different policies for updating the system potential

lead to different PFQ algorithms. For example, choosing real time as the system

potential leads to Virtual Clock [5], and choosing the virtual finishing time of

the current session in progress as the system potential leads to Self-Clocked Fair

Queueing [4].

1.4.1.2 Weighted Fair Queueing: GPS cannot be implemented since servers

transmit packets in their entirety, i.e., packets are not infinitesimally small, and

a server cannot serve more than one packet at any time. A packet-by-packet

transmission scheme called Weighted Fair Queueing (WFQ) or Packet Generalized

Processor Sharing (PGPS) was proposed [2] as an approximation to GPS. The

system potential used in WFQ is updated according to

where B represents the set of backlogged sessions during time interval (t 1 , t2], during

which the set of backlogged sessions are fixed. Thus, the system potential v(t) is a

piecewise linear functions of real time whose slopes depend on the total rate of the

currently backlogged sessions.

WFQ algorithm can be summarized as follows:

1. The system potential is updated when backlogged sessions change.

2. At the arrival of a new packet, the system potential v(t) is computed first.

Suppose that the new arrived packet is the kth packet in session i, its virtual

finishing time is updated as follows:

14

3. The scheduler selects the packet with the smallest virtual finishing time for

transmission.

Let V be the maximum number of sessions a server can serve simultaneously.

Maintaining a sorted list of virtual finishing time requires a computation of 0(logV).

However, at most V events could occur during the transmission of one packet [301,

and therefore, the complexity of computing virtual finishing time in WFQ algorithm

is 0(V), making the algorithm prohibitive for implementation.

1.4.1.3 Virtual Clock: 	 Virtual Clock (VC), proposed by Zhang [5], tries to

emulate a static TDM system. In VC, the system potential is selected to be the real

time and the virtual finishing time is updated according to the following rule:

where al: is the real time when the kth packet of session i arrives at the switch. The

cell with the minimum virtual finishing time is selected for transmission.

The complexity of computing the virtual finishing time is reduced to 0(1).

However, maintaining a sorted list of the virtual finishing time has a complexity of

0(logV), and thus, the complexity of Virtual Clock is 0(logV). It has been proven

that VC has the same delay bound as WFQ and poor fairness, as shown in Table 1.1.

1.4.1.4 Self-Clocked Fair Queueing: Self-Clocked Fair Queueing (SCFQ)

was proposed and analyzed in N. In SCFQ, the packet with the minimum virtual

finishing time is scheduled for transmission. SCFQ chooses the virtual finishing time

of the current being served packet as the system potential Let vourbe the virtual

finishing time of he packet in service. The virtual finishing time of the new packet

15

Table 1.1 Comparison of representative work-conserving schedulers for output-
queued switches. Li is the maximum packet size of session i, Limas is the maximum
packet size among all the sessions, R is the transmission rate of the switch, and σ i

is the bucket depth of session i .

By simplifying the calculation of the system potential, the complexity of SCFQ

is reduced to 0(logV). The trade off is that the end-to-end delay bounds grow

linearly with the number of sessions that share the outgoing link, as shown in

Table 1.1. Thus, the end-to-end delay bounds cannot be guaranteed by controlling

sessions' negotiated rates.

Table 1.1 summarizes the performance of representative work-conserving

output schedulers. All the three algorithms adopt leaky buckets to regulate bursty

enters the switch during any time interval (t 1 , t2], pi is the average sustainable rate,

and o is the bucket depth of session i. The fairness shown in the table is based on

the assumption [31] that only two sessions i and j are compared, each of which has

infinite supply of packets. As shown in Table 1.1, WFQ has the best performance

but the highest complexity. Virtual Clock can provide the same delay bound as

16

WFQ but with poor fairness. On the contrary, SCFQ has good fairness but the

delay is not bounded.

1.4.2 Representative Non-work-conserving Schedulers:

With a non-work-conserving scheduler, the server could be idle even when there

are cells waiting for service. This results in a higher average packet delay and lower

server throughput. However, the delay bound is a more important performance index

for the guaranteed performance service [9]. Moreover, non-work-conserving schemes

maintain traffic smoothness inside the network, and thus simplify the analysis of

end-to-end delay in a networking environment. Therefore, non-working conserving

schedulers have also been studied extensively. In this section, we briefly describe

two representative non-work-conserving schedulers: Stop-and-Go and Hierarchical

Round Robin.

1.4.2.1 Stop-and-Go Queueing: Stop-and-Go queueing was first introduced

by Golestine [7]. A framing strategy is adopted in the algorithm to segment the

time axis into fixed length periods called frames. Arriving and departing frames are

defined, and a constant delay 0, where 0 < 0 < T, between an arriving frame and its

corresponding departing frame is introduced. Cells arrived during one arriving frame

are only eligible for transmission in the corresponding departing frame. Stop-and-Go

ensures that cells arrived during the same frame in the source stay in the same frame

throughout the network. (r, T) traffic model is adopted in Stop-and-Go, in which a

connection with a rate of r id can transmit no more than r id • T bits during a frame

with a length of T. If each server along the connection path guarantees that cells

arrived during one frame can always be transmitted in the next frame, end-to-end

delay bounds can be guaranteed.

17

The framing strategy introduces a coupling problem between delay bound and

bandwidth granularity. Consider a framing with a length of T. The minimum

bandwidth allocated to a connection is , where L is the length of one cell. Therefore,

a large T is preferable for a fine bandwidth allocation. However, a small T is desired

to reduce delay. The coupling problem was resolved by adopting hierarchical framing

strategy as described in [32].

1.4.2.2 Hierarchical Round Robin Scheduler: Hierarchical Round Robin

(HRR) adopts a hierarchical framing strategy [27]. The time axis in HRR is also

segmented into frames, each of which consists of a number of slots. A slot at a higher

level frame can either be assigned to a connection or to a lower level frame. The

server scans through the frame in a round robin fashion. If the current slot is assigned

to a connection, a packet from this connection is transmitted when there are packets

waiting; otherwise, the server stays idle. Therefore, HRR is a non-work-conserving

scheduler. If the current slot is assigned to a lower level frame, a slot of the lower

frame is served in the same fashion.

Table 1.2 summarizes the performance of Stop-and-Go and HRR. Both Stop-

and-Go and HRR can maintain smoothness in a networking environment owing to

their non-work-conserving nature. In Stop-and-Go, cells arrived in the same frame at

the network entrance will be transmitted in the same frame throughout the network,

while in HRR cells arrived in the same frame can be transmitted in different frames.

1.5 Traffic Scheduling in Combined Input Output Queued Switches

Combined input and output queueing (CIOQ) approach was proposed to resolve the

trade off between the QoS guarantees and scalability [20, 21], in which buffers are

18

Table 1.2 Performance of representative non-work-conserving schedulers for output-
queued switches. T is the frame size and 0 is the constant delay between an arriving
frame and its corresponding departing frame

placed at both sides of a switch. CIOQ emulates an output scheduling algorithm

in such a way that the cell transmission order in CIOQ is the same as that in the

emulated output scheduling algorithm in every time slot. Since it is only necessary

to forward the cell to be transmitted in the next time slot in the emulated OQ

scheduler to the output side of the switch, CIOQ does not require speedup of N to

guarantee the same performance. It has been proven [20] that a switch using CIOQ

with speedup of 2 can provide the same QoS guarantees as a switch using an OQ

scheduling algorithm.

1.5.1 Algorithm Description

Push-in queue concept was used in [20], i.e., arriving cells can be placed at any

position in the queue and once the cells are placed in the queue, the relative order

cannot be changed. In a CIOQ switch, each input maintains an input queue, where

the cells are stored in a specific order. Different algorithms are characterized by the

orders the cells are stored in each input queue. Likewise, each output maintains

an output queue which consists of cells waiting for departure. Moreover, an output

priority list, which is an ordered list of cells stored in inputs and directed to that

particular output, is maintained in each output. The cells on the output priority list

are always ordered according to the emulated output scheduling algorithm.

19

A variety of CIOQ algorithms have also been proposed to emulate OQ

scheduling with a speedup of 2. The algorithms differ from each other only in

the insertion policy. For example, placing an arriving cell as far from the head of

its input queue as possible leads to Critical Cells First (CCF) [20], and placing

an arriving cell at the front of the input queue leads to Last In Highest Priority

(LIHP) [20]. Each time slot is divided into four phases [20]:

1. The arrival phase: New cells arrive only in this phase.

2. The first scheduling phase: Cells are scheduled for transmissions from inputs

to outputs.

3. The second scheduling phase: Again, cells are scheduled for transmissions from

inputs to outputs.

4. The departure phase: Cells are transmitted out from the outputs only in this

phase.

Since CIOQ requires speedup of 2, two scheduling phases are needed. During

each scheduling phase, a stable matching algorithm is used to calculate a stable

matching between inputs and outputs. A matching is said to be stable if for a cell c

in an input, one of the following holds:

1. Cell c is part of the matching, i.e., c is going to be transmitted from the input

side to the output side during this phase.

2. A cell which is ahead of c in its input queue is part of the matching.

3. A cell which is ahead of c in its output queue is part of the matching.

Note that conditions 2 and 3 could be satisfied at the same time. A stable

matching algorithm given by Gale and Shapely [33] can find a stable matching within

20

at most M iterations, where M is the total length of all the input queues. It is

proven that in CIOQ, cells to be transmitted in the next time slot in the emulated

output scheduler can always be forwarded to the output side, and thus the same QoS

guarantees as the emulated output scheduler can be provided.

1.6 Contributions of the Dissertation

In chapter 2, we consider the scheduling problem under uniform traffic. We model

and analyze the back pressure problem with independent Bernoulli traffic load, and

show that back pressure occurs with high probability under loaded traffic. The

average queue length at the input buffer is also derived. To address the above issues

in input-queued switches, we propose a maximum size matching based algorithm,

referred to as min-max fair input queueing (MFIQ), which minimizes the additional

delay caused by back pressure and at the same time provides fair service among

competing sessions.

As pointed out in [13, 15], maximum size matching based algorithms do not

perform well for non-uniform traffic. There are several maximum weight matching

based algorithms proposed in the literature [13, 16, 15] to achieve high throughput

under non-uniform traffic. However, only aiming at maximizing throughput could

generate adverse effects on traffic shape and quality of service (QoS) features such

as delay and fairness. In chapter 3, two algorithms are proposed to provide some

QoS features while achieving high throughput for input-queued switches. By setting

the weight of an edge in the bipartite graph to the normalized queue length of the

corresponding VOQ, the longest normalized queue first (LNQF) [18, 34] provides

fairer service than LQF and better traffic shape than OCF. The stability of LNQF is

also proven. In earliest due date first matching (EDDFM), the weight is a function

of delay bound and thus forces the cells with earliest delay due date to have highest

21

priority to receive service. Simulation results show that EDDFM has lower proba-

bility of delay over due than LQF, LNQF, and OCF.

The maximum matching based algorithms can only achieve asymptotical 100%

throughput, and thus, cannot provide deterministic QoS guarantees. In Chapter 4, a

frame based scheduling algorithm, referred to as Store-Sort-and-Forward (SSF) [19],

is proposed to provide QoS guarantees for input-queued switches without requiring

speedup. SSF uses a framing strategy in which the time axis is divided into constant-

length frames, each made up of an integer multiple of time slots. Cells arrived during

a frame are first held in the input buffers, and are then "sorted-and-transmitted"

within the next frame. A bandwidth allocation strategy and a cell admission policy

are adopted to regulate the traffic to conform to the (r, T) traffic model. A strict

sense 100% throughput is proved to be achievable by rearranging the cell transmission

orders in each input buffer, and a sorting algorithm is proposed to order the cell

transmission. The delay and delay jitter are bounded by the transmission time of

one frame. It is proved that a perfect matching can be achieved within N(ln N+0(1))

effective moves.

Chapter 5 presents our contributions on ATM multicasting. The routing and

signaling protocols for supporting multipoint-to-multipoint connections in ATM

networks have been presented in recent publications. VP-Merge and VC-Merge

techniques have been proposed as the likely candidates for resolving the sender

identification problem associated with these connections. The additional buffer

requirements in the VC-Merge mechanism and the limitations of VPI space in the

VP-Merge mechanism have been the main reasons for concern about their effective

utility. In this chapter, we propose improvements to these traditional merging

techniques. Our proposal describes a scalable VP-Merge scheme and analyzes

different mechanisms to implement the scheme in ATM networks. To facilitate an

22

elegant implementation, we introduce VP-VC Switching, a new switching mode

different from traditional VP Switching and VC Switching modes. We also propose

an improved VC-Merge technique :351 to control the additional buffers at inter-

mediate merge points. Aptly named Dynamic Multiple VC-Merge (DMVC), Fixed

Multiple VC-Merge (FMVC) and Selective Multiple VC-Merge (SMVC), these

mechanisms define a generic scheme for merging the data from multiple senders onto

one or more outgoing links. By appropriately choosing the number of connection

identifiers per connection, these schemes lead to a large reduction in the buffer

requirements and an effective utilization of the VPI/VCI space. Based on extensive

simulations, we show that by using two connection identifiers per connection, there

is an 80% reduction in buffer requirements for DMVC and FMVC when compared

to the buffer required for traditional VC-Merge.

CHAPTER 2

MIN-MAX FAIR INPUT QUEUEING (MFIQ)

It was shown [22] that the throughput of an input-queued switch is limited to 0.586

when a single first-in-first-out (FIFO) queue is used in each input port under uniform

Bernoulli traffic. This is mainly owing to the head of line (HOL) blocking, i.e.,

if cells in the front of the input queue are blocked, the cells stored behind them

cannot be transmitted even if their destination output ports are open. Since the

publication of the seminal paper by Karol et al. [22, many works [36, 14] have

indicated that the throughput of the input-buffered switch can be improved by using

well designed scheduling algorithms. Parallel Iterative Matching (PIM) will reach

100% throughput if a sufficiently large number of iterations are used. Iterative round-

robin matching with slip (iSLIP) [14] was proposed later that has similar performance

as PIM at much lower hardware complexity.

While scheduling algorithms designed for output-buffered switches, like Packet

Fair Queueing (PFQ), can provide end-to-end delay bound and fairness among

sessions, they are not directly applicable to input-buffered switches without causing

performance degradation. When the scheduler at an input port schedules one cell

for transmission, schedulers at other input ports could also schedule cells for trans-

mission to the same output port. Only one cell can get through the fabric, and

the other cells are back pressured and stored in the input ports. Instead of wasting

bandwidth, the scheduler in a back pressured port should schedule another cell for

transmission. As a result, the back pressured sessions suffer extra delay and lose

their fair share of the bandwidth while other sessions get more services than they

should. The key issue is what type of actions should a scheduler executes when the

output port is open for the back pressured sessions after a certain time lapse. Instead

23

24

of only aiming at maximizing the throughput, we propose an algorithm, called min-

max fair input queueing (MFIQ), to minimize the additional delay and to arbitrate

fair service among all competing sessions in an input port.

The rest of the chapter is organized as follows. The model of the back pressure

problem under independent Bernoulli traffic is presented in Section 1, and it is

shown that the effect of back pressure is significant. Section 2 presents our proposed

scheduler, and simulation results are shown in Section 3. Remarks are concluded in

Section 4,

2.1 Queueing Analysis

Consider a system with N input ports, N output ports, and an N x N fabric.

The cell arrival processes at the input ports are assumed independent and identical

Bernoulli. Let p be the traffic load, i.e., in any given time slot, the probability that

a cell arrives at a particular input port is p. The cell has equal probability of 1/N to

go to any given output port, and successive cells are independent. To eliminate HOL

blocking, virtual output queueing is adopted, i.e., N separated queues, each of which

is associated with a corresponding output port, are maintained in an input port. The

probability of a cell appearing at a virtual output queue (VOQ) is p/N. There are

N2 VOQs in the system as shown in Figure 2.1. Associated with an output port is

a queue group with N VOQs, each of which is located in one of the N input ports.

The cell arrival processes in these queues are also independent. Let A be the total

number of cells appeared at the head of each VOQ in a queue group in one time slot.

Thus, A is a Binomial random variable and has the following distribution:

25

Figure 2.1 Virtual output queueing

Contention occurs when more than one of the VOQs have cells in the same

time slot. Only one out of the competing cells can get through the fabric, and the

others are back pressured for later transmission. Thus, back pressure occurs with

probability

Note that Equation (2.3) is monotonically increasing with the load p. The probability

of back pressure reaches its maximum value of 1 — 2/e when the load reaches one.

Consider the total queue size of one queue group. With the assumption that

one cell can always be transmitted during the time slot if there are cells at the head

of the N VOQs, the Markov chain for the total queue length of the queue group can

be obtained as shown in. Figure 2.2, where

26

Figure 2.2 The discrete time Markov chain for the total queue length of one queue
group

and the state value of the chain indicates the queue size of the queue group. The

transition probability matrix of the Markov chain is

It is difficult to derive the close form distribution of the queue length, but the

generating function of the queue length distribution can be readily derived:

is the generating function of random variable A. Thus, the mean steady-state queue

length can be obtained as follows:

where Q'(.) is the derivative of Q(.). Figure 2.3 shows the average total queue length

in a queue group associated with one output port.

27

Figure 2.3 Mean queue length of a queue group with ideal throughput

Note that Equation (2.6) is applicable to every queue group. If queue groups

corresponding to different output ports are independent, the average queue length

at the input buffer of the switch is NQ. Since the traffic in the N input ports are

independent, the average queue length in one input port is also Q . The Markov chain

is derived based on the assumption that there is always a cell to be transmitted to a

given output port whenever there are cells in the queue group. In fact, if more than

one output port schedule the same input port to transmit cells, only one cell can be

transmitted. As a result, the bandwidths of the other output ports are not utilized.

Thus, the actual throughput can only be lower than what is assumed here. Hence,

the average queue length at the input buffer in a realistic situation (Figure 2.4) is

longer than the ideal case (Figure 2.3). Thus, back pressure can potentially cause

adverse effect on the delay and fairness of the competing sessions.

28

Figure 2.4 Mean queue length of a queue group simulation results

2.2 Min-max Fair Input Queueing Algorithm

Before we proceed to describe our algorithm which will overcome the shortcomings

of applying PFQ directly to input-buffered switches, we first define the following.

Definition 1 A reference scheduler(RS) of a system is an ideal scheduler which

operates without back pressure but has the same configuration as the real scheduler

in the system.

The reference scheduler maintains its own virtual time. The virtual time of a session

scheduled by the reference scheduler is updated no matter whether the session is

back pressured in the real system. Thus, virtual time of sessions in the reference

system keeps track of the service that the sessions should receive in the real system.

Definition 2 The additional delay of a cell is the time interval between the time

when the cell is transmitted in the real system and the time when the cell is scheduled

in the reference scheduler.

Note that the additional delay is negative when the cell is transmitted before

it is scheduled in the reference scheduler.

29

Definition 3 The normalized service lag of a session is the difference between the

normalized service time the session should receive in the reference scheduler and the

normalized service time it has received in the real system.

For input-buffered switches, the schedulers of input ports are not independent

from each other. When more than one input port schedules cells to the same output

port, contention occurs. Only one of the competing cells can get through the fabric,

and the others are back pressured in the input ports. To increase throughput, the

scheduler of the back pressured input port needs to schedule another cell that is free

of contention. Thus, the back pressured cell experiences additional delay and loses

its fair share of service. On the contrary, the being served session receives earlier and

more service than its fair share. There could be more than one session back pressured

at the same time. When the output ports for the back pressured cells are open for

transmission, which cell should be transmitted? Within the context of GPS which is

the perfectly fair scheduler, the back pressured session with the largest normalized

service lag is the one that has been back pressured longest, thus experiencing the

largest additional delay. It is therefore intuitively fair to transmit the cell of the

session that has been back pressured the longest. This is the essence our algorithm

as shown in Figure 2.5.

In the algorithm, a reference virtual time system and a real virtual time

system are maintained. The virtual time of each session is updated in the reference

system, independent of the status of the real system, to keep track of the normalized

service the session should receive. Normalized service lags are maintained in the real

system. The system potential V(t) can be updated by using any PFQ algorithms

like WFQ [2], SCFQ [4], WF2Q [6], and WF2Q+ [37]. For example, if WFQ is

Figure 2.5 The pseudo-code of the min-max fair input queueing algorithm

selected to update the system potential, the rule is

where B represents all backlogged sessions and T is the time increment. The session

with the smallest virtual finishing time Fa in the reference scheduler is updated

regardless of the status of the real system, i.e., the virtual finishing time of the

selected session i in the reference system is updated no matter whether it is back

pressured or not. The session with the largest normalized lag is scheduled for trans-

mission in the real system. If the transmitted session j is not the session selected

30

31

Figure 2.6 Comparison of normalized service time received by the three sessions:
(a) MFIQ, and (b) reference scheduler

in the reference system, the selected session is deferred for transmission. Thus, the

normalized service lag of the selected session is increased by l/ri, and that of the

transmitted session is decreased by Uri .

2.3 Simulation Results and Performance Comparison

Consider a system with eight input ports and eight output ports. To eliminate

HOL blocking, virtual output queueing is used. Each VOQ has three sessions with

transmission rates of 1, 5 and 10 Mbps. WFQ was selected to update the system

potential. Simulations were conducted for a load of 0.8, 0.9 and 0.95. Each simulation

lasted through 2 seconds.

Two schedulers were simulated: our proposed MFIQ algorithm, and the

reference scheduler defined earlier, in which sessions were scheduled only based

on their virtual times in the reference scheduler. When the scheduled session was

back pressured, its virtual time was updated and another session which was free of

32

Figure 2.7 Instantaneous fairness: MFIQ versus reference scheduler

contention was selected for transmission. The scheduler did not keep track of the

service time lost by the back pressured sessions. Thus, the lost service time could

not be compensated.

The normalized service times received by three sessions belonging to different

VOQs are shown in Figure 2.6. Since our proposed algorithm always selected the

session with the largest normalized service lag for transmission, the differences of

the received normalized service times among sessions were smaller than that of the

reference scheduler. The instantaneous fairness, which is the difference between the

largest normalized service lag and the smallest normalized service lag experienced

by all sessions, is compared in Figure 2.7. The instantaneous fairness of MFIQ is

much smaller than that of the reference scheduler, even though they both experience

randomness owing to the back pressure. The proposed MFIQ has better performance

in terms of maximum normalized service lag and maximum additional delay, as shown

in Figures 2.8 and 2.9.

Table 2.1 illustrates the statistics of the simulations for different loads. Four

results can be derived from the table.

33

Table 2.1 Statistics of the simulation results: di is the delay of session i and ri
is the rate of session i . Fs is the instantaneous fairness of the algorithm. Dmax is
the maximum additional delay caused by contentions while Lagm ax is the maximum
normalized service lag of the algorithm.

1. The two algorithms have similar performance in terms of average delay and
average queue length.

2. The proposed MFIQ has better performance in terms of fairness and additional
delay.

3. The average delay of a session is inversely proportional to its rate.

4. Average instantaneous fairness, average maximum additional delay, and
average queue length increase as the load increases.

Figure 2.8 Maximum normalized service lag: MFIQ versus reference scheduler

Figure 2.9 Comparison of maximum additional delay: (a) MFIQ, (b) reference
scheduler

CHAPTER 3

MAXIMUM WEIGHT MATCHING

Maximum size matching based algorithms work well for uniformly distributed traffic.

However, it was pointed out that a switch using maximum size matching based

algorithms is not stable for non-uniform traffic [13, 15], i.e., the expected queue

length in the switch could increase without bound. Round robin scheduler, which has

low implementation complexity, is adopted in iSLIP to resolve the contention among

cells stored in the same input port. However, the priority of a round robin scheduler

is not a function of the queue length. Thus, iSLIP performs poorly for non-uniform

traffic, in which the average queue length of the FIFO queues could differ strikingly

under loaded traffic. Maximum weight matching can achieve high throughput under

both uniform and non-uniform traffic in which each session is assigned a weight

and a match with the maximum aggregate weight is obtained. Longest queue

first (LQF) [13] and oldest cell first (OCF) [15] are among the maximum weight

matching approach, in which the queue length and the delay time of head of line cell

are set as the weights, respectively.

Algorithms which only aim at maximizing throughput could generate adverse

effects on traffic shape and quality of service (QoS) features such as delay and fairness.

In LQF, the priority is set according to the queue length, i.e., the queue with the

largest length has the highest priority to receive service. Since the queues of the

VOQs with different arrival rates are built up at different speeds, using the queue

length as the weight forces the scheduler to serve the VOQs with high arrival rates

and starve the VOQs with low arrival rates. This is the main reason why LQF leads to

unfair service and uncontrollable delay time for the VOQs with low arrival rates. On

the other hand, OCF avoids starvation by setting delay time as the weight, in which

35

36

the unnerved cells get growing "older" until they eventually become "old" enough to

be served. Using delay time as the weight forces the scheduler to serve the VOQs

burst by burst, thus sacrificing the QoS requirements. By observing that session rates

and delay requirements should be incorporated in the scheduler design in order to

satisfy the QoS requirements, we propose two new algorithms, referred to as longest

normalized queue first (LNQF) and earliest due date first matching (EDDFM).

The rest of the chapter is organized as follows. In Section 1, we describe our

switch and traffic models. Section 2 presents one of our proposed algorithms, referred

to as longest normalized queue first (LNQF) and proves that a switch using LNQF

is stable under both uniform and non-uniform traffic. Section 3 proposes another

algorithm: earliest delay due date first matching (EDDMF) . Section 4 shows the

performance of the proposed algorithm. Concluding remarks are given in Section 5.

3.1 Switch and Traffic Models

Consider an N x N input-queued ATM switch consisting of N inputs, N outputs

and an N x N crossbar. To eliminate the HOL blocking, virtual output queueing is

adopted, as shown in Figure 3.1.

Let denote the VOQ directed to output j at input i, and A i denote

the arrival process to Q. To provide QoS features, switch resources such as the

bandwidth and storage should be allocated on a per-session basis. There could be

more than one session arrived at a certain input directed to the same output. Thus,

multiple sessions could share the same VOQ, each of which is maintained as a FIFO

Figure 3.1 Input-queue switch model

m ≠ n , 1 ≤ m, n ≤ N. Otherwise, the process is said to be non-uniform. The traffic

The traffic in a real network is highly correlated from cell to cell, and cells

tend to arrive at the switch in "bursts." One way of modeling a bursty source is by

using an ON-OFF model in the discrete-time domain. This model is equivalent to a

two-state Markov Modulated Deterministic Process (MMDP) [38]. The two states,

OFF state and ON state, are shown in the Figure 3.2. In the OFF state, the source

does not send any cells. In the ON state, the source sends data cells at the peak cell

rate (P). The source can independently shift from one state to another as shown in

Figure 3.2. In a discrete-time domain, state changes may occur only at the end of a

time-slot. At each time slot, the source in the OFF state changes to the ON state

with a probability a. Similarly, the source in the ON state changes to the OFF state

with a probability 0. It must be remembered that there is no correlation between

the two probabilities. The probabilities of the source being in the OFF state and

37

The bursty source is characterized by the peak cell rate (13), the average cell

rate (A), and the average number of cells per burst (B). The burstiness of the traffic

38

Figure 3.2 Simple ON-OFF traffic model

is defined as the ratio of the peak cell rate and average cell rate. Given these

3.2 Longest Normalized Queue First (LNQF) Algorithm

The basic objective of scheduling an input-queued switch is to find a contention free

match based on the connection requests. At the beginning of every time slot, each

input port sends requests to the scheduler. The scheduler selects a match between

the input ports and output ports with the constraints of unique pairing, i.e., at most

one input port can be matched to each output port and vice versa. At the end of

the time slot, a cell is transmitted per matched input-output pair.

3.2.1 Algorithm Description

the weight of a VOQ is set to the normalized queue length which is the total

be the service matrix which indicates the match between input and output ports.

39

Sid (n) is set to 1 if input port i is scheduled to transmit a cell to output port

the service vector associated with input port i. The LNQF scheduler, as shown in

Figure 3.3, performs the following for each time slot n:

1. Each input port computes the normalized queue length of each VOQ, sets it as

the weight of the VOQ, and sends the weight vector W i (n) to the scheduler.

2. The scheduler searches for a match that achieves the maximum aggregate

weight under the constraint of unique pairing, i.e.,

3. Each input port computes the normalized queue length of each session in the

matched VOQ indicated by S i (n), and selects the session with the longest

normalized queue length for transmission.

The LNQF algorithm gives preference to the VOQs with large normalized queue

lengths for transmission. Note that the average queue length of a VOQ in a fair server

should be proportional to its arrival rate. Using the normalized queue length as the

weight forces the scheduler to serve VOQs more fairly, thus preventing VOQs with

slow arrival rate from starvation. In addition, using normalized queue length as the

weight allows cells arrived later to have higher weights than cells which come earlier,

therefore performing burst reduction.

Figure 3.3 LNQF scheduler

3.2.2 Analysis of Stability

To prove that LNQF is stable, the stability of a switch is first defined.

Definition 4 A switch is stable if and only if the expected queue length in the switch

does not increase without bound, i.e.,

Several definitions and lemmas, similar to [13], will first be defined and proven

in order to facilitate the proof of stability of LNQF.

Definition 5 The rate matrix is defined as:

40

Definition 6 The rate vector associated with the rate matrix A is defined as:

41

Definition 7 The arrival vector representing the arrivals to the VOQs is defined as:

where Ai j (n) represents the number of cells arrived at the Q ij at time n.

Definition 8 The service matrix indicating the match between inputs and outputs

is defined as:

Definition 9 The service vector corresponding to the service matrix is defined as:

Definition 10 The queue length vector representing the queue length of the VOQs

at time n is defined as:

where L i ,j (n) represents the queue length of the Q i ,j at time n.

Definition 11 The normalization matrix R is defined as:

Definition 12 The approximate next state vector of queue length is defined as:

42

From Fact 1 we know that doubly sub-stochastic matrices A forms a convex set,

which has extreme points indicated by permutation matrices. The above linear

programming problem has a solution at the extreme points of the convex set.

Therefore,

After taking expectation of Equation (3.3),

43

Thus, the first term of equation (3.4) can be expressed as:

44

45

From Definition (12), the approximation of (3.6) becomes

Since Si d (n) is either 0 or 1, the approximated next state queue length has the

following relation with the exact next state queue length:

Proof: From Lemma 5, the quadratic Lyapunov function of the queue length vector

has a negative drift. According to [40], Theorem 1 is proved.

46

3.3 Earliest Due Date First Matching (EDDFM) Algorithm

possible to the head of queue such that all the cells beyond this cell have smaller

weights. If a cell in the queue is served in a time slot, it will be deleted from the

queue; otherwise, its weight will increase by one. The weight of VOQ at time

be the service vector associated with input i. Like LNQF as shown in Figure 3.3,

the EDDFM scheduler performs the following for each time slot n:

1. Each input i set the weight of every VOQ Qi,j to the weight of the head cell if

it is not empty, and 0, otherwise; then input i sends the weight vector W i (n)

to the scheduler.

2. The scheduler searches for a match that achieves the maximum aggregate

weight under the constraint of unique pairing, i.e.,

47

Figure 3.4 Comparison of probability of cell overdue

3. Each input selects the head cell from the matched VOQ indicated by S i (n) for

transmission.

3.4 Performance Comparison of Proposed Algorithms

A 4 x 4 input-queued switch was considered for simulations in which the bursty

traffic was generated based on the on-off traffic model. The average burst length was

chosen to be 20 cells and the burstiness was 2. The traffic was non-uniform, i.e., the

arrival rates of the VOQs in the same input were different, and were 0.5, 1, 2 and

5Mbps. Two sessions in each VOQ, a fast session with a rate four times that of a

slow session, were generated. A traffic load of 0.9 was assumed, and each simulation

lasted through 100 seconds.

Three levels of delay bound, which are short, medium, and long, were assumed

in the simulation. The delay bounds were assigned according to the following rules:

sessions with rates over 10% of the link capacity were treated as fast sessions and were

assigned short delay, sessions with rates between 1% and 10% of the link capacity were

48

Table 3.1 Statistics of the simulation results: di,j is the average delay of the jth
session in VOQ (1, i).

treated as medium sessions and were assigned short and medium delay randomly, and

sessions with rates less than 1% of the link capacity were treated as slow sessions

and were assigned short, medium and long delay randomly. The medium delay

and long delay were set to five times and ten times of short delay, respectively.

The configuration of delay bounds of each session remained the same for different

algorithms for comparison. The probabilities of cell overdue for different algorithms

are shown in Figure 3.4. The values of the delay bound in the figure are associated

with short delay.

Table 3.1 summarizes the performance comparison among EDDMF, LNQF,

LQF and OCF. The following results can be derived from Table 3.4 and Figure 3.4.

• Both LNQF and EDDFM are stable.

• Both LNQF and EDDFM provide comparable delay for each session, implying

that they are non-starvation algorithms.

49

• The fairness of LNQF and EDDFM are in the same order as OCF, and are

smaller than that of LQF.

• EDDFM has the lowest probability of cell overdue.

• LNQF performs well in reducing the burstiness, while EDDFM does not.

CHAPTER 4

STORE-SORT-AND-FORWARD (SSF)

There has been a trade off between QoS guarantees and scalability: the input

queueing architecture is scalable but cannot provide guaranteed QoS, while the

output queueing architecture can provide guaranteed QoS but is not scalable. Lately,

there is a trend to adopt combined input output queueing (CIOQ), in which buffers

are placed at both the input and output sides of a switch. It has been shown that

a CIOQ switch with moderate speedup can be constructed to behave identically

to an output-queued switch [20, 21, 41]. An algorithm called most urgent cell

first algorithm (MUCFA) [41] requires a speedup of 4 in order to enable a CIOQ

switch to exactly emulate an output-queued switch employing FIFO discipline. It

has been proved later in [20] that a speedup of 2 is sufficient for a CIOQ switch to

behave identically to an output-queued switch which employs work-conserving and

monotonic scheduling discipline.

With the same buffer access and fabric speed, a switch which does not require

speedup can provide N times the capacity of a switch which requires a speedup of

N. Thus, speedup should be kept as low as possible, and can only be eliminated

by using solely input queueing. In this chapter, an input scheduling algorithm,

referred to as Store-Sort-and-Forward (SSF), is proposed and proved to be able to

provide guaranteed end-to-end delay and delay jitter bounds, and to achieve strict

sense 100% throughput with no speedup. As opposed to existing input scheduling

algorithms [12, 13, 14, 15] which employ the work-conserving discipline, SSF uses

a framing strategy, which is non-work-conserving. A switch implementing the non--

work-conserving discipline may be idle even when there are cells waiting for service,

thus possibly increasing the average delay. However, the end-to-end delay bound is

50

51

a more important performance index than average delay for guaranteed services [9].

In the existing algorithms, cells are immediately eligible for transmission upon their

arrivals to a switch, and thus the existence of a perfect matching in which every input

is matched to a unique output cannot be ensured in every time slot. As a result,

although 100% throughput can be achieved asymptotically, no QoS guarantees can

be provided. In SSF, the time axis is divided into constant periods of length T,

called frames, each of which is an integer multiple of the cell transmission time.

Cells arrived at the inputs of a switch during one frame are first held in the input

buffers, and are then "sorted-and-transmitted" in the next frame. The (r, T) traffic

model is adopted in SSF, in which a connection with a rate of r cannot transmit more

than r • T bits during time T. Bandwidth allocation is performed before a connection

is established to assign the connection rate in such a way that the aggregate rate of

any link is below its capacity. The SSF algorithm consists of a cell admission policy

to regulate the traffic pattern to conform to the (r, T) traffic model at the source

node of each connection, and a sorting algorithm at each switching node to resolve

the input and output contentions. It is proved that cells arrived during one frame

can be transmitted in the next frame. Therefore, an input-queued switch employing

SSF can achieve strict sense 100% throughput, and provide deterministic end-to-

end delay and delay jitter bounds. Since SSF is a non-work-conserving scheduler,

the performance analysis can be extended from a single node to a network with

arbitrary topology, and more efficient usage of buffer space than work-conserving

schedulers can be achieved [9].

The rest of the chapter is organized as follows. Section 1 presents the SSF

algorithm. The proof of the QoS guarantees and the analysis of the complexity of

SSF are given in Section 2. Concluding remarks are given in Section 3.

Figure 4.1 An N x N input-queued switch with time axis divided into frames

4.1 The Store-Sort-and-Forward Algorithm

The Store-Sort-and-Forward (SSF) algorithm consists of two parts: a cell admission

policy which is only needed at the source node of each connection to regulate the

traffic to conform to the (r, T) traffic model [7], and a sorting algorithm, which is

needed at each switching node to resolve input and output contentions.

4.1.1 Framing Strategy and Cell Admission Policy

Consider an N x N input-queued cell switch in which buffers are only placed at the

input side of the switch. A framing strategy similar to [7] is adopted in SSF. At

each switch, the time axis is divided into frames with equal length of T, where T

is an integer multiple of the transmission time of a cell. We assume that all input

and output links have the same transmission rate R and are synchronized, i.e., input

and output links start service at the same point of time, as shown in Figure 4.1. For

L is the cell length in bits.

Cells arrived during one frame are first held in the input buffers and eligible

for transmission in the next frame, as shown in Figure 4.2. Cells stored in one input

buffer may go to any of the outputs. Let ri,j be the rate of a connection between input

i and output j. The traffic load of any input or output link should be kept below its

52

Figure 4.2 Time relation between cell arrivals and departures

bandwidth allocation must be performed in the signaling phase before a connection

is established. To guarantee that the traffic on any link is not overloaded, a cell

admission policy is needed to regulate the traffic to conform to (r, T) traffic model,

in which a connection with a rate of can transmit no more than T bits

during a frame with length of T. If each server along a connection path guarantees

that cells arrived during one frame can always be transmitted in the next frame, the

connection will conform to the (r, T) traffic model at every switch throughout the

network [7], and therefore, it is only necessary to have the cell admission function at

the source node of the connection.

53

54

4.1.2 The Sorting Algorithm

The sorting algorithm' is a key element of SSF to ensure that cells arrived in one

frame can be transmitted in the next frame by completely resolving the input and

output contentions. Cells arrived at one input during a frame can go to any of

the outputs. Since there is no speedup at either the buffers or the fabric, only

one cell can be transmitted from each input, and likewise only one cell can be

forwarded to each output in any given time slot. Thus, contentions occur when

more than one cell is destining for the same output in the same time slot, as shown

in Figure 4.3(a). Contention is the main problem which restricts an input-queued

switch from providing QoS guarantees, and can be resolved by rearranging the trans-

mission order of the cells among different connections' arrived during one frame in

each input buffer in such a way that cells to be transmitted in the same time slot are

going to different outputs, as shown in Figure 4.3(b). Let C i,j be the number of cells

which arrive at input i and are directed to output j in one frame. We will prove in

Section 2 that such a rearrangement always exists if the traffic pattern conforms to

For simplicity, we make the following assumption.

Assumption 1 3 All the input and output links are fully utilized, i.e.,

55

Figure 4.3 Cells arrived in one frame: (a) original arrival orders. (b) scheduled
transmission orders.

Definition 13 A perfect matching is a matching in which every input is matched to

a unique output.

To ensure that cells arrived in one frame can be forwarded to the output links

in the next frame, a perfect matching is needed in each time slot. A traffic matrix

W = [wi,j] can be generated for each frame, where every row i in W represents a

distinct input k, and every column j represents a distinct output 1. Note that i is

not necessarily equal to k; likewise, j may not equal to 1. The element at the

intersection of row i and column j indicates the number of cells destined for the corre-

sponding output 1 from the corresponding input k. The sum of elements along any

row or column is exactly M based on Assumption 1. If elements along the diagonal of

56

the matrix are all nonzero, every input is matched to a unique output. Such a matrix,

referred to as a matched matrix, is attainable by swapping rows and columns of an

arbitrary traffic matrix if Assumption 1 is held. A modified version of McWorter's

algorithm which was originally proposed to resolve the marriage problem [42] is used

to obtain a matched matrix.

Consider a traffic matrix which can be decomposed into the following form:

where blocks A and D are square, and all diagonal elements of A are nonzero 4 .

Definition 14 An effective move consists of row and column swappings with the

constraint that all diagonal elements of A remain nonzero that will result in

• moving a nonzero element in D to the upper-left corner of D,

• replacing a zero element in B by a nonzero element in A, or

• replacing a zero element in D by a nonzero element in C.

A matched matrix can thus be obtained by the following iterative procedure in

each time slot:

1. Single effective move: If there is at least one nonzero element in block D,

that element can be moved to the upper-left corner of D by swapping rows

and columns without changing any element in block A, as shown in Figure 4.4.

Therefore, the size of A is increased by ones within a single effective move. This

step is repeated until all elements in D become zero or the size of D becomes

zero.

57

2. Double effective move: If all elements in D become zero, find a nonzero

element in C. There must be some nonzero elements in block C, otherwise

the input buffers corresponding to the rows in blocks C and D do not contain

any cell, thus violating Assumption 1. For any nonzero element wi,j in block

C, if there exists a corresponding nonzero element Wj,k for some k in block B,

interchange columns j and k, thus resulting in one nonzero element in block

D, as shown in Figure 4.5. By repeating Step 1, the size of A is increased by

one. That is, it takes two effective moves to increase the size of A by 1, thus

so called a double effective move.

3. Multiple effective move: For every element w i,j in block C, if the corre-

sponding element wj,k is zero for all k in block B, rows and columns are swapped

(see Figure 4.6(b)) such that nonzero columns of C are moved right next to

block D resulting in the following matrix:

where block E contains all the nonzero columns of C and all diagonal elements

of A l and A2 are still nonzero. Block F is called a residue matrix. We will

prove in Section 2 that elements in block F cannot be all zero. For any nonzero

element w i,j in F, if there exists a corresponding nonzero element w j,k for some

k in G, interchange columns j and k, thus resulting in a nonzero element in the

zero block just below G (i.e., completion of one effective move), as shown in

Figure 4.6(c). Then, Step 2 can be repeated to augment the size of A by one.

However, for every nonzero element w i,j in F, if the corresponding element wj,k

is zero for all k in block G, the sub-matrix consisting of all but the extended

58

Figure 4.4 A single effective move: (a) There is a nonzero element in block D. (b)
The nonzero element is moved to the upper-left corner of block D by swapping rows
7 and 8, and then columns 7 and 8.

rows and extended columns' of block E satisfies the same conditions as the

original situation in Step 3, and can thus be further decomposed as above.

Hence, either a nonzero element can be moved to the zero block below G or

the traffic matrix can be recursively decomposed.

We will prove in Section 2 that a perfect matching can be found within N(ln N+

0(1)) effective moves if the traffic pattern conforms to Assumption 1. Once a

matched matrix is found in a time slot, a cell corresponding to each diagonal elements,

say wi , i , is scheduled to be transmitted during the next frame from the input corre-

sponding to row i to the output corresponding to column i. Then the value of each

diagonal element is reduced by one. In the next time slot, a new matched matrix

59

Figure 4.5 A double effective move: (a) Block D has only zeros and there is a
nonzero element in block B corresponding to a nonzero element in block C. (b) The
nonzero element in block C is moved to block D by swapping columns 5 and 8.

is obtained based on the updated traffic matrix until all the cells in the frame are

scheduled.

4.2 Algorithm Analysis

In this section, we first prove that by rearranging the cell transmission orders in each

input buffer, a contention free schedule can be found in each time slot if the traffic

pattern follows Assumption 1, and then we analyze the complexity of the algorithm.

4.2.1 Guaranteed QoS

Finding a perfect matching is the same as finding a system of distinct representatives

(SDR) in a family of sets [43].

60

Figure 4.6 A multiple effective move: (a) There are only zero elements in block
B corresponding to the nonzero elements in block C. (b) Residue matrix F is
constructed by swapping columns 2 and 6, and then rows 2 and 6. There is a
nonzero element in G corresponding to a nonzero element in F. (c) The nonzero
element in F can be moved to the zero block below G by swapping columns 1 and 8.

Then, V is called a system of representatives for a In addition, if ai's are all

distinct, V is called a system of distinct representatives (SDR) for ft

number of distinct elements in S.

Let h be a set, where elements in h represent the distinct destinations of the

cells arrived at input i in one frame. Thus, a perfect matching is in fact an SDR of

the family of sets I {1 -1,12, • •

Lemma 6 Let U Ii be a union of any k sets in I. The following relation holds for

any traffic pattern which satisfies Assumption 1:

i.e., the number of distinct destinations of cells belonging to one frame in k input

buffers is at least k.

61

Proof: This is proved by contradiction. Assume that the statement is not true, i.e.,

the number of distinct destinations of cells belonging to one frame in any k input

buffers could be less than k. Since the total number of cells belonging to the frame

in these k input buffers is k • M, at least one output link must be receiving more

than M cells, thus violating Assumption 1. Therefore, the Lemma must be true.

Let 0 = {0 1 , 02 , • • • , ON} be a family of sets, where OZ is a set, whose elements

are the distinct inputs from which cells belonging to one frame are directed to output

i.

any traffic pattern which satisfies Assumption 1:

i.e., the number of distinct sources (inputs) of the cells received by k outputs in one

frame is at least k.

The proof is the similar to that of Lemma 6.

Lemma 8 Let F be a set of any k inputs, and 0 be a set of any k outputs, where

k = 1, 2, • • • , N. If cells belonging to one frame in the k input buffers in r are directed

to the k outputs in 8 exclusively, the k outputs in 8 can only receive cells from these

k inputs in F during the frame given that the traffic pattern satisfies Assumption 1,

and vice versa.

Proof: This is proved by contradiction. Assume that the statement is not true, i.e.,

under the condition that cells belonging to one frame in k input buffers in F are

directed to the k outputs in e exclusively, the k outputs in e can still receive cells

from inputs which are not in F. According to Assumption 1, the number of cells

62

which can be transmitted to any k outputs or from any k inputs in each frame is

exactly k • M. If the k outputs in 8 receive cells from inputs which are not in r,
the number of cells transmitted to these k outputs from the k inputs in F must be

less than k • M. Thus, some of the cells in the k inputs in r must be transmitted to

some outputs not in 8, which contradicts our condition, and therefore, the lemma

must be true. Similarly, if cells received by the k outputs in 8 all come from the k

inputs in r during one frame, the cells stored in these k input buffers in r can only

be directed to the k outputs in O in that frame.

Lemma 9 A perfect matching always exists if the traffic pattern satisfies Assumption 1

pattern satisfies Assumption 1, according to Philip Hall's Theorem, an SDR exists

for the family of sets I, which is in fact a perfect matching.

Theorem 2 SSF can guarantee strict sense 100% throughput, bounded end-to-end

delay, and bounded end-to-end delay jitter.

Proof: From Lemma 9, a perfect matching exists provided Assumption 1 is satisfied,

i.e.,

where Ci,j is the number of cells which arrive at input i and directed to output j in

one frame.

Once a perfect matching is found in a time slot, the rest of the cells belonging

to that frame still satisfy Assumption 1, except that instead of M there are M — 1

cells left in each input buffer. Therefore, a perfect matching can be found in each

63

Figure 4.7 Two extreme cases of cell transmission: (a) the cell experiences an
end-to-end delay of (n — 1)T + T. (b) the cell experiences an end-to-end delay of
(n + 1)T — T.

time slot until all the cells belonging to that frame are scheduled, and thus 100%

throughput is achieved.

Noting that cells arrived during one frame can be transmitted in the next frame,

the following are two extreme cases of cell transmission for a connection consisting

of n concatenated switches: a cell arrived in the last time slot of frame f at the first

switch is transmitted in the first time slot of frame f n at the nth switch resulting

in an end-to-end delay of (n — 1)T + T, where 7 is the time duration of one time slot,

and a cell arrived in the first time slot of frame f at the first switch is transmitted in

the last time slot of frame f n at the nth switch resulting in an end-to-end delay

of (n + 1)T — T, as shown in Figure 4.7. Thus, the end-to-end delay and end-to-end

delay jitter of a connection are bounded by (n + 1)T — T and 2(T — T), respectively.

4.2.2 Complexity Issues

In this section, we derive the upper bound of the number of effective moves needed

to obtain a perfect matching.

64

where block A is a P x P block, D is an (N P) x (N P) block, and all diagonal

elements of A are nonzero.

The rows and columns in Wo are associated with the inputs and outputs, respec-

tively. Assume that row i is corresponding to input k, and column j is corresponding

input k has cells directed to output 1.

Lemma 10 If D is an (N P) x (N — P) "zero" block, the number of nonzero

columns in block C is at least N — P +1, and similarly, the number of nonzero rows

in block B is at least N — P +1.

Proof: There are N P rows in blocks C and D. According to Lemma 6, cells

stored in the inputs corresponding to these rows are directed to at least N — P

distinct outputs, i.e., there are at least N P nonzero columns in blocks C and D.

Since D is a "zero" block, there are at least N P nonzero columns in block C.

However, if the number of nonzero columns in block C is N — P, i.e., cells stored in

the inputs corresponding to the N P rows are directed to N P distinct outputs,

according to Lemma 8, the N P outputs corresponding to the N — P nonzero

columns in block C can only receive cells from these N — P inputs. Hence, columns

in block A corresponding to these N — P outputs must be zero, thus conflicting with

the condition that the diagonal elements of A are all nonzero. Therefore, the number

of nonzero columns in block C is at least N P +1. Similarly, the number of nonzero

columns in block B is at least N P + 1.

In the previous section, we claimed that block F in the traffic matrix W1 must

have some nonzero elements. The proof is given by the following Lemma. Note

that in the scenario of a multiple effective move, the traffic matrix is decomposed

recursively, and a residue matrix is constructed in each iteration of the recursive

65

procedure until a nonzero element wj,k corresponding to a nonzero element w i, j in

the residue matrix is found in block G, as shown in Figure 4.8.

Lemma 11 Consider a traffic matrix which satisfies Assumption 1. Any residue

matrix F associated with an (N P) x (N — 13) all-zero block D must have at least

N P +1 nonzero columns.

Proof: Consider the residue matrix constructed in the first iteration of the recursive

procedure. For convenience, the traffic matrix W1 is written again below:

where D is an (N P) x (N — P) "zero" block, and diagonal elements of A l and A2

are all nonzero. By virtue of the procedure in obtaining a matched matrix, the block

below a residue matrix is always a "zero" block, and the extended rows of block F

constitute a zero block in the area above D.

First, we prove that there are at least N—P+1 columns in block F. According

to Lemma 10, there are at least N — P + 1 nonzero columns in block C and N P +1

nonzero rows in block B. Thus, if the number of zero columns in block C is less than

N — P+1, there must exist at least one nonzero element w j,k in blockBcorresponding

to a nonzero element wi,j in block C, which results in a double effective move, and no

residue matrix is needed to be constructed. Thus, residue matrix F is only necessary

when the number of zero columns in C is larger than or equal to N — P + 1, i.e.,

there are at least N — P + 1 columns in block F.

Let m be the number of columns in F, i.e., block A l is an m x m block, and

n be the number of nonzero columns in F, and thus there are m — n zero columns

in F. Suppose cells received by the outputs corresponding to these m — n extended

columns of F and the N — P extended columns of G come from d distinct inputs.

66

Since all nonzero elements in these extended columns are in blocks A l and G, the

number of distinct inputs d is no more than m, i.e., d < m.

Consider n < N — P: By Lemma 7, since m — n N — P > m for n < N — P,

the number of distinct inputs d corresponding to these m — n + N — P outputs must

be greater than or equal to m — n N — P, i.e,, greater than m. This contradicts

the above, and thus n > N — P.

Consider n = N — P: By Lemma 7, since m — n + N — P = m for n = N P,

the number of distinct inputs d corresponding to these m — n + N — P outputs must

be greater than or equal to m n N P, i.e., d> m. On the other hand, d must

be less than or equal to m as shown above, which implies that d must be equal to

m. However, by Lemma 8, the cells stored in these d = m inputs corresponding to

the rows in A 1 are exclusively directed to the m outputs corresponding to the m — n

columns in block A l and the N — P columns in block G, thus resulting in n zero

columns in block A l . This conflicts with the condition that all diagonal elements in

A l are nonzero. Therefore, n is at least N P + 1.

Noting that the elements below any residue matrix and the elements below

block G are always zero, the proof of the lemma for a residue matrix constructed in

any other iteration of the recursive procedure is similar to that for the residue matrix

constructed in the first iteration, and thus the lemma is proved.

Theorem 3 Let k, where k > 1, be the number of effective moves within which the

size of block A is guaranteed to increase from P x P to (P + 1) x (P + 1) in SSF,

where P = 0, 1, 2, • • • , N — 1. The following relation between k and P holds for any

traffic patterns satisfying Assumption 1.

67

Figure 4.8 Decomposition of a traffic matrix

Proof: According to Lemma 11, the number of nonzero columns in a residue matrix

is at least N — P + 1 if the traffic pattern satisfies Assumption 1. The larger the

number, the smaller number of decompositions of the traffic matrix is needed to

guarantee that a nonzero element w j,h in G corresponding to a nonzero element w i,j

in the residue matrix can be found, i.e., a smaller number of effective moves are

needed. To derive the number of effective moves within which the size of block A is

guaranteed to increase by one, the worst case is considered. Thus, we assume that

there are N — P + 1 nonzero columns in each residue matrix as shown in Figure 4.8.

Note that the size of a residue matrix is (N — P + 1) x (P (k — 2) (N — P +1)),

where k is the number of effective moves required to move a nonzero element to

the upper-left corner of block D if a nonzero element w j,h which is corresponding

to a nonzero element w i,j in the residue matrix can be found in G, as shown in

68

Figure 4.8. Since there are N P + 1 nonzero rows in G and N — P + 1 nonzero

columns in a residue matrix, if the number of columns in the residue matrix is less

than 2(N — P 1), i.e., P — (k — 2)(N — P 1) < 2(N — P + 1), or equivalently,

wi,j in that residue matrix can be found in G. Thus, k effective moves are sufficient

are necessary and sufficient to guarantee to increase the size of block A by one if

Theorem 4 The number of effective moves required to obtain a perfect matching in

SSF is bounded by N(ln N OM).

Proof: From Theorem 3, the size of block A is guaranteed to increase by one within

k effective moves if the number of rows (columns) in block A satisfies the following

condition,

Equation (4.1) can be rewritten as follows:

Thus, the total number of effective moves f(N) required to obtain a perfect

Rewrite the right part of Equation (4.2) in terms of n, where n N — P +1.

69

Note that the sum of the Harmonic series is given by:

Thus,

i.e., the number of effective moves required to obtain a perfect matching is bounded

by N(ln N + 0 (1)) .

CHAPTER 5

CONTRIBUTIONS ON ATM MULTICASTING

Multiway communication involves transferring of data simultaneously from multiple

senders to one or more receivers, using a single, shared multicast tree. Such a

mechanism can be managed simply by maintaining a separate multicast tree, rooted

at each sender. But, this simple scheme does not efficiently utilize the network

resources like bandwidth. Moreover, connection management becomes difficult when

participants join or leave the connection during the multiway session.

Multiway communication can be supported more efficiently if all the senders

share a single multicast tree. Such connections are also called as multipoint-

to-multipoint connections. A multicast group can be supported using a single

multipoint-to-multipoint connection, even when there are multiple senders. Several

multimedia applications like video conference, interactive video games and distributed

interactive simulations require this support from the underlying network layers. In

a multipoint-to-multipoint connection, data from multiple senders are merged into a

single connection at appropriate "merge points" and forwarded towards the receivers.

The routing and signaling protocols specified in the current standards for ATM

networks do not support multipoint-to-multipoint connections. Only a rudimentary

support for point-to-multipoint connections is specified in the standards. But,

recently, several protocols to establish multipoint-to-multipoint connections in ATM

networks have been proposed for possible standardization [44, 45, 46]. In this

chapter, we assume that one such mechanism is already implemented to establish

multipoint-to-multipoint connections.

Based on the above assumption, a single connection identifier (VPI/VCI) is

associated with each multipoint-to-multipoint ATM connection. Since VPI/VCI

70

71

values have a local significance on a given link, a direct implication of this association

is that all the ATM cells of this connection, even those from different senders, use

the same VPI/VCI value on that particular link. This conserves the VPI/VCI space

and the switch resources, while simplifying the signaling mechanisms when there are

several simultaneously active multicast groups. This results in a scalable mechanism

for supporting multipoint-to-multipoint ATM connections.

At the sender, the ATM cells are generated by the fragmentation of higher layer

packets. Each ATM cell, therefore, does not carry information about the sender and

the receiver. The ATM Adaptation Layer (AAL) at the receiver is responsible for

re-assembling the original higher layer packets from the individual ATM cells. Cells

of different packets originating from different senders intended for the same multicast

group may get interleaved with each other. Since all the cells use the same VPI/VCI

value, the receiver may not be able to uniquely identify the sender of a particular

ATM cell. Therefore, the original packet cannot be re-assembled at the receiver. This

is called the sender identification problem, associated with multipoint-to-multipoint

connections in ATM networks.

Several solutions have been proposed to solve the sender identification problem

for multipoint-to-multipoint connections in ATM networks. In this chapter, we

provide a systematic study of these solutions. The solutions are classified into two,

based on their inability or ability to support interleaving of ATM cells belonging

to different packets intended for the same multipoint-to-multipoint connection. We

compare the fundamental characteristics of each of these classes of solutions. The

factors used for comparison include the buffer requirements, the extra overheads

carried within each cell or packet, the complexity of the mechanism, the changes

required to existing network components and inter-operability.

72

VC-Merge and VP-Merge are representative solutions for the two categories of

solutions. VC-Merge is fast and scalable, but it requires the use of additional buffers

at intermediate merge points. VP-Merge, on the other hand, needs no additional

buffers, but its scalability is restricted due to the excessive use of VPI/VCI space.

It is therefore desirable to design a scheme that combines the advantages of the VC-

Merge and VP-Merge mechanisms. Such a scheme would require very little additional

buffers and at the same time, will not be restricted by its use of VPI/VCI space.

Design of such schemes is the focus of this chapter. This chapter proposes a generic

scheme for merging data from multiple senders onto one or more outgoing links.

The chapter is organized as follows. In Section 1, we categorize and analyze

the various solutions to the sender identification problem. Section 2 compares the

VC-Merge and VP-Merge schemes under various scenarios. In Section 3, we propose

a generic VC-Merge scheme and analyze three mechanisms based on this generic

scheme. Section 4 concludes the chapter with the results and the direction for future

work.

5.1 Solutions to the Sender Identification Problem

The sender identification problem arises because the receiver may not be able to

uniquely identify the source of an ATM cell when the cells from different packets

intended for the same multipoint-to-multipoint connection are interleaved. One

way of solving the problem is by preventing the interleaving of cells. Since cells

from different senders may arrive in any order at an intermediate switch, special

mechanisms are required to prevent interleaving of cells. In the next section, we

briefly describe some of these mechanisms.

ATM networks, which supports statistically multiplexing, derives some of its

advantages due to interleaving of cells. Therefore, it may not be desirable to prevent

73

cell interleaving. In order to support cell interleaving, the identity of the sender of

each cell has to be conveyed to the receiver. In a subsequent section, we discuss some

of the mechanisms used to convey this information from the sender to the receiver.

5.1.1 Mechanisms that Prevent Cell Interleaving

The mechanisms discussed in this section prevent cell interleaving by sending all the

cells of a packet contiguously. The sender can be identified from the reassembled

packet at the receiver(s). Note that interleaving of cells belonging to different

connections is not restricted by any of these mechanisms.

In the Multicast Server (MCS) approach [47], a centralized multicast server

ensures contiguity of all the cells of a packet. The senders of a

multipoint-to-multipoint connection first send the data to a pre-assigned multicast server

responsible for forwarding the data packets to all the receivers. The scheduler at the

MCS prevents interleaving of cells belonging to different packets. This approach can

be easily deployed on existing networks supporting point-to-multipoint connections.

But, the lack of scalability and single point of congestion and failure are its main

disadvantages.

A token-based approach [48] requires a user to possess a token for sending

packets to a multipoint-to-multipoint connection, thereby, restricting multiple users

from simultaneously sending packets to the same connection. The token is passed

on from one sender to another. Though this scheme works especially well for links

with limited bandwidth, it does not scale well to large number of senders because of

the overheads involved in token-passing and recovery of lost tokens.

Buffering of cells at appropriate "merge points" and intelligent scheduling can

be used to prevent cell interleaving. In one possible implementation called the store

and forward VC-Merge mechanism [49], an intermediate switch buffers all the cells

74

of a packet till the entire packet reaches the switch. The cells are then scheduled

to be contiguously forwarded towards the destination(s) using the entire bandwidth

allocated for this connection. Note that cells of a packet can interleave with cells

of packets intended for a different connection, which distinguishes this scheme from

traditional packet switching. An alternate implementation called the virtual cut-

through VC-Merge scheme allows an intermediate switch to schedule partial packets

for forwarding. But once a packet is scheduled, cells of other packets intended for

the same multipoint-to-multipoint connection have to be buffered till the scheduled

packet is completely forwarded. This wait depends on the rate at which the scheduled

packet is arriving.

The VC-Merge approaches described here are efficient because the cells need

not be reassembled at each intermediate switch. Instead, the end-of-packet (EOP)

indicator as specified in AAL5 is used to detect the end of a particular packet.

VC-Merge has very little computational overhead, but needs additional buffers at

appropriate intermediate switches, whose size depends on the number of senders,

the traffic characteristics and the packet sizes. In subsequent sections, we study

the buffer requirements and propose mechanisms to reduce the amount of additional

buffers.

5.1.2 Mechanisms that Support ATM Cell Interleaving

In order to support ATM cell interleaving for multipoint-to-multipoint connections,

the identity of the sender must be included in each cell. In the VC-Mesh approach [47],

each sender of a multipoint-to-multipoint connection establishes a separate point-

to-multipoint connection identified by distinct VPI/VCI field. This allows cell

interleaving, but complicates dynamic changes to the set of senders and receivers

due to the maintenance of large number of connection states.

75

Alternately, the sender information can be encoded in the 10-bit multiplex ID

(MID) field of AAL3/4 ATM Adaptation Layer. Each sender has to be assigned a

unique MID value using some additional mechanisms, thereby, restricting the number

of senders to 1024. AAL3/4 is not widely used because the payload is limited to only

44 bytes (as defined in AAL3/4), limiting the effective utilization to 83%.

In the VP-Merge technique, only the VPI field is used to identify a multipoint-

to-multipoint connection and a VCI value, unique to each sender within the VPI

value, is used to identify the sender. The cells are switched on the VPI value and the

VCI value is carried undisturbed. This scheme can be implemented on existing VP

switches, but the scalability is limited because the number of independent multipoint-

to-multipoint connections on a given link can be at most 4096 (= 212) .

In the widely prevalent AAL5 adaptation layer standard, there is no field

for sender information in the header or the payload. A new AAL (currently non-

standard) that includes the sender information as part of the 48 byte payload can be

proposed for multipoint-to-multipoint connections. In one possible implementation,

the value of first two bytes of the ATM payload, uniquely assigned to each sender,

can be used to identify the sender. In this implementation, the actual payload is

only 46 bytes long, thereby, limiting the effective utilization to 86.79%. Proposing

this new protocol may lead to incompatibility with existing infrastructure. Further,

a single bit error in the non error-corrected sender value will affect packets from two

different senders.

A scheme proposed in [50] facilitates the use of standard AAL5 protocols by

introducing a Resource Management (RM) cell to carry sender identities. Each RM

cell contains identities of the senders of the following few ATM cells intended for a

particular multipoint-to-multipoint connection. The receiver interprets the RM cell

to correctly identify the senders of these ATM cells. The RM cell on a given link is

76

significant only to the switches at either end of the link. The RM cell is therefore

created at each switch in accordance with the scheduling policy of that switch. This

prevents the propagation of wrong information due to lost cells. Though the effective

utilization for two-byte long sender identities is 86.79%, the performance may be

affected due to the creation of RM cell at each switch. Since the loss of an RM cell

can affect several packets, the RM cells are sent with CLP-bit 0 to minimize the

chance of losing these cells.

5.2 Comparison between VC-Merge and VP -Merge

We now compare the two categories of solutions described in the preceding sections.

The VC-Merge techniques and the VP-Merge techniques are used as representative

techniques for the two categories of solutions for solving the sender identification

problem. The VC-Merge uses a coarser granularity of multiplexing based on packet

interleaving, while VP-Merge uses a finer granularity of multiplexing based on cell

interleaving.

VC-Merge has been accepted to support multipoint-to-point connections in

future versions of PNNI specifications. We believe that VP-Merge is an equally

good alternative. Connections based on VP-Merge technique closely resemble ATM

connections because it supports statistical multiplexing of ATM cells. Moreover, the

buffer requirement for VP-Merge is much smaller than that for VC-Merge. To study

the buffer requirements, we simulated a typical scenario for VP-Merge and VC-Merge

at a merge point. A merge point is a switch that has at least two incoming links

for the multiway connection and one outgoing link that is different from the two

incoming links.

77

Figure 5.1 Star configuration

5.2.1 Simulation Study

We studied the buffer requirements at a merge point for multipoint-to-point

connections. We first considered a merge point with several senders, as shown

in Figure 5.1. We call this the Star configuration. There are several senders Si,

S2 Sn, sending data towards a merge point M. The cells from these senders are

merged and sent out from the merge point. We analyzed the amount of buffer

required at the merge point by varying the number of senders. Each sender is

assumed to be a bursty source. All the senders are assumed to be identical sources

and the capacity of the outgoing link from the merge point is normalized to 1.

Therefore, for a stable system, it is required that the sum of the loads of the senders

is less than 1. We assume that there are no cells lost in transit.

A bursty source, characterized by the peak cell rate (P), the average cell rate

(A) and the average number of cells per burst (B), can be modeled as an ON-

OFF source in the discrete-time domain (two-state Markov Modulated Deterministic

Process (MMDP) [38]), as shown in Figure 3.2. In the OFF state, the source does

not send any cells. In the ON state, the source sends data cells at the peak cell rate

(P). In a discrete-time domain, the source can independently shift from one state to

the other only at the end of a time-slot.

78

Figure 5.2 Star Configuration: Case 1: VC-Merge vs VP-Merge

Using this model for the sources, we simulated the buffer requirements at the

merge point. We simulated three cases, which are described here.

• Case 1: The entire packet is transmitted at the end of a burst. Further, the

incoming links are slow links and the outgoing link from the merge point is a

faster link.

• Case 2: The entire packet is transmitted at the end of a burst. But, the

incoming and outgoing links have the same speed.

• Case 3: The packets are of fixed length and the complete packet may not be

transmitted at the end of a burst. The incoming and outgoing links have the

same speed.

The plot of comparison for the first case is shown in Figure 5.2(a). In this figure,

the average burst length is 10. From the figure, it is clear that, on an average, VC-

Merge technique uses 83% more buffer than the VP-merge technique. We repeated

the same experiment using different values of average burst length. As the average

79

Figure 5.3 Star Configuration: Case 1: VC-Merge vs VP-Merge: Smooth

burst length increases, the buffer requirement for the VP-Merge technique increases

correspondingly. This leads to a decrease in the overall percentage increase in buffer

for the VC-Merge technique. The plot for average burst length = 20 is given in

Figure 5.2(b). From the figure, we can see that the average increase in buffer

requirement is about 59% for VC-Merge technique over the VP-Merge technique.

The difference becomes even more pronounced as the traffic becomes smoother as

shown in Figure 5.3. This is due to the fact that very little buffering is required for

the VP-Merge technique when the traffic is smooth.

In the second case, we studied the buffer requirements when the incoming and

outgoing links have the same speed. In this scenario, the peak cell rate of the sender

is equal to 1, the normalized outgoing link rate. The average cell rate (the load)

is adjusted as the number of senders increase to ensure the stability of the system.

Again, it is assumed that the entire packet is generated during a burst. The buffer

requirements when the average burst length is 10 are plotted in Figure 5.4.

In this scenario, the VC-Merge requires about 27% more buffer on the average.

The difference is smaller than the previous case because entire packets reach the

merge point faster because of the faster incoming links. Therefore, cells on an

80

incoming link become available for switching at a faster rate. The difference decreases

further as the average burst length increases due to the same reasons as explained

in the previous case.

Next, in the third case, we studied the buffer requirements when the entire

packet is not generated during a burst. The packets are assumed to be of fixed

length and consisting of 30 data cells. Again, the incoming and the outgoing links

have the same speed. The results of the plot for average burst length = 10 are shown

in Figure 5.5. In this case, the buffer requirement for VC-Merge increases because the

entire packet may not arrive in a single burst. The buffer requirement for VP-Merge

remains the same as in the previous case.

5.2.2 Summary of the Results

From the simulation studies, we can conclude that VP-Merge has a clear advantage

over VC-Merge based on the buffer requirements. The advantages are more

pronounced for smoother traffic than for bursty traffic. In this respect, we concur

with the opinions expressed in [51]. So, VP-Merge is a better alternative to VC-

Merge with respect to buffer requirements. But, the main problem with VP-Merge

is its poor scalability. Moreover, it is difficult to implement congestion control

mechanisms like Early Packet Discard (EPD) in a VP-Merged connection.

5.3 Improved VC -Merge Mechanisms

The ATM Forum has accepted VC-Merge to support multipoint-to-point connections

in future versions of PNNI specifications. In this section, we describe some

improvements to the traditional VC-Merge schemes that reduce the buffer requirements

at the intermediate switches at the cost of increased utilization of the VPI/VCI space.

Since the number of different connections supported on a given link is much less than

81

Figure 5.4 Star Configuration: Case 2: VC-Merge vs VP-Merge

the available VPI/VCI space, this increased utilization does not affect the scalability

of the proposed mechanisms.

5.3.1 Multiple VC -merge Mechanisms

We propose some improvements to the VC-Merge approach to minimize the the buffer

requirements at the intermediate switches. These improvements, referred as multiple

VC-Merge mechanism, adopt the use of multiple VPI/VCI values for a particular

multipoint-to-multipoint connection. In some sense, each connection has multiple

connection identifiers. Note that the VPI/VCI values still retain local significance

on a given link. Some signaling protocol is required to map multiple connection

identifiers to the same multipoint-to-multipoint connection. This could be done

either a priori during the connection set up phase or dynamically depending on the

performance of the system. The details of the signaling mechanism is outside the

scope of this chapter.

The multiple VC-Merge mechanism does not affect systems that use only store

and forward VC-Merge scheme. But, it has a great impact on systems that incor-

porate virtual cut-through VC-Merge mechanisms. On these systems, though this

82

Figure 5.5 Star Configuration: Case 3: VC-Merge vs VP-Merge

scheme increases the VPI/VCI space for each multipoint-to-multipoint connection,

it improves the throughput and reduces the buffer requirements at intermediate

switches. This improvement is mainly due to the fact that the multiple VC-Merge

mechanism restricts interleaving of cells belonging to different packets only on the

same connection identifier, but permits interleaving of cells on different connection

identifiers referring to the same multipoint-to-multipoint connection.

The multiple VC-Merge mechanism is a generalized merge mechanism. On

one extreme, if there is exactly one connection identifier for a particular

multipoint-to-multipoint connection, the buffer requirements and the characteristics of the

connection resemble the traditional VC-Merge mechanism. On the other extreme,

when the number of connection identifiers equals the number of senders for a

multipoint-to-multipoint connection, the buffer requirements and the characteristics

of the connection resemble the traditional VP-Merge mechanism. Typically, multiple

VC-Merge mechanism operates between these two extremes.

We now discuss two possible implementation schemes for the multiple VC-

Merge mechanism in a system that supports only virtual cut-through mechanism.

83

5.3.1.1 Fixed Multiple VC-Merge Mechanism (FMVC): In this imple-

mentation scheme, a switch that acts as a merge point for a particular

multipoint-to-multipoint connection statically assigns one of the corresponding connection

identifiers to each sender. All the cells originating from a sender intended for that

connection are forwarded on the outgoing link(s) using the assigned connection

identifier. The identifier is assigned when the sender joins the connection and

remains fixed till the sender leaves the connection. If the number of connection

identifiers is less than the number of senders, more than one sender will be assigned

the same connection identifier. This results in partitioning the set of senders into

identifier groups, where each identifier group of senders is assigned a particular

connection identifier. Though it is possible to interleave cells belonging to packets

that originate from senders that are in different identifier groups, it is not possible

to interleave cells belonging to packets originating from two senders that are in

the same identifier group. Since the partitioning and assignments are fixed, it may

happen that some cells belonging to particular identifier group have to be buffered

even though there are no active cells belonging to some other identifier group.

5.3.1.2 Dynamic Multiple VC-Merge Mechanism (DMVC): In the dynamic

implementation, a switch that acts as a merge point for a particular multipoint-

to-multipoint connection maintains the set of unassigned connection identifiers on

the outgoing link(s) pertaining to that connection. When the first cell of a packet

intended for that connection arrives at this merge point, one of the unassigned

connection identifiers from that set is assigned to this packet. This identifier is then

removed from the set. All the cells of this packet use this assigned identifier on

the outgoing link(s). Once the entire packet of cells is transmitted, the assigned

identifier is released back to the set.

84

If there are no unassigned connection identifiers when a packet arrives at a

merge point, the cells of that packet are buffered till one of the identifiers becomes

free. This results in the efficient utilization of the connection identifiers.

It is possible to implement DMVC in a network only if all the switches

are capable of mapping multiple connection identifiers to the same logical queue.

Typically, at a given switch, all the cells arriving on a particular input port having

the same connection identifier are assigned to the same logical queue (either input or

output). In a multiple VC-Merge scenario, the switch must be capable of mapping

multiple connection identifiers to the same logical queue. If all the switches in a

network do not have the capability of mapping multiple connection identifiers to

the same logical queue, then it is possible that packets originating from a particular

sender may arrive out of sequence at a receiver. Though it is possible to resequence

the packets using higher layer protocols, this is against the philosophy of connection-

oriented networks like ATM. In networks comprising of some switches that cannot

map multiple connection identifiers to the same logical queue, a mechanism like

FMVC has to be implemented to solve the sequencing problem.

5.3.1.3 Selective Multiple VC-Merge Mechanism (SMVC): The FMVC

and DMVC implementations described in the previous sections do not impact

the store and forward VC-Merge mechanism. These schemes can be enhanced by

maintaining an additional connection identifier for store and forward VC-Merge

mechanism. This scheme is called the Selective Multiple VC-Merge mechanism

(SMVC). In the simplest implementation of SMVC, two connection identifiers are

maintained for each multipoint-to-multipoint connection. One connection identifier

is used for virtual cut-through VC-Merge scheme and the other is used for store

and forward VC-Merge scheme. When all the cells of a packet intended for a

85

Figure 5.6 Comparison of DMVC and FMVC with virtual cut-through VC-Merge

multipoint-to-multipoint connection is available at a merge point, the store and

forward connection identifier is used to forward these cells on the outgoing link(s).

It is not necessary to initiate forwarding using the virtual cut-through mechanism

because the bandwidth allocated for this multipoint-to-multipoint connection is fully

utilized for the store and forward mechanism. If only partial packets are available,

one of the partial packets is scheduled on the outgoing link(s) using the virtual

cut-through connection identifier. All the cells of this packet will be eventually

forwarded using this connection identifier. This improves the link utilization and

reduces the buffer requirements at the merge point.

5.3.2 Simulation Results

We performed extensive simulations to study the buffer requirements for each of

the proposed improvements. We focus on the buffer requirements at a particular

Merge Point of a single multipoint-to-multipoint connection. Specifically, we studied

the "star" configuration as shown in Figure 5.1 of Section 5.2.1. In order to study

the effect of heterogeneous senders on the buffer requirements, we used two sets of

senders, the fast and the slow senders. The fast senders generate cells at twice the

86

Figure 5.7 Comparison of DMVC and FMVC with increasing number of identifiers

rate as the slow senders. In order to prevent buffer overflow, we maintained the total

load on the outgoing link at the merge point at 90% of its capacity. For lack of

space, we present the results from only one scenario used in our simulations. In this

scenario, we assumed that the average burst length of each source is 10 cells and the

burstiness factor is 2.

In Figure 5.6, we compare the DMVC and FMVC mechanisms with respect

to the virtual cut-through VC-Merge technique. Since the sources are not very

bursty(burstiness 2) and the load on the outgoing link is only 90% utilized, VP-

Merge mechanism requires very little buffers at the merge point. In this scenario, the

buffer requirements for virtual cut-through mechanism is very large, as is evident in

Figure 5.6. This is due to the fact that when cells from a slow source are scheduled

on the outgoing link, cells from other sources have to be buffered till an entire packet

of cells is transmitted out. The slow source does not efficiently utilize the outgoing

link. The multiple VC-Merge techniques, DMVC and FMVC, reduce the buffer

requirements by about 80% just by using two connection identifiers per connection.

This reduction results from the ability to schedule two packets, one using each

connection identifier, simultaneously. The utilization of the outgoing link improves

87

Figure 5.8 Comparison of SMVC with store and forward VC-Merge

by a great extent. As expected, the DMVC technique does a little better than the

FMVC. The buffer improvements are marginal when the number of identifiers is

increased to 4.

We now compare the buffer requirements using DMVC and FMVC techniques

as the number of connection identifiers increases. The plot of comparison is shown

in Figure 5.7. In this plot, the number of senders was fixed at 20. At one extreme of

the plot, when there is exactly one connection identifier per connection, the buffer

requirements are identical to that of virtual cut-through VC-Merge technique. At

the other extreme, when the number of connection identifiers equals the number of

senders, the buffer requirements are similar to the VP-Merge technique. In a typical

multiple VC-Merge scenario, we operate between the two extremes. From the figure,

it is clear that the buffer reduction is phenomenal when the number connection

identifiers is increased to 2. There is further improvement as the number increases

to 4. But, there is hardly any improvement beyond 10 connection identifiers per

connection.

Figure 5.8 compares the average buffer size required by SMVC with those

required by VP-Merge and store and forward VC-Merge techniques. From the plot,

88

it is evident that the buffer requirements for SMVC are about 50%® less than that

for the VC-Merge technique. This is due to the use of two connection identifiers for

the same connection. In the extreme case when there is only one active sender, the

buffer requirements for VP-Merge and SMVC are identical because both can forward

the cells of the packets immediately. On the other hand, the VC-Merge scheme has

to buffer the cells until the entire packet has reached the Merge Point. In a general

sense, use of two connection identifiers improves the buffer requirements at the Merge

Point by about 50%.

5.4 Conclusions

We propose three new schemes for improving the performance of traditional VC-

Merge techniques for the support of multipoint-to-multipoint connections in ATM

networks. Aptly named DMVC, FMVC and SMVC, these mechanisms define a

generic scheme for merging data from multiple senders onto one or more outgoing

links. The mechanisms combine the advantages of VP-Merge and VC-Merge in

terms of the effective conservation of the VPI/VCI space and the reduction in

the buffer requirements at intermediate merge points. Using extensive simulations,

we show that there is a 80% reduction in buffer requirements just by using two

connection identifiers per connection. These schemes, thus, operate between the

two extremes of VC-Merge and VP-Merge. Future work will involve the design of

signaling mechanisms for the support of these generic schemes.

CHAPTER 6

SUMMARY AND FUTURE RESEARCH

In this dissertation, we have discussed QoS features of input-queued cell switches

and have proposed several algorithms to provide QoS features and guarantees for

input-queued cell switches.

In Chapter 2, we modeled and analyzed the back pressure with uniform

independent Bernoulli traffic load, and showed that back pressure occurs with high

probability under loaded traffic. We also derived the average queue length at the

input buffer. To address the above issues in input-queued switches, we proposed a

maximum size matching based algorithm, referred to as min-max fair input queueing

(MFIQ), to minimize the additional delay caused by back pressure, and at the same

time to provide fair service among competing sessions.

Although maximum size matching based algorithms work well for uniform

traffic, they are not stable for non-uniform traffic. In Chapter 3, we proposed two

maximum weight matching based algorithms which are stable for both uniform and

non-uniform traffic, and at the same time provide some QoS features. By setting the

weight of an edge in the bipartite graph to the normalized queue length of the corre-

sponding VOQ, the longest normalized queue first (LNQF) provides fairer service

than LQF and better traffic shape than OCF. The stability of LNQF is also proven.

In earliest delay due date first matching (EDDFM), the weight is set to the delay

due date, and thus forces the cells with the earliest delay due date to have the

highest priority to receive service. Simulation results showed that EDDDFM has

lower probability of delay over due than LQF, LNQF, and OCF.

In Chapter 4, a frame based scheduling algorithm, referred to as Store-Sort-and-

Forward (SSF), was proposed to provide QoS guarantees for input-queued switches

89

90

without requiring speedup. SSF uses a framing strategy in which the time axis is

divided into constant-length frames, each made up of an integer multiple of time

slots. Cells arrived during a frame are first held in the input buffers, and are then

"sorted-and-transmitted" within the next frame. A bandwidth allocation strategy

and a cell admission policy are adopted to regulate the traffic to conform to the

(r, T) traffic model. A strict sense 100% throughput is proved to be achievable by

rearranging the cell transmission orders in each input buffer, and a sorting algorithm

was proposed to order the cell transmission. The delay and delay jitter are bounded

by the transmission time of one frame. It was proved that a perfect matching can

be achieved within N(ln N + 0(1)) effective moves.

Noting that the (r, T) traffic model is a strong assumption, and thus incorpo-

rating a more realistic traffic model such as leaky bucket in SSF is an interesting

problem. Since continuous frames in SSF may have the similar traffic patterns, it

is possible to derive a faster algorithm by using configuration information obtained

from the previous frame. Our future effort will be focusing on these issues as well as

hardware implementation of SSF.

REFERENCES

1. F. Tobagi, "Fast packet switch architectures for broadband integrated services
digital networks," Proceedings of the IEEE, vol. 78, pp. 133-167, Nov.
1990.

2. A. K. Parekh and R. G. Gallager, "A generalized processor sharing approach
to flow control in integrated services networks: the single-node case,"
IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344-357, Jun.
1993.

3. J. Bennett and H. Zhang, "Hierarchical packet fair queueing algorithms," in
Proceedings of the ACM SIGCOMM, pp. 143-156, Aug. 1996.

4. S. Golestani, "A self-clocked fair queueing scheme for broadband applications,"
in Proceedings of IEEE INFOCOM, pp. 636-646, 1994.

5. L. Zhang, "Virtual clock: A new traffic control algorithm for packet switching,"
IEEE Transactions on Computer Systems, vol. 9, no. 2, pp. 101-124, Mar.
1991.

6. J. Bennett and H. Zhang, "WF2 Q: Worst-case fair weighted fair queueing," in
Proceedings of IEEE INFOCOM, pp. 120-128, Mar. 1996.

7. S. J. Golestani, "A stop-and-go queueing framework for congestion
management," in Proceedings of the ACM SIGCOMM, pp. 8-18, 1990.

8. H. Zhang, "Providing end-to-end performance guarantees using non-work-
conserving disciplines," Computer Communications: Special Issue on
System Support for Multimedia Computing, vol. 18, no. 10, pp. 769-781,
Oct., 1995.

9. H. Zhang, "Service disciplines for guaranteed performance service in packet-
switching networks," Proceedings of the IEEE, vol. 83, no. 10, pp. 1374-
1396, Oct. 1995.

10. Ascend Communications, GRF Family of Switches, www.ascend.com. (17 Oct.
1997)

11. Digital Equipment Corporation, GIGA switch, www.networks.digital.com . (17
Oct. 1997)

12. T. Anderson, S. Owicki, J. Saxe, and C. Thacker, "High speed switch scheduling
for local area networks," IEEE Transactions on Computer Systems,
vol. 11, no. 4, pp. 319-352, Nov. 1993.

13. N. McKeown, V. Anantharam, and J. Walrand, "Achieving 100% throughput
in an input-queued switch," in Proceedings of IEEE INFOCOM, pp. 296-
302, 1996.

91

92

14. N. McKeown, J. Walrand, and P. Varaiya, "Scheduling cells in an input-queued
switch," IEE Electronics Letters, pp. 2174-2175, Dec. 9th 1993.

15. A. Mekkittikul and N. McKeown, "A starvation-free algorithm for achieving
100% throughput in an input-queued switch," in Proceedings of the
ICCCN, pp. 226-231, Oct. 1996.

16. A. Mekkittikul and N. McKeown, "A practical scheduling algorithm to achieve
100% throughput in input-queued switches," in Proceedings of IEEE
INFOCOM, pp. 792-799, 1998.

17. S. Li, J. Chen, and N. Ansari, "Min-max fair input queueing with back pressure,"
in Proceedings of IEEE ICATM, pp. 252-259, 1998.

18. S. Li and N. Ansari, "Provisioning QoS features for input-queued switches,"
IEE Electronics Letters, vol. 34, no. 19, pp. 1826-1827, Sept. 1998.

19. S. Li and N. Ansari, "Input queued switching with QoS guarantees," in
Proceedings of IEEE INFOCOM, pp. 1152-1159, Mar. 1999.

20. S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, "Matching output
queueing with a combined input output queued switch," Tech. Rep. CSL-
TR-98-758, Stanford University, 1998.

21. I. Stoica and H. Zhang, "Exact emulation of an output queueing switch by
a combined input output queueing switch," in Proceedings of IWQoS,
pp. 218-224, 1998.

22. M. J. Karol, M. G. Hluchyj, and S. P. Morgan, "Input versus output queueing on
a space-division packet switch," IEEE Transactions on Communications,
vol. COM-35, pp. 1347-1356, Dec. 1987.

23. T. H. Carmen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
McGraw Hill, New York, 1989.

24. D. Stilliadis and A. Verma, "Providing Bandwidth Guarantees in an Input-
Buffered Crossbar Switch," in Proceedings of IEEE INFOCOM, pp. 960-
968, Apr. 1995.

25. N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz, " The
Tiny Tera: A Packet Switch Core," IEEE Micro, pp. 26-33, Jan. 1997.

26. A. Demers, S. Keshav, and S. Shenker, "Analysis and simulation of a fair
queueing algorithm," Internetworking: Research and Experience, vol. 1,
pp. 3-26, 1990.

27. C. Kalmanek, H. Kanakia, and S. Keshav, "Rate controlled servers for very
highspeed networks," in Proceedings of IEEE GLOBECOM, pp. 300.3.1-
300.3.9, 1990.

93

28. S. Golestani, "A framing strategy for congestion management," IEEE Journal
on Selected Areas in Communications, vol. 9, pp. 1064-1077, Sept. 1991.

29. D. Verma, D. Ferrari, and H. Zhang, "Guaranteeing delay jitter bounds in packet
switching networks," in Proceedings of TRICOMM, pp. 35-43, Apr. 1991.

30. S. Keshav, "On the efficient implementation of fair queueing," Internetworking:
Research and Experience, vol. 2, pp. 157-173, Sept. 1991.

31. D. Stilliadis, Traffic scheduling in packet-switched networks: analysis, design,
and implemention, PhD thesis, University of California, Santa Cruz, 1996.

32. S. J. Golestani, "Congestion-free transmission of real-time traffic in packet
networks," in Proceedings of IEEE INFOCOM, pp. 527-542, Jun. 1990.

33. D. Gale and L. S. Shapley, "College admissions and the stability of marriage,"
American Mathematical Monthly, vol. 69, pp. 9-15, 1962.

34. S. Li and N. Ansari, "Scheduling input-queued switches with QoS features," in
Proceedings of the ICCCN, pp. 107-112, Oct. 1998.

35. R. Venkateswaran, S. Li, X. Chen, C. S. Raghavendra, and N. Ansari, "Improved
vc-merging for multiway commnications in atm networks," in Proceedings
of the ICCCN, pp. 4-11, Oct. 1998.

36. M. J. Karol, K. Y. Eng, and H. Ohara, "Improving the performance of
input-queued ATM packet switches," in Proceedings of IEEE INFOCOM,
pp. 110-115, 1992.

37. J. Bennett and H. Zhang, "Hierarchical packet fair queueing algorithms," in
Proceedings of the ACM SIGCOMM, pp. 143-156, Aug. 1996.

38. R. Bolla, F. Davoli, and M. Marchese, "Evaluation of a cell loss rate computation
method in ATM multiplexers with multiple bursty sources and different
traffic classes," in Proceedings of IEEE GLOBECOM, pp. 437-441, Nov.
1996.

39. G. Birkhoff, "Three observations on linear algebra," Rev. Univ. Nac. Tucumc án,
Ser. A., vol. 5, pp. 147-151, 1946.

40. P. R. Kumar and S. P. Meyn, "Stability of queueing networks and scheduling
policies," IEEE Trans. On Automatic Control, vol. 40, no. 2, pp. 251-260,
Feb. 1995.

41. B. Prabhakar and N. McKeown, "On the speedup required for combined input
and output queued switching," Tech. Rep. CSL-TR-97-738, Stanford
University, Nov. 1997.

94

42. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press,
Wellesley, Massachusetts, 1986.

43. P. Hall, "On representatives of subsets," J. London Math., Soc. 10, pp. 26-30,
1935.

44. R. Venkateswaran, C. S. Raghavendra, X. Chen, and V. Kumar, "Hierarchical
Multicast Routing in ATM Networks," in IEEE Intl. Conf. on Commu-
nications, vol. 3, pp. 1690-1694, Jun. 1996.

45. R. Venkateswaran, C. S. Raghavendra, X. Chen, and V. Kumar, "A Scalable,
Dynamic Multicast Routing Algorithm in ATM Networks," in IEEE Intl.
Conf. on Communications, 1997.

46. R. Venkateswaran, C. S. Raghavendra, X. Chen, and V. Kumar, Support for
Group Multicast in PNNI, ATM Forum draft 97-0076, 1997.

47. G. Armitage, Support for Multicast over UNI 3.0/3.1 based ATM Networks,
RFC2022, 1996.

48. E. Gauthier, J.-Y. Le Boudec, and D. Dykeman, SMART: A Many-to-Many
Multicast Protocol for ATM, ATM Forum draft 96-1295, 1996.

49. M. Grossglauser and K. K. Ramakrishnan, SEAM: A Scheme for Scalable and
Efficient ATM Multipoint-to-Multipoint Communication, ATM Forum
draft 96-1142, 1996.

50. S. Komandur, J. Crowcroft, and D. Mosse, "CRAM: Cell Re-labeling at Merge-
Points for ATM Multicast," in Proceedings of IEEE ICATM, 1998.

51. I. Widjaja and A. I. Elwalid, Performance Issues in VC-Merge Capable Switches
for IP over ATM, ATM Forum draft 97-0675, 1997.

	On scheduling input queued cell switches
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Min-Max Fair Input Queueing (MFIQ)
	Chapter 3: Maximum Weight Matching
	Chapter 4: Store-Sort-And-Forward (SSF)
	Chapter 5: Contributions on ATM Multicasting
	Chapter 6: Summary And Future Research
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

