
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-2001

Scheduling algorithms for high-speed switches Scheduling algorithms for high-speed switches

Jinhui Li
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Li, Jinhui, "Scheduling algorithms for high-speed switches" (2001). Dissertations. 473.
https://digitalcommons.njit.edu/dissertations/473

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/473?utm_source=digitalcommons.njit.edu%2Fdissertations%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Scheduling Algorithms for High Speed Switches

by
Jinhui Li

The virtual output queued (VOQ) switching architecture was adopted for high speed

switch implementation owing to its scalability and high throughput. An ideal VOQ

algorithm should provide Quality of Service (QoS) with low complexity. However,

none of the existing algorithms can meet these requirements.

Several algorithms for VOQ switches are introduced in this dissertation in order

to improve upon existing algorithms in terms of implementation or QoS features.

Initially, the earliest due date first matching (EDDFM) algorithm, which is stable

for both uniform and non-uniform traffic patterns, is proposed. EDDFM has lower

probability of cell overdue than other existing maximum weight matching algorithms.

Then, the shadow departure time algorithm (SDTA) and iterative SDTA (ISDTA)

are introduced. The QoS features of SDTA and ISDTA are better than other existing

algorithms with the same computational complexity. Simulations show that the

performance of a VOQ switch using ISDTA with a speedup of 1.5 is similar to that

of an output queued (OQ) switch in terms of cell delay and throughput. Later,

the enhanced Birkhoff-von Neumann decomposition (EBVND) algorithm based on

the Birkhoff-von Neumann decomposition (BVND) algorithm, which can provide

rate and cell delay guarantees, is introduced. Theoretical analysis shows that the

performance of EBVND is better than BVND in terms of throughput and cell delay.

Finally, the maximum credit first (MCF), the Enhanced MCF (EMCF), and the

iterative MCF (IMCF) algorithms are presented. These new algorithms have the

similar performance as BNVD, yet are easier to implement in practice.

SCHEDULING ALGORITHMS FOR HIGH SPEED SWITCHES

by
Jinhui Li

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

May 2001

Copyright © 2001 by Jinhui Li

ALL RIGHTS RESERVED

APPROVAL PAGE

SCHEDULING ALGORITHMS FOR HIGH SPEED SWITCHES

Jinhui Li

Dr. Nirwan Ansari, Dissertation Advisor 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Stephen Israel, Committee Member 	 Date
Vice President, OpenCon Systems, Inc.

Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NIT

DP. Sirin Tekinay, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering , NJIT

Dr. Symeon Papavassiliou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering , NJIT

BIOGRAPHICAL SKETCH

Author: 	 Jinhui Li

Degree: 	 Doctor of Philosophy in Electrical Engineering

Date: 	 May 2001

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ.

• Master of Science in Electrical Engineering,
Peking University, Beijing, P. R. China, 1994.

• Bachelor of Science in Physics,
Peking University, Beijing, P. R. China, 1991.

Major: 	 Electrical Engineering

Presentations and Publications:

J.H. Lin, N. Ansari, and J. Li, "Nonlinear filtering by threshold decomposition,"
IEEE Transactions on Image Processing, vol. 8, no. 7, pp. 925-933, July 1999.

S. Li, J. Li, and N. Ansari, "Earliest due date first matching for input-queued
cell switches," Proc. 1999 Conference on Information Sciences and Systems,
Baltimore, MD, Mar. 1999, pp. 602-607.

J. Li and N. Ansari, "Scheduling input-queued switches by shadow departure time
algorithm," IEE Electronics Letters, vol. 35, no. 14, pp. 1127-1128, July 1999.

J. Li and N. Ansari, "Practical Scheduling Algorithms for Input-Queued Switches,"
Proc. 2000 Conference on Information Sciences and Systems, Princeton, NJ,
Mar. 2000.

J. Li and N. Ansari, "Scheduling Virtual Output Queued Switches with Low
Speedup," Proc. 2001 Conference on Information Sciences and Systems,
Baltimore, MD, Mar. 2001.

J. Li and N. Ansari, "QoS guaranteed input queued scheduling algorithms with
low delay," Proc. 2001 IEEE Workshop on High Performance Switching and
Routing, Dallas, TX, May 2001.

iv

J. Li and N. Ansari, "Enhanced Birkhoff-von Neumann decomposition algorithm
for input-queued switches," submitted to IEE Proceedings - Communications.

J. Li and N. Ansari, "The Iterative Shadow Departure Time Algorithm," submitted
to Journal of Computer Networks.

To my beloved family

v i

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Professor Nirwan Ansari, who

not only served as my research supervisor, contributing valuable resources, insight,

and intuition, but also constantly gave me support, encouragement, and guidance

in various ways to make this dissertation possible. Special thanks are given to Dr.

Stephen Israel, Dr. Edwin Hou, Dr. Sirin Tekinay, and Dr. Symeon Papavassiliou

for serving on my dissertation committee.

I wish to express thanks for Shizhao Li's help and advice. I am grateful to

Mark Simkins, Ambalavanar Arulambalam, Jianguo Chen, Pingping Zong, and Kun

Wang for the helpful discussions and suggestions. I would like to thank Lucent

Technologies, the New Jersey Commission on Science and Technology, and the New

Jersey Commission on Higher Education for supporting of my research. I would like

to give thanks to Ronald S. Kane, Clarisa González-Lenahan, Jeffrey Grundy, and

Vicky McPhillip for their assistance.

vii

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

	

1.1	 Input Queueing Versus Output Queueing 	 1

	

1.2	 Our Switch Model and Traffic Model 	 3

2 EXISTING SCHEDULING ALGORITHMS 	 9

2.1 Existing Input Queued Algorithms 	 9

2.1.1	 Parallel Iterative Matching (PIM) Algorithm and Its Variations 9

2.1.2	 Maximum Weight Matching Scheduling Algorithms and Their
Variations 	 14

2.1.3	 Algorithms with Delay Bound 	 16

2.1.4	 Other Input Queued Algorithms 	 17

2.2 Existing Combined Input Output Queued Algorithms 	 19

3 THE EARLIEST DUE DATE FIRST MATCHING (EDDFM) ALGORITHM 21

3.1 The Algorithm 	 21

3.2 Simulation Results 	 26

4 THE SHADOW DEPARTURE TIME ALGORITHM (SDTA) AND THE
ITERATIVE SDTA (ISDTA) 	 29

4.1 The Algorithms 	 29

4.2 Performance of ISDTA without Speedup 	 30

4.3 Performance of ISDTA with Speedup 	 34

5 THE ENHANCED BIRKHOFF-VON NEUMANN DECOMPOSITION
(EBVND) ALGORITHM 	 43

5.1 The Birkhoff-von Neumann Decomposition (BVND) Algorithm 	 44

5.2 The Enhanced Birkhoff-von Neumann Decomposition (EBVND)
Algorithm 	 45

5.3 The Wave Front Birkhoff-von Neumann Decomposition (WFBVND)
Algorithm 	 48

viii

Chapter 	 Page

5.4	 Results and Discussion 	 50

6 THE CREDIT-BASED ALGORITHMS 	 54

6.1 The Algorithms 	 54

6.2 Discussion and Simulations 	 57

7 CONCLUSIONS AND FUTURE WORK 	 63

ix

LIST OF TABLES

Table 	 Page

2.1 MWM scheduling algorithms and their variations 	 16

3.1 Statistics of the simulation results of EDDFM algorithm 	 28

4.1 Cell loss ratio of i-LQF, i-OCF, and ISDTA algorithms 	 34

5.1 Average cell delay of the active flows in input 0 	 52

5.2 Performance of BVND and EBVND under unbalanced traffic load 	 53

6.1 Maximum and minimum credit of MCF and IMCF 	 57

6.2 Computational and memory complexity of BVND-based algorithms . . . 	 61

LIST OF FIGURES

Figure 	 Page

1.1 Output queued switching architecture 	 2

1.2 Input queued switching architecture 	 2

1.3 Combined input output queued switching architecture 	 3

1.4 Virtual output queued switching architecture without speedup 	 3

1.5 Virtual output queued switching architecture with speedup 	 4

1.6 Illustration of frames with F = 3, X = 4, and speedup w = F/X = 4/3. 	 5

1.7 Logical phases in a frame with F = 3 and X = 4. 	 5

1.8 A bipartite graph matching example: (a) the request graph, and (b) the
VOQs. 	 6

1.9 Solutions of the bipartite graph matching problem: (a) a maximum size
match, (b) a maximum weight match, (c) a maximal match, and (d) a
stable marriage match. 7

1.10 Simple on — off traffic model 	 8

3.1 Comparison of probability of cell overdue under EDDFM and other
existing algorithms 	 27

4.1 	 Average cell delay vs. traffic load under i.i.d. Bernoulli traffic. 	 31

4.2 Variance of cell delay vs. traffic load under i.i.d. Bernoulli traffic. 	 32

4.3 Average cell delay vs. traffic load under i.i.d. on — off traffic. 	 32

4.4 Variance of cell delay vs. traffic load under i.i.d. on — off traffic. 	 33

4.5 Cell delay distribution under i.i.d. Bernoulli traffic with traffic load of
96% in linear scale. 	 35

4.6 Cell delay distribution under i.i.d. Bernoulli traffic with traffic load of
96% in logarithmic scale. 	 35

4.7 Cell delay distribution under i.i.d. on — off traffic with traffic load of
80% in linear scale. 	 36

4.8 Cell delay distribution under i.i.d. on — off traffic with traffic load of
80% in logarithmic scale. 	 36

xi

Figure 	 Page

4.9 Cumulative distribution of cells under i.i.d. Bernoulli traffic with a load
of 96%. 	 37

4.10 Cumulative distribution of cells under i.i.d. on — off traffic with a load
of 80%. 	 37

4.11 Delyed output queued switching architecture. 	 38

4.12 The distribution of cell delay overdue using i-OCF under i.i.d. on — o f f
traffic with the speedup of 1.5. 	 40

4.13 The distribution of cell delay overdue using CCF under i.i.d. on — o f f
traffic with the speedup of 1.5. 	 40

4.14 The distribution of cell delay overdue using ISDTA under i.i.d. on — o f f
traffic with the speedup of 1.5. 	 41

4.15 Average cell delay vs. traffic load under i.i.d. on — off arrival 	 41

4.16 Variance cell delay vs. traffic load under i.i.d. on — off arrival. 	 42

5.1 (a) Request graph and the selected permutation matrix. (b) One cell
scheduled by BVND. (c) Two additional cells can be scheduled. 46

5.2 WFBVND algorithm: phase (a) 0, (b) 1, (c) 2, and (d) 3. 	 49

5.3 Comparison of cell delay distribution under 84% traffic load using BVND,
OCF, and WFBVND. 	 51

5.4 Average cell delay vs. traffic load under i.i.d. (a, r) arrival 	 51

5.5 Variance of cell delay vs. traffic load under i.i.d. (a, r) arrival. 	 52

6.1 H (n) of BVND and MCF under unbalanced traffic reservation 	 58

6.2 Cell delay distribution under (a, r) traffic using MCF, IMCF, and BVND. 59

6.3 Cell delay distribution under (a, r) traffic using MCF, IMCF, and BVND

	

(portion) 60

6.4 Cell delay distribution under unbalanced (a, r) traffic using MCF and
EMCF algorithms. 	 61

6.5 Average cell delay vs. traffic load under i.i.d. (a, r) traffic using BVND
and EMCF algorithms. 	 62

6.6 Variance of cell delay vs. traffic load under i.i.d. (a, r) traffic using BVND
and EMCF algorithms. 	 62

xi i

LIST OF ACRONYMS

2DRR:
BVND:
CCF:
CIOQ:
CLR:
CTD:
EBVND:
EDDFM:
EMCF:
EPIM:
FIFO:
FIRM:
GSA:
GS-LQF:
GS-OCF:
HOL:
HTA:
IQ:
IRRM-MC:
ISDTA:
iLPF:
i-LQF:
IMCF:
i-OCF:
iSLIP:
LQF:
LNQF:
LOOFA:
LOOTFA:
LPF:
LRU:
MCF:
MMDP:
MSM:
MUCF:
MUGS:
MWM:
OQ:
PGPS:

Two-Dimensional Round-Robin
Birkhoff-von Neumann Decomposition algorithm
Critical Cells First algorithm
Combined Input Output Queueing
Cell Loss Ratio
Cell Transfer Delay
Enhanced BVND algorithm
Earliest Due Date First Matching algorithm
Enhanced MCF algorithm
Enhanced PIM algorithm
First-In First-Out
FCFS in Round Robin Matching algorithm
Gale-Shapley Algorithm
Gale-Shapley LQF algorithm
Gale-Shapley OCF algorithm
Head-of-line
Home Territory Algorithm
Input Queueing
Iterative Round Robin with Multiple Classes
Iterative SDTA
Iterative LPF algorithm
Iterative LQF algorithm
Iterative MCF algorithm
Iterative OCF algorithm
iSLIP algorithm
Longest Queue First algorithm
Longest Normalized Queue First algorithm
Lowest Occupancy Output First Algorithm
Lowest Output Occupancy and Timestamp First Algorithm
Longest Port First algorithm
Least-Recent Used algorithm
Maximum Credit First algorithm
Markov Modulated Deterministic Process
Maximum Size Match
Most Urgent Cell First algorithm
Matrix Unit Cell Scheduler
Maximum Weight Match
Output Queueing
Packetized Generalized Processor Sharing

xiii

PIFO:
PIM:
RRM:
QoS:
RPA:
SDT:
SDTA:
SIMP:
SPIM:
SSF:
VOQ:
WFA:
WFQ:
WF²Q:
WFBVND:
WFBVND-logN:
WPIM:
WRFA:
WWFA:

Push-In First-Out
Parallel Iterative Matching algorithm
Round Robin Matching algorithm
Quality of Service
Reservation with Preemption and Acknowledgement
Shadow Departure Time
Shadow Departure Time Algorithm
Successive Incremental Matching over Multiple Ports
Simplified PIM algorithm
Store-Sort-and-Forward algorithm
Virtual Output Queueing
Wave Front Arbitration
Weighted Fair Queueing
Worst-case Fair Weighted Fair Queueing
Wave Front BVND algorithm
WFBVND with logN iterations
Weighted PIM algorithm
Weighted Rate Filling algorithm
Wrapped Wave Front Arbitration

xiv

CHAPTER 1

INTRODUCTION

1.1 Input Queueing Versus Output Queueing

There are two basic types of switching architectures: output queued (OQ) switching

architecture and input queued (IQ) switching architecture. When a packet reaches

an OQ switch (see Fig. 1.1) it will be queued in its output queue immediately. The

packet will be staying in the output queue until it is transmitted from the switch, and

thus 100% throughput can be achieved. OQ switches can provide quality of service

(QoS) guarantees by using the scheduling mechanisms [69] such as weighted fair

queueing (WFQ) [15] (or packetized generalized processor sharing (PGPS) [55][56])

and worst-case fair weighted fair queueing (VT 7 F² Q) [3]. However, one problem of the

OQ switch is that the fabric of an N x N OQ switch must run N times as fast as

its line rate, i.e., the speedup of an OQ switch is N. The bandwidth of the memory

of such a switch should be N + 1 times of the line rate because the memory should

be written and read during the same timeslot.

When a packet reaches an IQ switch (see Fig. 1.2), it is placed in its input

queue until it can be scheduled across the fabric. In the IQ switch, the packet can be

transmitted out of the switch immediately when it comes to the output port. The

fabric of an IQ switch is only required to run as fast as the line rate and the memory

needs to run twice as fast, i.e., the speedup of an IQ switch is 1.

In the high speed networks, the memory and fabric with a bandwidth that are

larger or at least equal to N times that of line rate could be unavailable. Therefore,

the IQ switching architecture was adopted for high speed switch implementation

owing to its scalability. One of the major problems with the IQ switching architecture

is the head-of-line (HOL) blocking: the HOL cell, which cannot be forwarded because

of output contention, can block the output-contention-free cells in the same queue

when FIFO is used. HOL blocking limits the throughput of the IQ switch using

1

2

a single FIFO queue in each input to approximately 2 — 58.6% under i.i.d.

Bernoulli traffic when N is large [29]. The situation is even worse under bursty

traffic: the maximum throughput of such a switch decreases monotonically with the

burstiness of traffic and reaches to 50% when burstiness is large [36]. Stationary

blocking is another problem of FIFO IQ switches, where the total throughput of the

switch can be as little as the throughput of a single link under certain periodic traffic

even when N is very large [37].

Figure 1.2 Input queued switching architecture

HOL blocking can be partly reduced by increasing the speed of the fabric. The

ratio of bandwidth between fabric and input link is defined as speedup. When the

speedup is larger than 1 and smaller than N, buffers are required at the outputs as

well as inputs. This switching architecture with both input and output buffering is

called combined input output queued (CIOQ) switch (see Fig. 1.3). Chuang et al.

3

[12] proved that a CIOQ switch with a speedup of two can exactly mimic an OQ

switch.

Previous research [1][43][48][49] shows that HOL blocking can also be completely

eliminated in IQ switches by adopting virtual output queueing (VOQ) [64][1] without

a speedup, in which multiple VOQs directed to different outputs are maintained at

each input as shown in Fig. 1.4. The throughput of an VOQ switch can be increased

to 100% under all kinds of admissible independent traffic by using well-designed

scheduling algorithms. VOQ architecture can also be used in CIOQ switch which

has a speedup as shown in Fig. 1.5.

Figure 1.3 Combined input output queued switching architecture

Figure 1.4 Virtual output queued switching architecture without speedup

1.2 Our Switch Model and Traffic Model

Consider an N x N input-queued switch consisting of N inputs, N outputs, and a

non-blocking switch fabric such as crossbar. The packets, which may have variable

lengths, are broken into fixed length cells when they arrive in the inputs. After the

4

Figure 1.5 Virtual output queued switching architecture with speedup

cells cross the fabric, they are reassembled to the original variable length packets.

In order to eliminate the HOL blocking, VOQ is adopted in this architecture. The

VOQ directed to output j at input i is denoted by Qi,j . If is not empty, there

will be a request from input i to output j. The fundamental objective of scheduling

an VOQ switch is to find a contention free match based on the connection requests,

i.e., at most one input can be matched to each individual output, and vice versa.

Let S = (Si,j) be the matching matrix, which indicates the match between inputs

and outputs. If input i and output j are matched, then S i = 1; otherwise, Si ,j 0.

At the end of the timeslot, a cell is transmitted from input i to output j if Si = 1

and is not empty.

Assume every input and output of an N x N CIOQ switch have the same

line rate. Timeslot is defined as the time required to transmit a cell with the line

rate. The time axis is divided into frames [20], where each frame contains exactly F

timeslots. In every frame, it is assumed that the fabric can make X transmissions.

Fabric slot is defined as the time required to make one transmission by the fabric.

In each fabric slot, at most one cell can be removed from each input and at most

one cell can be sent to each output. Thus, speedup, w is equal to X/F. An example

of F = 3, X = 4, and w = 4/3 is shown in Fig. 1.6. Logically, one frame can be

divided into 2F + X phases: F input phases, X transmission phases, and F output

phases, as shown in Fig. 1.7. In each input phase, at most one cell can arrive in

5

Figure 1.6 Illustration of frames with F = 3, X = 4, and speedup w = FIX = 4/3.

Figure 1.7 Logical phases in a frame with F = 3 and X = 4.

each input. Likewise, in each output phase at most one cell can depart from each

output. Cells in inputs are transmitted to outputs during transmission phases. In

each transmission phase, at most one cell can be removed from each input and at

most one cell can be transmitted to each output.

Finding a contention-free match between inputs and outputs is equivalent to

solving a bipartite graph matching [1][66] problem as shown in Fig. 1.8(a). Each

vertex on the left side of Fig. 1.8(a) represents an input and that on the right side

represents an output. An edge connects input vertex i and output vertex j if Qi,j

is not empty. Each VOQ	 can be associated with a weight wi,j, which is defined

differently by different algorithms. For example, w i ,j can be set to L i j or	 where

L i is the length of	 and	 is the waiting time of the HOL cell of Q i ,j . This

problem can also be expressed in matrix form by showing the N x N VOQs as

Fig. 1.8(b). Every block in Fig. 1.8(b) represents a VOQ and the number inside the

square box is the weight of the VOQ.

6

Figure 1.8 A bipartite graph matching example: (a) the request graph, and (b) the
VOQs.

The major task of the VOQ scheduling algorithms is to find out the solution

of the bipartite graph matching problem. Note that the solution may not be unique.

A maximum size match (MSM) maximizes the total number of unique pairings. The

best known algorithm to compute the MSM has the complexity of 0(N ².5) [25]. The

MSM of Fig. 1.8 is depicted in Fig. 1.9(a), where the matched VOQs are shown in

thick border boxes. A maximum weight match (MWM) has the maximum aggregate

weight, i.e., S arg maxs [∑ i,j Si,jwi,j]. The complexity to compute the MWM is

0(N 3) [66]. Figure 1.9(b) is a MWM solution of Fig. 1.8. The MSM is a special case

of the MWM with the weights of the non-empty VOQs set to 1 and those of empty

VOQs set to 0, respectively. Figure 1.9(c) shows a maximal match which means that

no pair can be trivially added without alternating the current connections. A MSM

or MWM is always a maximal match, but the reverse may not be true. Different

from the above matches, the stable marriage match [19] seeks to match N inputs

with N outputs so that there is no pair consisting of an input and an output which

prefer each other to the "partners" with which they are currently matched. If input

i prefers output j with a degree of w i j , and output j also prefers input i with the

7

same degree of wi, j , then, Fig. 1.9(d) is the stable marriage matching solution of

Fig. 1.8. In Fig. 1.9(d), the input-output pair (3, 2), which has no cell to send, will

be ignored when the cells are forwarded. Stable marriage matching problem can be

solved by Gale-Shapley Algorithm (GSA) in 0(N²) running time [19].

Figure 1.9 Solutions of the bipartite graph matching problem: (a) a maximum
size match, (b) a maximum weight match, (c) a maximal match, and (d) a stable
marriage match.

The traffic in a real network is highly correlated from cell to cell while cells

tend to arrive at the switch in "bursts". One way of modeling a bursty source is

using an on — off model in the discrete-time domain. This model is equivalent to

a two-state Markov modulated deterministic process (MMDP)[4]. These two states,

8

OFF state and ON state, are shown in the Fig. 1.10. In the OFF state, the source

does not send any cells. In the ON state, the source sends data cells at the peak cell

rate (rp). The source can shift from one state to another as shown in Fig. 1.10. In

the discrete-time domain, state changes may occur only at the end of a time-slot. At

each timeslot, the source in the OFF state changes to the ON state with a probability

a. Similarly, the source in the ON state changes to the OFF state with a probability

/3. Note that there is no correlation between the two probabilities. The probabilities

of the source being in the OFF state and ON state are given by T o -= („Ffi i3) and

respectively. The bursty source is characterized by the peak cell rate

(rp), the average cell rate (r), and the average number of cells per burst (B). The

burstiness of the traffic is defined as the ratio of the peak cell rate and average cell

rate. Given these parameters, the state transition probabilities can be computed as

Figure 1.10 Simple on — off traffic model

CHAPTER 2

EXISTING SCHEDULING ALGORITHMS

2.1 Existing Input Queued Algorithms

It has been shown by simulations [42] that when arrivals are uniform and independent,

MSM can provide 100% throughput. However, when arrivals are non-uniform, the

performance of this algorithm is not good. If the traffic is admissible, it can lead to

unfairness and instability [43]. If the traffic is inadmissible, it can lead to starvation

under certain conditions [1]. Owing to the limitations of MSM, scheduling algorithms

adopt MWM, stable match, maximal match, and other solutions of the bipartite

graph matching problem.

2.1.1 Parallel Iterative Matching (PIM) Algorithm and Its Variations

Early IQ algorithms such as parallel iterative matching (PIM) [1], two-dimensional

round-robin (2DRR) [33], and wave front arbitration (WFA) [65] tried to find the

maximal matching solution of the bipartite problem because it has a lower computa-

tional complexity than the MWM and MSM. PIM is a randomized parallel algorithm

developed by Digital's Systems Research Center for the AN2 switch, which is a 16 x 16

crossbar switch that has the line rate of 1Gbps [1]. This switch was commercialized

as the Gigaswitch/ATM.

PIM was designed to find a maximal bipartite match by iterations. It iterates

the following three steps:

1. Request: Each unmatched input i sends a request to each output j if Q i is

not empty.

2. Grant: If an unmatched output j receives any requests, it chooses one randomly

to grant.

3. Accept: If an input i receives any grants, it chooses one randomly to accept.

9

10

Repeating the above iteration, PIM will find a maximal match eventually.

However, in the worst case, it will take N rounds to converge to the maximal solution.

It can be proved that on average the algorithm can match at least 1 of the remaining

possible pairs and it can find a maximal match in O(log2 N) iterations on average

[1]. Simulations show, using PIM, maximal matching can be reached in 4 iterations

for 16 x 16 switch over 99% of the time [1] and asymptotic 100% throughput can be

achieved when sufficient number of iterations are used [42]. Recently, reference [53]

gives a closed-form solution of the maximum throughput of switches using PIM

algorithm under i.i.d. Bernoulli traffic when the traffic load is symmetric. The

analytical result shows when N is 8 or 16, high throughput (> 90%) can be achieved

in 3 iterations [53]. Recently, Dai and Prabhakar [14] proved that with a speedup

of two the maximal algorithms such as PIM can achieve 100% throughput under

arbitrary arrival patterns. Since no central arbitrator is used in PIM, it is easier to

be implemented in high speed.

One of the problems of PIM is that it is unable to allocate bandwidth

flexibly among the connections. Furthermore, PIM is unfair: it cannot allocate

the bandwidth fairly among the competing connections [1]. Since contention exists

at both inputs and outputs, PIM will give lower bandwidth to connections that have

more contending connections. Statistical matching [1], a generalization of PIM, was

introduced to overcome the unfairness of PIM. An iteration of Statistical Matching

is composed of two steps: grant and accept, in which grant is initiated by outputs.

By using Statistical Matching, bandwidth can be allocated according to demands.

Yet, it limits the maximum throughput to (1 — 1/e) x (1 + 1/e ²) ,c.--, 72% [1].

Another problem of PIM is its complexity. Since, randomness is used in PIM,

it is difficult and costly to implement when the line rate is high [41]. Round-robin

matching (RRM) algorithm [41] [42] [46], a simplified version of PIM, is introduced to

11

solve the problem of complexity by using round-robin arbitration. RRM consists of

the following three steps:

1. Request: Each unmatched input i sends a request to each output j if Q i ,j is

not empty.

2. Grant: If an unmatched output j receives any requests, it chooses the input

with the highest priority from all the inputs that has a request. In every output

j, the priority of input i equals to (i—gj) mod N, where gj is the highest priority

pointer, and i, j 	 1, 2, ..., N. Then pointer g j increases (modulo N) by one.

3. Accept: If an input i receives any grants, it chooses the output with the highest

priority. In every input i, the priority of output j equals to (j — a i) mod N,

where a i is the highest priority pointer. Then, pointer a i increases (modulo N)

by one.

The problem of RRM is that it does not perform well in terms of throughput, which

suffers from blocking. Just like PIM with a single iteration, the maximum throughput

of RRM is limited to ((N-1)N)^N under i.i.d. Bernoulli traffic. When N is large, the

maximum throughput tends to 1 — 1/e ti 63% [46].

With the objective of improving the performance of RRM, iSLIP [41][42][46]

algorithm was introduced. iSLIP has the same steps as RRM except for the Grant

step:

2 Grant: If an unmatched output j receives any requests, it chooses the input

with the highest priority from all the inputs that has a request. In every output

j, the priority of input i equals to (i—gj) mod N, where gj is the highest priority

pointer, and i, j = 1, 2, ..., N. Then, pointer g j increases (modulo N) by one if

and only if this grant is accepted.

This small change makes iSLIP performs much better than RRM. Simulations [42][46]

show that iSLIP can achieve asymptotic 100% throughput in just one iteration.

12

Using iSLIP, a non-empty VOQ can always be served in less than N ² timeslots [46].

Therefore, no connection will be starved by this algorithm. When multiple iterations

are used, similar to PIM, iSLIP needs N iterations to converge to the maximal match

in the worst case, but only need log2N iterations on average [46].

iSLIP has several variations. Prioritized iSLIP [46] maintains a separate FIFO

for every priority level p from every input i to every output j. If the total number of

priority levels is P, then Prioritized iSLIP will maintain P x N x N separate FIFOs.

Using this algorithm, the traffic with higher priority will get better service. Also,

threshold iSLIP and weighted iSLIP are introduced in [46]

The least-recently used (LRU) [42][45] algorithm is another variation of iSLIP.

This algorithm gives the highest priority to the least recently used port and the

lowest priority to the most recently used port. Simulations [45] show that both

LRU and iSLIP can reduce burstiness of traffic at the output of switch. Reference

[45] also suggests that the performance of LRU is not better than iSLIP, though

its complexity is higher. The iterative round robin with multiple classes (IRRM-

MC) [51][52] algorithm is a prioritized version of iSLIP. Separate queues allocated

for different priority classes, IRRM-MC runs different iteration for different class

beginning from the highest priority. By discriminating priority classes, IRRM-MC

provides better QoS for the flows with higher priority.

When the simplified PIM (SPIM) [50][51] is used, an input only sends at most

one request to the output in each iteration. Thus, the accept step can be erased

since one input can get at most one grant. In the third step, the output notifies all

the inputs whether the output is matched or not. Then, in the next iteration, the

unmatched inputs will only send request to the unmatched output. These modifi-

cation makes SPIM easier to implement than PIM, yet the throughput performance

of SPIM is almost the same as PIM [50].

13

The weighted PIM (WPIM) [61] is introduced aiming to provide bandwidth

guarantee in IQ switch. WPIM divides the time axis into frames, in which each

frame consists of F timeslots, where F is an integer. WPIM seeks to guarantee that

on average at least ci,j, the credit of VOQ Q i,j, cells can be transmitted from Q i,j in

each frame. It iterates the following four steps:

1. Request: Each unmatched input i sends a request to each output j if Qi ,j is

not empty.

2. Mask: Every VOQ	 has a mask bit mi,j. mi,j is set to 1, if the total number

of cells in Q i,j that have transmitted is larger or equal to its credit in current

frame. Otherwise, m i,j is set to 0. The masked VOQs are ignored by the

outputs.

3. Grant: If an unmatched output j receives any unmasked requests, it chooses

one randomly to grant.

4. Accept: If an input i receives a grant, it chooses one randomly to accept. The

matched input-output pairs can be removed from subsequent iterations.

Compared to Statistical Matching, WPIM is more flexible in bandwidth allocation,

and can provide higher bandwidth utilization [61].

The enhanced PIM (EPIM) [38] has also Request, Grant and Accept steps in

each iteration. EPIM schedules future timeslot as well as current timeslot by enabling

an input to accept multiple grants belonging to different timeslots. By introducing

more complexity than PIM, EPIM can achieve maximal match in less iterations than

PIM. For example, the delay performance of an 16 x 16 switch using EPIM with 2

iterations is shown by simulations to be as good as PIM with 4 iterations [38].

FCFS in round robin matching (FIRM) [60] algorithm improved iSLIP by

modifying the Grant step:

14

2 Grant: If an unmatched output j receives any requests, it chooses the input

with the highest priority from all the inputs that has a request. In every output

j, the priority of input i equals to (i—gi) mod N, where gi is the highest priority

pointer and i, j = 1,2, ..., N. If this grant is accepted, gi increases (modulo N)

by one; otherwise, gi is set to the granted input.

Serpanos and Antoniadis [60] proved that, in the worst case, a request will wait for

N² + (N — 1) ² timeslots to be served using iSLIP. On the other hand, a request can

be served in N² timeslots using FIRM. They demonstrated by simulations [60] that

the average cell delay of FIRM would be improved about 50% comparing to iSLIP

when the traffic load is above 95%.

2.1.2 Maximum Weight Matching Scheduling Algorithms and Their
Variations

A resource allocation model and scheduling method were introduced in [67] to achieve

maximum throughput. It proves that the system is stable under the policy that finds

the optimal solution, and the problem of scheduling IQ switches is a special case of

it. Later, this result was independently discovered by McKeown et al in [43], and

the algorithm is referred to the longest queue first (LQF) [43] [47]. LQF sets w i,j ,

the weight of VOQ Q i ,j , to be its queue length L i ,j , and finds the MWM. They [43]

proved, under any admissible and independent arrival processes, LQF is stable, i.e.,

E[L i ,j] < Do, Vi, j, which implies that LQF can achieve 100% throughput. Later, Dai

and Prabhakar [14] lifted the i.i.d. assumption of the traffic in [67] and [43]. Using

fluid model techniques, they proved that LQF can achieve 100% throughput under

arbitrarily distributed traffic patterns if only the input traffic is admissible and obeys

the strong law of large numbers [14].

The iterative LQF (i-LQF) [42], a variation of LQF, was introduced as a simpli-

fication. Using iterative algorithm instead of MWM, i-LQF has lower computational

complexity. If sufficient iterations can be completed, i-LQF can reach the maximal

15

match. GS-LQF [42] is the approximation of LQF. It uses GSA to find the stable

match. Simulations [42] show that the performance of GS-LQF is identical to i-LQF.

The longest normalized queue first (LNQF) [34] is another variation of LQF. It sets

wi,j to be the normalized queue length, which is the total queue length of the VOQ

divided by its rate. LNQF has better performance than LQF in terms of fairness

and burstiness reduction.

The oldest cell first (OCF) [42][47] sets w i,j to , the waiting time of the

HOL cell in Q i ,j , and finds the MWM. OCF is stable and starvation-free under

all independent and admissible traffic [42]. Also, OCF has an iterative version

i-OCF [42], which uses an iterative procedure to find the maximal match. GS-

OCF, the stable marriage matching approximation of OCF, is also introduced in

[42]. Simulations suggest that the performance of GS-OCF and i-OCF are identical.

The longest port first (LPF) [49] is proposed to overcome the complexity of

LQF. LPF sets wi,j to be a function of the length of Qi,j .

Using a modified Edmonds-Karp maximum size matching algorithm [13][66], LPF

finds a match which is both MSM and MWM with the complexity of 0(N ².5) [49].

LPF can achieve 100% throughput under both uniform and non-uniform traffic. The

iterative LPF (iLPF) [49] is the iterative version of LPF.

The weighted arbitration [59] algorithm was introduced to support priorities

in weighted matching by giving the cells of higher priority level a larger weight.

Also, the successive incremental matching over multiple ports (SIMP) algorithm is

introduced in [59] which is an approximation of MWM. Note that all the algorithms

that use MWM can also use SIMP which has the complexity of 0(N²).

The shakeup technique [22] is a randomized approach that can be used in

conjunction with a number of existing weighted and unweighted heuristics to substan-

tially improve solution quality. Unweighted shakeup randomly selects an unmatched

Table 2.1 MWM scheduling algorithms and their variations

16

port from an initial match, then it matches this port even it will break an existing

pair. The return of the unweighted shakeup is not less than the initial match. On

the other hand, weighted shakeup favors the ports with heavy load. Combining the

existing heuristics and shakeup will let to better stability and cell delay.

2.1.3 Algorithms with Delay Bound

Cell delay guarantee is important for real-time applications. Unfortunately, none

of the IQ algorithms mentioned above can provide this guarantee. Therefore, some

algorithms were proposed for this purpose.

The Slepian-Duguid [1] algorithm divides the time axis into frames such as

WPIM, where each frame consists of F timeslots, in which F is a fixed number.

CBR traffic allocates the bandwidth, and then a fixed schedule can be computed.

Slepian-Duguid theorem [26] suggests that a schedule can always be found if the total

number of cells to any output is not larger than F. The slots that are not used by

CBR traffic can be filled by the best-effort traffic. Using Slepian-Duguid algorithm

cell delay is bounded by 2F at every switch if the switches are synchronized as in the

17

telephone network. Reference [1] shows that when the switches are not synchronized

the delay bound is about four or five frames for local area networks.

The store-sort-and-forward (SSF) [35] algorithm is similar to the Slepian-

Duguid algorithm: cells arriving during a frame are first held in the input buffers

and are then sorted-and-transmitted within the next frame. The difference is that

SSF needs to compute the schedule in every frame. When the traffic conforms to

the (r, T) model [20], SSF can guarantee delay bound and 100% throughput. Both

of the Slepian-Duguid and SSF algorithms have the problem of the rate granularity

limitation: smaller F leads to lower cell delay but coarser granularity of bandwidth

allocation. The traffic constraint of SSF is not as tight as the Slepian-Guguid

algorithm, but its computational complexity is higher.

Chang et al. proposed [6] [7] the Birkhoff-von Neumann decomposition (BVND)

algorithm which is based on a decomposition result by Birkhoff and von Neumann

for a doubly stochastic matrix. This algorithm can provide 100% throughput for all

non-uniform traffic. Furthermore, if the traffic is (a, r)-upper constrained, cell delay

can be deterministically guaranteed using this algorithm.

A class of algorithms with 0(N2) complexity is proposed by Kam and Siu by

setting the weight of to be the functions of its queue length, the largest waiting

time of the cells, and the outstanding credit, and then finding the stable marriage

match [28]. They proved that some of these algorithms can support up to 50%

bandwidth reservation with constant delay bounds. As their proof is based upon

Lyapunov technique which gives very loose bounds, they showed by simulations that

the bandwidth reservation can be up to 90%.

2.1.4 Other Input Queued Algorithms

Wave front arbitration (WFA), wrapped wave front arbitration (WWFA), and several

other algorithms are proposed in [65]. WFA and WWFA can achieve high throughput

18

and can be readily realized in hardware. In every timeslot, these algorithms scan

the VOQs and find the maximal match by 2N — 1 and N steps, respectively. In the

mth step, WFA checks the VOQs that satisfy i + j = m, where 0 < m < 2N. If

a VOQ is not empty and its input and output are both available, then this VOQ is

added to the match. WWFA checks the wrapped diagonal (i + j)modN = m, where

0 < m < N, so that it can reach the maximal match in just N steps.

Two-dimensional round-robin (2DRR) [33] algorithm is another algorithm that

uses the round-robin approach to achieve the maximal match. Self-firing algorithm

introduced in [32] is a variation of 2DRR. In [63], the concept of tracking policies for

fluid policies is extended to the IQ switches. It shows that the tracking policy always

exists for the switch size of 2 x 2. Heuristic tracking policy is provided for general

case of N x N switches in [63]. Reservation with preemption and acknowledgment

(RPA) [39][40] is a quasi-optimal algorithm with the complexity of 0(N²) based on

reservation rounds and an acknowledgment round. RPA can also deal with multiple

traffic classes [40].

Matrix unit cell scheduler (MUCS) [17] [18] demonstrates good performance

under different traffic scenarios. It is easy to be implemented in hardware because

of its low interconnect and transistor count. MUSC sets the heaviest weight to the

VOQ that has the least contention in the same row and the same column, and then

find the stable marriage match. Simulations show that MUGS can achieve nearly

100% throughput with simple hardware implementation.

Reference [5] researched the benefit of an IQ switch to use the future infor-

mation. They stated that a 2 x 2 IQ switch can be equivalent to a 2 x 2 OQ switch

when future information is available. However, the equivalence is not held for larger

switches. It is NP-hard to use future information optimally.

19

2.2 Existing Combined Input Output Queued Algorithms

Another approach to achieve QoS guarantees is to increase the speed of the fabric.

The speedup of the switch, w, is defined as the ratio of the bandwidth between fabric

and input link. When w is larger than 1 and smaller than N, buffers are required

at the outputs as well as inputs. Early effort on CIOQ switch can be found in

[27][24][68][54][10][8]. [68] introduced knockout switch instead of speedup, in which

they employed a parallelism factor K. A knockout switch with a parallelism factor

of K is different from a switch with a speedup of K. In the knockout switch, the

K packets to an output during the same timeslot cannot come from the same input.

[54] and [10] show that with K = 4, throughput can achieve more than 99.5% under

the i.i.d. traffic even when N is very large.

Guerin et al. [23] [16] suggested that a CIOQ switch with a speedup less than

two is sufficient to achieve 100% throughput. They also demonstrated by simulations

that a speedup of two is sufficient to achieve nearly the same delay performance

as that of an OQ switch even for bursty traffic. In [44], Mckeown et al. proved

that employing the home territory algorithm (HTA) and VOQ, a CIOQ switch

with a speedup greater than N/2 is always work-conserving. Later, Prabhakar and

McKeown showed [57] that using most urgent cell first (MUCF) algorithm, a CIOQ

switch of any size with VOQs and speedup of 4 can perform identically to an

FIFO-OQ switch under arbitrary input traffic patterns. Then, Krishna et al. [30] proposed

a simpler algorithm, which can emulate FIFO-OQ switch with a speedup of 3. Charny

et al. [9] showed that with any maximal matching algorithm, the CIOQ switch with

the speedup of four is sufficient to ensure 100% asymptotic throughput. They also

showed that delay guarantees can be achieved with a relatively simple algorithm

and speedup independent of the switch size. Instead of trying to emulate OQ

switch, Krishna et al. [31] showed that using lowest occupancy output first algorithm

(LOOFA), a CIOQ crossbar switch with a speedup of two is work-conserving, thus

20

providing the same throughput performance as an OQ switch. Then Rodeheffer

and Saxe [58] showed that using the lowest output occupancy and timestamp first

algorithm (LOOTFA), a refinement of LOOFA, with a speedup of at least 3, the

LOOTFA crossbar switch is both work-conserving and order-conserving. Reference

[62] tries to prove that a CIOQ with a speedup of two can exactly emulate an OQ

switch, but later it was pointed out that the algorithm and proofs are not correct.

Recently, Chuang et al. proved [11][12] that a CIOQ switch using stable matching

[19] algorithm and critical cells first (CCF) insertion policy with speed up equal to

two can exactly mimic an output-queued (OQ) switch that uses push-in first-out

(PIFO) queueing policy.

and

CHAPTER 3

THE EARLIEST DUE DATE FIRST MATCHING
(EDDFM) ALGORITHM

Consider an N x N IQ switch consisting of N inputs, N outputs, and a non-blocking

switch fabric. To provide QoS features, switch resources such as the bandwidth and

buffers are allocated on a per-session basis. Let Ii,j,k be the lath session in Q i,j , the

VOQ directed to output j at input i, with arrival rate ri ,j , k. Denote Ai,j as the arrival

process of VOQ Qi,j. Then, the arrival rate of A i,j can be expressed as ri,j = ∑ k ri,j,k•

An arrival process A i , which is the aggregate arrival process to input i, is said to be

Otherwise, the process is said to

be non-uniform. The traffic pattern is admissible if and only if

3.1 The Algorithm

When a cell belonging to session Ii ,j,k in Q i,j arrives at timeslot n, the earliest due date

first matching (EDDFM) algorithm sets the initial weight of the cell to

is the delay bound of session Ii,j,k and Pm is an integer

that is greater than maxvi,j,k(Гi,j,k). Then, the cell is inserted in the queue at the

position closest possible to the HOL so that all the cells beyond this cell have smaller

weights. If a cell in the queue is served in a timeslot, it will be deleted from the queue;

otherwise, its weight will increase by one. The weight of VOQ Q i,j at timeslot n,

wi,j(n), is set to the weight of the HOL cell of this queue if Q i,j is not empty; otherwise

21

22

be the service vector associated with input i.

The EDDFM performs the following for each timeslot n:

1. Each input i set the weight of every VOQ 	 to the weight of the HOL cell,

and sends the weight vector W i (n) to the scheduler.

2. The scheduler searches for a match that achieves the maximum aggregate

weight under the constraint of unique pairing, i.e.,

sends the service vector S i (n) to the

corresponding input, and uses the matching matrix (Si ,; (n)) to configure the

fabric.

3. Each input selects the HOL cell from the matched VOQ indicated by S i (n) for

transmission.

Lemma 1 Using EDDFM algorithm, the weights of the VOQs are stable for all

admissible independent traffic, i.e., E[w i ,j (n)] < 	 j, n.

Proof: The proof of this Lemma is similar to the proof of the stability of OCF in

[421 The weight of Q i ,j at timeslot n +1, w i ,j (n + 1), is set as follows:

if	 is empty at timeslot n +1.

if a cell arrives at Qi,j and its weight is larger than the weight of the HOL cell.

23

if the queue is not served in this timeslot, and no cell with a larger weight arrives.

otherwise, where τi,j(n) is the difference of the weights between HOL cell and the cell

behind it at timeslot n, and τi,j(n) >= 0.

Set, wi,j(n + 1), the approximate next-state weight of Q i ,j to be:

we can obtain:

"pi-

Define the quadratic' Lyapunov function L(•) as:

Then,

and

24

non-negative constant, we have

Considering the second term of the right side of inequality Eq. 3.10, assume

and

where 0 is the angle between W (n) and r m . Since Wi,j(n) > 0 if and only if r Z > 0,

we know that cosθ > 0. Specifically,

25

where Wm (n) is the maximum of all w i ,j (n) and 7 is the minimum of the non-negative

From Eq. 3.10, Eq. 3.11, and Eq. 3.12, we have

which is larger than 0, we can obtain:

Since,

we have

Note that P²mN N is a constant. Then,

is constant. Eq. (3.16) indicates that the weights of

the VOQs are stable under the EDDFM algorithm, i.e.,

Denote L i ,j (n) as the queue occupancy of Q i j at timeslot n. A switch is stable

26

Theorem 1 A switch using EDDFM algorithm is stable for all admissible independent

traffic.

Proof: Under EDDFM algorithm, the queue occupancy is always less than or

equal to the weight of HOL cell, so the queue occupancies are stable.

Theorem 2 Under EDDFM algorithm, no session will be starved.

Proof: A cell's weight will keep increasing until it is served. Thus, EDDFM

is a starvation-free algorithm.

3.2 Simulation Results

A 4 x 4 input-queued switch was considered for simulations in which the bursty traffic

was generated based on the on — off traffic model. The average burst length was

chosen to be 20 cells and the burstiness was 2. The traffic was non-symmetric, i.e.,

the arrival rates of the VOQs in the same input were different and were 0.5, 1, 2, and

5Mbps. Two sessions in each VOQ, a fast session with a rate four times that of a

slow session, were generated. A traffic load of 0.9 was assumed, and each simulation

lasted through 100 seconds.

Three levels of delay bound, which are short, medium and long, were assumed

in the simulation. The delay bounds are assigned according to the following rules:

sessions with rates over 10% of the link capacity are treated as fast sessions and are

assigned short delay, sessions with rates between 1% and 10% of the link capacity are

treated as medium sessions and are assigned short and medium delay randomly, and

sessions with rates less than 1% of the link capacity are treated as slow sessions and

are assigned short, medium and long delay randomly. The medium delay and long

delay are set to five times and ten times of the short delay, respectively. The config-

uration of delay bounds of each session remains the same for different algorithms for

comparison purpose. The probabilities of cell overdue for different algorithms are

27

shown in Fig. 3.1. The values of the delay bound in the figure are associated with

short delay.

Figure 3.1 Comparison of probability of cell overdue under EDDFM and other
existing algorithms

The fairness of a scheduler can be defined as [21]:

where Ti(t1 , t2) is the number of cells delivered for session i during the time interval

[t 1 , t²], and ri is the rate of session i. The fairness is the maximum difference of

the normalized service time, which is the service a session received normalized by

its rate, among all sessions. It provides a metric on how fair a server is. The

smaller the amount of fairness, the fairer the server is. Table 3.1 summarizes the

performance comparison among EDDMF, LNQF, LQF, and OCF, where is the

average delay of session Ii,j,k. Table 3.1 and Fig. 3.1 show that EDDFM has the

lower probability of cell overdue and better fairness than LNQF, LQF, and OCF.

Table 3.1 Statistics of the simulation results of EDDFM algorithm

28

Furthermore, EDDFM is proved analytically to be stable and starvation-free under

all admissible independent traffic patterns.

CHAPTER 4

THE SHADOW DEPARTURE TIME ALGORITHM (SDTA)
AND THE ITERATIVE SDTA (ISDTA)

Since MWM is used by LQF, OCF, and EDDFM, the complexity of these algorithms

are very high. To facilitate the simplicity, GS-LQF and GS-OCF, the approxi-

mations of LQF and OCF, were introduced in [42] using stable marriage matching

[19] which can be solved by Gale-Shapley Algorithm (GSA). In this chapter, the

shadow departure time algorithm (SDTA) and iterative SDTA (ISDTA) are proposed

in order to achieve better performance than GS-LQF and GS-OCF with the same

level of complexity.

4.1 The Algorithms

It is assumed that there exists a shadow N x N FIFO OQ switch and the exactly same

traffic going to the IQ switch is fed into the shadow switch concurrently. SDT(c),

the shadow departure time of a cell c, is defined as the time that the cell departs the

shadow switch. Since FIFOs are used both in the VOQs of the IQ switch and the

output queues of the shadow switch, in the same VOQ the cell that arrives later will

have a larger SDT and the HOL cell will have the smallest SDT among all the cells

belonging to the same VOQ.

Using SDTA, the weight of a cell c is set to w(c) = SDT(c) — n, where n is

the current time. wi,j, the weight of Qi,j, is defined as:

in which c° (n) is the HOL cell of Q i at time n. According to the above definition,

the cell that has a smaller weight is more urgent to leave the switch. SDTA searches

for a stable matching between inputs and outputs by setting the preference lists for

every input and output following such a rule: input i prefers output j with smaller

29

30

wi ,j , and ties are broken randomly. Conversely, output j prefers input i with the

smaller w i ,j , and ties are also broken randomly.

Iterative SDTA (ISDTA) is designed to find the maximal matching between

inputs and outputs by iterations. It iterates the following three steps:

1. Request: Each unmatched input i sends a request to each output j if	 is

not empty.

2. Grant: If an unmatched output j receives any requests, it chooses the input i

with the smallest weight w i ,j , and ties are broken randomly.

3. Accept: If an input i receives any grants, it chooses the output j with the

smallest weight wi,j, and ties are broken randomly.

The maximal matching can be reached in N iterations.

It can be proved that the VOQ, which has the smallest weight, will always be

chosen to transmit the HOL cell. If a HOL cell of a VOQ is not served in a timeslot,

its weight will decrease by one, and thus it will eventually become small enough to

be served. Hence, SDTA and ISDTA are starvation-free algorithms.

4.2 Performance of ISDTA without Speedup

The performance of SDTA, ISDTA, and other existing algorithms were simulated in

a 16x16 switch. 256 i.i.d. flows, each of which belongs to a different input-output

pair, were created in the simulations. Two types of traffic models were taken into

consideration in the simulations: Bernoulli traffic and bursty traffic generated based

on the on — off traffic model. In the on — of f traffic model, the average burst

length was chosen to be 10 cells and the peak cell rate was set to be the link capacity.

Each simulation lasted for 1 million timeslots. Simulation results indicate that the

performance of SDTA and ISDTA are identical. This result is not surprising, because

Figure 4.1 Average cell delay vs. traffic load under i.i.d. Bernoulli traffic.

it has already been demonstrated in [42], the performance of GS-OCF and GS-LQF

which use GSA is identical to that of i-OCF and i-LQF which use iterative approach.

Figure 4.1 shows the average cell delay of OCF, LQF, i-OCF, i-LQF and ISDTA

versus the traffic load under Bernoulli traffic. Fig. 4.2 shows the variance of cell delay

versus the traffic load under the same traffic model. Figure 4.3 and 4.4 show the

average cell delay and variance of cell delay versus the traffic load under on — of f

traffic, respectively. Figure 4.1 — 4.4 indicate that ISDTA's average cell delay is

slightly smaller than i-OCF and larger than i-LQF, and, on the other hand, ISDTA's

variance of cell delay is slightly larger than that of i-OCF and smaller than i-LQF.

LQF has the smallest average cell delay and OCF has the smallest variance of cell

delay.

The performance of ISDTA and i-OCF are quite similar in terms of average cell

delay and variance of cell delay. Yet, the difference of the two algorithms is found to

be more profound after examining their cell delay distributions. Figure 4.5 shows the

Figure 4.2 Variance of cell delay vs. traffic load under i.i.d. Bernoulli traffic.

32

Figure 4.3 Average cell delay vs. traffic load under i.i.d. on — off traffic.

33

Figure 4.4 Variance of cell delay vs. traffic load under i.i.d. on — off traffic.

distribution of the percentage of cells which experience various delays using i-OCF,

i-LQF and ISDTA under i.i.d. Bernoulli traffic with a traffic load of 96%. Figure

4.7 shows the distribution under i.i.d. on — off traffic with a traffic load of 80%.

The curves in the above figures approximate the probability density functions of cell

delay using the algorithms under the above conditions. Figure 4.6 and 4.8 plot the

logarithm of the percentage versus cell delay in order to highlight the tails of the

distributions. These figures show that i-LQF has a heavy tail, which shows that

the number of cells which endure much longer latency is not desirable. Figure 4.8

also indicates that the tail of i-LQF diminishes much slower than that of i-OCF and

ISDTA under bursts traffic. Thus, it is not difficult to understand why i-LQF has a

smaller average cell delay but a larger variance of cell delay than i-OCF and ISDTA.

In the real-time service, the cells with a delay larger than the maximum cell transfer

delay (maxCTD) are considered to be lost [2]. Table 4.1 tabulates the cell loss ratio

(CLR) of i-LQF, i-OCF, and ISDTA algorithms when maxCTD is 200, 300, and 400

34

Table 4.1 Cell loss ratio of i-LQF, i-OCF, and ISDTA algorithms

under 80% on — off arrival. This result indicates that the CLR of i-LQF is so large

that it may not be acceptable for the real-time service.

The tails corresponding to ISDTA and i-OCF are almost identical while the

areas around their peaks are different. Integrating the curves in Fig. 4.5 and Fig.

4.7, the approximations of the cumulative distribution functions of cell delay can

be obtained which are plotted in Fig. 4.9 and 4.10. This figure shows that the

cumulative distributions of ISDTA are always larger than that of i-OCF under both

conditions, which implies that for a given delay bound, more percentage of cells

can be transmitted within the delay bound using ISDTA than using i-OCF. In other

words, cells using ISDTA have a lower probability of overdue than those using i-OCF.

4.3 Performance of ISDTA with Speedup

Chuang et al. [12] proved that the necessity and sufficiency of speedup w required

for an N x N CIOQ switch to exactly mimic an N x N FIFO-OQ switch is 2 —

1/N. In order to prove these theorems, they assume that some timeslots are normal,

which have two scheduling phases; some timeslots are truncated, which have only

one scheduling phase. There is one truncated timeslot out of every N timeslots, so

the speedup is 2 — 1/N. It means that such a speedup is the average, not the worst

case. Since there are two scheduling phases in a normal timeslot, the instant speedup

is two.

35

Figure 4.5 Cell delay distribution under i.i.d. Bernoulli traffic with traffic load of
96% in linear scale.

Figure 4.6 Cell delay distribution under i.i.d. Bernoulli traffic with traffic load of
96% in logarithmic scale.

Figure 4.7 Cell delay distribution under i.i.d. on — off traffic with traffic load of
80% in linear scale.

Figure 4.8 Cell delay distribution under i.i.d. on — off traffic with traffic load of
80% in logarithmic scale.

Figure 4.9 Cumulative distribution of cells under i.i.d. Bernoulli traffic with a load
of 96%.

Figure 4.10 Cumulative distribution of cells under i.i.d. on 	 f traffic with a load
of 80%.

38

Figure 4.11 Delyed output queued switching architecture.

According to their analysis, it is impossible to exactly emulate an OQ switch

using a CIOQ switch with a speedup less than 2 — 1/N. Our question is whether

it is possible to exactly emulate a delayed OQ switch with a less speedup. The

architecture of a delayed OQ switch is shown in Fig. 4.11, which consists of an OQ

switch and a D-timeslot delay line for each output. The performance of delayed OQ

switch is identical to an OQ switch except that the cell delay over the former is exactly

D timeslots larger than the later. Thus, some QoS features such as throughput and

delay jitter will be identical for the two switches.

In the simulations, the exactly same traffic is fed into a CIOQ switch as well

as a delayed FIFO-OQ switch with D = F. Define the overdue of a cell as the

time that the cell leaves the CIOQ switch minus the time that the cell leaves the

delayed OQ switch. The following figures plotted the number of cells versus their

overdue using different algorithms and conditions. Figure 4.12(a) shows the result

of the 16 x 16 CIOQ switch using i-OCF [42] algorithm when F = 2, X = 3, where

w = X/F = 1.50. The traffic is i.i.d. on — off traffic, with traffic load equal to 91%

and ,(3 = 0.1. The workload is uniform. The simulation last for 100, 000 timeslots.

Figure 4.12 shows that the maximum overdue is about 170 timeslots under these

conditions.

39

Figure 4.13 shows the result using the algorithm described in [12] with CCF

insertion policy when F = 2, X = 2, where w = 1.50. The traffic is i.i.d. on — of f

traffic with the traffic load of 96% and = 0.02. The simulation lasted for one

million timeslots. The maximum overdue in this test is about 130 timeslots. Since

this test has both a heavy traffic and a longer test time, the performance of this

algorithm is better than i-OCF under these conditions.

Denote ISDTA-X/F as the CIOQ switch that uses ISDTA with parameters X

and F. Figure 4.14 shows the distribution of cell delay overdue using ISDTA-3/2

under i.i.d. on — off arrival with a traffic load of 96% and β = 0.01, which is more

bursty than the traffic used for i-OCF and CCF. The maximum overdue of ISDTA-

3/2 is only 1 timeslot. These figures demonstrate that the performance of ISDTA

is much better than i-OCF and CCF in terms of cell delay overdue. Figure 4.15

compares the average cell delay of FIFO-OQ and ISDTA-3/2 versus the traffic load

under i.i.d. on — off traffic. Figure 4.15 indicates that the average delay of

ISDTA-3/2 is very close to that of FIFO-OQ, implying that ISDTA-3/2 can achieve 100%

throughput with low delay. Figure 4.16 shows the variance of cell delay versus the

traffic load under the same traffic model. Note that the curves of the variance of cell

delay of ISDTA-3/2 and FIFO-OQ are almost identical.

In this section, two new algorithms, SDTA and ISDTA, which have the identical

performance, were proposed. ISDTA, which employs maximal matching, thus having

a lower complexity than algorithms that uses MWM, can be used to improve upon

existing maximal matching algorithms in terms of QoS features. The cell delay

distribution using i-LQF exhibits a heavy tail especially under bursty traffic. This

implies that more cells experience much longer latency than those using i-OCF and

ISDTA. Simulations also show that ISDTA has a lower probability of overdue than

those using i-OCF. It has been showed by simulations that the performance of a

Figure 4.12 The distribution of cell delay overdue using i-OCF under i.i.d. on 	 f
traffic with the speedup of 1.5.

Figure 4.13 The distribution of cell delay overdue using CCF under i.i.d. on — of f
traffic with the speedup of 1.5.

41

Figure 4.14 The distribution of cell delay overdue using ISDTA under i.i.d. on—of f
traffic with the speedup of 1.5.

Figure 4.15 Average cell delay vs. traffic load under i.i.d. on — off arrival.

Figure 4.16 Variance cell delay vs. traffic load under i.i.d. on — off arrival.

CIOQ switch using ISDTA with a speedup of 1.5 is similar to that of an OQ switch

in terms of cell delay and throughput.

CHAPTER 5

THE ENHANCED BIRKHOFF-VON NEUMANN
DECOMPOSITION (EBVND) ALGORITHM

Denote r 2 ,j as the arrival rate of VOQ Q. The input traffic is said to be admissible

if the following inequalities are satisfied:

The matrix R = (ri ,j) satisfying Eq. 	 (5.1) and (5.2) is said to be doubly

substochastic. For any doubly substochastic matrix R, there exists [6] a doubly

doubly stochastic if

An algorithm to construct doubly stochastic matrix R from doubly substochastic

matrix R is also provided in [6] with a computational complexity of 0(N3). In this

dissertation, a new algorithm, the weighted rate filling algorithm (WRFA), is

introduced to perform this task:

Weighted Rate Filling Algorithm (WRFA)

43

44

Theorem 3 Matrix R = (ri,j) constructed from doubly substochastic matrix R =

(ri ,j) is a doubly stochastic matrix.

Proof: Since R = (ri,j) is a doubly substochastic matrix, we have

among the VOQs more fairly. The complexity of WRFA is 0(N²) which is smaller

than the original one.

5.1 The Birkhoff-von Neumann Decomposition (BVND) Algorithm

A doubly stochastic matrix R can be expressed as the linear combination of permu-

where Pk is a permutation matrix, and 0 < øk <1

The Birkhoff-von Neumann decomposition (BVND) algorithm

schedules the cells by setting the connection of the crossbar according to the permu-

tation matrix Pk with probability øk [6]. Let Ci ,j (n) be the cumulative number of

45

timeslots for transmission that are assigned to Qi ,j by timeslot n. Denote A i ,j (n) as

the total number of cells arrived in at the end of timeslot n. Then, BVND can

guarantee

161. Eq. (5.5) implies that if Ai,j(n) conforms to (σi,j, ri ,j), i.e.,

then the cell delay from input i to output j is bounded by [(σi,j+uj,j)/ri,j] using

BVND [6]. The off-line and on-line computational complexity of this algorithm is

0(N4.5) and O(logN), respectively [6].

5.2 The Enhanced Birkhoff-von Neumann Decomposition
(EBVND) Algorithm

It is observed that BVND decomposition algorithm is not efficient enough because in

certain timeslot it sets the crossbar connections solely according to the permutation

matrix which is obtained from R, and pays no attention to the current occupancy

of VOQs. Thus, it is not surprising to see that the average cell delay of BVND is

much larger than that of other algorithms such as OCF. For example, the connection

requests at the current timeslot is shown in Fig 1.8. It is redrawn in Fig. 5.1(a),

where the non-empty VOQs are filled with a cross. Suppose the permutation matrix

selected by BVND at the current timeslot is

The non-zero elements of P are represented by circles in Fig. 5.1(a). Among all the

VOQs selected by P, only VOQ Q 0 , 1 is non-empty which is shown by thick border

box in Fig. 5.1(b). Hence, only one cell can be scheduled by BVND in the current

Figure 5.1 (a) Request graph and the selected permutation matrix. (b) One cell
scheduled by BVND. (c) Two additional cells can be scheduled.

timeslot. However, two more VOQs, Q1,² and Q²,3, can actually send cells across

the fabric in the current timeslot without removing the cells scheduled by BVND as

shown in Fig. 5.1(c).

Based on the above observation, the enhanced Birkhoff-von Neumann decompo-

sition (EBVND) algorithm matches the inputs and outputs which are not matched by

BVND, and attempts to make a maximal match in every timeslot. Many algorithms

such as PIM and WWFA can be used to fill the "holes" left by BVND. Thus, EBVND

will have a higher on-line computational complexity than BVND, with the expec-

tation of having better performance.

Suppose IQ switch B uses BVND while IQ switch E uses EBVND. Denote Q i,jB

number of cells dequeued from Q iB,j by the end of timeslot n, and T εi,j(n) be that of

Lemma 2 For any integer m > n, if both Q Bi,j and QE ; are constantly backlogged

47

Proof: When both (213i and (4 are not empty at certain timeslot, if a cell is

dequeued from QBi, j , then a cell must be dequeued from Q εi,jaccording to the definition

of EBVND.

Let LEA (n) and Li (n) be the length of (4 ., and Q? by the end of timeslot n,

respectively.

Theorem 4 If the exactly same traffic is fed into switch B and E concurrently and

no cell is dropped, then I4 i (n) < Lri (n) for any i, j, and n.

Proof: Consider any i, j, and n, if g i (n) = 0, then the theorem is proved, because

let no < n be the largest number such that g i (no) = 0.

That is, from timeslot no + 1 to timeslot n,	 j is constantly backlogged. Denote

(no , n)backlog be the number of cells dequeued from QB i,j between timeslot no + 1

and n inclusively when QBi,j is constantly backlogged during (no , n]. From Lemma 2,

we know that Tiejno ,n) >= TiBjno , n)backlog . Thus, we have TiE (no , n) >= TBi,j(no, n) ,

because TBi,j (no , n)backlog > TBi,j(no, n). Since LEA = 0, gi (no) < gi (no). From

timeslot no + 1 to n, the same number of cells are enqueued into Q i j and QED , but

more or the same number of cells are dequeued from Q iE j . Thus, L iE i (n) <= LBi,j(n)

for any i, j, and n.

Denote D as the delay of certain cell c in switch B, and 	 as the delay in

switch E.

Theorem 5 Assume all the VOQs in switch B and E are FIFOs. If the exactly same

traffic is fed into switch B and E concurrently and no cell is dropped, then D <

for any cell c.

Proof: If a cell c which is directed to output j arrives in input i at timeslot n, then

both C2 .1 • and	 - will be backlogged until c is scheduled. At timeslot n,	 •(n) >=1,3	 ,j	 i,3	 >=

i (n). Assume cell c departs switch E at timeslot n1 , then Tigi (n, n i) > Ti8(n, ni).

48

Because the arrival of B and E are identical, the cell c cannot leave switch B before

timeslot n 1 , if all the VOQs are FIFOs. So Dcε < D•for any cell c.

Theorems 4 and 5 imply that the performance of EBVND is better than BVND

in terms of throughput and cell delay guarantees. Thus, EBVND does provision QoS

guarantees, since BVND was proven to provision QoS guarantees [6].

5.3 The Wave Front Birkhoff-von Neumann Decomposition
(WFBVND) Algorithm

Wave front Birkhoff-von Neumann decomposition (WFBVND) algorithm, which is a

special case of EBVND, finds more pairs in a match using a method similar to WWFA

[65]. WFBVND divides a timeslot into N phases. Assume P is the permutation

matrix selected by BVND. In the lth phase, WFBVND calculates matrix V i =

where V i . 1 = P(i+l)modN,j. For example, if P is defined by Eq. (5.7), then

During the lth phase, WFBVND checks the VOQs corresponding to the non-

zero elements of V 1 , and adds the non-empty VOQs in the match if both its input

and output are unmatched. Figure 5.2 shows an example, where the VOQs filled with

crosses indicate the non-empty VOQs, the VOQs filled with circles indicate that the

corresponding elements of V / is 1, and the VOQs with thick border indicate they

are scheduled to transmit cells. The on-line computational complex of WFBVND is

0(N²).

The complexity of 0(N²) may be costly for high-speed implementation.

WFBVND with logN iterations (WFBVND-logN) is thus introduced as a simplified

version of WFBVND in order to reduce the complexity. It differs from WFBVND

Figure 5.2 WFBVND algorithm: phase (a) 0, (b) 1, (c) 2, and (d) 3.

49

50

by only having the first logN phases of WFBVND. Since WFBVND-logN runs less

phases than WFBVND, its performance is expected to be worse than WFBVND,

but still better than BVND since it is the special case of EBVND. The on-line

computational complexity of WFBVND-logN is O (NlogN).

5.4 Results and Discussion

The performance of the new and some other existing algorithms was simulated in a

16 x 16 IQ switch. 256 i.i.d. flows, each belonging to a different input-output pair,

were created in the simulations. Traffic A id conforms to (σi,j , ri ,j) for all i, j, where

is set to be 1000ri,j. Thus, the delay bound is 1000 ± [u i ,j /ri,jl timeslots for

BVND, WFBVND and WFBVND-logN.

Figure 5.3 shows the distribution of the percentage of cells which experience

various delays over the switch using BVND, OCF, and WFBVND algorithm under

the given traffic with a total traffic load of 84%. It shows clearly that the cell delay

of BVND is much larger than OCF, while WFBVND is quite close to OCF. Figure

5.4 shows the average cell delay of BVND, WFBVND, WFBVND-logN, and OCF

versus the traffic load under i.i.d. (a, r) traffic. Figure 5.5 shows the variance of

cell delay versus the traffic load under the same traffic model. Figure 5.4 and 5.5

indicate that the average cell delay and variance of WFBVND is much smaller than

that of BVND and close to OCF. With a reduced complexity, the average delay and

the delay variance of WFBVND-logN are also significantly smaller than those of

BVND.

The algorithms are also tested under unbalanced traffic load. In the 256 flows,

half of them, which are selected randomly, are set to be inactive, and the active

flows are assigned rates randomly under the admissible condition. Table 5.1 shows

the average cell delay of all the flows from input 0 to the outputs using BVND,

WFBVND, and WFBVND-logN. Table 5.2 tabulates the weighted average cell delay,

Figure 5.3 Comparison of cell delay distribution under 84% traffic load using BVND,
OCF, and WFBVND.

Figure 5.4 Average cell delay vs. traffic load under i.i.d. (a, r) arrival.

Figure 5.5 Variance of cell delay vs. traffic load under i.i.d. (a, r) arrival.

Table 5.1 Average cell delay of the active flows in input 0

variance of cell delay, and average queue length of all the flows The results demon-

strate that our proposed algorithms have also achieved much smaller average cell

delay, cell delay variance, and average queue length in this traffic load.

A new class of VOQ scheduling algorithms with rate and delay guarantees has

been proposed. Specifically, the performance of WFBVND and WFBVND-logN is

compared with OCF and BVND. It has been demonstrated both by simulations and

theoretical analysis that the new algorithms can achieve much smaller average cell

delay and delay variance as well as provide QoS guarantees.

52

Table 5.2 Performance of BVND and EBVND under unbalanced traffic load

53

CHAPTER 6

THE CREDIT-BASED ALGORITHMS

Both of the BVND and EBVND algorithms have very high off-line computational

complexity. Whenever the configuration of connections is changed, BVND and

EBVND must recalculate the doubly stochastic matrix and decompose it. The

complexity of the construction and decomposition of the doubly stochastic matrix

makes BVND and EBVND difficult to be implemented. In this chapter, we will

introduce several new credit-based algorithms which have lower off-line computa-

tional complexity with the similar QoS features to BVND.

6.1 The Algorithms

Suppose every Q i ,j has a credit c i which is a real variable that has the initial value

of 0. At the beginning of every timeslot, c i ,j increases by ri,j, where R = (f i ,j) is the

doubly stochastic matrix defined in the last chapter. The scheduler selects the match

according to the current credits of VOQs. Define the matching matrix at timeslot n as

S(n) = (Si ,j (n)), where Si ,j (n) equals to 1 if input-output pair (i, j) is in the match,

otherwise Si ,j (n) = 0. Only permutation matrices are considered as the matching

matrix S, implying that there are always exactly N pairs in every match. From all

the permutation matrices, the maximum credit first (MCF) algorithm selects the one

that can maximize the aggregate credit, i.e.,

MWM algorithm which has a computational complexity of 0 (N3) [66]. The cells in

VOQs are transmitted across the fabric according to their corresponding values in

the matching matrix S: if Si ,j equals to 1 and Q i j is not empty, then the HOL cell

of Q i will be transmitted to output j. In the meanwhile, decreases by Si,j for

54

55

all i, j. Thus, ci ,j (n), the credit of	 at the end of timeslot n, is

MCF algorithm shares the same problem with BVND algorithm: the efficiency.

Since MCF selects the permutation matrix solely according to the credits of VOQs

and pays no attention to the queue length, the VOQs selected by MCF may be empty

while other contention-free VOQs have cells. Enhanced MCF (EMCF) algorithm is

introduced to solve this problem. It fills the "holes" by scanning the VOQs with

the selected permutation matrx. Similar to WFBVND, it completes the scanning

in N phases. Suppose P is the permutation matrix selected by MCF. In the lth

phase, EMCF calculates matrix V l = (P(i+l)modN,j)• Then, it checks the VOQs

corresponding to the non-zero elements of V 1 and adds the non-empty VOQs in the

match if both its input and output are available.

Similar to the proof of Theorems 4 and 5, the following theorems can be readily

proved.

Theorem 6 If the exactly same traffic is fed into switch M, the IQ switch using

MCF algorithm, and N -, the IQ switch using EMCF algorithm, concurrently and no

cell is dropped, then Li,j^N(n), the queue length of Qi,j in switch N- at timeslot n, is

always less than or equal to 1:1-"i,i (n) for any i, j, and n.

Theorem 7 Assume all the VOQs in switch M and N are FIFOs. If the exactly

same traffic is fed into switch M and N- concurrently and no cell is dropped, then

DA , the delay time of cell c in switch A1, is always less than or equal to Dcm^M for any

cell c.

Theorems 6 and 7 proved the performance of EMCF is better than that of MCF

in terms of cell delay and buffer length. The complexity of MCF is 0(N3) owing

56

to MWM. The complexity of the filling process is 0(N²). Thus, the complexity of

EMCF is 0(N3), which is at the same level as MCF.

Owing to the 0(N3) complexity, MCF and EMCF algorithms are difficult to

implement in high speed networks, so an iterative approximation of MCF algorithm

is proposed: iterative maximum credit first (IMCF) algorithm. IMCF performs the

following three steps in every iteration:

1. Request: Each unmatched input sends a request to every output.

2. Grant: If an unmatched output receives any requests, it chooses the one with

the largest credit. Ties are broken randomly.

3. Accept: If an input receives any grants, it chooses the one with the largest

credit. Ties are broken randomly.

IMCF stops when there is no unmatched input and output. It converges in at most

N iterations. The matching matrix S selected by IMCF is always a permutation

matrix.

Property 1 At the end of any timeslot, the credits of an IQ switch using MCF or

IMCF satisfy the following equations:

Property 2 In any timeslot just before the matching matrix is calculated, the credits

of an IQ switch using MCF or IMCF satisfy the following equations:

57

Table 6.1 Maximum and minimum credit of MCF and IMCF

6.2 Discussion and Simulations

The credit of (4j at timeslot n can be expressed as

For any n >= m,

If we assume the lower bound and upper bound of the credit are c- and c+, respec-

tively, and let /- = c+ — c- , then

Eq. (6.6) implies that if Ai the traffic from input i to output j, conforms to

then the cell delay from input i to output j is bounded b3

Comparing Eq. (6.6) with Eq. (5.5), we can say if the A, of MCF and IMCF

is comparable with U = N² — 2N + 2, then MCF and IMCF are as good as BVND

in terms of QoS guarantees. Simulation results of c+, c- , and A, are shown in Table

6.1. The simulations are made under various non-uniform rate reservations on input-

queued switches with N = 16, N = 32, and N = 64. Table 6.1 shows the A, of MCF

and IMCF, which are much smaller than U.

Both BVND and MCF try to keep the credits of VOQs as close to 0 as possible

58

Figure 6.1 H(n) of BVND and MCF under unbalanced traffic reservation.

of the fairness. For an ideal scheduling algorithm in fluid model, H(n) should be

equal to 0 at any timeslot, which is not possible in the packetized case. In practice,

an algorithm with better fairness should have a smaller H (n) . From Eq. 6.1, we

have

. Since MCF selects the matching matrix S which has

Therefore, MCF can minimize H(n) at any step. The

comparison of BVND and MCF under an unbalanced traffic reservation for a 16 x 16

switch is shown in Fig. 6.1. In this example, the maximum H(n) of BVND and

MCF are 1550 and 30 respectively, implying that MCF has much better fairness

than BNVD.

Figure 6.2 and 6.3 show the distribution of the percentage of cells which

experience various delays over a 16 x 16 IQ switch using MCF, IMCF and BVND

Figure 6.2 Cell delay distribution under (o- , r) traffic using MCF, IMCF, and BVND.

under non-uniform traffic with a total traffic load of 90%. Traffic A i , conforms

in which σi,j= 1000ri,j. Thus, the designed delay bound

timeslots for BVND and 1000 + [A,/ri,j] timeslots for MCF

and IMCF. The simulation result shows that the cell delay bound is less than 1200

timeslots for all the algorithms as we have expected. Figure 6.2 and 6.3 demon-

strates that the performance of BVND and IMCF are almost identical, and MCF

has a tighter bound than the other two algorithms.

When ri ,j, the reserved rate between input i and output j, changes, MCF and

IMCF need to recalculate R. On the other hand, BVND not only need to recalculate

but also need to decompose it again. It has the complexity of 0(N 4.5) and is

termed as off-line computational complexity in [6_ . Owing to the high off-line compu-

tational complexity, BVND will be hard to implement in a dynamic environment.

Table 6.2 compares the computational and memory complexity of BVND, WFBVND,

WFBVND-logN, MCF, EMCF, and IMCF. It indicates that compared to BVND

Figure 6.3 Cell delay distribution under (o, r) traffic using MCF, IMCF, and BVND
(portion).

algorithm, MCF, EMCF and IMCF have higher on-line computational complexity

but have lower off-line computational complexity and on-line memory complexity.

Figure 6.4 shows the distribution of the percentage of cells which experience

various delays over the switch using MCF and EMCF algorithms under unbalanced

a- , r) traffic with an average traffic load of 79%, in which ri,j is selected randomly, o-,,j

is set to be 1000r,j. In this example, the traffic was generated with on — off model

and constrained by leaky bucket. This figure demonstrates that EMCF has a smaller

delay bound than MCF. Under this traffic conditions, the average cell delay of MCF

is 850 timeslots. On the other hand, the average cell delay of EMCF is only 51,

which is much smaller than MCF. Figure 6.5 shows the average cell delay of BVND

and EMCF versus the traffic load under i.i.d. r) arrival. It indicates that EMCF

reduces the average cell delay significantly. Figure 6.6 shows the variance of cell

61

Table 6.2 Computational and memory complexity of BVND-based algorithms

delay versus the traffic load under the same traffic model as in Fig. 6.5. Compared

with BVND, the variance of cell delay of EMCF is also much smaller.

Figure 6.4 Cell delay distribution under unbalanced (a, r) traffic using MCF and
EMCF algorithms.

In summary, the three new algorithms, MCF, EMCF, and DICE, which have

similar performance as BVND in terms of QoS guarantees, but have less off-line

computational and on-line memory complexity, which makes these new algorithms

more realizable in practice. Simulations also show that the fairness of MCF is much

better than that of BVND.

62

Figure 6.5 Average cell delay vs. traffic load under i.i.d. (a, r) traffic using BVND
and EMCF algorithms.

Figure 6.6 Variance of cell delay vs. traffic load under i.i.d. (a, r) traffic using
BVND and EMCF algorithms.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, the scheduling algorithms for high speed VOQ switches were

studied. Several new VOQ scheduling algorithms were proposed and evaluated. It

was shown by simulations as well as theoretical analyses that the new algorithms can

achieve better QoS features than the existing algorithms.

Earliest due date first matching (EDDFM), a MWM algorithm, is proved

analytically to be stable and starvation-free under all admissible independent traffic

patterns. Simulations show that EDDFM has lower probability of cell overdue than

other MWM algorithms such as LNQF, LQF, and OCF.

Iterative shadow departure time algorithm (ISDTA), which employs maximal

matching and thus has a lower complexity than algorithms which use MWM, has been

proposed to improve upon existing maximal matching algorithms in terms of QoS

features. The cell delay distribution using i-LQF exhibits a heavy tail especially

under the bursty traffic implying that more cells experience much longer latency

than those using i-OCF and ISDTA. Simulations also show that ISDTA has a larger

cumulative distribution of cell delay than i-OCF, which implies that switches using

ISDTA have a lower probability of overdue than those using i-OCF. It has been

shown by simulations that the performance of a CIOQ switch using ISDTA with a

speedup of 1.5 is similar to that of a OQ switch in terms of cell delay and throughput.

An unsolved problem is that whether a delayed PIFO-OQ switch is able to be exactly

mimicked by a VOQ switch with the speedup less than 2.

The enhanced Birkhoff-von Neumann decomposition (EBVND) algorithm is

based on BVND. Theoretical analysis indicates that the performance of EBVND is

better than BVND in terms of throughput and cell delay, which indicates that it

can also provide rate and cell delay guarantees. Wave front Birkhoff-von Neumann

decomposition (WFBVND) algorithm and its simplified version WFBVND with

63

64

logN iterations (WFBVND-logN), the special cases of EBVND, are also introduced

and evaluated. Simulations show that WFBVND and WFBVND-logN have much

lower average cell delay comparing to BVND.

The maximum credit first (MCF) algorithm is introduced to provide rate and

cell delay guarantees. The iterative maximum credit first (IMCF) algorithm is the

simplified version of MCF. Simulations show that both MCF and IMCF have similar

performance as the Birkhoff-von Neumann decomposition (BVND) algorithm which

can provide cell delay bound and 100% throughput but lower off-line computational

and on-line memory complexity. Enhanced MCF (EMCF) algorithm is also presented

in this dissertation to improve the efficiency of MCF. EMCF has a much smaller

average cell delay than MCF and BVND.

Simulation results illustrate that the performance of a CIOQ switch with

speedup of 1.5 is almost the same as a FIFO-OQ switch in terms of throughput and

cell delay. However, whether a delayed OQ switch is able to be exactly mimicked by

a CIOQ switch with the speedup less than 2 — 1/N needs to be investigated further.

Simulations reveal that the bound of credits under MCF is tighter than that of

BVND, which implies that the MCF has a smaller delay bound and better fairness

than that of BVND. The question is whether we can identify the bound of MCF via

analytical work. Our future effort will be focusing on answering these questions.

REFERENCES

1. T. Anderson, S. Owicki, J. Saxe, and C. Thacker, "High speed switch scheduling
for local area networks," ACM Trans. Computer Systems, vol. 11, no. 4,
pp. 319-352, Nov. 1993.

2. The ATM Forum, "Traffic Management Specification," AF-TM-0121.000,Version
4.1, Mar. 1999.

3. J.C.R. Bennett and H. Zhang, "WF ² Q: worst-case fair weighted fair queueing" ,
Proc. INFOCOM'96, San Francisco, CA, Mar. 1996, pp. 120-128.

4. R. Bolla, F. Davoli, and M. Marchese, "Evaluation of a cell loss rate computation
method in ATM multiplexers with multiple bursty sources and different
traffic classes," Proc. GLOBECOM'96, pp. 437-441, Nov. 1996.

5. T.X. Brown, H. Gabow, "Future information in input queueing," submitted to
IEEE Trans. Commum..

6. C.S. Chang, W.J. Chen, and H.Y. Huang, "On service guarantees for input
buffered crossbar switches: a capacity decomposition approach by Birkhoff
and von Neumann," Proc. IEEE IWQoS'99, London, U.K., 1999, pp.79-86.

7. C.S. Chang, W.J. Chen, and H.Y. Huang, "Birkhoff-von Neumann input buffered
crossbar switches," Proc. INFOCOM 2000, Tel Aviv, Israel, Mar. 2000, pp.
1614-1623.

8. C.Y. Chang, A.J. Paulraj, and T. Kailatch, "A broadband packet switch archi-
tecture with input and output queueing," Proc. Globecom'94, 1 994 , pp.
448 - 452.

9. A. Charny, P. Krishna, N. Patel, and R. Simcoe, "Algorithms for providing
bandwidth and delay guarantees in input-buffered crossbar with speedup,"
Proc. 6th IEEE/IFIP IWQoS'98, Napa, CA, May 1998.

10. J.S. Chen and T.E. Stern, "Throughput analysis, optimal buffer allocation, and
traffic imbalance study of a generic nonblocking packet switch," IEEE J.
Select. Areas Commum., vol. 9, pp. 439-449, Apr. 1991

11. S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, "Matching output
queueing with a combined input output queued switch," Computer Systems
Technical Report CSL-TR-98-758, Mar. 1998.

12. S.T. Chuang, A. Goel, N. Nckeown, and B. Prabhakar, "Matching output
queueing with a combined input/output-queued switch," IEEE J. Select.
Areas Commun., vol. 17, No. 6, pp. 1030-1039, June 1999.

13. T. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithm, The
MIT Press, Cambridge, Massachusetts, Mar. 1990.

65

66

14. J.G. Dai, B. Prabhakar, "The throughput of data switches with and without
speedup," Proc. INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.

15. A. Demers, S. Keshav, and S. Shenkar, "Analysis and simulation of a fair
queueing algorithm," Internet. Res. and Exper., vol. 1, 1990.

16. A. Diwan, R. Guerin, and K. N. Sivarajan, "Performance analysis of speeded-up
high-speed packet switches," Proc. BC'99, Hong Kong, Nov. 1999.

17. H. Duan, J.W. Lockwood, S.M. Kang, and J.D. Will, "A high-performance
OC-12/OC-48 queue design prototype for input-buffered ATM switches," Proc.

INFOCOM'97, 1997.

18. H. Duan, and J.W. Lockwood, S.M. Kang, "Matrix unit cell scheduler (MUCS)
for input-buffered ATM switches," IEEE Communications Letters, vol. 2,
no. 1, pp. 20-23, Jan. 1998.

19. D. Gale and L.S. Shapley, "College admissions and the stability of marriage,"
American Mathematical Monthly, vol. 69, pp. 9-15, 1962.

20. S. Golestani, "A stop-and-go queueing framework for congestion management,"
Proc. ACM SIGCOMM'90, Philadelphia, PA, Sept. 1990, pp. 8-18.

21. S. Golestani, "A self-clocked fair queueing scheme for broadband applications,"
Proc. INFOCOM'94, 1994, pp. 636-646.

22. M.W. Goudreau, S.G. Kolliopoulos, and S.B. Rao, "Scheduling algorithms
for input-queued switches: Randomized techniques and experimental
evaluation," Proc. INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.

23. R.A. Guerin and K.N. Sivarajan, "Delay and throughput performance of
speeded-up input-queueing packet switches," IBM Res. Rep. RC 20892,
1997.

24. A.L. Gupta and N.D. Georganas, "Analysis of a packet switch with input and
output buffers and speed constraints," Proc. InfoCom'91, Bal Harbour,
FL, 1991, pp. 694-700.

25. J.E. Hoperoft and R.M. Karp, "An n(51²) algorithm for maximum matching
in bipartite graphs," Society for Industrial and Applied Mathematics J.
Compact., vol. 2, pp. 225-231, 1973.

26. J. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer
Academic Press, 1990.

27. I. Iliadis and W. E. Denzel, "Performance of packet switches with input and
output queueing," Proc. ICC'90, Atlanta, GA, 1990, pp. 747-753.

67

28. A. Kam and K.-Y. Siu, "Linear Complexity Algorithms for QoS Support
in Input-Queued Switches with no Speedup," IEEE J. Select. Areas
Commun., vol. 17, no. 6, June 1999.

29. M. Karol, M. Hluchyi, and S. Mogan, "Input versus output queueing on a space-
division packet switch," IEEE Trans. Commun., vol. COM-35, pp. 1347-
1356, Dec. 1987.

30. P. Krishna, N. Patel, A. Charny, R. Simcoe, "On the speedup required for work-
conserving crossbar switches," Proc. 6th IEEE/IFIP IWQoS'98, Napa,
CA, May 1998.

31. P. Krishna, N.S. Patel, A. Charny, and R.J. Simcoe, "On the speedup required
for work-conserving crossbar switches," IEEE J. Select. Areas Commun.,
vol. 17, no. 6, pp. 1057-1066, June 1999.

32. B. Kwon, B. Kim, and H. Yoon, "Self-firing cell scheduler for input queueing
ATM switches," Electronics Letters, vol. 32, no. 17, Aug. 1996.

33. R.O. Lamaire and D.N. Serpanos, "Two dimensional Round Robin Schedulers
for Packet switches with multiple input queues," IEEE/ACM Trans.
Networking, pp. 471-482, Oct. 94.

34. S. Li, and N. Ansari, "Scheduling input-queued switches with QoS features,"
ICCCN'98, Lafayette, Louisiana, Oct. 1998, pp. 107-112.

35. S. Li and N. Ansari, "Input queued switching with QoS guarantees," Proc. IEEE
INFOCOM'99, New York, NY, Mar. 1999, pp. 1152-1159.

36. S.Q. Li, "Performance of a nonblocking space-division packet switch with
correlated input traffic," Proc. GLOBECOM'89, 1989, pp. 1754-1763.

37. S.Y. Li, "Theory of periodic contention and its application to packet switching,"
Proc. INFOCOM'88, Mar. 1988, pp. 320-325.

38. S.Y. Liew, S.W. Cheng, and T.T. Lee, "An enhanced iterative scheduling
algorithm for ATM input-buffered switch," Proc. ATM Workshop, 1999,
pp. 103-108.

39. M.A. Marsam, A. Bianco, and E. Leonardi, "RPA: A simple, efficient, and flexible
policy for input buffered ATM switches," IEEE Communications Letters,
vol. 1, no. 3, pp. 83-86, May 1997.

40. M.A. Marsan, A. Bianco, E. Leonardi, and L. Milia, "Quasi-optimal algorithms
for input buffered ATM switches," Proc. ISCC'98, 1998, pp. 336-342.

41. N. McKeown, P. Varaiya, and J. Walrand, "Scheduling Cells in an Input-Queued
Switch," IEE Electronics Letters, vol. 29, no. 25, pp. 2174-2175, Dec. 1993.

68

42. N. McKeown, "Scheduling algorithms for input-queued cell switches," Ph.D.
dissertation, Univ. of California, Berkeley, 1995.

43. N. McKeown, V. Anantharam, and J. Walrand, "Achieving 100% throughput in
an input-queued switch," Proc. INFOCOM'96, San Francisco, CA, Mar.
1996, pp. 296-302.

44. N. McKeown, B. Prabhakar, and M. Zhu, "Matching output queueing with
combined input and output queueing," Proc. 35th Ann. Allerton Conf.
Commun., Control. and Computing, Monticello, Illinois, Oct. 1997.

45. N. McKeown and T.E. Anderson "A Quantitative Comparison of Scheduling
Algorithms for Input-Queued Switches," Computer Networks and BISDN
Systems, vol. 30, no. 24, pp. 2309-2326, Dec. 1998.

46. N. McKeown, "The iSLIP Scheduling Algorithm for Input-Queued Switches,"
IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201, Apr. 1999.

47. N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, "Achieving 100%
throughput in an input-queued switch," IEEE Trans. Commun., vol. 47,
no. 8, pp. 1260-1267, Aug. 1999.

48. A. Mekkittikul and N. McKeown, "A starvation-free algorithm for achieving
100% throughput in an input-queued switch," Proc. ICCCN'96, Oct. 1996,
pp. 226-231.

49. A. Mekkittikul and N. McKeown, "A practical scheduling algorithm to achieve
100% throughput in Input-Queued Switches," Proc. INFOCOM'98, San
Francisco, CA, Mar. 1998, pp. 792-799.

50. S. Motoyama, D.W. Petr, and V.S. Frost, "Input-queued switch based on a
scheduling algorithm," Electronics Letters, vol. 31, no. 14, pp. 1127-1128,
July 1995.

51. S. Motoyama, L.M. Ono, and M.C. Mavigno, "Performance analysis of iterative
scheduling algorithms for ATM input-queued switches," Proc. ITS'98,
1998, pp. 195-200.

52. S. Motoyama, L.M. Ono, and M.C. Mavigno, "An iterative cell scheduling
algorithm for ATM input-queued switch with service class priority," IEEE
Communications Letters, vol. 03, no. 11, pp. 323-325, Nov. 1999.

53. N. Ge, J.K. Muppala, and M. Hamdi, "Analysis of non-blocking ATM switches
with multiple input queues," GLOBECOM'97, 1997, pp. 531-535.

54. Y. Oie, M. Murata, K. Kubota, and H. Miyahara, "Effect of speedup in
nonblocking packet switch," Proc. ICC'89, Boston, MA, 1989, pp. 410-
414.

69

55. A.K. Parekh and R.G. Gallager, "A generalized processor sharing approach to
flow control in integrated services networks: the single node case," IEEE
Trans. Networking, vol. 1, no. 3, pp. 344-357, June 1993.

56. A.K. Parekh and R.G. Gallager, "A generalized processor sharing approach
to flow control in integrated services networks: the multiple node case",
IEEE ACM Trans. Networking, vol. 2, no. 2, pp. 137-150, Apr. 1994.

57. B. Prabhakar and N. McKeown, "On the speedup required for combined input
and output quelled switching," Computer Systems Technical Report CSL-
TR-97-738, Nov. 1997.

58. T.L. Rodeheffer, J.B. Saxe, "An efficient matching algorithm for a high-
throughput, low-latency data switch," Compaq Comput. Corp., Syst. Res.
Ctr., Res. Rep., 1998.

59. R. Schoenen, G. Post, G. Sander, "Prioritized arbitration for input-queued
switches with 100% throughput," Proc. ATM Workshop, 1999, pp. 253-
258.

60. D.N. Serpanos and P.I. Antoniadis, "FIRM: A class of distributed scheduling
algorithms for high-speed ATM switches with multiple input queues," Proc.
INFOCOM'96, San Francisco, CA, Mar. 1996.

61. D. Stiliadis and A. Varma, "Providing Bandwidth Guarantees in an Input
Buffered Crossbar Switch," Proc. Proc. INFOCOM'95, Boston, MA, Apr.
1995.

62. I. Stoica and H. Zhang "Exact emulation of an output queueing switch by a
combined input output queueing switch," Proc. IWQoS'98, 1998.

63. V. Tababaee, L. Georgiadis, and L. Tassiulas, "QoS Provisioning and track fluid
policies in input queueing switches," Proc. INFOCOM 2000, Tel Aviv,
Israel, Mar. 2000.

64. Y. Tamir and G.L. Frazier, "High-performance multi-queue buffers for VLSI
communication switches," Proc. 15th Annu. Int. Symp. Comput. Archi-
tecture, Honolulu, HI, May 1988, pp. 343-354.

65. Y. Tamir and H.C. Chi "Symmetric crossbar arbiters for VLSI communication
switches," IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 1, pp.
13-27, Jan. 1993.

66. R.E. Tarjan, Data structures and network algorithms, Society for Industrial and
Applied Mathematics, Pennsylvania, Nov. 1983.

67. L. Tassiulas and A. Ephremides, "Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio

70

networks," IEEE Trans. Automatic Control, vol. 37, no. 12, pp. 1936-1948,
Dec. 1992.

68. Y.-S. Yeh, M. G. Hluchyj, and A. S. Acampora, "The knockout switch: A
simple modular architecture for high-performance packet switching," IEEE
J. Select. Areas Commun., vol. SAC-5, pp. 1274-1283, Oct. 1987.

69. H. Zhang, "Service disciplines for guaranteed performance service in packet-
switching networks," Proc. IEEE, vol. 83, no. 10, pp. 1374-1396, Oct. 1995.

	Scheduling algorithms for high-speed switches
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Existing Scheduling Algorithms
	Chapter 3: The Earliest Due Date First Matching (EDDFM0 Algorithm
	Chapter 4: The Shadow Departure Time Algorithm (SDTA) and the Iterative SDTA (ISDTA)
	Chapter 5: The Enhanced Birkhoff-Von Neumann Decomposition (EBVND) Algorithm
	Chapter 6: The Credit-Based Algorithms
	Chapter 7: Conclusions and Future Work
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Acronyms (1 of 2)
	List of Acronyms (2 of 2)

