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ABSTRACT

DESIGN AND ANALYSIS OF A SCALABLE TERABIT MULTICAST
PACKET SWITCH: ARCHITECTURES AND SCHEDULING

• ALGORITHMS

by
Feihong Chen

Internet growth and success not only open a primary route of information exchange

for millions of people around the world, but also create unprecedented demand for

core network capacity. Existing switches/routers, due to the bottleneck from either

switch architecture or arbitration complexity, can reach a capacity on the order of

gigabits per second, but few of them are scalable to large capacity of terabits per

second.

In this dissertation, we propose three novel switch architectures with cooperated

scheduling algorithms to design a terabit backbone switch/router which is able to

deliver large capacity, multicasting, and high performance along with Quality of

Service (QoS). Our switch designs benefit from unique features of modular switch

architecture and distributed resource allocation scheme.

Switch I is a unique and modular design characterized by input and output

link sharing. Link sharing resolves output contention and eliminates speedup

requirement for central switch fabric. Hence, the switch architecture is scalable to

any large size. We propose a distributed round robin (RR) scheduling algorithm

which provides fairness and has very low arbitration complexity. Switch I can achieve

good performance under uniform traffic. However, Switch I does not perform well

for non-uniform traffic.

Switch II, as a modified switch design, employs link sharing as well as a token

ring to pursue a solution to overcome the drawback of Switch I. We propose a

round robin prioritized link reservation (RR+POLR) algorithm which results in an

improved performance especially under non-uniform traffic. However, RR+POLR



algorithm is not flexible enough to adapt to the input traffic. In Switch II, the link

reservation rate has a great impact on switch performance.

Finally, Switch III is proposed as an enhanced switch design using link sharing

and dual round robin rings. Packet forwarding is based on link reservation. We

propose a queue occupancy based dynamic link reservation (QOBDLR) algorithm

which can adapt to the input traffic to provide a fast and fair link resource allocation.

QOBDLR algorithm is a distributed resource allocation scheme in the sense that

dynamic link reservation is carried out according to local available information.

Arbitration complexity is very low. Compared to the output queued (OQ) switch

which is known to offer the best performance under any traffic pattern, Switch III

not only achieves performance as good as the OQ switch, but also overcomes speedup

problem which seriously limits the OQ switch to be a scalable switch design. Hence,

Switch III would be a good choice for high performance, scalable, large-capacity core

switches.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Internet today is under tremendous growth and enjoys its world wide success.

The scalable and distributed nature of the Internet attracts more and more users

and service providers. Meantime, many emerging applications demand increased

bandwidth and generate a huge volume of traffic. It creates an unprecedented

demand for core network capacity. Also, the exponential growth of traffic may cause

several problems in the network such as congestion, unpredictable delay, insufficient

reliability and low availability. Facing those challenges, the core switch/router is

therefore required to be able to deliver higher performance in terms of large capacity,

high speed, multicasting as well as the Quality of Service (QoS).

In a word, scalable multi-terabit multicast switches/routers are in demand.

However, existing switches/routers, due to the bottleneck from either switch archi-

tecture or arbitration complexity, can reach a capacity on the order of gigabits per

second but few of them is scalable to terabit capacity.

In this dissertation, we propose several switch architectures and scheduling

algorithms to approach the desired scalable terabit multicast packet' switch.

1.2 Review

In the history of switch design [1] [2], various multicast ATM switches have been

proposed in literature. As shown in Fig 1.1, switch fabric on which a switch archi-

tecture is built can be classified into three types : Banyan network, Crossbar network,

and Clos network. Starlite switch [3], Turner's broadcast switch [4] and Lee's

'In this dissertation, a packet has fixed length of 53 bytes.

1
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multicast switch [5] were the typical multicast switches based on Banyan network.

Later on, a practical version of Lee's switch is proposed in [6]. And another

advanced switch with fault-tolerant multistage interconnection network (MIN) switch

is presented in [7]. Those switches have an advantage of a reduced hardware

complexity. But, internal path conflict and head of line (HOL) blocking are the

challenges for those switches to achieve high performance and scalability. One of the

switches built on Crossbar network is Knockout Multicast switch [8], which utilizes a

concentrator in every output port to resolve output contention. Following Knockout

Multicast switch, Crossbar switch [9], Shared Concentration and Output Queueing

Multicast (SCOQ) [10], Multicast Output Buffered ATM Switch (MOBAS) [11],

Abacus [12], and a growable multicast switch [13] were proposed. Crossbar switches

can achieve high performance because of output queueing and output contention

resolution. The tradeoff is the cost of hardware complexity and speedup required.

Growable packet switch [14] and ring sandwich network [15] were the multicast

ATM switches based on Clos network. [20] presents a performance study for a

buffered Clos switch. In fact, Clos network belongs to MIN but it only has 3 stages.

Since Clos network can provide multiple paths from an input port to an output

port, internal path conflicts are relaxed. Clos network has better performance than

Banyan network but it has higher hardware complexity.

Existing packet switches including above multicast switches are able to achieve

Gigabit/sec capacity. But, few of them provides further scalability to Terabit/sec.

Besides the restraint from switch fabric, queueing strategy and cooperated scheduling

scheme have a great impact on switch scalability as well. From switch buffering point

of view, switches can be classified into output-queued (OQ) switches2 , input-queued

(IQ) switches, and input-output-queued (IOQ) switches.

2 0Q switches include centralized shared memory switches.
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Figure 1.1 Review on multicast ATM switches

Fig 1.2 depicts a general model of an OQ switch. OQ switches, such as [8,

11, 12, 13, 16, 17, 18, 19, 21], proved to maximize throughput and optimize latency.

Hence, OQ switches are able to provide Quality of Service (QoS) guarantees [22, 23,

24, 28]. But, switch fabric and output buffers have to operate N (N is the switch

size in terms of the number of switch inputs/outputs) times as fast as the line rate,

because cells arriving at switch inputs have to be delivered to and stored in output

queues in a same cell slot. It may be practical to implement an output queued switch

or router with an aggregated bandwidth of several 10Gb/s. But, it is not feasible to

design a large OQ switch with fast line rate, because memory access speed achieved

in commercial is not fast enough to support N times speedup.

On the other hand, IQ switches (see Fig 1.3) become more attractive because

switch fabric and input memory only need to run as fast as the line rate. An IQ

switch with FIFO queues is known to suffer head of line (HOL) blocking which

limits the throughput to (2 — = 58.6%. To overcome HOL blocking, virtual
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Figure 1.2 A general architecture of an output queued (OQ) switch

output queues (VOQs) are applied in every switch input together with scheduling

algorithms like Longest Queue First (LQF)[30], Oldest Cell First (OCF)[31], Longest

Port First (LPF) [32] to achieve 100% maximized throughput. To support multicast

traffic, TATRA and WBA were proposed for IQ switches [33] [34]. A combined

input output queued (CIOQ) switch has been proposed[35] and demonstrated that

the CIOQ switch can precisely emulate the OQ switch when speedup S > 2 —

In addition, [36] [37] [38] propose some priority queueing algorithms for integrated

traffic.

Figure 1.3 A general architecture of input queued (IQ) switch : (a) an IQ switch
using FIFO queues ; (b) an IQ switch using VOQs
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Though IQ switches are capable of supporting high speed line rate without any

speedup in hardware, scheduling arbitration complexity of at least 0(N 2-5) is a big

obstacle if IQ switches grow to a large size. The reason is that, most scheduling

algorithms proposed for IQ switches employ a centralized scheduler, which needs

to collect traffic information from N switch inputs in every cell slot and consumes

multiple iteration to determine the final input-output matching. Situation may

become more complex under multicast traffic. As scheduling complexity increases

with switch size N, an IQ switch using a centralized scheduler has difficulties in

growing to a large switch size and terabit/sec capacity.

IOQ Switches are combinations of IQ switches and OQ switches (refer Fig 1.4).

As comparison study in [39], OQ switches deserve the best throughput/delay

performance for arbitrary traffic distributions. However, since the current memory

access time is limited to a few nsec by state-of-the-art integrated circuit technology,

output-buffered switch architecture is not scalable for large-capacity systems. On

the other hand, IQ switches endures poor throughput/delay performance because of

HOL blocking, but input-queued architecture is feasible to extend. The IOQ switch

is a solution by trading off the high performance of the OQ switch and the low

hardware complexity of the IQ switch.

One of few existing IOQ switch designs is CIOQ switch [35]. But, the reason

for CIOQ switch in [35] to adopt both input queueing and output queueing is to

provide QoS in IQ switches. As speedup is required in IQ switches for QoS purpose,

output queueing is needed to avoid cell loss. CIOQ switch, in fact, can be classified

as an IQ switch. The centralized scheduler sustains an arbitration complexity of

O (N2.5 ) so that CIOQ switch [35] is not scalable. In addition, the modular batcher-

binary-banyan switch [40] proposed by T.T.Lee and Sunshine switch [41] proposed
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Figure 1.4 A general architecture of input-output queued (IOQ) switch

by Bellcore are also IOQ switches. But, because of irregular interconnection pattern

in hardware, those switches are limited to up to 20Gb/s.

1.3 Design Issues

Several issues should be considered when we design a large-capacity switch. In this

section, we mainly address following aspects which are targeted in our design of a

scalable terabit multicast packet switch.

1.3.1 Multicasting

In today's B-ISDN and Internet, many services, such as teleconferencing, enter-

tainment video, distributed data processing, are characterized by point(multipoint)-

to-multipoint communication. Switches need to support not only point-to-point

connections, but also multipoint connections. Multicast switch is a solution for

sending information from one sender to a group of receivers.

Multicast functions in ATM switches can be implemented either with a separate

nonblocking copy network followed by a point-to-point routing network, or with an
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Figure 1.5 Multicast switches

integrated switching fabric performing both replication and routing functions. Fig 1.5

illustrate the two alternatives.

The architecture of a nonblocking copy network followed by a traditional

point-to-point ATM switching network is adopted by many commercially available

switches [3, 4, 5, 6], because the traditional switch doesn't need to change completely

but only adding a copy network ahead. Copy network replicates an input multicast

cell 3 to the number of cell copies. Then the cell copy is routed to an output line

through a point-to-point routing network. But, the copy network faces the problem

of overflow which may cause performance degradation. In addition, there is an

implementation redundancy by separating copy network and routing network. It

increases hardware complexity.

Another architecture of multicast switch is shown in Fig 1.5(b). Cell dupli-

cation and cell routing are integrated together in implementations. For example,

[7, 11, 12, 16, 17, 18, 19, 20, 43, 44] are the switches using either output buffer or

shared-memory to handle the cell copy and to schedule cells at the same time. And

the multicast IQ switches belong to this type of switch architecture. [28] is a typical

shared-memory architecture combining cell duplication and cell delivery. Most

3 In this paper, the multicast cell is defined as a cell with one destination or multiple
destinations.
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recent switch designs adopt this integrated switch architecture to reduce hardware

complexity and achieve an efficient buffer management as well.

1.3.2 Scalability

Scalability can be evaluated from two aspects — capacity and expandability. Internet

applications continue to grow and create an ever-increasing demand for bandwidth.

Switches have to be scalable to avoid being frequently re-architectured in order to

support massive increase of traffic. Thus, core switches face an emerging challenge

to provide more than 100Gb/s even Terabit/s capacity. Existing switches using

current state-of-the-art technology can obtain a capacity up to several 10Gb/s, but

are not easy to pursue Terabits/sec due to some constrains such as memory access

rate or arbitration complexity. For example, shared-memory switches are optimal in

performance and also cost effective. But, switch size and capacity of shared-memory

is ruled by the fact that :

where R is the input line rate, and N is the number of switch inputs (outputs).

Bounded by the RAM read/write rate, it is observed that shared-memory switch is

not able to gear to the high capacity expectation.

In addition to capacity, another necessary requirement for scalability is expand-

ability. It considers whether switch architecture supports increased speeds or

additional switch ports, and how flexible the switch can be to pursue an expanding

configuration. The best solution would be a modular switch architecture.
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1.3.3 Low Complexity

Both hardware complexity and scheduling arbitration complexity must be minimized.

Hardware complexity is often measured in terms of logic gate counts, chip pinout,

memory speed, implementation costs. From prototype design to real implementation,

above concerns should be carefully evaluated. For example, the multicast switch

using copy network usually has implementation redundancy and incurs high hardware

costs. In addition, some switches such as the OQ switch are limited by the memory

access speed because of the up to N times speedup required. The switch fabric with

shuffle connection from N switch inputs to N switch outputs gains reliability but

pays for high connection cost. In short, an efficient switch design should minimize

the hardware complexity but without sacrificing reliability and performance.

Apart from hardware complexity, arbitration complexity should be low to gear

up the hardware design. The IQ switch, for example, is better than the OQ switch in

the aspect of hardware complexity. But, the IQ switch uses a centralized scheduler

to resolve HOL blocking so that the IQ switch tolerant a high arbitration complexity

of at least 0(N2-5). The arbitration complexity hinders the IQ switch to build a

large scale switch.

In summary, we may need to trade off between the hardware complexity and

arbitration complexity in order to pursue a good solution based on some specific

design requirements.

1.3.4 High Performance

Switches should provide satisfactory performance. Bellcore has recommended

performance requirements and objectives for a Broadband Switching Systems (BSS)

[42]. Table 1.1 defines three classes of Quality of Service (QoS) and explains the

associated performance objectives.
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Table 1.1 Performance requirements and objectives for BSS [42]. * : includes non-
queueing related delays but excludes propagation, and does not include delays due
to processing above ATM layer. N/S : not specified.

QoS class 1 is dedicated to cell loss sensitive applications. It corresponds to

AAL layer class A service which is defined by ITU-T XIII Group and ATM Forum.

QoS  class 3 is applied for low latency, connection-oriented data transfer applications

which is intended for AAL class C service. In addition, QoS class 4 is related to low

latency, connectionless data transfer applications which is for AAL class D service.

The performance parameters include cell loss ratio, cell transfer delay, and cell

delay variation. The performance objectives associated to a QoS class are determined

by the status of the cell loss priority (CLP) bit in the ATM cell header. End users can

initialize the CLP bit but switches along the connection path can change it according

to network conditions.

For all three QoS classes, the probability of cell transfer delay greater than

150µs is guaranteed to be less than 1 percent, i.e. :

Pr. [ cell transfer delay > 150 is < 0.01

The probability of cell delay variation (CDV) greater than 250µs is required to

be less than 10 -1° for QoS class 1, and to be less than 10' for QoS class 3/4.
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In addition to above performance objectives, switches need to be flexible

to cooperate other technologies such as connection admission control, buffer

management, traffic engineering in order to provide Quality of Service (QoS)

guarantees.

1.4 Outline

Our goal is to design a scalable terabit multicast packet switch which is capable

of multicasting, large capacity, low complexity, modular configuration, and high

performance. In this dissertation, we propose three switch architectures with

cooperated scheduling algorithms namely Switch I, Switch II, and Switch III, to

achieve the desired switch. Our designs benefit from unique features of modular

switch architecture and distributed scheduling arbitration.

In chapter 2, we first present a theoretical work on the performance of copy

network under three scenarios : (1) Non-Buffer-NonSplitting copy network (NBNS).

(2) Shared-Input-Buffer-NonSplitting copy network (SIBNS). (3) Shared-Input-

Buffer-Splitting copy network (SIBS). For NBNS, we derived the exact overflow and

cell loss probabilities instead of the Chernoff Bound [5]. Furthermore, we propose a

general Markov Model, a novel theoretical approach, for the performance analysis

of the Shared-Input-Buffer copy networks. This analysis method can be applied for

both SIBNS and SIBS. Theoretical and simulation results are compared for every

scenario.

In chapter 3, we propose a novel switch design, namely Switch I, using input and

output link sharing. Switch inputs and outputs are grouped into small modules called

Input Shared Blocks (ISBs) and Output Shared blocks (OSBs). Link sharing resolves

output contention and eliminates the speedup requirement for central switch fabric.



12

Two Round Robin (RR) scheduling algorithms are proposed. Both schemes provide

a group mapping from an ISB to an OSB. Scheduling complexity is dramatically

reduced. The switch can easily extend to high capacity and large scale. Performance

evaluation demonstrates that the switch can achieve good performance under uniform

multicast4 traffic. However, isolated Input Shared Blocks (ISBs) prevent switch from

achieving high performance under non-uniform traffic.

To overcome the weakness of Switch I, in chapter 4, we present Switch II,

a modified switch design using link sharing and prioritized link reservation. ISBs

are connected by a token ring. We propose a Round Robin Prioritized Output Link

Reservation (RR+POLR) algorithm to allocate link resource and alleviate starvation

of OSBs. Switch II obtains an improved performance under non-uniform traffic. But,

RR+POLR algorithm is not flexible enough to adapt the dynamic traffic timely.

Switch performance is highly determined by how fast link reservation rate the switch

can pursue.

Switch III, as an enhanced switch design using link sharing and dual round

robin dynamic link reservation, is finally proposed in chapter 5. Unlike the previous

two switches, ISBs are connected by dual rings on which K link request tokens

(REQs) and K link release tokens (RELs) circulate in a round robin manner. Cell

delivery is based on link reservation in every ISB. We propose two Queue Occupancy

Based Dynamic Link Reservation (QOBDLR) algorithms to achieve a fast and fair

link resource allocation among ISBs. QOBDLR is a distributed link reservation

scheme in a way that every ISB, according to its local information, can dynamically

increase/decrease its link reservation by "borrowing" or "lending" links from/to each

other. Arbitration complexity is 0(1). Switch III is competitive to OQ switches in

4 1n this work, multicast traffic includes unicast traffic, i.e., a multicast cell may have
one or multiple destinations.
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the sense that Switch III not only can achieve a comparable performance to OQ

switches under any traffic pattern but also can eliminate N times speedup required

in OQ switches.

At last, conclusion is drawn and future work is addressed in chapter 6.



CHAPTER 2

A NOVEL PERFORMANCE ANALYSIS FOR THE COPY
NETWORK IN A MULTICAST ATM SWITCH

2.1 Introduction

To accommodate the growing demands for a wide class of services, such as voice,

data, teleconferencing and entertainment video, a broadband packet network needs

to support not only point-to-point connections, but also multipoint connections.

Multicast switching is a solution for delivering information from a given source to a

group of destination.

A conventional architecture of multicast ATM switches consists of a nonblocking

copy network followed by a traditional point-to-point ATM switching network

[4][5][26][47] [49]. It provides point-to-multipoint connections by performing two

operations : packet replication and packet switching. The function of copy network

replicates an incoming cell to the number of required copies.

By applying a self-routing non-blocking fabric, the copy network does not have

any internal conflict. But, the copy network faces the problem of overflow if the total

copies required exceed the number of output lines of the network. Various scheduling

algorithms[47][50][52] to maximize throughput of the copy network were proposed.

They introduce additional buffers (input/output/central buffer) and/or scheduling

algorithms (one-shot, splitting, etc.), in order to maximize the number of cell copies

injected to the point-to-point switching network.

In this chapter, we present a theoretical work on the performance of the copy

network in three typical scenarios (shown in Fig 2.1). In Non-Buffer Non-Splitting

(NBNS) copy network (Fig 2.1(a)), all the copies required by a multicast cell are

replicated in the same time slot. The copy network has no inside buffer to save

blocked cells. NBNS causes high cell loss. To prevent the blocked cells from being

14



Figure 2.1 Three scenarios of copy network in a multicast ATM switch
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lost, we introduce a shared input buffer in the copy network. Two scheduling

algorithms are considered for the Shared-Input-Buffer copy network : Non-Splitting

algorithm (SIBNS) (Fig 2.1(b) ), all the copies required by a multicast cell are

replicated in a same time slot; Splitting algorithm (SIBS) (Fig 2.1(c)), a multicast

cell can be partially copied in a time slot, and the remains can be delayed to the

next time slot.

For NBNS, we derived the exact overflow and cell loss probabilities instead of

the Chernoff Bound [5]. Furthermore, we propose a novel theoretical approach based

on a general Markov model, for the performance analysis of the Shared-Input-Buffer

copy networks. This analysis method can be applied for both SIBNS and SIBS.

Both theoretical analysis and simulation results are presented for every scenario.

The comparison shows that shared-input-buffer (SIBNS and SIBS) can obtain an

improved performance with lower cell loss and higher throughput. However, the

tradeoff is long cell delay. With the splitting algorithm, SIBS can provide better

performance than NBNS and SIBNS.

This chapter is organized as follows. In Section 2.2, we provide several

notations and assumptions that we use throughout this chapter. Section 2.3 presents

performance analysis for NBNS copy network. In Section 2.4, we propose a general

Markov Model for the performance analysis of both SIBNS and SIBS copy networks.

The analysis model is examined by the numerical and simulation results. Conclusions

are finally drawn in Section 2.5.

2.2 Notation and Assumptions

We assume that : (1) input lines are independent and identically distributed; (2)

cells' arrival is Poisson process. If an input line has cells arriving, this input line is

an active line, otherwise, it's an idle line.
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N : size of the copy network.( for 8inputs/8outputs copy network, N=8);

Cmax : the maximum number of copies allowed for every multicast cell, 0 < Cmax ≤

N;

C : random variable, represents the number of copies required. Assumed to be

uniformly distributed;

Ck : Probability that the number of copies is k , i.e. pdf of random variable C;



18

2.3 Performance Analysis of NBNS Copy Network

Assume that, in every cell slot, the copy network serves incoming multicast cells from

the 1st input line to the Nth input line (i.e., top-down order). If the total number of

desired cell copies exceeds the size of the copy network, some multicast cell(s) arrived

at the later input lines will be discarded.
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each input line. There is an unfairness : the later input line will have higher overflow

probability. Our analysis provides an exact overflow probability, while the Chernoff

Bound [5] is much looser. Fig 2.3 illustrates cell loss and throughput. Large copy

load (Cmax ) and heavy input load (Pin ) incur more cell loss and less throughput.

NBNS does not introduce any cell delay in copy network.

Figure 2.2 Overflow probability in NBNS

2.4 Performance Analysis for both SIBNS
and SIBS Copy Networks

To improve the performance of copy network, a solution is to apply additional buffers

[47][48][50][51]. In this paper, we focus on the shared input buffer with two scheduling

methods (NonSplitting and Splitting algorithms).

SIBNS : In Shared-Input-Buffer Non-Splitting scenario, cell copies belonged to

a same multicast cell should be delivered in a same cell slot. Otherwise, the multicast



Figure 2.3 Cell loss and throughput in NBNS
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cell is blocked in the shared buffer with whole copy requirements. Buffered cells have

higher priority to be served than a new arriving cell.

SIBS : In Shared-Input-Buffer Splitting scenario, the copy network can make

partial copies for a multicast cell. The splitted cell is saved into shared buffer with

remained copy requests.

2.4.1 Notation and Assumption

BUFmax : the maximum size of the shared input buffer.

BUFm : the length of the shared input buffer at the end of the Mth time slot.

INm  : the number of new arriving cells from N inputs in the Mth time slot. In every

time slot, at most 1 cell comes into the copy network from each input line.

OUTm  : the number of multicast cells successfully delivered out of the copy network

in the mth  time slot. In a time slot, at most N multicast cells can go through the

copy network (when each cell just needs 1 copy). The probability distribution

2.4.2 The Proposed Markov Model

In Fig 2.4, we propose a general Markov Model for SIBNS and SIBS. Each state

indicates current queue length in the shared buffer, i.e., how many multicast cells

are waiting in the shared memory.
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Figure 2.4 The general Markov Model for both SIBNS and SIBS

The model we propose is unique in the sense that each multicast cell occupies

only one unit in the buffer, no matter how many copies it requires. It can be applied

to many different scheduling algorithms, buffer and copy network sizes.



Figure 2.5 State transition probability matrix of Markov chain : Pt
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2.4.3 Performance Analysis

2.4.3.1 Cell Loss : 	 Due to finite buffer size, cell loss will happen when the

shared input buffer is overloaded. In our proposed Markov model, we assume that

there are i multicast cells waiting in the buffer at the end of (m — 1)th time slot. Cell

loss happens when the Markov chain jumps to the state BUFmax  at the m th time

slot.

Cell loss is illustrated in Fig 2.6. SIBNS and SIBS copy networks causes less

cell loss than NBNS copy network. In fact, SIBNS and SIBS significantly reduce the

cell loss in some region where Cmax and Pin jointly give an average load to the copy

network. Compared with SIBNS, SIBS has lower cell loss.

2.4.3.2 Throughput : Throughput is evaluated as the number of multicast cells

successfully passing the copy network every time slot.



Figure 2.6 Cell loss in three scenarios : NBNS, SIBNS and SIBS
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Figure 2.7 throughput in three scenarios : NBNS, SIBNS and SIBS
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Shown in Fig 2.7, SIBS achieves higher throughput than SIBNS and NBNS.

Higher throughput results from lower cell loss. Throughput is increased with a large

buffer size.

2.4.3.3 Cell Delay : Assume that E(d) is the average delay for a multicast cell

waiting in a copy network. E(n) is the average buffer length occupied by the blocked

multicast cells. According to the Little's Formula, we have

average input load which is accepted by the copy network every time slot. Therefore,

λ 'eff is actually the same as the throughput.

Fig 2.8 shows the performance of cell delay. When the copy load Cmax or the

input load Pin, becomes heavy, more cells are blocked in the buffer. It causes increased

cell delay. SIBS copy network has less cell delay than SIBNS copy network. Larger

buffer results in longer cell delay. According to our assumption on Ck, the cell delay

increases linearly with buffer size. But, the proposed theoretical approach can be

applied to other distribution of Ck•

2.4.4 Validation of the Markov Model for SIBNS and SIBS

We propose a general Markov Model for the Shared-Input-Buffer copy network with

and without splitting algorithm (SIBNS and SIBS). In fact, with different algorithms,

the difference between the SIBNS and SIBS exists only in the place where we compute

POUT = m), which is the probability that m multicast cells successfully pass



Figure 2.8 Cell delay in shared-input-buffer copy networks : SIBNS and SIBS
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through the copy network. The P(OUT = m) is eventually derived in terms of the

overflow probability as :

In Eq. 2.21, each one with the form like P(CP1 + CP2 + • +CPi > N) could

be obtained by the convolution of CPk , like :

With NonSplitting algorithm, in the SIBNS copy network, CP 1 is always the

original copies required by the 1 S t multicast cell. Therefore, we have

However, in SIBS copy network, the 1S t multicast cell is probably splitted.

Therefore, the copies required by the 1s t cell might be part of the original copy

requirements.

where CP 1';is the original number of copies required by the lthmulticast cell in the

buffer.

In Eq. 2.24, P(CP1' = m)P(CP1 = l/CP1' = m) is the probability that the

1S t multicast cell in the buffer currently needs 1 copies instead of the m copies which
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is the original requirements. The remaining / copies might be any value which is

positive but not larger than m. Therefore,

From the above discussion, the Markov Model we proposed here is generic for

both SIBNS and SIBS scenarios. Our Markov Model and corresponding analysis is

a novel approach for the performance analysis of the copy network in a multicast

ATM switch.

2.5 Conclusion

In this chapter, we analyze the performance of the copy network in a multicast ATM

switch under three scenarios : NBNS, SIBNS and SIBS. Theoretical analysis is done

for the three cases and compared with simulation results. We proposed a general

Markov Model for Shared-Input-Buffer copy network. Our analysis model is shown

to be a novel approach for evaluating the performance of copy networks.

The multicast switch evaluated in this chapter is the switch design consisting

of a copy network followed by a traditional point-to-point ATM switching network.

Switch architecture endures a lot of redundancy due to the usage of copy network

and routing network individually. Our switch designs proposed in later chapters will

integrate the functions of cell replication and cell routing to reduce the hardware

complexity.



CHAPTER 3

SWITCH I: A LARGE SCALE MULTICAST ATM SWITCH USING
INPUT AND OUTPUT LINK SHARING

3.1 Introduction

In this chapter, we propose Switch I, a novel switch architecture using input and

output link sharing. Switch inputs and switch outputs are grouped into small

modules called Input Shared Blocks (ISBs) and Output Shared Blocks (OSBs).

Input link sharing resolves output contention and avoids link starvation. Output

link sharing eliminates the speedup requirement for the central switch fabric when

more than one cell goes to a switch output. Two round robin scheduling algorithms

— Individual Virtual Output Queue Round Robin (IVOQ Round Robin), and

Grouped Virtual Output Queue Round Robin (GVOQ Round Robin), are presented.

Both schemes support group mapping from an ISB to an OSB so that scheduling

complexity is significantly reduced. Switch performance is evaluated through

simulations. It shows that Switch I can achieve a comparable performance as

the OQ switch under uniform traffic. Switch I is scalable due to its modular

configuration.

This chapter is organized as follows. In Section 2, we describe the proposed

switch architecture in detail. In Section 3, we introduce two cell scheduling

algorithms : IVOQ Round Robin and GVOQ Round Robin. Switch performance is

evaluated in Section 4. Conclusion is drawn in Section 5.

3.2 Switch Architecture

Fig 3.1 depicts the architecture of Switch I which consists of three major modules

: Input Shared Block (ISB), Output Shared Block (OSB), and ATM Central Switch

Fabric (ATMCSF). The N Switch inputs and the N switch outputs are respectively

32
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grouped into K ISBs and K OSBs, where K = N/m At every ISB-ATMCSF interface,

there are M input links shared by m related switch inputs. At every ATMCSF-OSB

interface, there are M output links shared by m grouped switch outputs. In this

dissertation, we only consider the case of m = M, and the study of M > m which

implies a virtual speedup in ATMCSF is the subject of our ongoing work. Applying

input link sharing and output link sharing together makes the proposed switch a

unique design.

Figure 3.1 Switch I : an NxN switch consists of K ISBs, K OSBs and ATMCSF;
K = -1Y- and m = M in this dissertation. Input link sharing is achieved at every
ISB-ATMCSF interface, and output link sharing is achieved at every ATMCSF-OSB
interface.
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3.2.1 Input Shared Block

An ISB can be a shared memory receiving multicast cells from m (= M) related

switch inputs. A multicast cell is saved once in an ISB instead of keeping j identical

cell copies (assume, j is the fanout of a multicast cell, 0 < j < N). We investigate two

schemes for shared memory management in an ISB (shown in Fig 3.2)   Individual

Virtual Output Queue (IVOQ), and Grouped Virtual Output Queue (GVOQ) [54].

Figure 3.2 Input Shared Block (ISB) : (a) the j th ISB using IVOQs ; (b) the j th

ISB using GVOQs.

IVOQ scheme is shown in Fig 3.2(a). Every ISB keeps N virtual output queues.

Each virtual queue is a linked list of the multicast cells going to the same switch

output. The physical address to save a multicast cell will be stored into every related

linked list. Cell delivery from a virtual output queue is based on FIFO principle.

When a multicast cell has all cell copies delivered, the memory address for this cell

will be released and available for a new cell.
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GVOQ scheme is shown in Fig 3.2(b). Every ISB only maintains K (= Z)

grouped virtual output queues. A grouped virtual output queue is a linked list of

the multicast cells targeting an OSB. If a multicast cell has more than one destination

to an OSB, only a single connection carrying all desired destinations is attached to

the related grouped virtual output queue. Hence, a cell delivered from an ISB to

ATMCSF may carry multiple destinations, and will be stored into every related

output queues when the cell is received by an OSB. Compared with the switch using

IVOQs, the switch with GVOQs can forward more cell copies from ISBs to OSBs

so that the switch can achieve better performance. GVOQ scheme follows FIFO

principle to receive and deliver cells.

Since an ISB-ATMCSF interface has a capacity of M links, an ISB can deliver

at most M cells to the central switch fabric in every cell slot. An ISB can send

a cell through any of the M shared links. Input link sharing is able to avoid link

starvation if some virtual output queue is empty, because other virtual output queues

can utilize the idle link to deliver their cells. Input link sharing results in an improved

performance.

3.2.2 Output Shared Block

An OSB is a shared memory containing M output queues as shown in Fig 3.3. In

every cell slot, each output queue delivers one cell out of the related switch output.

An ATMCSF-OSB interface only supports M links, hence, each OSB can accept at

most M cells from the central switch fabric in every cell slot. ATMCSF can use

any of the M shared links to pass a cell to an OSB. Without output link sharing, if

more than one cell goes to the same switch output, either cells are blocked, or it is

necessary for the switch fabric to speedup. However, output link sharing is able to

avoid both problems.
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Figure 3.3 Output Shared Block (OSB) with output link sharing (here, m = M).

3.2.3 Central Switch Fabric

The central switch fabric (ATMCSF) should keep the same cell sequence for those

cell copies which are delivered from an ISB to an OSB. Apart from this, no other

restrictions are placed on ATMCSF. It can be any type of switch fabric (for example,

Abacus switch [12]), and no speedup is necessary.

3.3 Cell Scheduling

Cell scheduling aims to deliver cells from K ISBs to K OSBs in a fast manner. As

shown in Fig 3.4, Switch I utilizes the well-known Round Robin (RR) scheme as the

cell scheduling algorithm.

In every cell slot, there is an one-to-one mapping from K ISBs to K OSBs,

thus, each ISB is responsible for sending up to M cells to its matched OSB. Round

Robin mapping ensures that an ISB has an opportunity to send cells to every OSB

in every K cell slots. Fairness among ISBs is guaranteed. Since either IVOQs or

GVOQs are employed in every ISB, we propose two scheduling algorithms IVOQ

Round Robin and GVOQ Round Robin.
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Figure 3.4 Switch I applies round robin (RR) cell scheduling which is based on an
one-to-one group mapping from K ISBs to K OSBs.

3.3.1 IVOQ Round Robin

An example of IVOQ RR algorithm is illustrated in Fig 3.5. The basic rules of IVOQ

RR algorithm are as follows.

Every ISB divides its N individual virtual output queues into K subgroups.

Each subgroup has M virtual output queues which are engaged to a certain OSB.

According to the one-to-one mapping in current cell slot, an ISB delivers cells from

a subgroup of M virtual output queues to its matched OSB. The HOL cells from the

selected M virtual queues are sent to central switch fabric.

If a polled virtual output queue is empty (refer to * in Fig 3.5), other virtual

queues in the same subgroup can deliver more than one cell. This is because of

using input link sharing which can avoid link starvation. The scheduling complexity

depends on how many iterations are needed to select up to M cells from M subgroup

GVOQs. Thus, scheduling complexity is in the range of [0(1), 0(M)]. In addition,

it may happen that more than one cell goes to a same switch output (refer to #

in Fig 3.5). Hence, output link sharing is needed to avoid internal cell loss and to
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Figure 3.5 IVOQ Round Robin in an 4x4 switch (N = 4, m = M = 2, K = 2)

eliminate speedup in the central switch fabric. The switch fabric is required to keep

the same cell sequence for those cells delivered from an ISB to an OSB.

3.3.2 GVOQ Round Robin

An example of GVOQ RR algorithm is shown in Fig 3.6. GVOQ RR algorithm has

several good features.

First, an ISB only maintains K grouped virtual output queues instead of

keeping N individual virtual output queues. Each grouped virtual output queue

is for an OSB (i.e. for grouped m = M switch outputs). According to the one-to-

one mapping from ISBs to OSBs in current cell slot, every ISB only needs to poll a

grouped virtual output queue which is for its mapped OSB, then, delivers the first
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Figure 3.6 GVOQ Round Robin in an 4x4 switch (N = 4, m = M = 2, K = 2)

M cells, if any, to ATMCSF (refer to * in Fig 3.6). Scheduling complexity is 0(1)

so that GVOQ RR is simpler than IVOQ RR.

Moreover, using GVOQs in ISBs is able to offer better performance especially

under multicast traffic, because a cell delivered from a grouped virtual output queue

can carry multiple destinations to the matched OSB (refer to * in Fig 3.6). Compared

with IVOQ RR, GVOQ RR algorithm results in a faster cell forwarding from ISBs

to OSBs.

But, GVOQ RR algorithm has a flaw that GVOQ RR may block a cell going

to an idle switch output while sending more than one cell to a switch output (refer

to # in Fig 3.6).
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3.4 Performance Evaluation

3.4.1 Traffic Model

We evaluate the switch performance under both uniform and non-uniform traffic.

Multicast burst traffic is applied. As shown in Fig 3.7, we use an ON (active)/OFF

(idle) model to describe the burst traffic. The back-to-back cells in an ON duration

belong to the same VC, i.e. they have the same multiple destinations. Cell desti-

nations are uniformly distributed among N switch outputs.

Figure 3.7 Traffic Model : Multicast Bursty Traffic
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3.4.2 Switch Performance

Using OPNET, we simulate an 256x256 switch (N = 256) with either 32x32

ISBs/OSBs (M = 32, K = 8) or 08x08 ISBs/OSBs (M = 8, K = 32). As a

comparison, we also simulate an 256x256 output queued (OQ) switch under same

traffic condition. The OQ switch is assumed to have infinite output buffers. Cells

arriving at switch inputs will be sent to the related output queues in the same cell

slot.

There are two reasons for us to select an OQ switch as a comparison reference

: (1) OQ switches proved to maximize throughput and optimize latency under any

traffic pattern; (2) in the literature so far, few of existing switches are dedicated for

a distributed large scale switch and have been evaluated under any traffic condition.

Therefore, we believe that it is fair and effective to compare our designs with an OQ

switch under same traffic patterns.

The performance of Switch I under uniform traffic is illustrated in Table 3.1

and Table 3.2. For uniform traffic, the input load to an ISB uniformly targets N

switch outputs. We apply both unicast traffic and multicast traffic. In unicast

traffic, every arriving cell only carries a single destination. But, in multicast

traffic, a coming cell may have multiple destinations. Cells' destinations are

uniformly distributed among N switch outputs.

Through simulation, we would like to : (1) investigate the impact of ISB/OSB

size on switch performance; (2) evaluate IVOQ RR and GVOQ RR algorithms; (3)

compare Switch I with the OQ switch.

Table 3.1 shows the switch performance under uniform unicast traffic.

Fig 3.8 ~ Fig 3.11 depict the performance on throughput, end-to-end cell delay (i.e.

DE-to-E), cell delay in ISB (i.e. DISB ), occupancy of OSB (i.e. SosB) respectively.
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Table 3.1 Switch I : switch performance under uniform unicast traffic with different
input load p. The observed performance statistics are : (1) throughput; (2) average
end-to-end cell delay and delay jitter (DE-to-E, (Min, Max)); (3) average cell delay
in ISB and delay jitter (DISB, (Min, Max)); (4) average occupancy of OSB (SOSB
and (Min, Max)).
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It is observed that, larger size of ISBs/OSBs results in better performance. For

example, if input load p is 99%, Switch I with 32x32 ISB(s) obtains approximately

98.5% throughput, while the switch with 8x8 ISB(s) endures 3% less throughput.

The reason is that, an 32x32 ISB receives cells from 32 switch inputs so that the

preserved cells in an ISB are more varied in terms of the destination requirements.

Hence, larger ISB is more likely to provide a saturated input load to the central

switch fabric (i.e. keep every input line of ATMCSF busy).

Comparison also shows that, IVOQ RR algorithm exceeds GVOQ RR

algorithm on switch performance. The reason is that, IVOQ RR can send M

cells to different switch outputs of its mapped OSB, if none of the M related virtual

queues is empty. But, since GVOQ RR simply schedules the first M cells from

a grouped virtual output queue to ATMCSF, more than one cell may go to the

same switch output. Hence, IVOQ RR achieves higher throughput than GVOQ

RR. Moreover, under unicast traffic, GVOQ RR losses its unique merit to deliver

multicast cells to ATMCSF. But, it is worth to notice that IVOQ RR algorithm and

GVOQ RR algorithm yield a very similar performance when input load p is reduced.

When traffic load is light, an ISB usually can send arriving cells to the mapped OSB

very quickly so that few cells are blocked in ISBs.

Compared to the OQ switch, Switch I exhibits a promising performance under

the uniform unicast traffic. Switch I causes less than 4.0% throughput degradation

under heavy traffic load, but achieves a very similar throughput when traffic load

decreases. The OQ switch defeats Switch I due to the reason that the OQ switch is

work-conserving 1 at every time slot, but switch I is not. Switch I endures longer cell

delay (i.e. DE _ to_E) than the OQ switch especially under heavy input load. Longer

1 A switch is work-conserving, if in every cell slot, a switch output is not idle as long as
there are cells going to that output port.
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Figure 3.8 Switch I : throughput under uniform unicast traffic.

cell delay is due to lower throughput. We also measured the queueing latency in

ISBs (i.e. DISB ) and the occupancy of OSBs (i.e. SOSB ) for Switch I. When input

load increases, both DISB and SOSB become longer. Since the central switch fabric

is assumed to deliver cells from input shared links to output shared links in the same

cell slot, hence, end-to-end cell delay is resulted from two parts : cell delay in ISBs

and cell delay in OSBs; i.e. we have

where SOSB/M is the average length of the output queue in OSBs, assuming that

m = M. Thus, this ratio approximates DOSB, i.e. the average cell delay in OSBs.
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Figure 3.9 Switch I : average end-to-end cell delay (DE_ to_E ) under uniform unicast
traffic.
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Figure 3.10 Switch I : average cell delay in ISB (DISB) under uniform unicast
traffic.

Switch performance under uniform multicast traffic is illustrated in

Table 3.2. As we discussed previously, Switch I with 32x32 ISB/OSB achieves

better performance than that using 8x8 ISB/OSB. But, GVOQ RR outperforms

IVOQ RR for multicast traffic. It is due to the fact that GVOQ RR can forward

splitted multicast cells to ATMCSF, but IVOQ RR only delivers unicast cells to

ATMCSF. Hence, GVOQ RR provides a faster cell forwarding. Compared with

IVOQ RR algorithm, GVOQ RR can be claimed as a cost-effective algorithm in the

sense that GVOQ RR can obtain a similar or better performance than IVOQ RR

while gaining a lot by reducing the complexity on memory management and cell

scheduling.
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Figure 3.11 Switch I : average size of OSB (SOSB ) under uniform unicast traffic.

The switch performance observed from Fig 3.12 Fig 3.15 show that Switch I is

able to pursue a comparable performance to the OQ switch under uniform multicast

traffic. In addition, larger size of ISBs/OSBs results in better performance. But, to

mimic the OQ switch, small latency in ISBs is expected. If DISB = 0, it implies that

the proposed switch can pass cells to OSBs as fast as the OQ switch, however, our

switch does not need any speedup in central switch fabric. This is our essential goal.

Up to now, Switch I is demonstrated to support uniform traffic. However,

Switch I has a weakness to support non-uniform traffic in which cells accumulated

in an ISB may prefer to go to some switch outputs but do not go to other outputs.

A typical example of the non-uniform traffic is so called "1 ISB 1 OSB hotspot
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Table 3.2 Switch I : switch performance under uniform multicast traffic with
different input load p. The observed performance statistics are : (1) throughput; (2)
average end-to-end cell delay and delay jitter (DE-to-E, (Min, Max)); (3) average
cell delay in ISB and delay jitter (DISB, (Min, Max)); (4) average occupancy of OSB
(SOSB  and (Min, Max)).
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Figure 3.12 Switch I : throughput under uniform multicast traffic.

traffic", i.e. arriving cells to the i th ISB only target the switch outputs belonged

to the ith OSB. Fig 3.16 shows the throughput performance of Switch I under "

1 ISB -4 1 OSB hotspot traffic" . It is observed that Switch I suffers a significant

performance degradation when compared with the OQ switch. When input load is

99%, Switch I only yields 50% throughput under multicast traffic, and approximately

12.9% throughput under unicast traffic. The reason for that is, Round Robin cell

scheduling only allows an ISB to deliver cells to its mapped OSB in a cell slot. If an

ISB has no cells to its related OSB, other ISBs do not have authority to deliver cells

to the starved OSB. How to solve this problem motivates new solutions which will

be presented in the later chapters.
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Figure 3.13 Switch I : average end-to-end cell delay (DE_ to_E) under uniform
multicast traffic.
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Figure 3.14 Switch I : average cell delay in ISB (D ISB) under uniform multicast
traffic.

3.5 Conclusion

In this chapter, we proposed Switch I, a novel switch architecture using input and

output link sharing. The merits of Switch I are the modular switch architecture and

the distributed cell scheduling. Compared to the OQ switch, Switch I eliminates

speedup requirement for the central switch fabric. Moreover, RR scheduling

algorithms resolve output contention in a distributed manner and guarantee fairness

for switch inputs. Scheduling complexity of IVOQ RR algorithm is at most 0(M),

while it is 0(1) for GVOQ RR algorithm. Compared with the centralized schedulers

with a complexity of at least 0(N2.5 ) proposed for IQ switches in [30, 31, 32, 35],
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Figure 3.15 Switch I : average size of OSB ( SOSB ) under uniform multicast traffic.



53

Figure 3.16 Performance of Switch I under '1 ISB -4 1 OSB hotspot non-uniform
traffic'.

cell scheduling in our design is much simpler. Hence, Switch I shows good features

to be a scalable design.

But, Switch I has a drawback to support non-uniform traffic in which cells

injected in an ISB are not uniformly target N switch outputs. Since RR scheduling

algorithm only allows an ISB to deliver cells to its matched OSB in every cell slot,

if an ISB does not have cells to go to the polled OSB, other ISBs do not have

authority to deliver cells to the idle OSB. Starvation of OSB(s) will cause performance

degradation. To resolve this problem, we will present a modified switch design in

chapter 4.



CHAPTER 4

SWITCH II: A MODIFIED SWITCH DESIGN USING LINK
SHARING AND PRIORITIZED LINK RESERVATION

4.1 Introduction

In previous chapter, we proposed Switch I as a basic switch design using input and

output link sharing. Switch I is demonstrated to be able to support uniform traffic,

but it suffers a disability to provide high performance under non-uniform traffic 1 .

To overcome the drawback of Switch I, in this chapter, we present Switch II which

is a modified switch design using link sharing and prioritized link reservation.

In Switch II, ISBs are connected through a token ring. Cell delivery in a cell slot

is based on link reservation in every ISB. We propose a round robin prioritized output

link reservation (RR+POLR) algorithm to resolve contentions on input shared links

and output shared links. Basically, Switch II still applies RR scheme to obtain an

one-to-one mapping from K ISBs to K OSBs in every cell slot. An ISB has the

highest priority to reserve as many links as possible to its mapped OSB. If an ISB

can not fully occupy the M links to its mapped OSB, the ISB will issue a token to

inform other ISBs that there are idle links remained at the specific ATMCSF-OSB

interface. Therefore, other ISBs can reserve and utilize the available links to transfer

their cells to the OSB. Starvation of OSBs is alleviated. Switch II can pursue an

improved performance especially under non-uniform traffic.

4.2 Switch Architecture

Fig 4.1 exhibits the architecture of Switch II consisting of K ISBs, ATMCSF, K

OSBs, and a token ring. Functions of ISB, OSB and ATMCSF are the same as what

'Non-Uniform traffic is usually characterized by "hot spot" phenomenon (i.e. cells
accumulated in an ISB may prefer some switch outputs but seldom go to other outputs).

54
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Figure 4.1 Switch II : an NxN switch consists of K ISBs, K OSBs, ATMCSF, and
a token ring; K =N/M. Cell delivery in a cell slot is based on link reservation. We
propose a round robin prioritized output link reservation (RR+POLR) algorithm.

we presented in Switch I. We concluded in chapter 3 that GVOQ is a cost-efficient

scheme compared to IVOQ. Hence, both Switch II and Switch III will apply GVOQs

in each ISB.

ISBs are connected by a token ring on which K tokens circulate in a round robin

manner. Each token is related to a specific OSB, for example, Tokenj is engaged

to the j th OSB (0 < j < K). As shown in Fig 4.1, a token has two fields : (1)

"OSB_ID" is the identification of an OSB; (2) "Num_Lk_Idle" records the number of

available links at the identified ATMCSF-OSB interface, Num_Lk_Idle ≥  0.
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4.3 Cell Scheduling

4.3.1 Cell Delivery

Cell delivery is based on link reservation. Every ISB should make link reservation in

advance in order to obtain the desired links at the targeted ATMCSF-OSB interfaces.

Every ISB has a link reservation vector and a queue occupancy vector. We use

LK_RSV i and Q i to represent the two vectors in the i th ISB (0 ≤  i, , j < K) :

Link reservation vector is renewed in every cell slot. Each ISB resets its link

reservation vector at the beginning of a cell slot, then starts reserving output shared

links according to a Round Robin Prioritized Output Link Reservation (RR+POLR)

algorithm. When a cell slot ends, every ISB delivers cells to the central switch fabric

according to its current link reservation. For example, if LK_RSV i is [2, 0, • • 4]

in current cell slot, the i th ISB will send two cells to OSB 0 and four cells to OSB

(K-1), but no cells are scheduled to other OSBs.

4.3.2 Link Reservation : RR+POLR Algorithm
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Definition 2 : Link Reservation Slot, i. e. Rsv_Slot.

Rsv_Slot is defined as a small time interval during which an ISB receives a token and

makes link reservation to the identified OSB. Rsv_Slot is independent from Cell_Slot,

usually, Rsv_Slot << Cell_Slot. When a cell slot is due, every ISB delivers cells to

ATMCSF according to its current link reservation vector.

Table 4.1 illustrates RR+POLR algorithm which is performed in every cell slot.

Each ISB resets its link reservation vector at the beginning of a cell slot. Switch II

adopts Round Robin (RR) scheme proposed in Switch I (Fig 3.4) to obtain an one-

to-one mapping from K ISBs to K OSBs in every cell slot. The OSB mapped to an

ISB is called the ISB's Master-OSB. In the 1' Rsv_Slot of a cell slot, an ISB has

the highest priority to reserve as many links as possible to its Master-OSB. If an

ISB does not fully occupy the M links to its Master-OSB, a token carrying available

links for this OSB will be issued by the ISB. Tokens pass through ISBs one by one

in a round robin manner. When an ISB receives a token carrying available links, the

ISB can reserve as many links as possible to the identified OSB.

Fig 4.2 depicts the operations of RR+POLR algorithm in a cell slot. Here, we

give an example that RR+POLR algorithm is performed in the 1" Cell_Slot.

In the 1S t Rsv_Slot of every cell slot, according to the one-to-one mapping,

an ISB has the highest priority to reserve as many links as possible to its Master-

OSB. Link reservation in an ISB is determined by queue occupancy of the related

GVOQ :



Table 4.1 RR+POLR Algorithm
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Figure 4.2 Round Robin Prioritized Output Link Reservation (RR+POLR)
algorithm performed in the 1s t Cell_Slot.

After reserving links to its Master-OSB, every ISB initiates a token about its

own Master-OSB, and fills in "Num_Lk_Idle" field to record how many links to its

Master-OSB are still available. Then, every ISB passes its new-born token to the

down-link neighboring ISB. So far, K tokens are generated and start circulating on

the token ring. A Token passes an ISB in every Rsv_Slot.

In the nth (n > 1) Rsv_Slot of the same cell slot, every ISB will receive

a token from its up-link neighbor. If the received token carries available links, an

ISB checks the queue occupancy of the related GVOQ and reserves as many links as

possible to the identified OSB. The total links reserved in an ISB should not exceed

the token will be reduced by the number of links occupied by the ISB. At the end of

the nth Rsv_Slot, every ISB will hand over its received token to next ISB.

When a cell slot is due, every ISB delivers cells to the central switch fabric

based on its current link reservation vector. Meantime, all existing tokens in current
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cell slot will be destroyed by ISBs. Note that, link reservation rate (i.e. Rsv_Slot) is

independent of a cell scheduling cycle (i.e. Cell_Slot), usually Rsv_Slot <<  Cell_Slot.

If K*Rsv_Slot < Cell_Slot, a token can finish a complete ring in a cell slot. Otherwise,

a token only goes through some ISBs in a cell slot.

When a new cell slot starts, each ISB resets its link reservation vector.

According to the one-to-one mapping in the new cell slot, an ISB resumes link reser-

vation with the highest priority from its new Master-OSB. Round Robin mapping

ensures that an ISB treats every OSB as its Master-OSB in every K cell slots. Fairness

in RR+POLR algorithm is guaranteed.

4.3.3 Remarks

4.3.3.1 Switch II vs. Switch I : In Switch II, each ISB needs to reset its link

reservation vector in every cell slot. Link reservation rate is identified by Rsv_Slot

which is independent from cell delivery rate represented by Cell_Slot.

We use an integer R to represent the ratio of Cell_Slot and Rsv_Slot, i.e. R =

will be the same as Switch I in this case, because an ISB just makes link reservation

for its mapped OSB but does not have opportunity to reserve links to other OSBs. If

R > 1, Switch II is superior over Switch I because a token can go through R ISBs so

that an ISB can reserve links to several OSBs a cell slot. If R> K, a token can finish

a complete ring during a cell slot, hence, an ISB is able to make link reservation for

every OSB. Obviously, Switch II deserves better performance than Switch I if R > 1.

4.3.3.2 Complexity of RR+POLR Algorithm : RR+POLR algorithm is a

distributed link reservation algorithm in the way that an ISB reserves links to an

OSB according to its queue occupancy of the related GVOQ. Arbitration complexity
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if 0(1), though an ISB may repeat the same arbitration R times for different OSBs

in a Cell_Slot.

4.3.3.3 Fairness of RR+POLR Algorithm : Because of employing the one-

to-one RR mapping, an ISB fairly selects each OSB as its Master_OSB in every K cell

slots. In another words, every ISB has the same opportunity to make link reservation

for K OSBs. Fairness is guaranteed in RR+POLR algorithm.

4.4 Switch Performance

In this section, we investigate Switch II through a performance comparison between

Switch I, Switch II and an OQ switch. We simulate an 256x256 (N = 256) switch

consisting of 32x32 ISBs/OSBs (M = 32, K = 8) for Switch I and Switch II. As a

comparison, we also simulate an 256x256 OQ switch under the same traffic condition.

Output queued switch is assumed to have infinite output buffers. A cell arriving at

any switch input will be forwarded to the related output queues in the same cell slot.

The OQ switch is work-conserving so that it results in the best performance.

VBR sources are applied to generate the input traffic, as shown in Fig 3.7. We

use the ON (active) /OFF (idle) model to describe the burst-idle process of input

traffic stream. The back-to-back cells in an ON duration belong to a same VC,

i.e. they have same multiple destinations. No cells arrive in an idle period. Traffic

parameters are : MBS which is the maximum burst size; LCR which is the line cell

is the average cell rate. The effective input load is defined as p = (AC R * F)/LCR,

p < 1, F is the average fanout.



If R > 1, Switch II will exceed Switch I because in a cell slot, an ISB can reserve

links to multiple OSBs so that link starvation of OSBs may be relaxed. Since we

have shown in chapter 3 that Switch I can obtain a good performance under uniform

traffic, Switch II will be able to achieve a good performance under uniform traffic.

Hence, we will not evaluate Switch II under uniform traffic, but, we mainly examine

Switch II under non-uniform traffic to show the differences and likenesses from

Switch I.

Three circumstances are likely to build a non-uniform traffic. (1)

If maximum bursty size MBS is very large, then cells in an ON period will keep

targeting the same multiple destinations for a relatively long time. Cell destinations

of an ISB are not uniformly distributed among N switch outputs in a time period.

(2) If bursts are correlated with each other, cells in successive ON bursts have the

same destination outputs. Even though MBS is small, cells accumulated in several

bursts will make the traffic non-uniformly distributed among N output ports. (3) In

an extreme case, arriving cells to an ISB only go to a specific OSB. This is so called

'1 ISB —> 1 OSB HotSpot Traffic'. In our simulation, we use this traffic to perform

a comparison study because this traffic model is able to clearly expose the strength

or weakness of different switches.

Table 4.4 illustrates switch performance under unicast "1 ISB -4 1 OSB

HotSpot Traffic". The average hot spot burst length is 5 * MBS 100 successive

cells. It is observed that Switch I suffers a dramatic performance degradation, while

Throughput performance is compared in Fig 4.3. Switch I with GVOQ RR

obtains a very low throughput about 13% when input load is 99%. The reason for
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Table 4.2 Switch II : performance comparison under non-uniform unicast traffic with
different input load p. The observed performance statistics are : (1) throughput; (2)
average end-to-end cell delay and delay jitter (DE_ to_ E , (Min, Max)); (3) average
cell delay in ISB and delay jitter (DISB , (Min, Max)); (4) average occupancy of OSB
(SOSB and (Min, Max)).
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that is, an ISB accommodates cells going to a specific OSB so that an ISB only have

cells to be delivered to OSBs in 1 out of every 8 successive cell slots. Link resources

are wasted by using the one-to-one RR mapping scheduling algorithm. However,

Switch II using RR+POLR provides a mechanism for ISBs to compensate each other

to reserve links and forward cells to the non-fully loaded OSBs. Starvation of OSBs

may be relaxed according to the ratio R. For example, if R = 4 which implies that

an ISB is allowed to reserve links to 4 OSBs in a cell slot, switch throughput leads to

52%; if R = 8, i.e. an ISB has the opportunity to reserve links to every OSB, Switch

II can achieve a similar performance of throughput as the OQ switch.

Figure 4.3 Switch II : throughput under "1 ISB 	 1 OSB hotspot unicast traffic" .



65

Fig 4.4 evaluates the average end-to-end cell delay (DE_ to_E ), which is defined

as the latency for a cell to pass through the switch. DE_to_E is measured in terms of

the number of cell slots. When R = 8, Switch II yields a very similar performance of

DE_to_E as the OQ switch. Compared to the lower bound of DE_to_E obtained in

the OQ switch, Switch II incurs no more than 8 cell slots longer delay. But, Switch

I as well as Switch II with R = 4 sustain much longer cell delay. Longer cell delay is

due to the lower throughput. Since more and more cells are backlogged in ISBs, cell

delay keeps increasing in both of the two switches.

Figure 4.4 Switch II : average end-to-end cell delay (DE_to_E) under "1 ISB 	 1
OSB hotspot unicast traffic".

The end-to-end cell delay is resulted from two parts : queueing delay in ISBs

(DISBS )7 and queueing delay in OSBs (DOSBs ). Fig 4.5 shows the average queueing
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Figure 4.5 Switch II : average cell delay in ISB (DISB ) under "1 ISB →  1 OSB
hotspot unicast traffic".

delay in ISBs (i.e. DISB). When R = 8, Switch II causes at most 1 cell slot delay

of DISB. It indicates a potential capability of Switch II to forward cells as fast

as the OQ switch. In this circumstance, since most arriving cells are transmitted to

OSBs immediately, OSBs in Switch II can employ any existing scheduling strategy to

provide QoS guarantee as the OQ switch does. But, it is worth to notice that Switch

II is sensitive to the ratio R. As shown in Fig 4.5, if R = 4, Switch II tolerates much

longer delay in ISBs especially under heavy input load. Switch I performs even worse

because DE-to-E is mainly incurred by the latency in ISBs (i.e. DE-to-E ≈ DISB ).

In this case, Switch I is more like an IQ switch.
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Figure 4.6 Switch II : average size of OSB (SOSB ) under "1 ISB	 1 OSB hotspot
unicast traffic" .

In addition, we measure the average size of OSBs (i.e. SosB) in Fig 4.6. SOSB

reflects the occupancy of OSBs in terms of the number of accommodated cells. Switch

II with faster link reservation rate (i.e. large ratio R) is able to forward cells to OSBs

quickly so that it will have more cells saved in OSBs.

Moreover, Table 4.4 investigates switch performance under multicast "1 ISB

1 OSB HotSpot Traffic" . Fig 4.7~Fig 4.10 respectively depicts performance of

different aspects. Generally, we have similar observations as what we had discussed

for unicast traffic. In addition, under multicast traffic, switches benefit from GVOQs

so that multicast cells can be forwarded from ISBs to OSBs. Therefore, under the



68

Table 4.3 Switch II : performance comparison under non-uniform multicast traffic
with different input load p. The observed performance statistics are : (1) throughput;
(2) average end-to-end cell delay and delay jitter (DE-to-E, (Min, Max)); (3) average
cell delay in ISB and delay jitter (DISB , (Min, Max)); (4) average occupancy of OSB
(SOSB and (Min, Max)).
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Figure 4.7 Switch II : throughput under "1 ISB →  1 OSB hopspot multicast traffic" .
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Figure 4.8 Switch II : average end-to-end cell delay (DE_ to_E) under "1 ISB	 1
OSB hopspot multicast traffic".

same input load p, switches achieve better performance than in unicast traffic. For

example, Switch II with R = 4 is able to obtain a comparable performance to the

OQ switch under multicast traffic. But, it is not the case in unicast traffic.

4.5 Conclusion

4.5.1 Advantages of Switch II

Switch II inherits the modular switch architecture of Switch I. It benefits from input

and output link sharing, hence, no speedup is necessary in central switch fabric.
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Figure 4.9 Switch II : average cell delay in ISB (DISB) under "1 ISB →  1 OSB
hopspot multicast traffic" .

To resolve input and output contention, we propose a Round Robin Prioritized

Output Link Reservation (RR+POLR) algorithm. Cell delivery is determined by link

reservation in every ISB. RR+POLR algorithm is a distributed resource allocation

algorithm, in the sense that an ISB makes link reservation for an OSB in a Rsv_Slot

according to queue occupancy of the related GVOQ. Arbitration complexity is 0(1).

Switch II uses RR+POLR to avoid starvation of OSBs so that it achieves

an improved performance especially under non-uniform traffic. If R ≥  K, i.e. a

token can circulate a complete ring in a cell slot, RR+POLR may be able to gain a

comparable performance to the OQ switch.
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Figure 4.10 Switch II : average size of OSB (SOSB) under "1 ISB → 1 OSB hopspot
multicast traffic".

4.5.2 Disadvantages of Switch II

RR+POLR algorithm has a deficiency to achieve an efficient link resource allocation

among ISBs, mainly due to following two reasons.

First, it may not be efficient for an ISB to reset its link reservation vector in

every cell slot, because traffic patterns injected in an ISB usually will not change

dramatically in every cell slot. In addition, the performance of Switch II is mainly

depended on the link reservation rate, i.e. the ratio of Rsv_Slot and Cell_Slot. If

Rsv_Slot = Cell_Slot, Switch II is exactly the same as Switch I because an ISB only

has the opportunity to reserve links to its Mater_OSB in a cell slot.
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Moreover, prioritized link reservation may hinder an ISB to reserve links for

a starved OSB if the ISB has already reserved M links to other OSBs. Fig 4.11

shows an example of this scenario. In the l' Rsv_Slot, according to the one-to-one

mapping, ISB 0 and ISB 1 respectively reserve links to their Master-OSBs. After

that, no idle link is left for OSB 0, but 2 links to OSB 1 are still available since ISB

1 does not have cells destined to OSB 1. However, when receiving Token s in the

2nd Rsv_Slot, ISB 0 is not able to reserve any more links (refer to * in Fig 4.11).

Eventually, OSB 1 is not served with any cells even though there are cells in ISBs

which want to go to OSB 1 (ref t$ in Fig 4.11). This causes throughput degradation.

The problem is due to prioritized link reservation without the knowledge of traffic

load of other OSBs.

Figure 4.11 RR+POLR causes starvation of OSBs (refer to #) in an example 4x4
switch, 2x2 ISBs/OSBs (N=4,M=2,K=2).

To resolve this problem, in next chapter, we present an enhanced switch archi-

tecture using dual round robin dynamic link reservation to achieve a dynamic fast

and fair link resource allocation among ISBs.



CHAPTER 5

SWITCH III: A SCALABLE TERABIT MULTICAST PACKET
SWITCH WITH DUAL ROUND ROBIN DYNAMIC LINK

RESERVATION

In this chapter, we propose Switch III as an enhanced switch design using link sharing

and dual round robin dynamic link reservation. Unlike the previous two switches,

ISBs are connected by dual rings on which K link request tokens (REQs) and K link

release tokens (RELs) circulate in a round robin manner. Cell delivery is based on

link reservation in every ISB. But, without reseting its link reservation vector in every

cell slot, each ISB can dynamically increase/decrease its link reservation for a specific

OSB by "borrowing" or "lending" links from/to other ISBs. We propose two Queue

Occupancy Based Dynamic Link Reservation (QOBDLR) algorithms to achieve a fast

and fair link resource allocation among ISBs. QOBDLR is a distributed link reser-

vation scheme in the sense that every ISB utilizes its local available information to

arbitrate a modification for its own link reservation. Arbitration complexity is 0(1).

Performance evaluation shows that Switch III can achieve s comparable performance

to OQ switches under any traffic pattern. Moreover, Switch III avoids the speedup

problem which is involved in OQ switches. Hence, Switch III would be a good choice

for high performance, scalable, large-capacity core switches.

5.1 Switch Architecture

Fig 5.1 shows the architecture of Switch III, which consists of K ISBs, ATMCSF,

K OSBs, and dual round robin rings. Functions of ISB, OSB and ATMCSF are the

same as what we presented in Switch I and Switch II.

ISBs are connected by dual rings : a down-ward ring conveys link request tokens

(REQs); and an up-ward ring carries link release tokens (RELs). At any time, there

74
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Figure 5.1 Switch III : an NxN switch consists of K ISBs, K OSBs, ATMCSF, and
dual round robin rings; K = m , m = M. Cell delivery is based on link reservation.
Dual round robin rings provide a mechanism for ISBs to dynamically "borrow"
and/or "lend" links from each other.

are K REQ tokens and K REL tokens circulating on the dual rings respectively and

passing ISBs one by one in a round robin manner. Each OSB (e.g. the i th OSB) is

correlated with a REQ token (e.g. REQ i ) and a REL token (e.g. REL i ).

As shown in Fig 5.1, REQ token and REL token have the same format

containing two fields : (1) "OSB_ID" is the identification of an OSB; (2) "REQ_NUM"

indicates how many link requests are issued for the identified OSB. Or, "REL_NUM"
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records the number of released links which are available to be reserved at the related

ATMCSF-OSB interface.

In a cell slot, each ISB delivers cells to central switch fabric according to its

link reservation. For example, as shown in Fig 5.2, if LK_RSV i is [4, 0,...,2] in

current cell slot, the i th ISB will send two cells to OSB 0 and four cells to OSB (K-1),

but no cells are scheduled to other OSBs.

But, unlike Switch II, ISBs in Switch III do not need to reset their link reser-

vation vectors in every cell slot. According to its queue occupancy vector, an ISB can

dynamically modify its link reservation for a specific OSB when the ISB receives the

related REQ token or REL token. We propose two link reservation algorithms, both

of them are based on a queue occupancy based dynamic link reservation (QOBDLR)

scheme.
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Figure 5.2 Cell delivery is based on link reservation.

5.2.2 Link Reservation

Link reservation in ISBs needs to resolve two contentions : (1) K GVOQs in an

ISB contend for M links at the ISB-ATMCSF interface. (2) K ISBs contend for M

links at every ATMCSF-OSB interface. To achieve a fast and fair link resource

allocation among ISBs, we propose two algorithms :

• REQ-QOBDLR algorithm : Request-Motivated Queue Occupancy Based

Dynamic Link Reservation algorithm.

• REQREL-QOBDLR algorithm: Request/Release-Motivated Queue Occupancy

Based Dynamic Link Reservation algorithm.

To present the two link reservation algorithms, we provide following definitions.

Definition 1 : Link Reservation Rule.

Link reservation among K ISBs must satisfy two criteria :
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not exceed M which is the maximum number of links at the ATMCSF-OSB interface.

Definition 2 : Link Reservation Slot, i.e. Rsv_Slot.

As shown in Fig 5.3, Rsv_Slot is defined as a small time interval during which

an ISB receives a pair of REQ and REL tokens. In a Rsv_Slot, an ISB has the

authority to modify its link reservation for the two OSBs which are identified by the

received REQ and REL tokens.

Rsv_Slot is independent from Cell_Slot, usually, Rsv_Slot <<Cell_Slot. We

R = 1, link reservation is performed in the slowest rate because a token only goes

through one ISB in a cell slot; if R > K, a token can circulate a complete ring in a

cell slot. Dynamic link reservation is operated in a Rsv_Slot. When a cell slot is due,

every ISB delivers cells to ATMCSF according to its current link reservation vector.

Figure 5.3 Rsv_Slot (link reservation slot) vs. Cell_Slot (cell delivery slot) in an
example switch consisting of 3 ISBs and 3 OSBs.
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5.3 REQ-QOBDLR Algorithm

In this section, we present the Request-Motivated Queue Occupancy Based Dynamic

Link Reservation (REQ - QOBDLR) algorithm. As a common model shown in Fig 5.4,

the ith ISB (0 ≤ i < K) is receiving REQj token and RELn token in current Rsv_Slot,

usually REQj and RELn identify two different OSBs (i.e. j n). The i th ISB will

only modify its link reservation, i.e. and r ni , for the i th OSB and the nth OSB in

current Rsv_Slot.

Figure 5.4 REQ-QOBDLR algorithm which is performed in every Rsv_Slot.

REQ-QOBDLR algorithm is performed in every Rsv_Slot. For the received

REQj token, the i th ISB will refer the queue occupancy to decide an intended

modification of ri
3 For the received RELn token, the ith ISB simply takes an extra

link if the ISB had requested it. As the increasing/decreasing of link reservation

for a specific OSB can only be triggered and accomplished as a result of an explicit

request by the i th OSB, this algorithm is so called REQ-QOBDLR algorithm.

The detail of REQ-QOBDLR algorithm is illustrated in Appendix A. In this

section, we present the basic rule and main operations of REQ-QOBDLR algorithm.
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5.3.1 Operations upon receiving REQj Token
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REL_NUMn  will be reduced by 1 if the ith ISB reserves an available link from

RELn token. Moreover, before the ith ISB forwards RELn token to the next ISB,

if the ith ISB has a pending released link resulted from the operation of receiving

REQn token, the released link will be inserted into RELn token.

In addition, when system starts, every ISB issues a REQ token and a REL

token. There is no specific rule on how to establish the token sequence as long as

each OSB is represented by a pair of REQ token and REL token. After that, K

REQs and K RELs will keep circulating on the dual rings in a round robin manner.

Cell delivery and link reservation are independent operations. When a Cell_Slot

is due, every ISB sends cells to ATMCSF based on its current link reservation vector.

But, an ISB is able to change its link reservation in every Rsv_Slot, usually Rsv_Slot

< Cell_Slot.
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5.3.4 Conclusion on REQ-QOBDLR Algorithm

Dynamic link reservation in REQ-QOBDLR algorithm is triggered by issuing link

requests. When receiving REQj token, the i th ISB can ask for an extra link to the

link if it had issued a link request and has been waiting for an available link. The

advantage of REQ-QOBDLR algorithm is to ensure that requesting a link and/or

releasing a link happens when necessary.

However, REQ-QOBDLR algorithm may have a potential problem especially

when switch grows and K is large. The reason is that, the i th ISB does not measure

even though it did not issue a link request for the nth OSB before. Or, the i th ISB

currently does not need the extra link even though it has sent out a link request

before. To match the real traffic, it would be more effective if the ith ISB evaluates

to propose another competitive algorithm called REQREL-QOBDLR algorithm in

next section.

5.4 REQREL-QOBDLR Algorithm

In this section, we present Request/Release-Motivated Queue Occupancy Based

Dynamic Link Reservation (REQREL-QOBDLR) algorithm. As show in Fig 5.5,

the ith ISB is receiving REQj and RELn token in current Rsv_Slot. For the

received REQ ; token, the i th ISB does the same operation as REQ-QOBDLR
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Figure 5.5 REQREL-QOBDLR algorithm which is performed in every Rsv_Slot.
Assume that the ith ISB is receiving REQj and RELn  token in current Rsv_Slot.

The detail of REQREL-QOBDLR algorithm is addressed in Appendix B. In

this section, we present the basic idea of REQREL-QOBDLR algorithm.

5.4.1 Operations upon receiving RELn Token
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ISBs. Bearing this in mind, when the i th ISB releases a link for the n th OSB due to

qni < LT, there are actually (REQ_NUMn — 1) 2 or (REQ_NUMn — 2) 3 link requests

are expecting available links for the n th OSB. Hence, the ith ISB should decrease

REQ_NUMn by either 1 or 2. However, the i th ISB does not hold REQn token in

current Rsv_Slot. The i th ISB has to record this pending reduction of link requests

and waits for receiving REQn token to modify REQ_NUM n .

5.4.2 Operations upon receiving REQj Token

The operations for the received REQj token is very similar as that in REQ-QOBDLR

algorithm. But, due to the operations for the received REL.' token in several

Rsv_slot(s) before, the ith ISB may need to first update REQ_NUM i with the pending

increment/decrement of link requests for the j th OSB. Hence, REQ_NUM i reflects

the real number of link requests issued for the j th OSB. After that, the i th ISB follows

the same operations as we presented in REQ-QOBDLR algorithm.

5.4.3 Remarks on REQREL-QOBDLR Algorithm

In a Ring_Cycle (i.e. = K * Rsv_Slot), an ISB has two opportunities to evaluate

its traffic load and to modify its link reservation for a specific OSB. Compared with

REQ-QOBDLR algorithm, REQREL-QOBDLR algorithm is able to quickly adjust

link resource allocation to adapt to the input traffic.

But, the efficiency of REQREL-QOBDLR algorithm is subject to the values of

HT and LT. For example, if LT is given a large value but traffic load is not heavy,

then every ISB will reduce its link reservation even though each ISB may have enough

2 If the ith ISB has not sent a link request for the nth OSB, then (REQ_NUMn — 1) link
requests are demanding available links after the i th ISB releases a link.

3 If the i th ISB has issued a link request for the nth OSB, then (REQ_NUM n — 2) link
requests are demanding available links after the i th ISB releases a link.
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by any ISB so that link resources are wasted. It will cause performance degradation.

How to select HT and LT will be addressed in next section.

5.5 Analysis of QOBDLR Algorithms

5.5.1 Algorithm Complexity

Both REQ-QOBDLR algorithm and REQREL-QOBDLR algorithm are distributed

link reservation schemes. In every Rsv_Slot, an ISB modifies its link reservation for

only two OSBs which are identified by the received pair of REQ token and REL

token. Arbitration on "borrowing" and/or "lending" a link to a specific OSB is

based on the queue occupancy of two related GVOQs. Since an ISB modifies its link

reservation according to its local available information, arbitration does not need to

undergo multiple iterations and complexity is only 0(1).

5.5.2 The choice of HT and LT

In QOBDLR algorithms, the high threshold HT and the low threshold LT are

predefined system parameters and are consistent after their initialization. In every

Rsv_Slot, each ISB evaluates its queue occupancy of a GVOQ with HT and LT

to decide whether to increase/decrease its link reservation for the related OSB. To

select appropriate values of HT and LT is very important for QOBDLR algorithms

to achieve a fair and fast link resource allocation among ISBs.

Notice that, ISBs tolerate two contentions when making link reservation for

the targeted OSBs : (1) K GVOQs in a same ISB contend for M links at the

ISB-ATMCSF interface; (2) K ISBs contend for M links at every ATMCSF-OSB

interface.



Figure 5.6 An ideal traffic scenario : the aggregated input load to the i th ISB
(0 < i < K) uniformly targets K OSBs. Every ISB has the same traffic pattern.

As shown in Fig 5.6, if the aggregated input traffic to the i th ISB (0 ≤  i < K)

uniformly targets K OSBs, then the queue occupancy of every GVOQ in the i th ISB

will be the same. Hence, we have

In above ideal case, ISBs do not need to borrow/lend links from each other

because traffic pattern in every ISB is exactly the same. The M links at every

ATMCSF-OSB interface will be evenly allocated to every ISB:
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However, in real life, input load to an ISB is dynamically changed and different

from each other's. In order to be fair for every ISB, the criteria to choose HT and

LT should be :

If the queue occupancy of a GVOQ in an ISB is larger than HT, the ISB can

ask for an extra link to the related OSB because its traffic load to the OSB is heavier

than the normal load qavg . If the queue occupancy of a GVOQ in an ISB is less than

LT, the ISB will release a link if other ISBs have link requests. Hence, QOBDLR

algorithms provide a fair resource allocation among ISBs.

The values of HT and LT may have multiple choices. Table 5.1 shows an

example which we apply to determine the values of HT and LT for Switch III if it is

an 256x256 switch constructed by 8 ISBs and 8 OSBs, i.e. N = 256, K = 8, m = M

= 32. Table 5.1 lists the possible choices of HT and LT based on different input load

p. HT and LT should be suitable to handle most of the possible traffic loading. Since

the input traffic loaded to a switch input is usually more than 50% (i.e. p ≥  0.5),

we choose that LT = 2. When the traffic load is less than 50% (i.e. p < 0.5), the

M links at an ATMCSF-OSB interface are most likely to be sufficient to support

cell delivery of all ISBs. To determine HT, the joint set of values of HT to satisfy

all possible traffic load is : HT E [4, 00). If HT is very large, a link request will

be activated much slowly because the queue occupancy of a GVOQ can not easily

exceed HT. Therefore, an ISB may not be able to increase its link reservation timely

to adapt to the increasing traffic. With this concern, we select HT as 4 above which
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an ISB starts requesting additional link. Hence, link reservation can adapt to the

traffic quickly.

Table 5.1 The possible choices of HT and LT for an 256x256 switch consisting of 8
ISBs and 8 OSBs, i.e. N = 256, K = 8, m = M = 32. We select HT = 4, and LT
= 2.

It is worth to mention that, a theoretical work about the optimal choice of HT

and LT, rather than the upper/lower bounds of the two thresholds, may be needed

for different input traffic patterns. This would be our future work.

5.5.3 Scalability of QOBDLR Algorithms

To cooperate the modular switch architecture to achieve a good performance,

QOBDLR algorithms should be scalable as well. The scalability of QOBDLR

algorithms can be investigated from two aspects  simplicity and efficiency.

In section 5.5.1, we discussed that QOBDLR algorithms sustain a very low

arbitration complexity of 0(1). Hence, QOBDLR algorithms will be able to afford

switch growth without increasing arbitration complexity.
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On the other hand, QOBDLR algorithms should be efficient to provide a fast

and fair link resource allocation. One of the main factors to judge the efficiency of

link reservation is Dgrant,  which is the average latency for a link request to be granted

by a released link. For example, if a link request issued by an ISB has to travel the

whole ring to find an available link at the fastest ISB, then the ISB will suffer a long

delay to obtain its desired link. It will demote the efficiency of QOBDLR algorithms.

3.5.3.1 Dgrant in REQ-QOBDLR Algorithm : In REQ-QOBDLR algorithm,

an ISB may issue a link request for a specific OSB upon receiving the related REQ

token. Fig 5.7 depicts an example in which ISB 0 is generating a new link request

for the nth OSB ( 0 < n < K ) when it receives REQn token in Rsv_Slot 0.

Figure 5.7 Dgrant in REQ-QOBDLR Algorithm

We assume that in a Ring_Cycle (i.e. K * Rsv_Slot), there is at least one ISB

on the ring who can grant a link for the link request of ISB 0. Otherwise, ISB 0

is destined not to be able to obtain its desired link because other ISBs do not have

available links to be released. If it is the j th ISB that eventually releases a link to

satisfy the link request of ISB 0, the latency for the link request to be granted by
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an available link is j Rsv_Slot(s). Statistically, we have the average latency Dgrant in

terms of the number of Rsv_Slot(s) as follows :

We first derive Dgrant under uniform traffic in which input load injected into an

ISB uniformly targets K OSBs. In this scenario, every ISB has the same probability

p (0 < p < 1) to grant a link request for a certain OSB. Since a token passes ISBs

one by one and only visits an ISB in a Rsv_Slot, we have :
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Eq. 5.10 explains that, under uniform traffic, Dgrant is not effected by K but

is determined by p. It implies that large switch size (i.e. large K) will not incur an

increasing delay for a link request to meet an available link.

In Eq. 5.10, p is the probability that an ISB is able to grant a link for a link

request. If p = 1, then Dgrant is 1, i.e. a link request will be satisfied by the next

neighboring ISB. But, if p 1, then Dgrant 1, i.e. it will take several Rsv_Slots

for a link request to encounter an available link. Since an ISB needs to check its

related queue occupancy to arbitrate whether to release a link for a link request, p

can be expressed as follows ( for 0 ≤  i , n < K) :

Eq. 5.11 is engaged with a queueing problem modeled in Fig 5.8. The input

traffic from every switch input is an ON-OFF traffic stream multiplexing several

VC connections. Moreover, the input load injected into every GVOQ is in fact an



93

Figure 5.8 How to get Pr (qni > c), where c is a constant value.

aggregation of multiple ON-OFF streams carrying multicast cells. The outgoing

traffic rate is identified by rni which can be interpreted as the dynamic service rate.

The queueing model illustrated in Fig 5.8 is similar to the traffic model consisting of

batch arrival and batch departure. However, in our model, theoretical analysis is too

complicated to achieve because departure process is correlated with arrival process

and queue length.

Independent batch arrival/batch departure traffic model, in general, is a

difficult analyzing problem due to multiplexing of typically a large number of

connections and burstiness of individual cell streams at possibly different time

scales [61]. Sohraby et al. presented several solutions based on M/G/1-Type

Markov Chains in [61] [62] [63]. However, their approaches are very computation-

consuming. Moreover, those solutions are not applicable in our model where arrival

and departure and correlated. Hence, a further effort to achieve a comprehensive

theoretical analysis is still our ongoing work.

But, we may do some approximation and intuitively interpret the meaning

beyond the equation. From Eq. 5.11, we derive an upper bound of Dgrant •
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and Dgrant will increase. It makes sense in a way that the queue occupancy of a

GVOQ may not easily go below LT, if LT is small. Thus, an ISB will not be able to

grant a link for a link request. It will incur a longer delay for a link request to be

satisfied.

Under non-uniform burst traffic, situation may become more complicated. If

we use p i (0 < i < K) to indicate the probability that the i th ISB is able to release

a link for a link request to the n th OSB, then we may have :

Moreover, with non-uniform traffic, we have :

hence, Dgrant will be expressed as :

Due to the difficulty to analyze the model as shown in Fig 5.8, we have not

been able to obtain a close-form expression of Eq. 5.15. But, we would like to

present following discussions to intuitively evaluate Dgrant • First, a REQ token

passes ISBs one by one in a round robin manner, so that the nearest ISB has the

highest responsibility to release a link for a link request. Intuitively, an ISB who

had issued a link request for a specific OSB should obtains the desired link from its
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down-stream neighboring ISBs in several Rsv_Cycle(s). Second, if switch size is very

large (i.e. K is very large), traffic pattern in each ISB may change during the period

that a link request is seeking for an available link. Therefore, an ISB who previously

does not want to grant a link may be able to release a link when the link request

token stops at its block. In our performance simulations, it rarely happens that a

link request needs to traverse a complete ring to obtain an available link.

3.5.3.2 Dgrant in REQREL-QOBDLR Algorithm : In REQREL-QOBDLR

algorithm, link request operation and link release operation are more independent

than those in REQ-QOBDLR algorithm. Even though there is no link request issued

by any ISB, an ISB may release a link if its queue occupancy is less than LT. On

the other hand, an ISB who has issued a link request to a certain OSB may be

able to catch an available link immediately without polling neighbor ISBs one by

one because there may already be released links circulating on the ring. Hence,

in REQREL-QOBDLR algorithm, Dgrant is smaller than that in REQ-QOBDLR

algorithm. However, the delay variation in REQREL-QOBDLR may be larger than

that in REQ-QOBDLR algorithm in which a link release is only stimulated by an

explicit link request.

5.6 Performance Evaluation

In this section, we evaluate the performance of Switch III and compare it with Switch

I, Switch II and the OQ switch under same traffic scenarios.

5.6.1 Traffic Model

The switch performance is investigated under both uniform and non-uniform traffic.

As shown in Fig 5.9, cells coming from different VCs are multiplexed in bursts which
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are interleaved to contribute as the arrival traffic at every switch input. We employ

the ON(active)/OFF(idle) model to describe the burst-idle process. The back-to-

back cells in an ON duration belong to the same VC so that they have same desti-

nations. No cells arrive in idle period.

Figure 5.9 Traffic Model : Multicast Burst Traffic

Under uniform traffic, the aggregated input load to every ISB is the same

and uniformly targets all switch outputs. We set a small value of MBS which is the

maximum burst size (i.e. the number of cells in an ON duration). Cells' destinations

are uniformly distributed among N switch outputs.

On the contrary, non-uniform traffic is featured by "hot spot" phenomenon

: cells accommodated in an ISB prefer to go to some switch outputs, but rarely go

to other output ports. Three scenarios are likely to build a non-uniform burst traffic

in an ISB : (1) If MBS (i.e. maximum burst size) is very large, cells arriving in an

ON period will keep targeting the same destinations for a long time. Input traffic is

not uniformly destined to N switch outputs in this time duration. (2) If bursts are

correlated with each other, i.e. cells arriving in successive ON periods keep going to

the same destinations. Even though MBS may be small, cells accumulated in several

ON periods will generate a non-uniform traffic in an ISB. (3) In an extreme case, an
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ISB only has cells to go to a specific OSB, but has no cells to other OSBs. Different

ISB is dedicated to different OSB. This is so called "1 ISB → 1 OSB hot spot" traffic.

In this dissertation, VBR source is used to generate the ON-OFF traffic.

Following are traffic parameters : MBS is the maximum burst size; PCR is the peak

cell rate (i.e. the number of cells per second) which satisfies that PCR ≤  LCR; LCR

link; ACR is the average cell rate. We define Font as the fanout of a cell. Font has

a uniform distribution from 0 to Cmax . The average fanout load F = (Cmax + 1)/2,

where Cmax is the maximum copies allowed for a multicast cell. The effective input

load is defined as p = (ACR x F) I LC R, 0 ≤ p ≤  1.

5.6.2 Switch Performance

The switch performance is evaluated through simulations by using OPNET/MIL3

simulation platform [65]. For our switch designs, we apply an 256x256 (N = 256)

switch consisting of 8 ISBs and 8 OSBs (K = 8). Each ISB/OSB is of size 32x32 (m

= M = 32). For Switch II using RR+POLR, we assume that the link reservation

Hence, a token only goes through one ISB in a cell slot. Switch III with any faster

link reservation rate (i.e. R > 1) will obtain a better performance than what we

simulated here. For the OQ switch, we assume that the OQ switch can support N

times speedup. Therefore, cells arriving at switch inputs can be transmitted to the

related output queues in a cell slot. Output buffers are infinite so that no cells could
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be lost. The OQ switch proved to be able to achieve the best performance under any

traffic pattern.

We investigate the switch performance under both uniform and non-uniform

traffic. Following performance statistics are estimated :

• Throughput : switch throughput which is statistically measured on N switch

outputs

• DE_to_E : the average end-to-end cell delay in terms of the number of cell slots.

DE_to_E is the latency for a cell going through the switch. Delay jitter is

measured by (Min, Max) of DE_to_E .

• DISB : the average cell delay in ISBs in terms of the number of cell slots. We

assume that ATMCSF forwards cells from input shared links to output shared

links in a cell slot, hence, ATMCSF does not cause any cell delay. DE_to_E is

resulted from two parts : the cell delay in ISBs (i. e. DISB ), and the cell delay

in OSBs. The vector of (Min, Max) of DISB is the minimum delay and the

maximum delay incurred in ISBs.

• SOSB:the average occupancy of an OSB measured by the number of cells accom-

modated in the OSB. Since each OSB consists of M output queues, SOSB

indicates the total number of cells waiting in an OSB. The vector of (Min,

Max) of Sout estimates the lower bound and the upper bound of the occupancy

of an OSB.

Table 5.2 compares the switch performance under uniform traffic with

different input load p. Multicast uniform traffic is applied. For Switch III, we select

the values of HT and LT as 4 and 2 as what we discussed in previous section.
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Table 5.2 Switch III : performance comparison under uniform multicast traffic with
different input load p. The observed performance statistics are : (1) throughput; (2)
average end-to-end cell delay and delay jitter (DE_ to_E , (Min, Max)); (3) average
cell delay in ISB and delay jitter (DISB , (Min, Max)); (4) average occupancy of OSB
(SOSB and (Min, Max)).
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In chapter 3 and chapter 4, we have shown that Switch I and Switch II are

able to provide good performance under uniform traffic. Comparison in Table 5.2

indicates that, Switch III, as well as Switch I and Switch II, can achieve a comparable

performance as the OQ switch under uniform traffic. On throughput performance,

the OQ switch always leads to the maximized throughput p, and our switches have

less than 0.5% throughput degradation. In general, the end-to-end cell delay

DE_to_E increases with input load p. Compared with the lower bound of DE_to_E

achieved in the OQ switch, DE_to_E in our switch designs causes 2 ,-15 more cell

slots. Longer cell delay is due to lower throughput.

It is also observed from Table 5.2 that, Switch II and Switch III obtain a little

bit better performance than Switch I because the former ones utilize link reservation

to avoid starvation of OSBs. However, under uniform traffic, link reservation is not

necessary so that Switch I still can obtain a similarly good performance as the other

two switches. When input load is heavy such as p = 0.99 or 0.90, Switch II results

in a little bit better performance than Switch III but it happens with the condition

R = 1, Switch II will yield the same performance as Switch I so that Switch III can

defeat Switch II.

The two QOBDLR algorithms proposed for Switch III are very competitive to

each other. REQREL-QOBDLR algorithm exceeds REQ-QOBDLR algorithm with

better performance when input load p is heavy. The reason for that is, dynamic link

reservation achieved by REQREL-QOBDLR is faster than that in REQ-QOBDLR

algorithm. But, when input load p is less than 0.7, REQ-QOBDLR algorithm

outperforms REQREL-QOBDLR algorithm because REQREL-QOBDLR intends
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to release more links which may not be utilized by any ISBs. In general, both

REQ-QOBDLR and REQREL-QOBDLR algorithms are capable of providing good

performance for uniform traffic.

Moreover, Table 5.2 shows that DE_to_E in our designs is mainly due to the

latency in OSBs (i.e. DE_to_E — DISB ) rather than the delay in ISBs (i.e. DISB). In

addition, SOSB  indicates that cells are forwarded to OSBs in a fast manner because

most of the cells are backlogged in OSBs. This is a good feature of our switch

designs because OSBs may be able to incorporate per VC queueing with appropriate

cell schedulers to provide QoS guarantees as the OQ switch does. It is the subject

of our ongoing work.

Table 5.3 compares the switch performance under non-uniform traffic.

Fig 5.10 ~ Fig 5.13 illustrate the performance of throughput, DE_to_E , DISB and

SOSB individually. We apply unicast "1 ISB 1 OSB HotSpot Traffic" : the input

load injected into an ISB only targets a specific OSB, but no cells go to other OSBs.

Performance comparison shows that Switch I fails to offer a good performance

for non-uniform traffic. The reason is that, in Switch I, an ISB is only allowed

to deliver cells to its matched OSB according to the one-to-one mapping in a cell

slot. If an ISB does not have cells to go to its assigned OSB, other ISBs do not

have authority to send cells to the starved OSB. Under "1 ISB → 1 OSB HotSpot

Traffic", an ISB only has cells to be delivered in 1 out of every K cell slots. Switch I

suffers a significant performance degradation and only approaches 13% throughput

even though input load is 99%. Since more and more cells are blocked in ISBs,

the cell delay in ISBs (i.e. DISB) continues to increase. It, therefore, causes an

ever-increasing end-to-end cell delay (i.e. DE_to_E).
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Table 5.3 Switch III : performance comparison under unicast "1 ISB —+ 1 OSB
HotSpot" traffic. The observed performance statistics are : (1) throughput; (2)
average end-to-end cell delay and delay jitter (DE-to-E, (Min, Max)); (3) average
cell delay in ISB and delay jitter (DISB, (Min, Max)); (4) average occupancy of OSB
(SOSB and (Min, Max)).
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Figure 5.10 Switch III : throughput performance under unicast "1 ISB →  1 OSB
HotSpot" traffic.

Figure 5.11 Switch III : average end-to-end cell delay (DE_ to_E) under unicast "1
ISB →  1 OSB HotSpot" traffic.



104

Figure 5.12 Switch III : average delay in ISBs (DISB ) under unicast "1 ISB 	 1
OSB HotSpot" traffic.

Figure 5.13 Switch III : average size of OSBs (SOSB) under unicast "1 ISB -4 1
OSB HotSpot" traffic.
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Switch II will endure the same performance 'decline as Switch I if link reser-

to an improved performance with any faster link reservation rate such as R = 4 (refer

to Table 5.3). However, Switch II has a weakness that an ISB has to reset its link

reservation vector in every cell slot. Hence, the performance of Switch II is mainly

determined by the link reservation rate which would be a bottleneck for Switch II to

achieve the high performance. For example, Switch II with R = 4, though achieving

better performance than Switch I, can not approach to a comparable performance

as the OQ switch.

Being an enhanced switch design, Switch III outperforms the other two switches

and achieves a comparable performance to the OQ switch under non-uniform traffic.

Switch III benefits from the dynamic link reservation schemes so that an ISB does not

need to reset its link reservation vector in every cell slot. Even though the dynamic

using QOBDLR algorithms can adapt to the input traffic quickly and perform a fast

and fair link resources allocation among ISBs. Fig 5.10 shows that Switch III leads to

a very similar throughput as the OQ switch. Fig 5.11 indicates that Switch III causes

no more than 30 cell slots longer delay of DE-to-E  if compared to the OQ switch. We

also observed that most of the cells are forwarded to and buffered in OSBs, hence,

DE-to-E is mainly resulted from the cell delay in OSBs. As we mentioned before, it

is a good feature of the proposed switch because OSBs, which look like the output

queues in the OQ switch, are able to incorporate per VC queueing with appropriate

cell schedulers to provide QoS guarantees.

Under multicast traffic, our switch designs can yield better performance than

under unicast traffic, because ISBs can take the advantage of GVOQs to deliver
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multicast cells to ATMCSF. Thus, a faster cell forwarding can be gained when

switches handle multicast input traffic. Table 4.2 and Table 4.3 have evaluated

Switch I and Switch II under multicast " 1 ISB → 1 OSB HotSpot traffic". Here,

we will not further examine Switch III under multicast traffic because Switch III

has already proved to be able to achieve a good performance under unicast traffic

as shown in Table 5.2. Obviously, performance of Switch III under multicast traffic

will be even better.

Figure 5.14 DE-to-E in Switch III using REQ-QOBDLR algorithm with different



Figure 5.15 Max. of DE-to-E in Switch III using REQ-QOBDLR algorithm with

R = 1 is capable of obtaining a high throughput which is comparable to that of the

OQ switch. The choice of R does not affect the throughput performance significantly.

But, Fig 5.14 and Fig 5.15 shows that, for Switch III using REQ-QOBDLR algorithm,

DE_to_E and delay variance (i.e. Max of DE_ to_E ) will be reduced if R increases.

The same conclusion can be drawn for REQREL-QOBDLR algorithm : the faster

link reservation rate, the better performance.

In summary, Switch III exhibits the capability to pursue a high performance

under both uniform traffic and non-uniform traffic. Compared to the OQ switch,

107



108

Switch III can be claimed as a competitive design in the sense that Switch III not

only can achieve a comparable performance to the OQ switch but also can eliminate

the N times speedup which is necessary in the OQ switch.

5.7 Conclusion

In this chapter, we present a novel switch design for scalable terabit multicast packet

switches. The proposed switch enjoys a modulr architecture consisting of ISBs,

OSBs and a central switch fabric. Dual round robin rings provide a mechanism for

ISBs to dynamically "borrow" and/or "lend" links from/to each other. The switch

benefits from input and output link sharing so that no speedup is needed in the

central switch fabric.

To resolve input and output contentions, cell delivery is based on link reser-

vation in every ISB. We propose two Queue Occupancy Based Dynamic Link Reser-

vation algorithms, both of them are able to provide a fast and fair link resource

allocation among ISBs. QOBDLR is a distributed link reservation scheme in which

an ISB can dynamically increase/decrease its link reservation for a specific OSB

according to its local available information. Arbitration complexity is 0(1).

Performance evaluation demonstrates that Switch III can achieve a comparable

performance to the OQ switch under any traffic pattern. But, our switch design

can scale easily without requiring speedup, while the OQ switch supporting similar

performance needs N times speedup (N is the switch size) which in large scale

switches is impractical.



CHAPTER 6

CONCLUSION AND FUTURE WORK

The aim of this dissertation is the design of a scalable, large-capacity, high

performance core switch for broadband networks. The issues addressed for the switch

design include multicasting, architecture scalability, and arbitration complexity. In

this dissertation, we proposed three novel scalable terabit multicast packet switches

Switch I, Switch II and Switch III.

From an architectural point of view, all the proposed switches are charac-

terized by a modular configuration using ISBs, OSBs and ATMCSF. Furthermore,

all switches employ a novel co-operative input and output link sharing so that no

speedup is necessary in the central switch fabric. Thus, the bottleneck in memory

access rate and architecture expansion is avoided. Multicast function is achieved by

cell splitting along with cell delivery. The novel scheme of grouped virtual output

queue (GVOQ) provides a fast cell forwarding and simple cell scheduling, especially

for multicast traffic. Because of the modular architecture, the proposed switches can

easily scale to a large size and high capacity.

Instead of using a centralized scheduler to resolve input and output contentions,

we proposed various distributed resource allocation algorithms for each switch design.

In Switch I, two round robin scheduling algorithms IVOQ RR and GVOQ RR,

are presented. The arbitration complexity of IVOQ RR is in a range of [0(1) ,

0(M)], while GVOQ RR sustains a low complexity of 0(1). Switch II applies a

prioritized link reservation algorithm RR+POLR to eliminate the starvation of OSBs.

This results in substantial improvement in switch performance especially for non-

uniform traffic. For the enhanced Switch III, we proposed two dual round robin

dynamic link reservation algorithms  REQ-QOBDLR and REQREL-QOBDLR.
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A fast and fair link resource allocation among ISBs is achieved by "borrowing"

and/or "lending" links from each other through. REQ tokens and REL tokens. Both

algorithms are distributed link reservation schemes in which every ISB, according to

its local available information, can dynamically modify its own link reservation. As

arbitration complexity is 0(1), scheduling complexity is not an obstacle any more

for switch growing to a large scale.

Comparison studies on switch performance show that Switch I performs well

for uniform traffic but it is not suitable for non-uniform traffic. Though Switch II

yields an improved performance under non-uniform traffic, RR+POLR algorithm is

not flexible enough to quickly adapt to the input traffic. Switch III benefits from

dynamic link reservation which provides a fast and fair resource allocation. Hence,

Switch III achieves a high performance as good as the OQ switch, while at the same

time eliminating the N times speedup of central switch fabric required in the OQ

switch. Thus, Switch III is a good choice for a scalable terabit multicast packet

switch.

The following issues need to be further addressed for practical implementation

of Switch III. First, the optimal choice of HT and LT may need to be investigated

rather than the bounds of HT and LT. A more comprehensive theoretical work on

REQ-QOBDLR and REQREL-QOBDLR algorithms is needed, and is ongoing work.

In addition, a detailed study on QoS features of Switch III might be necessary, even

though it appears that OSBs can incorporate per VC queueing with appropriate cell

schedulers to provide QoS guarantee.



APPENDIX A

REQ-QOBDLR ALGORITHM

A.1 Operations upon receiving REQj token

When receiving REQj token, the i th ISB will evaluate its queue occupancy q jiagainst

two thresholds : a high threshold (HT) and a low threshold (LT). Then, the i th ISB

decides whether to request an extra link and/or release a link to the j th OSB.

Step 1 : The ith ISB decides whether to request an additional link for the j th

OSB ?
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will be inserted into REQ_NUMj in Step 3. In case 2, the ith ISB had sent a link

request but has not obtained the desired link yet. The ith ISB will keep waiting for

an available link but will not issue a new link request again. In case 4, the ith ISB

will cancel its current link request if REQ_NUMj > 0.
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Step 2 : The ith ISB decides whether to release a link if REQ token carries

link requests ?

Step 3 : The i th ISB updates REQ token, then passes REQ token to next

down-steam ISB.

If a new-born link request for the j th OSB was generated by the i th ISB in Step

1 (i.e. case 1 in Fig A.1), the i th ISB will insert this new request in REQ token.

Hence, REQ_NUMj will be increased by 1. Finally, the ith ISB forwards REQj token

to its down-stream adjacent ISB.
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A.2 Operations upon receiving RELn token

When receiving RELn token, the ith ISB will decide whether to take a link from

RELn token if RELn token carries available links.

Step 1 : The ith ISB decides whether to take an available link from RELn

token.

Step 2 : The i th ISB updates RELn token, then passes RELn token to its

up-link neighboring ISB.

If the ith ISB held a pending link release for the n th OSB (i.e. lni = 1), now,

the i th ISB can really release the link for the n th OSB through RELn token. The



APPENDIX B

REQREL-QOBDLR ALGORITHM

REQREL-QOBDLR algorithm is illustrated in detail in this appendix. The i th ISB

(0 < i < K) needs another vector LK_REQ_Modify i besides the four vectors such as

Qi , LK_RSVi , LK_REL i , LK_REQ i .

• LK_REQ_Modifyi : Link Request Modification Vector in the ith ISB.

Assume that the ith ISB is receiving REQj and RELn token in current

Rsv_Slot. Operation for REQ token is more similar to than different from that

in REQ-QOBDLR algorithm. But, operation for RELn token is unlike that in

REQ-QOBDLR algorithm.

We first describe the operation upon receiving RELn, token. Then we focus

on what is the impact of such difference in the operation of RELn token on the

operation for REQ token.

B.1 Operations upon receiving RELn token

	  Step 1 : The i th ISB decides whether to take a released link from RELn token,

if REL_NUM n > 0?

Arbitration : If REL_NUMn  > 0, there are available links to the nth OSB.

The i th ISB will take a released link from RELn token only if its queue occupancy
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Operation : If the ith ISB decides to take an available link from RELn token,

i th ISB is snatching a link which is supposed to satisfy another TSB's link request. To

compensate the 'stolen' link, the ith ISB will issue a link request for the nth OSB to

trigger a new released link not for itself but for another ISB who is still waiting for

its desired link. Since the i th ISB can not use REQj token to carry a link request for

the nth OSB in current Rsv_Slot, hence, the ISB records this pending link request in

REQn token in some Rsv_Slot(s) later, ISB i will first add the pending link request

into REQ_NUMn .

> Step 2 : The i th ISB decides whether to release an occupied link to the nth

OSB?

reduce 1. The released link will be inserted into RELn token right away so that

REL_NUMn  will increase 1.

Since the ith ISB releases a link based on its own traffic load but it does not

know whether other ISBs are demanding this available link for the n th OSB. The
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Rsv_Slot) may cause a potential pending increase/decrease on total link requests

carried in REQj token. Hence, when the i th ISB receives REQ token in present,

REQ_NUM j will be adjusted to be more realistically reflect the number of link

requests for the j th OSB. REQ_NUMj may be negative, it implies that the available

links to the j th OSB is more than link requests to the j th OSB in current time point.

A negative REQ_NUM j will not trigger any more link release for the j th OSB. Hence,

from long-term point of view, the released links for the j th ISB will keep a balance

to the link requests for the j th OSB (i.e. REL_NUMj ≤ REQ_NUMj). This is a

characteristic of the REQREL-QOBDLR algorithm. (END)
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