3 research outputs found

    Hybrid Artificial Bee Colony and Improved Simulated Annealing for the Capacitated Vehicle Routing Problem

    Get PDF
    Capacitated Vehicle Routing Problem (CVRP) is a type of NP-Hard combinatorial problem that requires a high computational process. In the case of CVRP, there is an additional constraint in the form of a capacity limit owned by the vehicle, so the complexity of the problem from CVRP is to find the optimum route pattern for minimizing travel costs which are also adjusted to customer demand and vehicle capacity for distribution. One method of solving CVRP can be done by implementing a meta-heuristic algorithm. In this research, two meta-heuristic algorithms have been hybridized: Artificial Bee Colony (ABC) with Improved Simulated Annealing (SA). The motivation behind this idea is to complete the excess and the lack of two algorithms when exploring and exploiting the optimal solution. Hybridization is done by running the ABC algorithm, and then the output solution at this stage will be used as an initial solution for the Improved SA method. Parameter testing for both methods has been carried out to produce an optimal solution. In this study, the test was carried out using the CVRP benchmark dataset generated by Augerat (Dataset 1) and the recent CVRP dataset from Uchoa (Dataset 2). The result shows that hybridizing the ABC algorithm and Improved SA could provide a better solution than the basic ABC without hybridization

    The role of computational intelligence techniques in the advancements of solar photovoltaic systems for sustainable development: a review

    Get PDF
    The use of computational intelligence (CI) in solar photovoltaic (SPV) systems has been on the rise due to the increasing computational power, advancements in power electronics and the availability of data generation tools. CI techniques have the potential to reduce energy losses, lower energy costs, and facilitate and accelerate the global adoption of solar energy. In this context, this review paper aims to investigate the role of CI techniques in the advancements of SPV systems. The study includes the involvement of CI techniques for parameter identification of solar cells, PV system sizing, maximum power point tracking (MPPT), forecasting, fault detection and diagnosis, inverter control and solar tracking systems. A performance comparison between CI techniques and conventional methods is also carried out to prove the importance of CI in SPV systems. The findings confirmed the superiority of CI techniques over conventional methods for every application studied and it can be concluded that the continuous improvements and involvement of these techniques can revolutionize the SPV industry and significantly increase the adoption of solar energy
    corecore