55,847 research outputs found

    Automatic Detection of Outliers in Multibeam Echo Sounding Data

    Get PDF
    The data volumes produced by new generation multibeam systems are very large, especially for shallow water systems. Results from recent multibeam surveys indicate that the ratio of the field survey time, to the time used in interactive editing through graphical editing tools, is about 1:1. An important reason for the large amount of processing time is that users subjectively decide which soundings are outliers. There is an apparent need for an automated approach for detecting outliers that would reduce the extensive labor and obtain consistent results from the multibeam data cleaning process, independent of the individual that has processed the data. The proposed automated algorithm for cleaning multibeam soundings was tested using the SAX-99 (Destin FL) multibeam survey data [2]. Eight days of survey data (6.9 Gigabyte) were cleaned in 2.5 hours on an SGI platform. A comparison of the automatically cleaned data with the subjective, interactively cleaned data indicates that the proposed method is, if not better, at least equivalent to interactive editing as used on the SAX-99 multibeam data. Furthermore, the ratio of acquisition to processing time is considerably improved since the time required for cleaning the data was decreased from 192 hours to 2.5 hours (an improvement by a factor of 77)

    High resolution spatial variability in spring snowmelt for an Arctic shrub-tundra watershed

    Get PDF
    Arctic tundra environments are characterized by spatially heterogeneous end-of-winter snow cover because of high winds that erode, transport and deposit snow over the winter. This spatially variable end-of-winter snow cover subsequently influences the spatial and temporal variability of snowmelt and results in a patchy snowcover over the melt period. Documenting changes in both snow cover area (SCA) and snow water equivalent (SWE) during the spring melt is essential for understanding hydrological systems, but the lack of high-resolution SCA and SWE datasets that accurately capture micro-scale changes are not commonly available, and do not exist for the Canadian Arctic. This study applies high-resolution remote sensing measurements of SCA and SWE using a fixed-wing Unmanned Aerial System (UAS) to document snowcover changes over the snowmelt period for an Arctic tundra headwater catchment. Repeat measurements of SWE and SCA were obtained for four dominant land cover types (tundra, short shrub, tall shrub, and topographic drift) to provide observations of spatially distributed snowmelt patterns and basin-wide declines in SWE. High-resolution analysis of snowcover conditions over the melt reveal a strong relationship between land cover type, snow distribution, and snow ablation rates whereby shallow snowpacks found in tundra and short shrub regions feature rapid declines in SWE and SCA and became snow-free approximately 10 days earlier than deeper snowpacks. In contrast, tall shrub patches and topographic drift regions were characterized by large initial SWE values and featured a slow decline in SCA. Analysis of basin-wide declines in SCA and SWE reveal three distinct melt phases characterized by 1) low melt rates across a large area resulting in a minor change in SCA, but a very large decline in SWE with, 2) high melt rates resulting in drastic declines in both SCA and SWE, and 3) low melt rates over a small portion of the basin, resulting in little change to either SCA or SWE. The ability to capture high-resolution spatio-temporal changes to tundra snow cover furthers our understanding of the relative importance of various land cover types on the snowmelt timing and amount of runoff available to the hydrological system during the spring freshet

    Piping and woody plants in peatlands: Cause or effect?

    Get PDF
    This paper presents, for the first time, evidence to show that Calluna species are one causative factor of piping in blanket peat catchments. Ground-penetrating radar survey on 960 plots illustrated that piping was prevalent throughout blanket peats. However, soil pipe occurrence was significantly higher where bare peat (149 pipes/km) or Calluna (87 pipes/km) were present compared to other species (67 pipes/km). A case study catchment where there was an altitudinal limit to Calluna provided some control over potential factors that may lead to an association between piping and Calluna. Under the controlled conditions of topographic index, peat depth, and water table, piping was greater under the Calluna-covered peat than under other vegetation covers. Laboratory experiments demonstrated that 10 years worth of rainfall was enough to almost double the proportion of macropore flow occurring in recently colonized Calluna peatlands. This suggests that given enough water and time, the woody Calluna plants result in water being preferentially channeled through the upper peat. Improvements are therefore required in our understanding of the relationships between peatland plant nutrient and water supply and the feedbacks between ecosystem functioning and landform development. These results are also important given the propensity to encourage Calluna growth for game bird enhancement in many northern peatlands

    Analysis of Scarp Profiles: Evaluation of Errors in Morphologic Dating

    Get PDF
    Morphologic analysis of scarp degradation can be used quantitatively to determine relative ages of different scarps formed in cohesionless materials, under the same climatic conditions. Scarps of tectonic origin as well as wavecut or rivercut terraces can be treated as topographic impulses that are attenuated by surface erosional processes. This morphological evolution can be modelled as the convolution of the initial shape with erosion (or degradation) function whose width increases with time. Such modeling applies well to scarps less than 10m high, formed in unconsolidated fanglomerates. To a good approximation, the degradation function is Gaussian with a variance measuring the degree of rounding of the initial shape. This geometric parameter can be called the degradation coefficient. A synthetic experiment shows that the degradation coefficient can be obtained by least squares fitting of profiles levelled perpendicular to the scarp. Gravitational collapse of the free face is accounted for by assuming initial scarp slopes at the angle of repose of the cohesionless materials (30°–35°). Uncertainties in the measured profiles result in an uncertainty in degradation coefficient that can be evaluated graphically. Because the degradation coefficient is sensitive to the regional slope and to three-dimensional processes (gullying, loess accumulation, stream incision, etc.), a reliable and accurate determination of degradation coefficient requires several long profiles across the same scarp. The linear diffusion model of scarp degradation is a Gaussian model in which the degradation coefficient is proportional to numerical age. In that case, absolute dating requires only determination of the propotionality constant, called the mass diffusivity constant. For Holocene scarps a few meters high, in loose alluvium under arid climatic conditions, mass diffusivity constants generally range between 1 and 6 m^2/kyr. Morphologic analysis is a reliable method to compare ages of different scarps in a given area, and it can provide approximate absolute ages of Holocene scarplike landforms

    Efficient Image-Space Extraction and Representation of 3D Surface Topography

    Full text link
    Surface topography refers to the geometric micro-structure of a surface and defines its tactile characteristics (typically in the sub-millimeter range). High-resolution 3D scanning techniques developed recently enable the 3D reconstruction of surfaces including their surface topography. In his paper, we present an efficient image-space technique for the extraction of surface topography from high-resolution 3D reconstructions. Additionally, we filter noise and enhance topographic attributes to obtain an improved representation for subsequent topography classification. Comprehensive experiments show that the our representation captures well topographic attributes and significantly improves classification performance compared to alternative 2D and 3D representations.Comment: Initial version of the paper accepted at the IEEE ICIP Conference 201

    Scanning microSQUID Force Microscope

    Full text link
    A novel scanning probe technique is presented: Scanning microSQUID Force microscopy (SSFM). The instrument features independent topographic and magnetic imaging. The SSFM operates in a dilution refrigerator in cryogenic vacuum. Sample and probe can be cooled to 0.45 K. The probe consists of a microSQUID placed at the edge of a silicon chip attached to a quartz tuning fork. A topographic vertical resolution of 0.02 micrometer is demonstrated and magnetic flux as weak as 103Φ010^{-3} \Phi_{0} is resolved with a 1 micrometer diameter microSQUID loop.Comment: submitted to Review of Scientific Instrument

    Monitoring land use changes using geo-information : possibilities, methods and adapted techniques

    Get PDF
    Monitoring land use with geographical databases is widely used in decision-making. This report presents the possibilities, methods and adapted techniques using geo-information in monitoring land use changes. The municipality of Soest was chosen as study area and three national land use databases, viz. Top10Vector, CBS land use statistics and LGN, were used. The restrictions of geo-information for monitoring land use changes are indicated. New methods and adapted techniques improve the monitoring result considerably. Providers of geo-information, however, should coordinate on update frequencies, semantic content and spatial resolution to allow better possibilities of monitoring land use by combining data sets

    Report of the panel on lithospheric structure and evolution, section 3

    Get PDF
    The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents
    corecore