71 research outputs found

    h and r adaptation on simplicial meshes using MMG tools

    Get PDF
    We review some recent work on the enhancement and application of both − and ℎ− adaptation techniques, benefitting of the functionalities of the remeshing platform Mmg: www.mmgtools.org. Several contributions revolve around the level-set adaptation capabilities of the platform. These have been used to identify complex surfaces and then to either produce conformal 3D meshes, or to define a metric allowing to perform ℎ-adaptation and control geometrical errors in the context of immersed boundary flow simulations. The performance of the recent distributed memory parallel implementation ParMmg is also discussed. In a similar spirit, we propose some improvements of −adaptation methods to handle embedded fronts

    Méthode de pénalization basée sur une approche d’adaptation enformalisme résidu distribué ALE pour des objets mobiles en écoulement laminaire

    Get PDF
    The coupling of anisotropic unstructured mesh adaptation techniques with an immersed boundary method (IBM) called penalization is studied for time dependent flow simulations involving moving objects. To extend Residual Distribution (RD) method to the penalized Navier Stokes equations, a new formulation based on a Strang splitting is developed. To reduce the error on solid boundaries, unstructured mesh adaptation based on an elasticity model is used. Keeping a constant connectivity, the mesh evolves in time according to the solid position, and the new formulation is proposed in an ALE framework.Le couplage des techniques d’adaptation de maillages non structurés anisotropes avec une méthode de frontière immergée (IBM) appelée Pénalization est étudié pour des simulations instationnaires impliquant des objents en mouvement. Pour étendre les méthodes de distribution du résidu (RD) aux équations de Navier Stokes pénalisées, une nouvelle formulation basée sur un splitting de Strang est développée. Pour réduire l’erreur sur les frontières du solide, une adaptation de maillage non structuré est utilisée, basée sur un modèle d’élasticité. Gardant une connectivité constante, le maillage évolue en temps en accord avec la position du solide, et la nouvelle formulation est proposée dans un formalisme ALE

    High-Order Flux Reconstruction Based on Immersed Boundary Method

    Get PDF
    In the last decade, high-order methods for Computational Fluid Dynamics (CFD) are becoming attractive for unsteady scale-resolving-simulations in industrial CFD applications, due to their advantages of low numerical dissipation, high efficiency on modern architectures and quasi mesh-independence. However, the generation of body-fitted mesh for high-order methods is still a significant bottleneck and often determines the overall quality of the solution. To avoid the complexity of mesh generation, the present work combines the numerical advantages of the high-order Flux Reconstruction (FR) method and the simplicity of the mesh generation based on Immersed Boundary Method (IBM) that allows solving flow past obstacles on a non body-fitted mesh. The volume penalization method is selected for its ease of implementation and robustness. The proposed method is validated by several test cases, including flow past a cylinder and NACA0012 airfoil for static and moving boundaries. Good agreement with body-fitted simulation is reported

    The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries

    Get PDF
    We present a tetrahedral finite cell method for the simulation of incompressible flow around geometrically complex objects. The method immerses such objects into non-boundary-fitted meshes of tetrahedral finite elements and weakly enforces Dirichlet boundary conditions on the objects’ surfaces. Adaptively-refined quadrature rules faithfully capture the flow domain geometry in the discrete problem without modifying the non-boundary-fitted finite element mesh. A variational multiscale formulation provides accuracy and robustness in both laminar and turbulent flow conditions. We assess the accuracy of the method by analyzing the flow around an immersed sphere for a wide range of Reynolds numbers. We show that quantities of interest such as the drag coefficient, Strouhal number and pressure distribution over the sphere are in very good agreement with reference values obtained from standard boundary-fitted approaches. We place particular emphasis on studying the importance of the geometry resolution in intersected elements. Aligning with the immersogeometric concept, our results show that the faithful representation of the geometry in intersected elements is critical for accurate flow analysis. We demonstrate the potential of our proposed method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of an agricultural tractor

    Multi-Step Level-Set Ice Accretion Simulation with the NSMB solver

    Get PDF
    Icing effects can reduce the flight safety under certain weather conditions. According to the US National Transport Safety Board, icing is one of the major causes of flight accidents. Supercooled water droplets present in clouds impinge on the surface of aircraft structures. They either solidify totally on impact or partially then creating a thin liquid film runback depending on the flow temperature and speed hence, creating dry rime ice or glaze wet ice respectively. Designing an adequate de-icing mechanisms requires full knowledge of the icing phenomenon itself. Icing experimental study cannot exceed the scope of a handful of simple cases due to complexity and cost. Consequently the use of computational fluid dynamics is justified. The icing process is assumed broken up into four steps: 1) single phase air flows around the wing 2) transporting water suspended droplets; droplets impinge into the surface 3) generating a liquid or dry film exchanging energy with the surface 4) accreated to shape the final form during a certain exposure time. This process is usually assumed to occur on a single step considering that the time scale of the icing process is very long compared with that of the air flow. Current Icing simulation codes used by industries are based on over-simplified models. 1) A 2D inviscid panel methods with an empirical boundary layer method is used for the air flow. Which is usually followed by 2) a Lagrangian transport of droplets. And finally 3,4) an iterative thermodynamic model for the liquid film to compute the ice thickness. To generate the final geometry however, a Lagrangian node displacement is needed. A multi-step icing approach repeats this process for portions of the required exposure time but still with decoupled time scales. Maintaining a good grid quality requires a tedious amount of work, since strange irregularities in iced shapes are difficult to be fully accounted for. The Level-Set method introduced by Osher and Fedkiw could alleviate such a task. A passive scalar function is introduced and is put equal to zero at the interface, positively defined outside and negatively inside; the zero level represents the time evolution of the air/ice interface. To complete the model, a PDE type thermodynamic model is used for the film, coupled with an external flow solver. In the present study a new method of icing simulation is developed. To get the most out of such model, it is developed in the three-dimensional structured multiblock Navier-Stokes solver NSMB. For a multi-step icing procedure, the geometry is defined by a passive scalar called the level-set. This level-set function is set equal to the distance, negative on the inside and positive outside. A penalized Navier-Stokes equation is solved on the external flow using a simple non-body fitted mesh, wherein the solid is represented by the negative level-set valued cells. The droplets are transported using an Eulerian approach using a TVD and a local time stepping schemes. The impingement rate or what's called the collection efficiency is then fed to a Shallow-Water Icing Model that evaluates the ice accretion, its height and velocity. The convective heat transfer coefficient is obtained from the Navier-Stokes solver. Following that the Level-set function is advected with the icing velocity to predict the new deformed geometry. The process is then repeated for as many portions of the exposure time as needed

    Nouvelle formulation monolithique en élément finis stabilisés pour l'interaction fluide-structure

    No full text
    Numerical simulations of fluid-structure interaction (FSI) are of first interest in numerous industrial problems: aeronautics, heat treatments, aerodynamic, bioengineering... Because of the high complexity of such problems, analytical study is in general not sufficient to understand and solve them. FSI simulations are then nowadays the focus of numerous investigations, and various approaches are proposed to treat them. We propose in this thesis a novel monolithic approach to deal with the interaction between an incompressible fluid flow and rigid/ elastic material. This method consists in considering a single grid and solving one set of equations with different material properties. A distance function enables to define the position and the interface of any objects with complex shapes inside the volume and to provide heterogeneous physical properties for each subdomain. Different anisotropic mesh adaptation algorithms based on the variations of the distance function or on using error estimators are used to ensure an accurate capture of the discontinuities at the fluid-solid interface. The monolithic formulation is insured by adding an extra-stress tensor in the Navier-Stokes equations coming from the presence of the structure in the fluid. The system is then solved using a finite element Variational MultiScale (VMS) method, which consists of decomposition, for both the velocity and the pressure fields, into coarse/resolved scales and fine/unresolved scales. The distinctive feature of the proposed approach resides in the efficient enrichment of the extra constraint. In the first part of the thesis, we use the proposed approach to assess its accuracy and ability to deal with fluid-rigid interaction. The rigid body is prescribed under the constraint of imposing the nullity of the strain tensor, and its movement is achieved by solving the rigid body motion. Several test case, in 2D and 3D with simple and complex geometries are presented. Results are compared with existing ones in the literature showing good stability and accuracy on unstructured and adapted meshes. In the second, we present different routes and an extension of the approach to deal with elastic body. In this case, an additional equation is added to the previous system to solve the displacement field. And the rigidity constraint is replaced with a corresponding behaviour law of the material. The elastic deformation and motion are captured using a convected level-set method. We present several 2D numerical tests, which is considered as classical benchmarks in the literature, and discuss their results.L'Interaction Fluide-Structure (IFS) décrit une classe très générale de problème physique, ce qui explique la nécessité de développer une méthode numérique capable de simuler le problème FSI. Pour cette raison, un solveur IFS est développé qui peut traiter un écoulement de fluide incompressible en interaction avec des structures différente: élastique ou rigide. Dans cet aspect, le solveur peut couvrir une large gamme d'applications.La méthode proposée est développée dans le cadre d'une formulation monolithique dans un contexte Eulérien. Cette méthode consiste à considérer un seul maillage et résoudre un seul système d'équations avec des propriétés matérielles différentes. La fonction distance permet de définir la position et l'interface de tous les objets à l'intérieur du domaine et de fournir les propriétés physiques pour chaque sous-domaine. L'adaptation de maillage anisotrope basé sur la variation de la fonction distance est ensuite appliquée pour assurer une capture précise des discontinuités à l'interface fluide-solide.La formulation monolithique est assurée par l'ajout d'un tenseur supplémentaire dans les équations de Navier-Stokes. Ce tenseur provient de la présence de la structure dans le fluide. Le système est résolu en utilisant une méthode élément fini et stabilisé suivant la formulation variationnelle multiéchelle. Cette formulation consiste à décomposer les champs de vitesse et pression en grande et petite échelles. La particularité de l'approche proposée réside dans l'enrichissement du tenseur de l'extra contraint.La première application est la simulation IFS avec un corps rigide. Le corps rigide est décrit en imposant une valeur nul du tenseur des déformations, et le mouvement est obtenu par la résolution du mouvement de corps rigide. Nous évaluons le comportement et la précision de la formulation proposée dans la simulation des exemples 2D et 3D. Les résultats sont comparés avec la littérature et montrent que la méthode développée est stable et précise.La seconde application est la simulation IFS avec un corps élastique. Dans ce cas, une équation supplémentaire est ajoutée au système précédent qui permet de résoudre le champ de déplacement. Et la contrainte de rigidité est remplacée par la loi de comportement du corps élastique. La déformation et le mouvement du corps élastique sont réalisés en résolvant l'équation de convection de la Level-Set. Nous illustrons la flexibilité de la formulation proposée par des exemples 2D

    Unstructured Mesh Generation and Adaptation

    Get PDF
    International audienceWe first describe the well established unstructured mesh generation methods as involved in the computational pipeline, from geometry definition to surface and volume mesh generation. These components are always a preliminary and required step to any numerical computations. From an historical point of view, the generation of fully unstructured mesh generation in 3D has been a real challenge so as to the design of robust and accurate second order schemes on such unstructured meshes. If the issue of generating volume meshes for geometries of any complexity is now mostly solved, the emergence of robust numerical schemes on unstructured meshes has paved the way to adaptivity. Indeed, unstructured meshes in contrast with structured or block structured grids have the necessary flexibility to control the discretization both in size and orientation. In the second part, we review the main components to perform adaptative computations: (i) anisotropic mesh prescription via a metric field tensor (ii) anisotropic error estimates, and (iii) anisotropic mesh generation. For each component, we focus on a particularly simple method to implement. In particular, we describe a simple but robust strategy for generating anisotropic meshes. Each adaptation entity, ie surface, volume or boundary layers, relies on a specific metric tensor field. The metric-based surface estimate is then used to control the deviation to the surface and to adapt the surface mesh. The volume estimate aims at controlling the interpolation error of a specific field of the flow. Several 3D examples issued from steady and unsteady simulations from systems of hyper-bolic laws are presented. In particular, we show that despite the simplicity of the introduced adaptive meshing scheme a high level of anisotropy can be reached. This includes the direct prediction of the sonic boom of an aircraft by computing the flow from the cruise altitude to the ground, the interaction between shock waves and boundary layer, or the prediction of complex unsteady phenomena in 3D

    Level set-fitted polytopal meshes with application to structural topology optimization

    Full text link
    We propose a method to modify a polygonal mesh in order to fit the zero-isoline of a level set function by extending a standard body-fitted strategy to a tessellation with arbitrarily-shaped elements. The novel level set-fitted approach, in combination with a Discontinuous Galerkin finite element approximation, provides an ideal setting to model physical problems characterized by embedded or evolving complex geometries, since it allows skipping any mesh post-processing in terms of grid quality. The proposed methodology is firstly assessed on the linear elasticity equation, by verifying the approximation capability of the level set-fitted approach when dealing with configurations with heterogeneous material properties. Successively, we combine the level set-fitted methodology with a minimum compliance topology optimization technique, in order to deliver optimized layouts exhibiting crisp boundaries and reliable mechanical performances. An extensive numerical test campaign confirms the effectiveness of the proposed method
    • …
    corecore