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Méthode de pénalization basée sur une approche d’adaptation en
formalisme résidu distribué ALE pour des objets mobiles en

écoulement laminaire
Résumé : Le couplage des techniques d’adaptation de maillages non structurés anisotropes avec une
méthode de frontière immergée (IBM) appelée Pénalization est étudié pour des simulations instationnaires
impliquant des objents en mouvement. Pour étendre les méthodes de distribution du résidu (RD) aux
équations de Navier Stokes pénalisées, une nouvelle formulation basée sur un splitting de Strang est
développée. Pour réduire l’erreur sur les frontières du solide, une adaptation de maillage non structuré
est utilisée, basée sur un modèle d’élasticité. Gardant une connectivité constante, le maillage évolue en
temps en accord avec la position du solide, et la nouvelle formulation est proposée dans un formalisme
ALE.

Mots-clés : Pénalisation, Schémas au résidu distribué, Adaptation de maillage, ALE.



Adaptive ALE residual based penalization approach for moving bodies 3

1 Introduction

The interest on Immersed Boundary Methods is increasing in Computational Fluid Dynamics as they
simplify the mesh generation problem. In particular, the generation of efficient and valid meshes for
moving bodies may become difficult. The starting point of this work is an IBM known as penalization
introduced by Brinkmann in 1947 for a swarm of particles [1]. A source term is added to the Navier
Stokes equations to account for the forces exchanged between the fluid and the solid [2]. To adapt
RD schemes to the IBM considered, we have proposed a new formulation based on a Strang splitting
method in time [3]. This splitting couples an implicit asymptotic integration procedure of the penalized
ordinary differential equation with a RD scheme for the Navier-Stokes equations [4]. The aim is to
deal with moving bodies. As we want to reduce the error on the solid definition, mesh adaptation is
performed, based on an elasticity model (see for instance [5]) conserving the mesh connectivity. Thus,
this new formulation is proposed in the ALE framework, avoiding interpolation steps, as required in
other approaches based on remeshing (see for instance [6] or [7]).

2 Problem Statement

Immersed boundary methods are characterized by a mesh covering the entire domain. The first step is
then to locate the position of a solid on the mesh Th of the domain Ω. A common way to perform this,
is to use a level set function which gives the distance from any point of the mesh to the closest solid
boundary. We will use the signed distance function (SDF) as a level set function.

2.1 Signed Distance Function

The SDF ψ of a point is the distance of the considered point to the solid surface with a sign in order
to determine if the point is inside or outside the solid. We choose, as a convention, that for an inside
point, the SDF is negative and for an outside one, the SDF is positive. Thus, the inside of a solid is
characterised by Ω:

Ω = {x ∈ Rd | ψ0(x) < 0} and ∂Ω = {x ∈ Rd | ψ0(x) = 0} (1)

with d the dimension of space and ψ0 a continuous function.
The SDF can be computed as the solution of the following unsteady Eikonal equation :{

∂tψ + sgn(ψ0)(||∇ψ|| − 1) = 0 ∀t > 0, x ∈ Rd

ψ(t = 0, x) = ψ0(x), ∀x ∈ Rd
(2)

One way to solve (2) is to use the method of characteristics (as proposed by Dapogny and Frey in
[8]). Once the SDF is defined all over the domain for a solid S, the characteristic function χS of the solid
can be defined as: {

χS = 1, inside S
χS = 0, outside S

(3)

2.2 Penalization and residual based, splitting approach

We consider the penalized Navier Stokes system of equations :

∂tu +∇ · F(u)−∇ ·G(u,∇u) + S(u) = 0 (4)

where u is the vector of unknowns in conservative form, F and G are the advective and viscous flux,
and S is the penalty term. They are defined as follows:

u =

 ρ

ρv
ρe

 F(u) =

 ρv
ρv⊗ v + pId

(ρe+ p)v

 G =

 0

π

πv + q


S =

1

η
χS

 0

ρ(v− vS)

θSρ(εint − εintS) + ρ(v− vS)v


(5)
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4 Nouveau & others

where ρ is the density, v the velocity vector, e the total energy, εint the internal energy, p the pressure,
π is the stress tensor and q the heat flux. In addition of these equations, the variables are linked by an
equation of state, in our case, we consider the perfect gas law. Inside the penalty source term, η is the
penalty parameter (η ∼ 10−10), χS the characteristic function of the solid and uS the vector of penalized
values we want to impose inside the solid. θS lets the possibility to penalize the energy (Dirichlet BC)
or not (Neumann BC).

This system of unsteady equations will be solved using a residual distribution scheme (see [9, 10, 11]
for steady problems and [12, 13, 14] for unsteady ones). Starting from the explicit second order Runge
Kutta (RK2) scheme proposed by Ricchiuto et al. [12, 13], a Strang Splitting [3] is performed to solve
implicitly the penalty source term as proposed by the authors for motionless bodies in [4]. The basic
idea of a splitting is to solve (4) by part :{

∂tu +∇ · F(u)−∇ ·G(u,∇u) = 0

∂tu + S(u) = 0
(6)

The first part of (6) consists in solving the classical Navier Stokes equations, and the second part accounts
for the penalty term. Let S(NS,∆t) be the operator, second order in space and time, used to solve the
NS part of the equations and S(P,∆t) the operator used to solve the penalty part, those two operators
being second order accurate in time. To conserve a second order in space and time, the Strang splitting
is summarized as follows: 

un+ 1
2 = S(P,∆t2 )u

n

un+ 1
2 = S(NS,∆t)un+ 1

2

un+1 = S(P,∆t2 )u
n+ 1

2 un+ 1
2

(7)

In the setting of penalization, the second part of (6) leads to the resolution of an Ordinary Differential
Equations (ODE). In this case, the operator S(P,∆t) is chosen to be a truncation with error in η2 of the
asymptotic approximation of the solution, see [4] (we recall that η is a very small parameter ≈ 10−10 in
our simulations ) :

S(P,∆t2 )u(t0) = u(t0)e−
∆t
2η + (η∂tuS(t0)− uS(t0))e−

∆t
2η + uS(t0 +

∆t

2
)− η∂tuS(t0 +

∆t

2
) (8)

where u(t0) = un for the first step of (7) and u(t0) = un+ 1
2 for the last one. This process guarantees a

global second order accuracy in space and time for explicit discretization of the interface. In the proposed
approach, the accuracy of the BC imposition is recovered using mesh adaptation, without claiming second
order accuracy.

3 An elasticity model for mesh adaptation

3.1 The Elasticity Model, Referential and Adapted Mesh

Mesh adaptation close to solid boundaries is used to increase the definition of the solid geometry. How-
ever, as the solid is moving (or moved by the flow), the adaptation has to be unsteady. As explained previ-
ously, the aim here is to solve the equations over an ALE formulation with r-adaptation [5, 15, 16, 17, 18].
So as to reach this purpose, the mesh will be assimilated to an elastic material (such as proposed in [15])
constrained by a force. In our study, this force is defined so as to refine the mesh around the 0 isovalue
of the SDF ψ and to chosen physical parameters.
From now on, the following notations will be used : χ = (χ, η) will denote the coordinates into the fixed
referential domain and x = (x, y) the coordinates in the adapted one. Thus the elasticity equation ruling
the adaptation writes :

∇χ.σ(ε(u)) = F (9)

where u = (ux,uy)T is the deformation (ux,i = xi−χi, uy,i = yi − ηi), ε(u) = 1
2 (∇χu + (∇χu)T ) is the

tensor of deformation and σ = λtr(ε)+2µε is the stress tensor, with λ, µ the Lamé coefficients. The aim
is to properly defined the force F according to the wanted adaptation. In our case, F is chosen to depend
on the gradient of a monitor function ω (inspired from mesh adaptation proposed in [16, 17, 18, 5] among

Inria



Adaptive ALE residual based penalization approach for moving bodies 5

others). This monitor function depends on the SDF ψ and the physical variable v as :
Fx = ∂χω,Fy = ∂ηω

ω = max(ωψ, ωv)

ωψ =
√
αψe−βψ

2 , ωv =

√
αv

||∇v||
γ||∇v||max

(10)

αψ and αv are coefficients allowing to moderate the SDF and physical adaptations. β allows to control
the width of refinement around the 0 isovalue of ψ and γ allows to normalize the gradient of the physical
solution. For the computations, it has been set for the Lamé coefficients : λ = Eν/((1 + ν)(1− 2ν)) and
µ = E/(2(1 + ν)), with E = 1, ν = 0.45
To solve this problem (9,10), a finite element discretization is employed with a Newton Gauss Seidel
algorithm. This is the subject of the next section.

3.2 Finite Element Resolution
Let rewrite properly the problem with the corresponding boundary conditions :{

∇χ.σ(ε(u)) = F on Ωχ

u = 0 on ∂Ωχ

(11)
(12)

The boundary condition (12) is chosen to keep the mesh fixed on the boundary of the domain. The weak
formulation writes, considering a test function w = (wx, wy) ∈ [H1

0 ]2, find u ∈ [H1
0 ]2 such that :∫

Ω

ε(w) : σ(u) =

∫
Ω

F.w, ∀w ∈ [H0
1 ]2 (13)

where A : B =
∑
i

∑
j AijBji is the double dot product.

Let consider a triangulation T h of the domain, whom elements are denoted T with boundaries ∂T and
area |T |, we set ux/y =

∑
j∈Tχ ux/y,jϕj the approximated solution, ϕj being the jth 2nd order Lagrange

basis function.This problem (13) is then discretized with FE over the classical way :

KU = MF

K =

(
K1 K2

K3 K4

)
,U =

(
Ux

Uy

)
,M =

(
MGal 0

0 MGal

)
,F =

(
Fx
Fy

)
(14)

where Ux, Uy are the vector of the x and y displacements, MGal is the Galerkin mass matrix :

(MGal)ij =
∑
T3i

∑
j∈T

ϕiϕj =


∑
T3i

|T |
6
, if i = j

∑
T3i

|T |
12
, if i 6= j

(15)

and the Kα,α=1,2,3,4 are defined by :

(Kα)ij =
∑
T3i

∑
j∈T

1

4|T |
[Mαnj ] .ni (16)

where ni is the inward normal on the opposite edge of node i.
Remark : Those matrices are defined on the reference mesh : they only need to be evaluated at the
beginning of the computation.
However, in the RHS, the forces depends on the adapted mesh. Indeed, coming back on its definition :

Fx = ∂χω(x) F = ∂ηω(x) (17)

the notation x stands for the nodal coordinates of the adapted mesh. Thus, following the idea proposed
in [16] or [19], a limited number of Newton Gauss Seidel process (10 for the proposed work) is performed
at each time step , with as initial condition the position of the nodes at time tn. Indeed, as the solution
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6 Nouveau & others

Figure 1: Adaptation to a circle level set function. Left : Referential mesh and 0 level set function -
Middle : Adapted mesh and 0 level set function - Right : Zoom close to the refined area

is not supposed to evolve a lot during one time step, the initial solution is closed to the converged one.
So as to briefly illustrate this method in the present section, an adaptation to a circle is proposed figure
1.

As the connectivity is kept constant all over the time, this elasticity model is well suited to combine
with an ALE formulation of our physical problem. The following section presents the ALE RD scheme
used to solve our penalized Navier Stokes equations for moving bodies. Recall that ALE formulation
avoids interpolations steps.

4 ALE RD scheme

In this section, we briefly give the tools to construct RD schemes. Some general notions for dealing with
unsteady problems are introduced before giving its extension proposed in [19] for the ALE framework.

4.1 Unsteady Conservation Law and RD Schemes

For simplicity, we present the schemes for the 2D scalar advection-diffusion equation :

∂u

∂t
+ ∇ ·F(u) = ∇ · (ν∇u), on Ω (18)

Given a triangulation T h of Ω, elements denoted T of boundaries ∂T and area |T |, the approximated
solution is defined as uh(x, y, t) =

∑
i u

n
i ϕi(x, y), uni = uh(xi, yi, t

n), where ϕi are the Lagrange basis
function. We denote by a the wave speed obtained as the Jacobian of the flux : a = ∇uF .
The first step is to define for each triangle the total residual as :

ΦT (uh) =

∫
T

[∂tuh + a ·∇uh −∇ · (ν∇uh)] =

∫
T

∂tuh + φT (uh) (19)

where φT (uh) is called the fluctuation.
The principle of a RD scheme is to distribute this residual to the degree of freedom (DoF) using dis-
tribution coefficient βTi (in our study, the DoF are only the nodes, for second order accuracy) and to
sum for each DoF the contribution of the surrounding elements that must be null [10, 11, 13, 20, 21].
In the present study, the explicit second order RK scheme proposed by some of the authors in [12, 13]
is employed. The use of mass lumping and the time shifted operator presented in the above references
lead to the fully explicit scheme :

|Ci|
u∗i − uni

∆t
+
∑
T3i

φTi (unh) = 0

|Ci|
un+1
i − u∗i

∆t
+
∑
T3i

(
βTi

∫
T

u∗i − uni
∆t

+
1

2
(φTi (u∗h) + φTi (unh))

)
= 0

(20)

The φTi (uh) are called nodal fluctuation and are defined by :

φTi (uh) = βTi φ
T (uh) (21)

Inria



Adaptive ALE residual based penalization approach for moving bodies 7

However, for the case of advection diffusion problems, they are slightly modified so as to recover full
second order accuracy as proposed in [11] making the use of a gradient recovery technique. Denoting the
reconstructed gradient by ∇̃uh, it modifies them as follows :

φTi (uh) = βTi φ
T (uh) +

∫
T

ν∇ϕi · (∇uh − ∇̃uh) (22)

The fluctuation being computed with the reconstructed gradient. For the simulations that will be
presented later on, the SUPG scheme is used, defined by the distribution coefficients :

βTi =
1

3
+ kiτ, ki =

1

2
a.ni, τ =

∑
j∈T
|kj |+ ν

−1

(23)

where a =
∑
j∈T

aj
3 .

The extension to the compressible Navier Stokes system of equations has been fully developed in [21]
for the steady case and adapted to the unsteady ones in [4]. The nodal fluctuations are defined (using
notations proposed in equation (5)) :

φTi (uh) =
φT (uh)

3
+

∫
T

A ·∇ϕiτ (A ·∇uh −∇ · (K(uh)∇̃uh)) +

∫
T

K(uh)∇ϕi · (∇uh − ∇̃uh) (24)

where A is the Jacobian of the Euler flux F and K is defined such that the viscous flux writes G = K∇uh,
and the stabilization matrix τ is defined by :

τ =
1

3

(∑
i∈T

[|A|+ K]

)−1

(25)

4.2 RD schemes in an ALE framework
It is now briefly explained how the previous RK2 scheme is adapted to the ALE framework. Considering
the computational domain Ωx moving with a velocity ζ with respect to the referential domain Ωχ, the
ALE integral formulation of the conservation law (18) becomes for a considered control volume C(t) ∈ Ωx
(see for instance [22, 19]) :

∂

∂t

∣∣∣∣
χ

∫
C(t)

u(x, t)dx+

∫
C(t)

∇.(F(uh)− ζu)−
∫
C(t)

∇.(ν∇uh) = 0 (26)

In two dimensions (respectively 3D) for RD schemes we will take C(t) = T (t) the triangles (respectively
tetrahedra) of the mesh Ωx. C(t) and the computation of ζ has to be chosen such that the Discrete Geo-
metric Conservation Law (DGCL) is respected. The DGCL insures that the resulting numerical scheme
should preserve the state of a uniform flow (Farhat et al [23]). In practice, DGCL imposes relation
between

∫
C(t)

∇.ζ and the temporal discretization used in the scheme. In the present study, the choice

C(t) = T (t) = Tn+ 1
2 has been made, as proposed by Arpaia et al, [19] for advection problem. We give

the main steps for the construction of the scheme. The DGCL for the RK2 scheme, is expressed by (for
second order case): ∫

Tn+ 1
2

∇.ζ =
|Tn+1| − |Tn|

∆t
(27)

which gives an explicit nodal expression for the discretization of the mesh velocity :

ζ =
xn+1 − xn

∆t
(28)

The idea is to use the stabilized FE analogy to RD scheme (see for instance ([20]) :∑
T3i

∫
T

ωi

(
duh
dt

+ a.∇uh + ∇.(ν∇uh)

)
= 0 (29)

where ωi the test function is the basis function ϕi going along with a bubble function γi : ωi = ϕi + γi.
Let assume the first order approximation u∗ corresponding to the first step of the scheme (20) is known.

RR n° 8936



8 Nouveau & others

To get the second order corrected solution, applying the stabilized FE analogy on (26) with the DGCL
(27), the galerkin part is written over the ALE conservative formulation :

ΦT,Gal =

∫
Tn+1

ϕi
un+1
h

∆t
−
∫
Tn
ϕi
unh
∆t

+

∫
Tn+ 1

2

ϕi∇.

(
F(unh) + F(u∗h)

2
− ζ u

n
h + u∗h

2

)
−
∫
Tn+ 1

2

ϕi∇.

(
ν∇unh + u∗h

2

)
while the stabilization part is written over a non conservative ALE form on the fixed geometry Tn+ 1

2 :

ΦT,stab =

∫
Tn+ 1

2

γi
u∗h − unh

∆t
+

∫
Tn+ 1

2

γi

(
∇.

F(unh) + F(unh)

2
− ζ.∇unh + u∗h

2

)
−
∫
Tn+ 1

2

γi∇.

(
ν∇unh + u∗h

2

)
and ∑

T3i

(
ΦT,Gal + ΦT,stab

)
= 0 (30)

Then, defining

φ̃Ti (uh) =

∫
T

ωi(∇.F − ζ ·∇uh −∇.(ν∇uh)) (31)

which is the nodal fluctuation accounting for the mesh deformation, after some calculations, using mass
lumping and DGCL (27), the corrector step (30) writes :

|Cn+1
i |u

n+1
i − u∗i

∆t
+
∑
T3i

{∫
Tn+ 1

2

ωi
un+1
h − u∗h

∆t
+

1

2

[
˜
φT

n+ 1
2

i (u∗h) +
˜
φT

n+ 1
2

i (unh)

]}
= 0 (32)

that writes over a RD form ([12, 19]) :

|Cn+1
i |u

n+1
i − u∗i

∆t
+
∑
T3i

{
βTi

∫
Tn+ 1

2

u∗h − unh
∆t

+
1

2

[
˜
φT

n+ 1
2

i (u∗h) +
˜
φT

n+ 1
2

i (unh)

]}
= 0 (33)

For the predictor step giving u∗, the exact same reasoning is performed, with an explicit Euler procedure,
see Arpaia et al. [19], that gives the extension of the RK2 scheme (20) for ALE formulation of advection
diffusion equations :

|Cn+1
i |u

∗
i − uni
∆t

+
∑
T3i

˜
φT

n+ 1
2

i (unh) = 0

|Cn+1
i |u

n+1
i − u∗i

∆t
+
∑
T3i

(
βTi

∫
Tn+ 1

2

u∗i − uni
∆t

+
1

2
(
˜
φT

n+ 1
2

i (u∗h) +
˜
φT

n+ 1
2

i (unh))

)
= 0

(34)

5 Numerical results

So as to validate the proposed approach, two simulations are performed. For the two test cases (oscillating
cylinder in a fluid at rest and oscillating naca airfoil), the velocity is known analytically and imposed on
the solid. The aerodynamical forces are computed to validate the tests but do not intervene in the solid
motion.

5.1 Aerodynamical Forces Computations

As just said, the computation of the aerodynamical forces are required. Indeed, in the present study, the
motion of the solid is imposed with an analytical function. However, the aim is to be able to perform total
FSI problem in which the motion is imposed on the solid via external forces such as the aerodynamical
ones. Thus, we propose here two computations of those forces.
The first one, that will be quoted in the following by "integral computation" (IC) is performed by
interpolating the solution from the simulation on a discretized surface of the solid. Then, the "classical"
way of computing the forces is used, by integrating the pressure and the shear stress on the edges of the
surface :

FIC =

∫
surface

(−pI + π)nnormdS (35)

Inria



Adaptive ALE residual based penalization approach for moving bodies 9

Figure 2: Referential mesh for the oscillating cylinder test case and corresponding sizes

where nnorm is the normalized normal of the solid.
The second approached that will be denoted "change of momentum" (CM) computation from now
on, were introduced in [24] and is specific for splitting approach. Before the splitting, the change of
momentum ∆m inside the solid is computed :

∆m =

∫
solid

ρ(u− uS) (36)

and the force is :
FCM =

∆m
∆t

(37)

This approach presents the advantage to be almost immediate as it is only necessary to evaluate on each
penalized element the change of mass before the splitting.

5.2 Inline oscillating cylinder

For this test case, a cylinder (D = 0.2) is oscillating in a fluid at rest. The motion is ruled by :

x(t) = −Asin(2πft) (38)

where A is the amplitude of the oscillation and f its frequency. The dimensionless number characterising
this case are the Reynolds number Re = UmaxD

ν = 100 and the Keulegan-Carpenter number KC = 2πf
D .

The computational domain is [−10, 10] × [−8, 8] and the referential mesh (13424 vertices and 26782
triangles) is given figure with the sizes used to generate this mesh (2). For the adaptation, the parameter
used for the monitor function (10) are : β = 1200, αψ = 25, αv = 25, γ = 0.1, and the physical variable
used is the u velocity.
Plot of the velocity and the corresponding adapted mesh are presented figure 3. We can see that the
adaptation process allow to have an optimisation of the mesh close to the 0 level set leading to an
accurate definition of the solid, and that the mesh adapts well to the physics of the problem.
In order to validate those results, cuts are done at different time and at different position and compared
to the literature. The comparison is done with experimental data (Dütsch et al. [25]), the Lescape
computational code (penalization on structure grids, see Morency et al. [24] for the method), and the
IBM proposed by Liao et al. [26]. The aim here is to show that the combination of unstructured
grid/mesh adaptation allow to have competitive results in comparison with structured grids, with a
limited number of points. Indeed, the plots show that the present simulation is in good agreement with
the literature, but with 13424 vertices compared to the 50000 used in [26] and 1200000 used in the
Lescape code (the mesh being uniform in the whole domain).

5.3 Oscillating Naca Airfoil

Flapping wing motions are extensively studied for engineering applications in low Reynolds numbers flow
where classical fixed wing geometry performance decreases, [27]. According to previous works, around
ten parameters influence the power extraction in flapping wing motions, such as oscillation frequencies
and amplitudes (translational and rotational), phase difference between plunge and pitch motion, vis-
cosity, free stream velocity, flapping pattern and airfoil geometry.
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Figure 3: u veloctity and corresponding adapted mesh at different time (zoom close to the adapted area).
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(a) Cuts performed at different times

(b) cuts at 180. From top left to bottom right : x = 0D, v velocity - x = 6D, u velocity - x = 6D v velocity, x = −6D v
velocity

(c) cuts at 330. From top left to bottom right : x = 0D, u velocity - x = 6D, v velocity - x = 1.2D u velocity, x = 1.2D
v velocity
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Figure 5: Oscillating Naca test case - Referential mesh

In this section, an oscillating airfoil experiencing simultaneous pitching θ(t) and heaving h(t) motions
is modelled. The infinitely long wing is based on a NACA 0015 airfoil. The pitching axis is located along
the airfoil chord at the position (xp, yp) = (1/3, 0). The airfoil motion, described by Kinsey and Dumas
[28], is defined by the heaving h(t) and the pitching angle θ(t) as follows{

h(t) = H0 sin (ωt+ Φ)

θ(t) = θ0 sin (ωt)
(39)

where H0 is the heaving amplitude and θ0 is the pitching amplitude. The angular frequency is defined
by ω = 2πf and the phase difference Φ is set to 90o. The heaving velocity is then given by

Vy(t) = H0ω cos(ωt+ Φ) . (40)

Based on the imposed motion and on the upstream flow conditions, the airfoil experiences an effective
angle of attack α(t) and an effective upstream velocity Veff (t) defined by α(t) = arctan(−Vy(t)/U∞)− θ(t)

Veff (t) =
√(

U2
∞ + V 2

y (t)
)
,

(41)

where the freestream velocity far upstream of the oscillating airfoil is U∞ = 68.1 (Ma = 0.2).

A regime corresponding to the parameters Re =
U∞c

ν
= 1100, H0/c = 1, f = 0.14, xp/c = 1/3

and θ0 = 76.33o has been computed. The computational domain is of size [−3, 5.5] × [−6, 6]. The finer
area in which the adaptation of level set and physics is of size [−1, 4] × [−2.2, 2.2]. It leads to a mesh
composed with 30115 vertices and 60186 elements presented with the sizes for the generation on figure
5. For this test case, the monitor function has been slightly modified so as to take into the curvature κψ
of the signed distance function :

ωψ =

√
αψe−βψ

2 + ακ
|κψ|

γκ max |κψ|
(42)

and the coefficient used are : β = 500, αψ = 22.5, αv = 12.5, γ = 0.004167, αψ = 15, γκ = 0.36,
the physical adaptation being done according to the vorticity. Figure 6 proposes the vorticity and the
corresponding adapted mesh at different times. As for the oscillating cylinder, it is observed that the
proposed approach allows to have a refinement close to the solid interface, that imposes accurately the
BCs, and that the physics is also precisely resolved in the wanted area thanks to the mesh adaptation.
To validate this test case, aerodynamical coefficients are compared to the forces predictions presented
by Kinsey et al. [28], by Campobasso et al. [29] and the ones obtained using the Lescape code. The
plots can be found on figure 7. It can be seen that the results are in good agreement with the literature.
Nevertheless, it is noticed that the CM computation induces an overestimation of the drag coefficient.

6 Conclusion and Future Work
In this work, we proposed a new scheme based on a Strang splitting and ALE RD scheme to solve
penalized NS equations. Adaptation conserving mesh connectivity is performed to improve the definition
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Figure 6: Oscillating naca0015 - Rotational of the velocity and corresponding adapted mesh at different
times.

Figure 7: Oscillating Naca0015 airfoil - Aerodynamical coefficients. Left : Lift Coefficient - Right : Drag
Coefficient
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of solid boundaries. This combination of constant connectivity/ALE schemes presents a real interest when
dealing with moving immersed boundaries because remove the constraint of remeshing/interpolation
that can be time consuming. The main steps to follow this work will be the use of an implicit time
discretization so as to remove the CFL constraint severly restrained by the diffusive aspect of the problem.
In addition, even if not discussed here, the question of time consumption of the mesh adaptation strategy
needs to be investigated. Indeed, the resolution of the non diagonal linear system by an iterative method
represents of course a considerable overhead w.r.t. the CFD, as here the time integration for the flow is
purely explicit. By moving to fully implicit procedure the cost of the mesh adaptation will become then
negligible compared to the resolution of the nonlinera equations for the flow. From a simulation point
of view, the computation of total FSI simulations will be performed (the motion of the solid imposed by
the fluid). An interesting and remaining question is the recovery of the accuracy for the BC imposition
with the mesh adaptation. Numerical convergence analysis are considered to answer this question.
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