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Abstract. In the last decade, high-order methods for Computational Fluid Dynamics (CFD) are becom-
ing attractive for unsteady scale-resolving-simulations in industrial CFD applications, due to their advan-
tages of low numerical dissipation, high efficiency on modern architectures and quasi mesh-independence.
However, the generation of body-fitted mesh for high-order methods is still a significant bottleneck and
often determines the overall quality of the solution. To avoid the complexity of mesh generation, the
present work combines the numerical advantages of the high-order Flux Reconstruction (FR) method
and the simplicity of the mesh generation based on Immersed Boundary Method (IBM) that allows solv-
ing flow past obstacles on a non body-fitted mesh. The volume penalization method is selected for its
ease of implementation and robustness. The proposed method is validated by several test cases, includ-
ing flow past a cylinder and NACA0012 airfoil for static and moving boundaries. Good agreement with
body-fitted simulation is reported.

1 INTRODUCTION

It is well recognized within the CFD community that high-order numerical methods have better accuracy
than low-order schemes with comparable computational cost. Additionally, the paradigm of high-order
methods has the advantage that it introduces the polynomial order as a new flexibility, which leads to
the possibility of improving the accuracy locally in regions of interest. Therefore, high-order numer-
ical methods, including discontinuous Galerkin (DG) [9], flux reconstruction (FR) [10] and spectral
difference (SD) [13] [25], have attracted lots of attention in these years. However, there are still some
issues that limit the application of high-order method for real engineering problems. One of them is the
exploration of high-order method for moving boundary and complex geometry, where complicated grid
generation techniques are required. A viable solution to this problem is to extend the immersed boundary
method (IBM) in the framework of high-order methods.

IBM is introduced by Peskin in the 1970s [17]. Since its introduction, IBM has been applied to different
problems, in order to solve the flow around solid body on a simple, non-conforming grid. IBM mimics
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the existence of solid boundary through proper numerical treatment to the background flow grid. It can
handle complex geometries with large structure deformations or moving boundaries very efficiently. So
far, there have been a lot of different IBM methods developed, as reviewed by Mittal and Iaccarino [16],
Sotiropoulos and Yang [22], as well as Griffith and Neelesh [8]. Generally, IBM can be classified into
two groups: 1) cutting the elements by the boundary, and solve the equation in the same way as those for
body-fitted mesh; 2) adding source terms to the governing equations. The first group, usually known as
the ’cut-cell’ approach, guarantees the strict global and local conservation of mass and momentum [16].
The main challenge for the cut-cell method is the cutting approach for three-dimensional flows and com-
plex geometry, since it can result in complex or very small cut-cells that require efficient discretization
schemes to deal with.

In the second group of IBM approach, the background mesh remains the same for both static and mov-
ing obstacles, but the IBM forcing terms are added to related grid nodes (or solution points in high-order
method) to reflect the effect of boundary. The governing equations are discretized and solved as usual
with the new IBM source term. Most of IBM approaches can be classified into this group, including
conventional IBM, ghost cell, direct forcing and volume penalization method. Among all these methods,
volume penalization has shown advantages in terms of robustness, simplicity and rigorous theoretical
foundation. Compared with other IBM methods, the extension to moving boundary problems is straight-
forward. The basic idea of volume penalization method is to model complex solid bodies as porous
media with a permeability approaching zero, i.e., η→ 0, through penalizing the velocity (or diffusivity)
of grid points immersed in the solid.

The volume penalization method for the Navier-Stokes equations was first proposed by Arquis and Cal-
tagirone [3] to simulate the natural convection flow inside a fluid–porous cavity. Rigorous proofs of
the convergence property is then given by Angot et al. [2] and Carbou and Fabrie [6], where imposing
Dirichlet boundary conditions to the Navier–Stokes equations was studied. It was proved that, as the pe-
nalization parameter η approaches 0, the solution of the penalized Navier-Stokes equations will converge
to the solution of the same equations with no-slip boundary conditions. For general boundary conditions
refer to [19] [11] and [20]. Applications of compressible flows have been shown in [12] [5] [1]. A review
of volume penalization method for numerical simulation of complex flows is given by Schneider [21].

The high-order method adopted in the current study is based on flux reconstruction (FR) approach pro-
posed by Huynh [10]. It provides a differential framework for discontinuous finite element schemes,
which unifies several other high-order methods [24]. Combined with IBM implementation, the pro-
posed method will handle complex geometries with large structure deformation or moving bodies very
efficiently, and the near-wall resolution can be improved through local polynomial refinement. In the
following sections, the methodology and test cases will be introduced, and finally conclusions will be
drawn.

2 METHODOLOGY

2.1 Flux Reconstruction

The governing equations for a compressible viscous fluid based on Navier-Stokes equations are focused
and solved, written as

∂UUU
∂t

+∇ ·FFF =
∂UUU
∂t

+
∂FFFx

∂x
+

∂FFFy

∂y
+

∂FFFz

∂z
= 0 , (1)
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where UUU denotes the vector of conserved variables UUU = (ρ,ρu,ρv,ρw,E)T . ρ is the density, u, v, and w
are the velocity components and E is the total energy. The flux vectors are FFFx, FFFy, FFFz containing the
inviscid and viscous fluxes.

To achieve FR, the domain is firstly discretized by non overlapping elements. For each element, Np

internal degrees of freedom and N f points on the element interface are defined. A multi-dimensional La-
grange polynomial or a modal expansion in a chosen polynomial basis is chosen to describe the solution
based on the internal degree of freedom. Here the solution is represented in the nodal basis as follows:

UUUδD(ξξξ) =
Np

∑
i=1

UUUδD
i I P

i (ξξξ) (2)

where ξξξ is the coordinate in the reference space. δD indicates that the solution is discrete (δ) and dis-
continuous within the element. I P

i refers to the nodal basis function defined at each solution point with
polynomials of degree P, and UUUδD

i is the solution at the ith solution point. The discontinuous flux FFFδD

is also expressed in terms of the basis polynomial. The key component in FR is the correction function
which leverages the discontinuous values to be continuous values. The resulting continuous solution
fluxes are represented as:

UUUδC(ξξξ) =UUUδD(ξξξ)+(UUUComm(ξξξ f lux)−LLL fUUUδD)hhh(ξξξ) (3)

FFFδC(ξξξ) = FFFδD(ξξξ)+(FFF Int(ξξξ f lux)−LLL f FFFδD) ·~nhhh(ξξξ) (4)

where UUUComm and FFF Int denote the common solution value and the numerical interaction flux at the flux
point, shared by elements of both sides. LLL f is the interpolation operator to obtain values at the flux
point. hhh serves as a “lifting” operator [26] that will transfer the correction values to the quadrature points
within the element. Consequently, the second term in these equations are defined as the correction terms
(with superscript Corr). For a given interface, the common solution and interaction flux defined on the
flux point, shared by both left and right elements, are obtained by the Local Discontinuous Galerkin
(LDG) formulation for the viscous terms and the Rusanov flux for the inviscid terms. The gradient and
divergence operators for the scheme can be expressed as [26]:

∇̃UUU =
Np

∑
i=1

UUUδD
i ∇̃I P

i (ξξξ)+
N f ace

∑
f=1

N f

∑
j=1

∇̃C P+1
f , j (ξξξ) ·UUUδCorr

f , j (5)

∇̃ ·FFF =
D

∑
k=1

Np

∑
i=1

∇̃kI P
i (ξξξ) ·FFFδD

i,k +
D

∑
k=1

N f ace

∑
f=1

N f

∑
j=1

∇̃kC P+1
f , j (ξξξ) ·FFFδCorr

f , j,k (6)

where D refers to the space dimension, N f ace refers to number of faces for each element. ∇̃ is the discrete
gradient in the reference space. The function C P+1

f , j is the correction function, which is of polynomial
order P+1. Note that the resulting gradient and flux should be transformed to the physical space. With
the divergence of flux, the solution can be solved with efficient time-integration schemes. Here we use
explicit time integration using the the third-order TVD Runge-Kutta scheme. Since the IBM approach is
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explored, the only boundary condition considered for the proposed method is the characteristic condition
for the far field.

2.2 Volume Penalization

Here the volume penalization method is introduced. The effect of solid bodies is imposed by introducing
forcing terms to the governing equations, while the resulting equations are discretized and solved as
usual. A mask function which distinguishes between the fluid region Ω f and solid region Ωs is firstly
defined:

χ(xxx, t) =
{

1, if xxx ∈Ωs

0, otherwise
(7)

This mask function is used to determine whether the IBM force should be imposed [1] [5]. The Navier-
Stokes equations with IBM can be written as follows:

∂UUU
∂t

= RHS+χSSS(UUU) (8)

where SSS refers to the IBM forcing term. RHS refers to the right hand side term of the Navier-Stokes
equation

RHS =−(∂FFFx

∂x
+

∂FFFy

∂y
+

∂FFFz

∂z
). (9)

For the Dirichlet boundary condition for velocity us = (us,vs,ws)
T of the solid body, the source term is

considered as:

SSS(UUU) =
1
η
×


0

ρus−ρu
ρvs−ρv
ρws−ρw

ρ

2 (u
2
s + v2

s +w2
s )−

ρ

2 (u
2 + v2 +w2)

 (10)

where η denotes the penalization parameter for IBM. A velocities with subscript s are known velocities to
be imposed. The penalization terms proposed were used in [1] for compressible Navier-Stokes equations.
Generally, the penalization parameter η should be sufficiently small to ensure accuracy, but not too small
to avoid stiffness issues of the IBM source term. In practice, the explicit time step ∆t is suggested to
be the penalization parameter [7]. In particular, us = (0,0,0)T will be imposed for no-slip boundary
condition.

The governing equation Eq.8 is then marched in time by the time integration method. Since a source
term is introduced, the original equations can be separated into two parts, i.e., right hand side term and
the source term. Based on operator splitting approach, each part can be solved separately and then
combined together to form the solution. Therefore, second-order Strang splitting [23] is used to separate
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the equation into two parts. At time step n, the solution is separated into three steps:

step1 :
UUU1−UUUn

∆t1
= SSS(UUU1),∆t1 = ∆t/2,UUU1,0 =UUUn (11)

step2 :
UUU2−UUU1

∆t2
= RHS(UUU2),∆t2 = ∆t,UUU2,0 =UUU1 (12)

step3 :
UUUn+1−UUU2

∆t3
= SSS(UUUn+1),∆t3 = ∆t/2,UUUn+1

0 =UUU2 (13)

Both parts can be solved in explicit or implicit time integration method. Currently, in step 2, we use the
third-order TVD Runge-Kutta method to perform explicit time marching. For the first and the third step,
two approaches, including explicit and implicit forcing, can be chosen, where the implicit forcing will
better handle the stiff IBM source terms for small penalization parameter.

Explicit forcing : The explicit formulation is simply given as:

UUU1−UUUn

∆t1
= SSS(UUUn), (14)

UUU1 =UUUn +∆t1 ·SSS(UUUn). (15)

Implicit forcing : For implicit implementation of the penalty method, the backward Euler method with
first-order Taylor expansion leads to the following formulation

UUU1−UUUn

∆t1
= SSS(UUUn)+

∂SSS(UUUn)

∂UUU
(UUU1−UUUn) (16)

2.3 Implementation Details for IBM

From an implementation point of view, two additional aspects should be considered: 1) Boundary repre-
sentation and mask function, 2) Surface data reconstruction. Both will be discussed in this subsection.

An appropriate boundary representation is needed for general geometries where analytical shape func-
tions cannot be found, in order to obtain the mask function χ, and to compute aerodynamic coefficients
from solution points near the surface. In this work, we choose to use a set of Lagrangian marker points to
represent the solid boundary, defined as immersed boundary (IB) points. The marker points are connected
by linear elements, i.e., line segments in two dimensions and triangular elements in three dimensions.
Calculations of the geometrical quantities, including the surface normal, the interpolation stencil for data
reconstruction, and the surface distance, can be performed efficiently with this representation [15, 14].

With this representation, a method to get mask function for general shapes is then developed. This
method is based on the ray casting method for the ’point in polygon’ (PIP) problem. It generates a ray
starting from the point and going in any fixed direction. If the point is inside / outside the polygon, the
ray will intersect the edges an odd / even number of times. This is implemented based on the nearest
neighbor search algorithm. It firstly generate a bounding box that are formed by coordinates of the
rectangular border that fully encloses the solid body. If the point is in the bounding box, then it identifies
the number of intercept points in a particular physical direction, in order to determine whether the current
solution point is inside or outside the boundary.

5



Jiaqing Kou, Saumitra Joshi, Aurelio Hurtado-de-Mendoza, Kunal Puri, Charles Hirsch and Esteban Ferrer

To get the surface quantity for each surface point (i.e., IB point), an interpolation from data of surround-
ing solution points is needed. Here, the interpolation method described in [4] is used. This method is
based on the inverse distance between the IB point and the interpolation point selected from several near-
est solution points. In particular, the Inverse Distance Weight at Interpolation Point (IDW-IP) method [4]
is used for interpolation in the present study.

3 TEST CASES

The proposed method is tested by different cases. Here we will show three groups of test cases, including
flow past a cylinder at Reynolds number 40, flow past an airfoil at Reynolds number 5000, and flow past
a static or moving cylinder at Reynolds number 100.

3.1 Flow past a cylinder at Reynolds number 40

As the first example, we consider the benchmark case of flow past a static cylinder at Reynolds number
40. To test the basic implementation, a body conforming mesh is generated. The body-fitted quad mesh
for the cylinder is first generated. In addition, three layers of grid inside the cylinder surface is added,
which contain the cells that need to be penalized by volume penalization. The computational grid is
shown in Figure 1, with 3480 quad elements. The simulation is performed with P = 2, and two penal-
ization parameters, i.e., 1e− 4 and 1e− 6, are considered. The results on surface quantities, including
pressure, density and momentum, are compared in Figure 2. As shown in the figure, good agreement for
pressure and density is seen, while some error exists for the surface momentum (velocity). As penaliza-
tion parameter becomes smaller, a slightly better result can be obtained. However, to further improve the
result, one has to locally refine the resolution near the wall, by either increasing the polynomial orders or
refining the mesh locally.

Figure 1: Computational mesh for flow past a cylinder at Reynolds number 40. The mesh is body
conforming where the surface aligns with the cell interface. Yellow line is the actual boundary and the
elements inside the yellow line are penalized to satisfy the boundary condition.
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Figure 2: Comparison of IBM simulation for two penalization parameters and the reference case from
body-fitted simulation.

3.2 Flow past a NACA0012 airfoil at Reynolds number 5000

The flow over an airfoil is the second test case considered for the present method. Simulation of
NACA0012 airfoil at Mach number 0.5 and Reynolds number 5000 is chosen, with an angle of attack
2 degree. The background mesh is a rectangular computation domain defined as x ∈ [−30c,50c] and
y ∈ [−30c,30c], where c is the chord length of the airfoil. In the square region x ∈ [−c,c] and y ∈ [−c,c],
uniform and square grid with mesh size 0.004c is used. The total number of elements are 897× 697.
The characteristic boundary conditions are imposed to all the far field boundaries. The reference data is
obtained from a body-fitted simulation of the same solver.

We performed the numerical simulation under two sets of parameters. The first case is simulated with
polynomial order P = 2 and a constant time step 1e− 4, while the second case is simulated with poly-
nomial order P = 4 and time step 2e− 5. The penalization parameter η is chosen to be equal to the
time step. Comparison of surface distribution in pressure and friction coefficients are shown in 3 and 4,
respectively. As shown in the Figure 3, both simulations give very good prediction on Cp, while when
P = 4 better accuracy can be seen in Figure 3b. The prediction of surface skin friction coefficient is
more difficult, since it involves the reconstruction of gradient. From Figure 4, it is also noticed that as
the resolution near the wall increases, C f is better predicted. As mentioned before, the accuracy can be
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(a) Overall view. (b) Zoomed-in view.

Figure 3: Comparison of surface pressure coefficient distribution with different polynomial orders.

Figure 4: Comparison of surface friction coefficient distribution with different polynomial orders.

further improved by locally refining the resolution near the wall.

3.3 Flow past a static or moving cylinder at Reynolds number 100

As the last test case, unsteady simulation for flow past a cylinder at Reynolds number 100 is focused. The
background mesh is a rectangular computation domain defined as x∈ [−30D,50D] and y∈ [−30D,30D],
where D is the diameter of the cylinder. In the square region x ∈ [−D,D] and y ∈ [−D,D], uniform grid
with mesh size 0.015D is used. The total number of elements are 377× 667. Note that wake region is
relatively refined compared with the airfoil case, in order to capture the wake flow structure for periodic
vortex shedding. This case is simulated with polynomial order P = 1 and a constant time step 2e− 4,
where the penalization parameter is also set to 2e−4.

Firstly, flow past a static cylinder is simulated. The temporal evolution of lift and drag coefficients is
shown in Figure 5. From the results, it gives three main quantities of interest: mean drag coefficient 1.30,
root mean square of lift coefficient 0.315, vortex shedding frequency fs = 0.1667 (defined by Strouhal
number). Compared with body-fitted simulation [18], very good agreement is obtained. In addition, a
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(a) Lift coefficient. (b) Drag coefficient.

Figure 5: Temporal evolution of aerodynamic coefficients for flow past a cylinder at Reynolds number
100.

moving cylinder is considered, where the mask function becomes time-dependent and the nonzero veloc-
ities for solid solution points are imposed according to motion functions. Plunging plunging motion in
the transverse direction is simulated, with a sinusoidal motion with amplitude A = 0.25D. The frequency
of harmonic motion is defined as the ratio between forced motion frequency f0 and the vortex shedding
frequency fs. Results at frequency ratios 0.9 and 1.5 are shown in Figure 6 and Figure 7, respectively.
These two cases are representative since the first case exhibits lock-in phenomenon while the second
case does not. When lock-in occurs, the vortex shedding frequency (obtained by the frequency of lift
coefficient, f ) diverges from the value of static cylinder ( fs) at the same Reynolds number, and it locks
on the frequency of the forced oscillation ( f/ f0 ≈ 1). To look at the lock-in phenomenon in the lift force,
Fast Fourier Transformation (FFT) is applied to the response of lift coefficient, and the spectrum of FFT
amplitude versus the frequency ratio f/ f0 is shown. From FFT spectrum, it is obvious that the most
important frequency for both cases is the forced motion frequency. However, for the first case, there
is only one dominant frequency f/ f0 = 1 while the second case has two, f/ f0 = 1 and f/ f0 = 0.67
(corresponding to fs for static cylinder). This validates that the first is the lock-in case since the vortex
shedding is the same as forced motion frequency, and the signal is purely periodic. However, in the
second case, a beating behavior where the signal is not periodic over two successive cycles of oscillation
but over several ones. These phenomena are well captured by the present method. The hysteresis loops
of the aerodynamic response are also in good agreement with the reference data [18].

4 CONCLUSIONS

Developing high-order CFD methods for body-fitted mesh has been an active research area in these years.
To overcome the complexity involved in mesh generation, it is also important to test the performance of
high-order methods with non body-fitted mesh, based on immersed boundary method. In this paper,
an immersed boundary method based on volume penalization for high-order flux reconstruction scheme
is proposed. Numerical treatment of the stiff source term, based on the splitting method, is also dis-
cussed. Through some benchmark test cases, reasonable performance of the proposed method is shown,
indicating possible engineering applications of high-order methods to simulate complex geometries with
moving boundary.
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(a) Lift coefficient. (b) FFT of lift coefficient. (c) Hysteresis loop.

Figure 6: Plunging motion in transverse direction (frequency ratio = 0.9, A = 0.25D).

(a) Lift coefficient. (b) FFT of lift coefficient. (c) Hysteresis loop.

Figure 7: Plunging motion in transverse direction (frequency ratio = 1.5, A = 0.25D).
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