3,809 research outputs found

    Soft systems modelling of design artefacts for blockchain-enabled precision healthcare as a service

    Get PDF
    Precision Healthcare (PHC) is a disruptive innovation in digital health that can support mass customisation. However, despite the potential, recent studies show that PHC is ineffectual due to the lower patient adoption into the system. This paper presents a Blockchain-enabled PHC ecosystem that addresses ongoing issues and challenges regarding low opt-in rates. Soft Systems Methodology was adopted to create and validate UML design artefacts. Research findings report that there is a need for data-driven, secure, transparent, scalable, individualised and precise medicine for the sustainability of healthcare and suggests further research and industry application of explainable AI, data standards for biosensor devices, affordable Blockchain solutions for storage, privacy and security policy, interoperability, and user-centricity

    Break the Code?:Breaking Changes and Their Impact on Software Evolution

    Get PDF

    Web services approach for ambient assisted living in mobile environments

    Get PDF
    Web services appeared as a promising technology for Web environments independent of technologies, services, and applications. First, a performance comparison study between the two most used Web service architectures, SOAP and REST, is presented, considering messages exchange between clients and a server. Based on this study, the REST architecture was chosen to deploy the system because it gets better results compared to SOAP architecture. Currently, there are some issues related with this approach that should be studied. For instance, if massive quantities of data are sent to databases it can influence significantly the performance of the whole system. The Advanced Message Queuing Protocol (AMPQ) appears as a promising solution to address this problem. Then, in order to evaluate the performance of this approach, this work presents a performance evaluation and a comparison study of RESTful Web services and the AMQP Protocol considering exchanging messages between clients and a server. The study is based on the averaged exchanged messages for a certain period of time. It was observed and concluded that, for large quantities of messages exchange, the best results comes from the Advanced Message Queuing Protocol. Message Queuing Telemetry Transport (MQTT) was addressed in this work because it is a similar protocol to AMQP but it can be used by mobile devices with a processing capacity smallest unlike the AMQP that needs greater processing capacity. These studies are performed in the context of Ambient Assisted Living environments, since the work was applied to this topic in order to experiment the effectiveness and evaluate the performance of these protocols in this scenario

    On Data-driven systems analyzing, supporting and enhancing users’ interaction and experience

    Get PDF
    Tesis doctoral en inglés y resumen extendido en español[EN] The research areas of Human-Computer Interaction and Software Architectures have been traditionally treated separately, but in the literature, many authors made efforts to merge them to build better software systems. One of the common gaps between software engineering and usability is the lack of strategies to apply usability principles in the initial design of software architectures. Including these principles since the early phases of software design would help to avoid later architectural changes to include user experience requirements. The combination of both fields (software architectures and Human-Computer Interaction) would contribute to building better interactive software that should include the best from both the systems and user-centered designs. In that combination, the software architectures should enclose the fundamental structure and ideas of the system to offer the desired quality based on sound design decisions. Moreover, the information kept within a system is an opportunity to extract knowledge about the system itself, its components, the software included, the users or the interaction occurring inside. The knowledge gained from the information generated in a software environment can be used to improve the system itself, its software, the users’ experience, and the results. So, the combination of the areas of Knowledge Discovery and Human-Computer Interaction offers ideal conditions to address Human-Computer-Interaction-related challenges. The Human-Computer Interaction focuses on human intelligence, the Knowledge Discovery in computational intelligence, and the combination of both can raise the support of human intelligence with machine intelligence to discover new insights in a world crowded of data. This Ph.D. Thesis deals with these kinds of challenges: how approaches like data-driven software architectures (using Knowledge Discovery techniques) can help to improve the users' interaction and experience within an interactive system. Specifically, it deals with how to improve the human-computer interaction processes of different kind of stakeholders to improve different aspects such as the user experience or the easiness to accomplish a specific task. Several research actions and experiments support this investigation. These research actions included performing a systematic literature review and mapping of the literature that was aimed at finding how the software architectures in the literature have been used to support, analyze or enhance the human-computer interaction. Also, the actions included work on four different research scenarios that presented common challenges in the Human-Computer Interaction knowledge area. The case studies that fit into the scenarios selected were chosen based on the Human-Computer Interaction challenges they present, and on the authors’ accessibility to them. The four case studies were: an educational laboratory virtual world, a Massive Open Online Course and the social networks where the students discuss and learn, a system that includes very large web forms, and an environment where programmers develop code in the context of quantum computing. The development of the experiences involved the review of more than 2700 papers (only in the literature review phase), the analysis of the interaction of 6000 users in four different contexts or the analysis of 500,000 quantum computing programs. As outcomes from the experiences, some solutions are presented regarding the minimal software artifacts to include in software architectures, the behavior they should exhibit, the features desired in the extended software architecture, some analytic workflows and approaches to use, or the different kinds of feedback needed to reinforce the users’ interaction and experience. The results achieved led to the conclusion that, despite this is not a standard practice in the literature, the software environments should embrace Knowledge Discovery and data-driven principles to analyze and respond appropriately to the users’ needs and improve or support the interaction. To adopt Knowledge Discovery and data-driven principles, the software environments need to extend their software architectures to cover also the challenges related to Human-Computer Interaction. Finally, to tackle the current challenges related to the users’ interaction and experience and aiming to automate the software response to users’ actions, desires, and behaviors, the interactive systems should also include intelligent behaviors through embracing the Artificial Intelligence procedures and techniques

    On data-driven systems analyzing, supporting and enhancing users’ interaction and experience

    Get PDF
    [EN]The research areas of Human-Computer Interaction and Software Architectures have been traditionally treated separately, but in the literature, many authors made efforts to merge them to build better software systems. One of the common gaps between software engineering and usability is the lack of strategies to apply usability principles in the initial design of software architectures. Including these principles since the early phases of software design would help to avoid later architectural changes to include user experience requirements. The combination of both fields (software architectures and Human-Computer Interaction) would contribute to building better interactive software that should include the best from both the systems and user-centered designs. In that combination, the software architectures should enclose the fundamental structure and ideas of the system to offer the desired quality based on sound design decisions. Moreover, the information kept within a system is an opportunity to extract knowledge about the system itself, its components, the software included, the users or the interaction occurring inside. The knowledge gained from the information generated in a software environment can be used to improve the system itself, its software, the users’ experience, and the results. So, the combination of the areas of Knowledge Discovery and Human-Computer Interaction offers ideal conditions to address Human-Computer-Interaction-related challenges. The Human-Computer Interaction focuses on human intelligence, the Knowledge Discovery in computational intelligence, and the combination of both can raise the support of human intelligence with machine intelligence to discover new insights in a world crowded of data. This Ph.D. Thesis deals with these kinds of challenges: how approaches like data-driven software architectures (using Knowledge Discovery techniques) can help to improve the users' interaction and experience within an interactive system. Specifically, it deals with how to improve the human-computer interaction processes of different kind of stakeholders to improve different aspects such as the user experience or the easiness to accomplish a specific task. Several research actions and experiments support this investigation. These research actions included performing a systematic literature review and mapping of the literature that was aimed at finding how the software architectures in the literature have been used to support, analyze or enhance the human-computer interaction. Also, the actions included work on four different research scenarios that presented common challenges in the Human- Computer Interaction knowledge area. The case studies that fit into the scenarios selected were chosen based on the Human-Computer Interaction challenges they present, and on the authors’ accessibility to them. The four case studies were: an educational laboratory virtual world, a Massive Open Online Course and the social networks where the students discuss and learn, a system that includes very large web forms, and an environment where programmers develop code in the context of quantum computing. The development of the experiences involved the review of more than 2700 papers (only in the literature review phase), the analysis of the interaction of 6000 users in four different contexts or the analysis of 500,000 quantum computing programs. As outcomes from the experiences, some solutions are presented regarding the minimal software artifacts to include in software architectures, the behavior they should exhibit, the features desired in the extended software architecture, some analytic workflows and approaches to use, or the different kinds of feedback needed to reinforce the users’ interaction and experience. The results achieved led to the conclusion that, despite this is not a standard practice in the literature, the software environments should embrace Knowledge Discovery and datadriven principles to analyze and respond appropriately to the users’ needs and improve or support the interaction. To adopt Knowledge Discovery and data-driven principles, the software environments need to extend their software architectures to cover also the challenges related to Human-Computer Interaction. Finally, to tackle the current challenges related to the users’ interaction and experience and aiming to automate the software response to users’ actions, desires, and behaviors, the interactive systems should also include intelligent behaviors through embracing the Artificial Intelligence procedures and techniques

    Proactive services ecosystem framework

    Get PDF
    Dissertation presented to obtain the degree of Doctor in Electrical and Computer Engineering, specialization on Collaborative Enterprise NetworksCollaborative-Networks (CN) have experienced a fast evolution in the last two decades. The collaboration among independent entities or professionals supported by Information and Communication Technology (ICT) has attracted the research community to establish the conceptual basis for this scientific discipline. Service Orientation has been one of the key selected paradigms for that conceptual basis. Nevertheless, the service concept itself does not have a common understanding in the Business and ICT worlds. In the former, client satisfaction, resources management and business process models are some example concerns, whilst the later deals with interoperability, remote function calling or communication protocols. If for example an enterprise provides some service, it may hire specialists to wrap such service into web-services, expecting to reach worldwide potential new clients. In fact, nowadays Web Services and Service Oriented Architectures (SOA) are the technological elements most commonly used. However, these are passive elements in the sense they do not perform any action towards pursuing business interests, which constitute a limiting factor from a business perspective. Another approach for the above mentioned enterprise is to follow the Multi-Agent Systems (MAS) approach, as the pro-activity is a keyword in such contexts. Nevertheless, as MAS approaches are not so commonly used and not so robust yet, the worldwide potential set of new clients is reduced; which also constitutes an inhibitor factor from the business perspective. This dissertation proposes a Pro-Active Services Ecosystem Framework, gathering inspiration from both the SOA and MAS research areas, trying to bridge the business and ICT worlds through the base concepts for the creation of a Services’ Ecosystem where business services are represented in a pro-active manner towards pursuing business interests, like finding collaboration opportunities or improving the chances each CN member has to see its services selected among competitors, for example. This work also includes a prototype system applied / validated in the area of a Professional Virtual Community of Senior Professionals
    • …
    corecore