85,785 research outputs found

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Human emotional response to energy visualisations

    Get PDF
    This is the post-print version of the final paper published in International Journal of Industrial Ergonomics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.Past research has found that frequent energy usage feedback is an important factor in reducing home energy consumption, and that the sensory appeal and cognitive relevance of the feedback are key components of user engagement with energy systems. The visual design of the information interface is important not just due to its role in communicating data of cognitive relevance, but also because the choice of information type and format is important towards achieving interactive Hebbian learning. The objective of the current research study was to investigate the possible effect of image format on the human emotional response to scenes of energy systems, and to evaluate whether any gender related differences in emotional response occurred. An automated PC-based test was developed which utilised five visual image formats (Optical Gray-Scale, Optical Coloured, Optical Augmented, Infrared Gray-Scale and Infrared Blue-Red) and nine home energy scenes (hot water boiler, radiator, water faucet, kitchen oven, tea kettle, toaster, electrical connector, laptop computer and tea mug). The emotional response of the participant was measured in the automated test by means of a Self-Assessment Manikin (SAM) which provided symbolic graphical representations of the human body under various degrees of emotional response, and associated Likert format rating scales for the valence and activation level of the emotional response. Comparison of the results obtained for the different visual scenes suggests that the greatest level of human emotional activation was achieved by the Infrared Blue-Red (thermal image) format, and that, generally, coloured images provided higher levels of emotional activation than gray-scale images. The increased activation achieved by the infrared images suggests attention capturing potential due to novelty, or due to the direct link to heat and energy, or both. Significant differences in emotional response (both activation and valence) were found to occur as a function of gender. The current results provide first guidance which a designer can use when choosing image spectrum and colours to represent energy systems on the displays of thermostats, smart meters and the energy devices. Relevance to industry - The current results provide first guidance which a designer can use when choosing image spectrum and colours to represent energy systems on the displays of thermostats, smart meters and the energy devices. Such design guidance is currently lacking internationally but is of increasing importance due to the expansion of digital devices, internet services and the upcoming internet-of-things

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    A web-based teaching/learning environment to support collaborative knowledge construction in design

    Get PDF
    A web-based application has been developed as part of a recently completed research which proposed a conceptual framework to collect, analyze and compare different design experiences and to construct structured representations of the emerging knowledge in digital architectural design. The paper introduces the theoretical and practical development of this application as a teaching/learning environment which has significantly contributed to the development and testing of the ideas developed throughout the research. Later in the paper, the application of BLIP in two experimental (design) workshops is reported and evaluated according to the extent to which the application facilitates generation, modification and utilization of design knowledge

    Cognitive modeling of social behaviors

    Get PDF
    To understand both individual cognition and collective activity, perhaps the greatest opportunity today is to integrate the cognitive modeling approach (which stresses how beliefs are formed and drive behavior) with social studies (which stress how relationships and informal practices drive behavior). The crucial insight is that norms are conceptualized in the individual mind as ways of carrying out activities. This requires for the psychologist a shift from only modeling goals and tasks —why people do what they do—to modeling behavioral patterns—what people do—as they are engaged in purposeful activities. Instead of a model that exclusively deduces actions from goals, behaviors are also, if not primarily, driven by broader patterns of chronological and located activities (akin to scripts). To illustrate these ideas, this article presents an extract from a Brahms simulation of the Flashline Mars Arctic Research Station (FMARS), in which a crew of six people are living and working for a week, physically simulating a Mars surface mission. The example focuses on the simulation of a planning meeting, showing how physiological constraints (e.g., hunger, fatigue), facilities (e.g., the habitat’s layout) and group decision making interact. Methods are described for constructing such a model of practice, from video and first-hand observation, and how this modeling approach changes how one relates goals, knowledge, and cognitive architecture. The resulting simulation model is a powerful complement to task analysis and knowledge-based simulations of reasoning, with many practical applications for work system design, operations management, and training

    Systematic evaluation of design choices for software development tools

    Get PDF
    [Abstract]: Most design and evaluation of software tools is based on the intuition and experience of the designers. Software tool designers consider themselves typical users of the tools that they build and tend to subjectively evaluate their products rather than objectively evaluate them using established usability methods. This subjective approach is inadequate if the quality of software tools is to improve and the use of more systematic methods is advocated. This paper summarises a sequence of studies that show how user interface design choices for software development tools can be evaluated using established usability engineering techniques. The techniques used included guideline review, predictive modelling and experimental studies with users

    Agent-Based Team Aiding in a Time Critical Task

    No full text
    In this paper we evaluate the effectiveness of agent-based aiding in support of a time-critical team-planning task for teams of both humans and heterogeneous software agents. The team task consists of human subjects playing the role of military commanders and cooperatively planning to move their respective units to a common rendezvous point, given time and resource constraints. The objective of the experiment was to compare the effectiveness of agent-based aiding for individual and team tasks as opposed to the baseline condition of manual route planning. There were two experimental conditions: the Aided condition, where a Route Planning Agent (RPA) finds a least cost plan between the start and rendezvous points for a given composition of force units; and the Baseline condition, where the commanders determine initial routes manually, and receive basic feedback about the route. We demonstrate that the Aided condition provides significantly better assistance for individual route planning and team-based re-planning
    • …
    corecore