515 research outputs found

    Coupling of Vortex Flows with Control Jets for Enhanced Mixing and Flame Holding in Supersonic Flows

    Get PDF
    This study presents results of innovative integration of passive and active flow physics to accomplish effective supersonic mixing. The study is continuing cavity flow control research in the supersonic wind tunnel at the University of Tennessee Space Institute (UTSI). Initially numerical simulations were employed in support of choosing and refining the experimental configuration designs. Mixing enhancement was achieved through innovative coupling of aerodynamics of corner vortex flows and cavity flow control jets. The two geometries were chosen for their potential to generate strong streamwise vortices, weaker shock losses, low drag, and cavity recirculation zones. Another consideration was that the two physically different concepts would be studied to provide better understanding of the innovative mixing. Jets, simulating fuel injection, were used for flow control provided through penetrations in the front face and side walls of the cavity. Flow visualization, dynamic pressure (sound pressure level) data are measured and PIV measurements are presented and compared with computational predictions for several geometries. High frequency dynamic pressure data were recorded to determine the cavity flow acoustic patterns. Measurements were acquired by a digital data acquisition system from two dynamic pressure transducers, located at different locations on the floor of the cavity. PIV measurements of selected configurations were performed. Schlieren and PIV images, pressure spectra and 2-D PIV data obtained are used as a basis for understanding the flow processes involved and comparison for improving the overall mixing and penetration performance. Streamwise vortices were generated using two different innovatively designed geometries, strategically located upstream of selected cavity configurations, including various jet arrangements, simulating fuel flow and control. Both configurations tested developed relatively strong streamwise vortex flows and weakened or lofted shear layers, indicating that mixing was enhanced. The two configurations exhibited flow changes with the simulated fuel injection. However, different injection arrangements by the simulated fuel jets resulted in different details in the flow fields and their resulting acoustic spectra. The resulting flow fields show improved potential for fuel flow mixing and increased penetration while amplifying or attenuating flow unsteadiness in the cavity

    THE EFFECT OF SOUND PRESSURE ON THE AEROACOUSTIC SOURCES AROUND TWO DUCTED TANDEM CYLINDERS

    Get PDF
    ABSTRACT An empirical investigation of the spatial distribution of aeroacoustic sources around two tandem cylinders subject to ducted flow and forced transverse acoustic resonance is describe

    THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE THERMOACOUSTIC PROCESS

    Get PDF
    This thesis presents a study of thermoacoustic processes. Thermoacoustic science, which can serve as a renewable and sustainable source of energy, involves thermodynamics, acoustics and their interactions. This research investigated the thermoacoustic phenomenon through theoretical and experimental investigations. The theoretical study is comprised of two parts. The first part focused on the development of a comprehensive algorithm for the design, development and performance evaluation of thermoacoustic devices. The developed algorithm is capable of designing and optimizing individual thermoacoustic heat engines and refrigerators and coupled engine-refrigerator systems. In the second part of the theoretical study, the theoretical model of thermoacoustic couples predicting stack temperature difference was modified by incorporating more realistic physical processes that were consistent with practical applications. Significant improvement in the accuracy of the stack temperature difference predictions was observed with the modified model as compared to the previous models through experimental validation. Detailed experimental investigations were conducted to enhance the fundamental understanding of the thermo-fluid behavior in thermoacoustic couples. The first part of the experimental study was focused on the investigation of the influence of drive ratio and stack position on the stack temperature field. The results provided the first evidence of the two-dimensional temperature distribution on both end faces of the stack. A physical explanation for the change in the stack temperature difference profile from sinusoidal to sawtooth form with an increase in the drive ratio was provided. It is concluded that the acoustic dissipation in the stack which influenced the stack cold-end temperature was responsible for this behavior. In the second part, experiments were conducted to investigate streaming velocity fields in a thermoacoustic device using a synchronized PIV technique. The results showed that not only the presence of a stack but also the type and geometrical characteristics of a stack can significantly change the structure and magnitude of acoustic streaming. For both stacks, the streaming velocity field in the region adjacent to the hot-end of the stack was stronger with higher spatio-temporal variations as compared to that adjacent to the cold-end of stack, at almost all the drive ratios

    The Effects of Active Flow Control on High-Speed Jet Flow Physics and Noise

    Get PDF
    The work to be presented focuses on the noise generation of a fully turbulent, compressible jet flow within a large scale anechoic chamber. The investigations are aimed at understanding the complex nature of the jet flow field in an effort to reduce the far-field noise through active flow control and novel reduced-order modeling. The flow field of a highly subsonic, axisymmetric jet with a nozzle diameter of two inches (50.8 mm), is probed through the implementation of two-component particle image velocimetry (PIV) in the streamwise plane, along the jet\u27s centerline. These measurements are coupled with simultaneously sampled near and far-field pressure measurements, in an effort to understand the relationship between the complex flow field in the near region of the jet and large pressure fluctuation in the far-field, responsible for the noise. In order to reduce these large pressure fluctuations in the acoustic field, it is imperative to first understand the interaction of structures in the flow field and evaluate how this relates to the propagation of acoustic signatures to the far-field. We seek to establish a low-dimensional representation of the nonlinear, turbulent flow field through the implementation of reduced-order modeling in the form of proper orthogonal decomposition. In the first set of experiments conducted, active flow control is employed in the form of synthetic jet actuation at the nozzle lip, based on previous investigations. The effects of the flow control are observed using large-window PIV and far-field pressure measurements. The results suggest that an order epsilon input elicits an order one response, with both open and closed-loop flow control. While no noise reductions are seen in the far-field as compared to the uncontrolled jet, control authority over the jet is observed. The flow control greatly enhances mixing, thus reducing the length of the potential core and causing shear layer expansion. The second set of experiments involves the implementation of a time-resolved PIV system to effectively capture the temporal evolution of the flow physics in the streamwise plane. Low-dimensional velocity modes are directly correlated to low-dimensional acoustic modes in the far-field, using the observable inferred decomposition. Preliminary findings suggest that a small subset of low-dimensional velocity modes greatly contribute to the far-field acoustics. The spatiotemporal nature of these loud modes are investigated in the context of potential noise-producing events. It has been found that for the Mach 0.6 uncontrolled jet, focusing on the region near the collapse of the potential core, modes 6 and 14 appear to be the loud modes, contributing significantly to the far-field noise. Further exploration of mode 6 reveals a unique interaction of structures at very specific instances in time. Thus, it is concluded that from a low-dimensional viewpoint, we have identified the deterministic spatial structures in the velocity that most highly contributes to the noise in the far-field. It is possible from this analysis to begin to identify noise-producing events and examine these interactions in both time and space. Lastly, loud modes are identified for the controlled jet (using time-resolved PIV), however initial findings imply that the control greatly increases the complexity of the problem. Despite this fact, it is found that there may be similarities in the spatial structure of the loud modes for two different closed-loop control cases. In any case, through the use of active flow control and reduced-order modeling, preliminary steps have been taken to understand the sources of jet noise with respect to the flow physics, in an overall effort to efficiently achieve far-field noise reductions for practical applications

    Jet Mixing Enhancement by High Amplitude Pulse Fluidic Actuation

    Get PDF
    Turbulent mixing enhancement has received a great deal of attention in the fluid mechanics community in the last few decades. Generally speaking, mixing enhancement involves the increased dispersion of the fluid that makes up a flow. The current work focuses on mixing enhancement of an axisymmetric jet via high amplitude fluidic pulses applied at the nozzle exit with high aspect ratio actuator nozzles. The work consists of small scale clean jet experiments, small scale micro-turbine engine experiments, and full scale laboratory simulated core exhaust experiments using actuators designed to fit within the engine nacelle of a full scale aircraft. The small scale clean jet experiments show that mixing enhancement compared to the unforced case is likely due to a combination of mechanisms. The first mechanism is the growth of shear layer instabilities, similar to that which occurs with an acoustically excited jet except that, in this case, the forcing is highly nonlinear. The result of the instability is a frequency bucket with an optimal forcing frequency. The second mechanism is the generation of counter rotating vortex pairs similar to those generated by mechanical tabs. The penetration depth determines the extent to which this mechanism acts. The importance of this mechanism is therefore a function of the pulsing amplitude. The key mixing parameters were found to be the actuator to jet momentum ratio (amplitude) and the pulsing frequency, where the optimal frequency depends on the amplitude. The importance of phase, offset, duty cycle, and geometric configuration were also explored. The experiments on the jet engine and full scale simulated core nozzle demonstrated that pulse fluidic mixing enhancement was effective on realistic flows. The same parameters that were important for the cleaner small scale experiments were found to be important for the more realistic cases as well. This suggests that the same mixing mechanisms are at work. Additional work was done to optimize, in real time, mixing on the small jet engine using an evolution strategy.Ph.D.Committee Chair: David Parekh; Committee Member: Ari Glezer; Committee Member: Jeff Jagoda; Committee Member: Richard Gaeta; Committee Member: Samuel Shelto

    High Fidelity Computational Modeling and Analysis of Voice Production

    Get PDF
    This research aims to improve the fundamental understanding of the multiphysics nature of voice production, particularly, the dynamic couplings among glottal flow, vocal fold vibration and airway acoustics through high-fidelity computational modeling and simulations. Built upon in-house numerical solvers, including an immersed-boundary-method based incompressible flow solver, a finite element method based solid mechanics solver and a hydrodynamic/aerodynamic splitting method based acoustics solver, a fully coupled, continuum mechanics based fluid-structure-acoustics interaction model was developed to simulate the flow-induced vocal fold vibrations and sound production in birds and mammals. Extensive validations of the model were conducted by comparing to excised syringeal and laryngeal experiments. The results showed that, driven by realistic representations of physiology and experimental conditions, including the geometries, material properties and boundary conditions, the model had an excellent agreement with the experiments on the vocal fold vibration patterns, acoustics and intraglottal flow dynamics, demonstrating that the model is able to reproduce realistic phonatory dynamics during voice production. The model was then utilized to investigate the effect of vocal fold inner structures on voice production. Assuming the human vocal fold to be a three-layer structure, this research focused on the effect of longitudinal variation of layer thickness as well as the cover-body thickness ratio on vocal fold vibrations. The results showed that the longitudinal variation of the cover and ligament layers thicknesses had little effect on the flow rate, vocal fold vibration amplitude and pattern but affected the glottal angle in different coronal planes, which also influenced the energy transfer between glottal flow and the vocal fold. The cover-body thickness ratio had a complex nonlinear effect on the vocal fold vibration and voice production. Increasing the cover-body thickness ratio promoted the excitation of the wave-type modes of the vocal fold, which were also higher-eigenfrequency modes, driving the vibrations to higher frequencies. This has created complex nonlinear bifurcations. The results from the research has important clinical implications on voice disorder diagnosis and treatment as voice disorders are often associated with mechanical status changes of the vocal fold tissues and their treatment often focus on restoring the mechanical status of the vocal folds

    On linear instability mechanisms in incompressible open cavity flow

    Get PDF
    A theoretical study of linear global instability of incompressible flow over a rectangular spanwise-periodic open cavity in an unconfined domain is presented. Comparisons with the limited number of results available in the literature are shown. Subsequently, the parameter space is scanned in a systematic manner, varying Reynolds number, incoming boundary-layer thickness and length-to-depth aspect ratio. This permits documenting the neutral curves and leading eigenmode characteristics of this flow. Correlations constructed using the results obtained collapse all available theoretical data on the three-dimensional instabilities

    Simultaneous measurement of acoustic fields and flow fields using optical methods

    Get PDF

    Investigation of Partially Premixed Combustion Instabilities through Experimental, Theoretical, and Computational Methods.

    Full text link
    Partially premixed combustion has the merits of lower emission as well as higher efficiency. However, its practical application has been hindered by its inherent instabilities. This work is a study of instabilities in partially premixed combustion, through a combination of numerical simulation, theoretical modeling, and experimental investigation, with the hope of furthering our understanding of the underlying physics. Specifically, a Flamelet/Progress Variable (FPV) combustion model in the context of Large Eddy Simulation (LES) is extended to simulate a piloted (partially) premixed jet burner (PPJB). The ability and shortcomings of this state-of-the-art high fidelity combustion model are assessed. Furthermore, a Modular Reduced-order Model Framework (MRMF) is developed to integrate a range of elementary models to describe the instabilities that may occur in combustors utilizing partially premixed combustion technologies. A multi-chamber Helmholtz analysis is implemented, which is shown to be an improvement over previous single-chamber analyses. The assumptions and predictions of the proposed model are assessed by pressure and simultaneous Particle Image Velocimetry (PIV)–formaldehyde (CH2O) Planar Laser Induced Fluorescence (PLIF) measurements on a Gas Turbine Model Combustor (GTMC) at a sustained rate of 4 kHz. The proposed model is shown to be able to predict the instability frequency at experimental conditions. It also explains the trends of the variation of instability frequency as mass flow rates and burner geometry are changed, as well as the measured phase shift between different chambers of the burner. Finally, under the current framework an explanation of the dependence of the existence of combustion instability on equivalence ratio is provided.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111342/1/yuntaoc_1.pd
    • …
    corecore