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Abstract 

This study presents results of innovative integration of passive and active flow 

physics to accomplish effective supersonic mixing.  The study is continuing cavity flow 

control research in the supersonic wind tunnel at the University of Tennessee Space 

Institute (UTSI).  Initially numerical simulations were employed in support of choosing 

and refining the experimental configuration designs. Mixing enhancement was achieved 

through innovative coupling of aerodynamics of corner vortex flows and cavity flow 

control jets.  The two geometries were chosen for their potential to generate strong 

streamwise vortices, weaker shock losses, low drag, and cavity recirculation zones.  

Another consideration was that the two physically different concepts would be studied to 

provide better understanding of the innovative mixing.  Jets, simulating fuel injection, 

were used for flow control provided through penetrations in the front face and side walls 

of the cavity.  Flow visualization, dynamic pressure (sound pressure level) data are 

measured and PIV measurements are presented and compared with computational 

predictions for several geometries.  High frequency dynamic pressure data were recorded 

to determine the cavity flow acoustic patterns. Measurements were acquired by a digital 

data acquisition system from two dynamic pressure transducers, located at different 

locations on the floor of the cavity. PIV measurements of selected configurations were 

performed. Schlieren and PIV images, pressure spectra and 2-D PIV data obtained are 

used as a basis for understanding the flow processes involved and comparison for 

improving the overall mixing and penetration performance.  Streamwise vortices were 
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generated using two different innovatively designed geometries, strategically located 

upstream of selected cavity configurations, including various jet arrangements, 

simulating fuel flow and control. Both configurations tested developed relatively strong 

streamwise vortex flows and weakened or lofted shear layers, indicating that mixing was 

enhanced.  The two configurations exhibited flow changes with the simulated fuel 

injection.  However, different injection arrangements by the simulated fuel jets resulted in 

different details in the flow fields and their resulting acoustic spectra.  The resulting flow 

fields show improved potential for fuel flow mixing and increased penetration while 

amplifying or attenuating flow unsteadiness in the cavity.  
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Chapter 1: Introduction 

Background  

The study of cavity flows is important in various industrial systems as a result of 

many aerodynamics engineering configurations and applications.  The automotive and 

aerospace industries have a particular need to study these types of flows.  In the 

automotive industry optimizing the flow over wheel wells, open windows of passenger 

cabins and tractor and trailer combinations is crucial to noise free, low-drag and efficient 

systems. For example, the sound levels produced by pressure oscillations (buffeting 

effects) caused by an open window in a moving vehicle can result in occupant fatigue and 

potential deafening.  In the aircraft industry the flow over bomb bays, landing gear bays, 

and other doors and cavities is important to the aircraft’s ability to perform its mission.  

Flow over weapons bays can drastically affect weapon separation, vehicle performance, 

and the structural life of aircraft components.  A common problem in the flow over 

cavities is acoustic resonance generating large amplitude pressure fluctuations within the 

cavity.  A number of researchers have studied various cavities [Heller & Bliss 1975, 

Vakili & Gauthier 1994, Fowler 2010, Milne 2012, Thiemann 2013, Plentovich et. al 

1993, Rockwell and Naudascher 1978, Karamcheti 1955, Roshko 1955 and Rossiter 

1966] and found that at resonance the cavity flow can have substantial effect on a 

system’s health.  Various studies have also been performed to develop attenuating the 

cavity flow oscillations, as discussed later.   This study seeks to advance the state of the 

art by innovatively applying cavity flow control techniques to improve fuel flow mixing 
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and penetration in supersonic flows, while controlling acoustic unsteadiness in such 

cavity configurations. 

Previously Investigated Suppression Techniques  

In general, past supersonic studies at the University of Tennessee have been to 

understand these flows and develop active damping techniques which can be exploited 

over a broad operational envelope.   Studies at UTSI have focused on flow controls which 

modify boundary layer and the shear layer flows over the cavity.  

Vakili and Gauthier [Vakili & Gauthier 1994] applied steady distributed mass 

injection through porous plates upstream of the cavity and obtained near complete 

suppression of the cavity oscillations.  A schematic of this concept, depicting upstream 

mass injection, is provided as Figure 1.  Implementation of such a technique has not been 

readily suited for broad application most likely due to the added complexity and weight. 

Continued research has been motivated by the desire to develop better understandings 

and flow control techniques with comparable results, but with much simpler 

implementation.  
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Figure 1. Upstream Mass Injection Schematic (Active Cavity Flow Control 

Technique) [Fowler 2010]. 

 

Passive suppression techniques offer less complexity.  Early investigations 

include the use of upstream fences to attenuate the flow instabilities by modifying the 

shear layer.  Figure 2 is a depiction of such a fence placed upstream of a cavity.  Givogue 

et.. al [Givogue et. al 2011] investigated the use of two dimensional Cylinders to alter the 

resonant tones and shear layer.  Figure 3 depicts the placement of a rod in the flow at the 

leading edge of the cavity.  The shedding vortices interact with the cavity shear layer, 

altering the acoustic tones within the cavity.  Figure 4 is a representation of an airfoil 

similarly placed within the flow field.  In this study the horizontal rod provided the best 

performance.  The airfoil produced separated flows and provided the best results at the 

highest negative angle of attack.   

Milne [Milne 2010] and later Thiemann [Thiemann 2013] replaced distributed jets 

and two-dimensional cylinders with cylindrical rods placed vertically in the flow 

upstream of the cavity as shown in Figure 5. The height of rods could be adaptively 
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controlled to make the resulting flow control process adaptive. Furthermore, rods could 

transport fluids internally for expanded flow control and functionality, beyond cavity 

flow control.   

 

 

Figure 2. Blockage with Sawtooth or Perforated Spoiler Schematic (Passive 

Cavity Flow Control Technique) [Fowler 2010]. 

 

 

Figure 3. Rod in Crossflow Schematic (Passive Cavity Flow Control Technique) 

[Fowler 2010]. 

 

 

 

 

Cavity 

Flow 

Blockage (Sawtooth or Perforated Spoiler) 

 

 

Cavity 

Vortex Shedding Rod 
Flow 
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Figure 4. Airfoil in Crossflow Schematic (Passive Cavity Flow Control 

Technique) [Fowler 2010]. 

 

 

Figure 5. Upstream distributed jets and verticle rods flow control [Milne 2012].  

 

Dissertation Scope 

This research study performed in this dissertation seeks to extend the state of the 

art in cavity flow control and apply it to Supersonic Combustion Ramjet (SCRAMJET) 

combustor fuel injection and flame holding.  SCRAMJETs are characterized by having 

supersonic flow inside the combustors.  In supersonic flow, mixing for combustion is 

limited by slow shear layer growth.  To accomplish combustion in practical streamwise 

distances in SCRAMJETs, innovative fuel injection, mixing and flame holding 

techniques are the focus of numerous research and development studies.  This 

 

 

Cavity 

Flow 

 Airfoil 
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dissertation seeks to advance the state of the art by innovatively applying active and 

passive flow control techniques to improve fuel flow mixing and penetration while 

controlling acoustic unsteadiness in the cavity, using low loss configurations.  Leading 

edge shapes are investigated for the creation of corner flows and vortex creation. Cavity 

shaping and blowing are utilized to minimize cavity oscillations and improve fuel mixing 

and distribution.  Complimentary numerical studies were performed as well as validation 

experiments in the UTSI supersonic wind tunnel, (M = 1.85), to help improve the 

geometry and flow path for better overall results.  The author has conducted an 

exhaustive literature search for more contemporary literature, with limited success.  This 

is believed to be an indicator that the subject of this study is highly current and relevant 

to supersonic mixing applications.  It may also be that some of the relevant research 

results are either proprietary or are just not disseminated due to sensitivity of this topic.  

The author also believes and anticipates that results of this work would establish a 

fundamental milestone in supersonic mixing enhancements. 
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Chapter 2: Literature Review 

Cavity Classifications 

There have been traditionally three methods for classifying cavity types.  The first 

is by geometry. Figure 6 outlines the layout of a simple cavity in a crossflow.  Here, deep 

cavities are cavities that are deeper than they are long.  Shallow cavities have their 

longest dimension as length.   

The second method of classification is based upon where the shear layer 

reattaches [Plentovich et. al 1993].  In an open Cavity, shown in Figure 7, the shear layer 

separates at the leading edge and attaches again at the rear of the cavity.  Closed cavities, 

Figure 8, are sufficiently shallow that the shear layer attaches to the bottom of the cavity 

floor before separating and exiting the cavity.  Transitional cavities, Figure 9, lie in 

between these two and can be either open or closed. 

The third method is based upon the type of oscillations that are maintained in the 

cavity.  Rockwell and Naudascher [Rockwell & Naudascher 1978] classify these cavities 

as Fluid Dynamic, Fluid Resonant, and Fluid Elastic, see Figure 10.  Fluid Dynamic 

oscillation are typical of flow that is unstable.  Fluid Resonant cavity flows have strong 

resonant oscillations within the cavity.  Fluid Elastic flows result from the coupling of the 

oscillations with a moving boundary within the cavity. 
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Figure 6. A Typical Rectangular Cavity with a Freestream Crossflow [Fowler 

2010]. 

 

 

Figure 7. Open Cavity Flow, L/D<10. [Pentovich et. Al 1993]. 

 

 

Figure 8. Closed Cavity Flow, L/D>13. [Pentovich et. Al 1993]. 
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Figure 9. Transitional Cavity Flow, 10<L/D<13. [Pentovich et. Al 1993]. 

 

 

Figure 10. Categories of Fluid Cavities. [Rockwell & Naudascher 1978]. 
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Cavity Oscillations 

Cavity oscillations are pressure, density, and velocity fluctuations that occur as 

flow travels over the open side of a cavity.  These flow oscillations occur as the free shear 

layer develops unsteady interactions with the rear wall of the cavity which may develop 

resonance with the cavity acoustics. 

In the 1950’s Karamcheti [Karamcheti 1955] studied flow over a wide variety of 

shallow cavities at Mach numbers up to 1.5. Karamcheti observed that flows with laminar 

upstream boundary layers emitted more intense sound levels than those with turbulent 

boundary layers.  He also noted that when the length of the cavity was small enough that 

the shear layer transverses the cavity there was no sound emission from the cavity flow.  

Roshko [Roshko 1955], while studying drag effects of various length to depth 

ratio cavities, noted the formation of vortices forming from the separated boundary layer 

impinging on the trailing edge causing a high-pressure zone.   

Rossiter [Rossiter 1966] developed an empirical model for calculating the 

periodic cavity frequency (ƒ).   

 

(1)  𝑓 =
𝑈∞ (𝑚−𝑛)

𝐿(
1

𝐾𝑣 
+𝑀)

 

 

Where L is the cavity length, U∞ is the freestream velocity, M is the freestream 

Mach number, Kν is the ratio of convective velocity of vortices to freestream velocity, n is 
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the phase delay between acoustic wave and new vortex, and m is the mode number for 

the cavity oscillations. 

Rossiter’s equation was suitable for Mach numbers up to 1.5.  Above Mach 1.5 

there was an increasing error in the prediction. This error was due to the assumption that 

the cavity speed of sound was the same as the freestream speed of sound.  Heller, Holmes 

and Covert [Heller et. al 1971] modified Rossiter’s Equation (1) to improve its accuracy 

above Mach 1.5 by assuming that the cavity speed of sound was the freestream recovery 

speed of sound.  They introduced the non-dimensional cavity frequency, Strouhal number 

(St) [Heller et. al 1971],  

 

(2)   𝑆𝑡 =
𝑓𝐿

𝑈∞
=

(𝑚−𝑛)

{
𝑀

[1+
𝛾−1

2
𝑀2]

1
2

+
1

𝐾𝑣
}

 

 

where γ is the ratio of specific heats.  This equation shows good agreement up to 

Mach number 3.2. 

Bilanin and Covert [Bilanin & Covert 1993] modeled supersonic flow over a 

cavity using a vortex sheet and a noise source.  Their model related the inflow and 

outflow at the rear of the cavity to fluctuations of the free shear layer that was 

approximated by a vortex sheet.  The interaction of the vortex sheet, the cavity trailing 

edge, the resulting inflow and outflow from the cavity excited the shear layer at the 
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leading edge.  They modeled these interactions by a noise source at the trailing edge of 

the cavity.  These fluctuations are the source of the acoustic radiation.  

Heller and Bliss [Heller & Bliss 1975] observed, in a water tunnel, a six-step 

oscillation process resulting in inflow and outflow at the trailing edge caused by unsteady 

oscillations of the shear layer.  Figure 11 outlines the progression of these unsteady 

oscillations.  

From [Heller & Bliss 1975] 

A.  “The pressure wave from the previous trailing-edge disturbance reaches the front 

of the cavity and reflects.  Another such wave, already reflected of the front wall, 

approaches the rear of the cavity.  The shear layer is above the trailing edge, so the 

external flow cannot interact with the trailing edge to produce disturbances.  Some 

fluid leaves the cavity.”   

B.  “The shear layer waveform travels rearward, reducing the height of the shear 

layer above the trailing edge.  A new compression wave begins to flow from the rear 

as the flow interacts with the trailing edge and fluid is added to the cavity.  The front 

compression wave has reflected off the front wall and moves rearward nearly in 

phase with the shear layer displacement.  The previous rearward wave has reached 

the training edge.” 

C.  “The wave reflected off the front wall continues to move rearward in phase with 

the shear layer displacement.  The shear layer, which is now below the trailing edge  
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Figure 11. Cavity Pseudo-Piston Oscillation Cycle. [Heller & Bliss 1975]. 
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at the rear of the cavity, forms a new forward traveling compression wave as the 

external flow impinges on the back of the cavity.” 

D.  “the newly generated forward traveling compression wave and the reflected, 

rearward traveling compression wave meet and interact near the cavity center.” 

E.  “After the interaction, the waves continue in their receptive directions.  The 

external part of the forward traveling wave moves into the supersonic flow, thus 

causing it to be tipped more than the external flow Mach angle.  The rearward wave 

moves in the same direction as the external flow and travels at subsonic speed 

relative to it.  This subsonic relative speed explains why the rearward traveling wave 

stops at the shear layer.  At the rear, the shear layer reaches the trailing-edge 

height.” 

F.  “The shear layer is now above the trailing edge height.  The wave generated at 

the trailing edge approaches the front of the cavity, and the reflected wave nears the 

rear of the cavity.  The next step is the same as A, and the oscillation cycle repeats.” 

The inflow and outflow at the trailing edge can be modeled by a replacing the rear 

wall of the cavity with a pseudo piston as depicted in Figure 12. 

 

 

Figure 12. Simple analytical cavity model. [Heller & Bliss 1975]. 
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Cavity Flow Control Techniques 

Both active and passive cavity flow control techniques have been utilized to 

minimize the drag and acoustic oscillations found in cavity flows.  Techniques that have 

been investigated are typically employed to affect the shear layer or the boundary layer 

upstream of the cavity.  Passive methods that have been investigated are shaping of the 

leading and trailing walls of the cavity, or by placing objects like vortex generators, pins, 

rods, or airfoils upstream of the cavity. Active methods for suppression include blowing 

and suction techniques as well as movable upstream devices placed in the flow or 

boundary layer. 

Passive Cavity Flow Control 

After concluding that the different sound spectrums from two geometrically 

different size cavities with a common length over depth ratio was the result of upstream 

boundary layer differences, Rossiter [Rossiter 1966] investigated spoilers located at the 

leading edge of a cavity to alter the boundary layer.  The largest spoiler had the largest 

effect on attenuating the larger scales of flow unsteadiness.    

Heller and Bliss [Heller & Bliss 1975] and Zhang et.al [Zhang et. al 1998] 

investigated slanting the training edge of the cavity. Heller and Bliss [Heller & Bliss 

1975] discovered that the slanting the trailing edge of the cavity allowed the shear layer 

to remain straight over the cavity and for the proper impingement angle at the trailing 

edge.  Heller and Bliss [Heller & Bliss 1975] also investigated adding a detached cowl.  

The position of the detached cowl is critical.  Placed properly the cowl creates a low-
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pressure area between the cowl and the trailing edge of the cavity canceling out the 

effects of the mass addition and removal process. 

Perng and Dolling [Perng and Dolling 1998] studied the effects of varying cavity 

dimensions and slotted, slanted and vented geometries on cavity oscillations.  They found 

that vented and slotted walls had little effect. 

Franke and Carr [Franke & Carr 1975] screened a variety of baffles and leading 

and trailing edge modifications in the water tunnel.  They tested the most promising 

configurations in the wind tunnel.  They found that the ramps could reduce the pressure 

oscillations and that frequencies were well predicted by the modified Rossiter’s equation.  

Smith, Gutmark and Schadow [Smith et. al 1990] utilized multi-steps and pins 

extending into the supersonic flow to reduce the amplitude of the acoustic oscillations, 

see Figure 13.  A maximum reduction of a factor of 5 was produced by the utilization of 

the pin profiles shown in Figure 14.  

Franke and Sarno [Franke & Sarno 1990] studied static and pulsating fences and 

steady and pulsating flow injection.  Static fences at the leading edge were the most 

effective suppressor.   

Loewen [Loewen 2008] investigated the effects of a rod in a crossflow and found 

the suppression of cavity tones was primarily due to blockage and lofting effects from the 

rod. 
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Figure 13. Modular Structure of the Slot in the Flat Plate. [Smith et. al 1990]. 

 

 

Figure 14.  Two Configurations of Pins Which Were Used Most Effectively to 

Suppress Acoustic Resonance in the Slot. [Smith et. al 1990]. 
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Givogue, Fowler, and Vakili [Givogue et. al 2011] investigated the use of two 

dimensional cylinders to alter the resonant tones and shear layer.  The experiment was 

designed to assess whether the unsteadiness attenuation accomplished was a shear layer 

lofting effect or due to high frequency vortex shedding in the wake.  Their results clearly 

indicate that the changes in shear layer were due to wake lofting effects and not high 

frequency vortex shedding.  The wake size and location of the wake have a direct effect 

on the initial reflected wave generation and feedback mechanisms that drive the high 

amplitude pressure pulses in the cavity. 

Milne [Milne 2012] and Thiemann [Thiemann 2013] studied the use of vertical 

rods that were placed upstream of the cavity projecting into the flow, Figure 15.  There 

were sixteen rod size and layout configurations tested.  Configurations with staggered 

patterns distorted the vorticity in the shear layer more effectively, and these were more 

effective at suppression of the resonant acoustic tones in the cavity.  

Peltier et.al [Peltier et.al 2013] investigated cavity response to oblique shocks 

generated upstream to simulate shock induced flow distortion like that caused by a 

forebody upstream of the inlet.  They found that the cavity flow was unsteady and the 

shear layer displacement was increased when the shock generator was located is in the 

furthest upstream position. 

 



19 

 

 

Figure 15. Configuration 12, Pin Plate in Test Section [Thiemann 2013].  

 

Active Cavity Flow Control 

There have been a number of instigations of active flow control methods [Sarno 

and Franke 1994, Vakili & Gauthier 1994, Wolfe 1995, Lamp and Chokani 1997, and 

Arunajatesan et. al 2008] 

Vakili and Gauthier [Vakili & Gauthier 1994] studied the use of upstream mass 

injection through holes in plates located just upstream of the cavity, Figure 16.  They 

achieved nearly complete suppression of the cavity oscillations with low density injection 

depicted in Figure 17.  They attributed the effectiveness of this method to modifications 

to the shear layer instability characteristics. 
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Figure 16.  Schematic of the experimental setup. [Vakili & Gauthier 1994]. 

 

 

Figure 17. Schematic of the distribution of holes for two mass-injection systems:  

a) High-density injection and b) low-density injection, [Vakili & Gauthier 1994]. 

  



21 

 

Wolfe [Wolfe 1995] found a correlation between the amount of mass injection 

and the effectiveness of the injection on suppression of acoustic tones in the cavity.   

Arunajatesan et. al [Arunajatesan et. al 2008] compared the reduction in cavity 

acoustic resonance between blowing through slots or microjets at the leading edge of a 

cavity and the use of a fence the thickness of the boundary layer at the same location.   

This study concluded that bowling concepts, using a small amount of mass 

injection, could be as effective as a leading-edge fence.   

George, Ukeiley, Cattafesta and Taira [George et. al 2015] found that leading 

edge blowing through slots could reduce the acoustic resonance by as much as 40%.   

Houpt et. al [Houpt et. al 2018] recently performed a study of Cavity-Based Flow 

Control in a Supersonic Duct Utilizing Q-DC Plasma Shock Wave Generator, in a Mach 

2 flow with transverse fuel injection upstream of the cavity.  They employed plasma 

generated oblique shocks from the opposite wall, so that the shocks impinged on the 

cavity shear layer at different positions, resulting in lifting the shear layer into the main 

stream, Figures 18 and 19.  The lifting of the shear layer is expected to increase the 

mixing between the core flow and the cavity. 
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Figure 18. Cavity configuration [Houpt et. al 2018]. 

 

 

 

Figure 19. Schlieren images for different injection rates [Houpt et. al 2018]. 
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Cavity Enhanced Mixing and Flame Holding 

In turbine engine augmentors and ramjet propulsion systems flame holding is 

normally accomplished by the use of bluff bodies in the flow field.  These bluff bodies 

create recirculation zones in their wake.  Fuel penetration and mixing is accomplished by 

the use of strut injectors across the flow field to distribute fuel across the airstream. In 

scramjet combustors these techniques create blockage and strong shock structures leading 

to high drag losses.   

Fuel Injection and flame holding techniques for efficient combustion in scramjets 

has been the focus of ongoing research.  Ben-Yakar and Hansen [Ben-Yakar and Hanson 

2001] and Pandy and Sivasakthivel [Pandy and Sivasakthivel 2011] have conducted 

detailed reviews of recent advances. 

A variety of fuel injection and flame holding schemes have been proposed and 

studied [Billig 1993, Abbitt et.al 1993, Hartfield 1994, Riggins 1995, Riggins and Vitt 

1995, Curran et. al 1996, Tishkoff et. al 1997, Fuller et. al 1998, In et. al 1998, Sung et. 

al, 1999, Huber et. al 1979, Ben-Yakar and Hansen 1998, Hartfield et .al 1994, Curran 

2001, Nenmeni & Yu 2002, Fry 2004, Gruber  et. al 2004, Gruber  et. al 2006, Tuttle et. 

al 2012, Grady et. al 2012, Tam 2012, Boles et.al 2012,  Kirik et. al 2013, Barnes et. al 

2014, and Arial et. al 2015].  

As shown in Figure 20, early scramjet fuel injection was accomplished by 

injecting fuel transversely into the flow [Billig 1993, Gruber et. al 1995, and 

VanLerberghe 2000].   
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Figure 20. Schematic of underexpanded transverse injection into supersonic 

flowfield [Gruber et. al 1995]. 
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In Figure 20 the upstream boundary layer separates and a normal shock is created 

causing this type of injection scheme to have high drag. 

Abbitt et.al studied transverse injection behind a rearward facing step [Abbitt et.al 

1993].  Here the expansion wave and shear layer interact with a bow shock created by the 

hydrogen fuel jets as shown in Figure 21. 

 

 

Figure 21. Fuel injection behind a rearward facing ramp [Abbitt et.al 1993]. 

 

Hartfield, Hollo, and McDaniel [Hartfield et .al 1994] investigated vortex 

enhanced mixing behind a swept ramp injector Figure 22.  The fuel injection was 

accomplished nearly parallel to the freestream flow.  They found that the flow is turned 

away from the wall downstream by the ramp generated vortices, but the effect of the 

ramp generated vortices dissipates after 10 ramp height distances downstream, and that 

mixing rate decreases with increasing Mach number.  
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Figure 22. Swept Ramp injector [Hartfield et .al 1994]. 

 

Fuller et.al [Fuller et. al 1998] compared the effectiveness of ramp injectors to 

aerodynamic injectors, Figure 23.  They found that the physical ramp injector reached 

fully mixed conditions in approximately half the length of the aerodynamic ramp but that 

the aerodynamic ramp had lower pressure losses.   

Nenmeni and Yu [Nenmeni and Yu 2002] from the University of Maryland 

investigated cavity induced mixing in confined supersonic flows, Figure 24.  Nenmeni 

and Yu [Nenmeni and Yu 2002] found that flow induced cavity resonance may be 

utilized to improve mixing over a broad array of cavity dimensions and Mach numbers, 

Figure 25. 

Yu and Shadow, Sato et. al, and Arial et.al [Yu and Shadow1994, Sato et. al 1999, 

and Arial et.al 2015] investigated the interactions between cavities and fuel injection.   
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Figure 23. Physical and aerodynamic ramp schematics [Fuller et. al 1998] 

 

 

Figure 24. Experimental Schematic (dimensions are in mm) [Nenmeni & Yu 

2002]. 

 

 

Figure 25. Schlieren images of mixing between Mach 2 air stream and transverse 

fuel injection without (above) and with (below) the cavity for mixing 

enhancement [Nenmeni & Yu 2002]. 
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Arail, Sugano, Tsukazaki, and Sukaue [Arial et. al 2015] conducted research on 

the interactions between cavity flow and a ramp injector.  In their study the cavity was 

placed on the opposite wall and upstream of the ramp injector.  They found that the 

acoustic tones improved mixing of the fuel with the freestream flow. Figure 26 shows the 

improved fuel mixing in the presence of the cavity, and Figure 27 highlights the acoustic 

waves due to the cavity interacting with the fuel injection region.  

 

 

Figure 26. Schlieren flow image with and without cavity [Arial et. al 2015]. 

 

Barnes, Tu, and Segal [Barnes et. al 2014] conducted research on the effect of 

mass injection in the cavity on flame holding capability and the mass exchange into the 

freestream.  They injected flow into the cavity through the leading edge and compared 

that to injecting fuel at a rearward angle into the floor of the cavity.  Both injection 
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locations created fuel rich regions interacting with vortices trapped in the cavity.  The 

forward injection location resulted in a larger fuel rich zone in the cavity.  They also 

found that the shear layer was entirely within flammability limits and would be a likely 

location for flame anchoring.  

 

 

Figure 27. Power Spectrum distribution, Power Spectrum (dB) vs Frequency 

(Hz) [Arial et. al 2015]. 

 

State of the Art in Supersonic fuel injection and mixing 

From the open literature, as shown in the above review, there are continuing 

efforts to facilitate efficient supersonic combustion through efficient fuel injection and 

mixing in short distances.  Increased penetration into the cross flow has remained as the 

strongest challenge.  Various sizes of struts with or without built in cavities are used to 
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increase fuel penetration and mixing into the main flow, but result in strong shocks and 

losses.  Pulsed fuel injection if appropriately implemented, has been shown to help 

penetration and mixing away from the boundaries [Vakili et. al 1990, Vakili et. al 1994, 

Chang et. al 1995, and Williams 2016].  However, generating very high frequency pulsed 

fuel injections, needed for supersonic flows, is a challenge of its own.   

This research is a first and introductory study of a new approach for increased fuel 

penetration for more efficient mixing in supersonic flow.  Such a passive flow path 

design with distributed fuel injection for flow mixing control is new and represents a 

major step forwards in this developing field.  Here we utilize passive geometry in 

coordination with strategically positioned fuel injection within a cavity to generate 

resonant cavity oscillations for increased local mixing coupled with passively generated 

streamwise vortices which help increase fuel rich flow mixing and penetration into the 

cross flow.  This innovative approach, developed and improved based on flow physics, 

help to overcome the various challenges associated with supersonic fuel injection and 

mixing.  The author believes and hopes that this work will establish a fundamental 

milestone in the direction of and state of the art for supersonic mixing enhancements. 
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Chapter 3: Experimental Apparatus 

This experimental study was completed the 8 inch by 8 inch cross section 

supersonic blowdown wind tunnel in the Gas Dynamics Laboratory at the University of 

Tennessee Space Institute.  Testing was completed on two different configurations 

designed to have low shock losses and to generate vorticial flows that enhance mixing.  

Instrumentation included Schlieren video, Particle Image Velocimetry (PIV), and high 

frequency pressure measurements.   

Wind Tunnel 

The University of Tennessee Space Institute wind tunnel is a blowdown wind 

tunnel.  A schematic of the wind tunnel is provided as Figure 28.  Air is compressed and 

stored in 18 High pressure cylinders at 3000 pounds per square inch.  The tunnel 

operation is controlled with LABView software.  The air is routed to the wind tunnel 

plenum via a pneumatically driven flow control valve.  In the plenum the flow is 

straightened by four stages of honeycomb and grid flow straighteners.  The flow then 

travels through a convergent divergent nozzle designed for Mach 1.85.  The nozzle has an 

axisymmetric entrance and an 8-inch by 8-inch square exit.  The test section is 4 feet long 

with observation windows on the top and sides.  The bottom has a removable floorplate 

where the test articles are mounted.  The flow exits the test section and is expanded to 

atmospheric pressure through a diffuser.   

The top window of the test section provides access for the Particle Image 

Velocimetry (PIV) laser sheet.  The PIV system is used to provide velocity vectors and Z-
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vorticity of the flow.  The side windows of the test section provide a view of the test 

section for Schlieren imaging.   

The stagnation temperature (T0) and stagnation pressure (P0) are measured in the 

stilling chamber and the static pressure (P) is taken via static ports in the test section. 

The Mach number (M), static temperature (T), speed of sound (a), and freestream 

velocity (U∞) can be calculated using the following equations [National Advisory 

Committee for Aeronautics (NACA) Report 1135]:    
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Calculated Mach Number (M) = 1.84 

Calculated Speed of Sound (a) = 821 ft./s 

Calculated Velocity in Test Section (U) = 1511 ft/s 

 

 

https://en.wikipedia.org/wiki/National_Advisory_Committee_for_Aeronautics
https://en.wikipedia.org/wiki/National_Advisory_Committee_for_Aeronautics
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Schlieren 

The University of Tennessee Space Institute Schlieren system was installed in the 

test cabin so that the shock structure changes could be recorded via video camera.  

Schlieren is a flow visualization technique that relies on density changes in the flow field 

to be visualized due to the density changes in the flow leading to changes in refraction 

index.  A sketch of the system is provided in Figure 28.  A high intensity light sources is 

focused upon a concave mirror.  The light is then reflected through the test section and 

onto another concave mirror.  The image is then reflected off of a plane mirror and across 

a sharp edge and onto a screen.  The image is then captured by a video camera and 

recorded and displayed in the wind tunnel control room.   

Acoustic Instrumentation 

High speed acoustic measurements were taken with Kulite® XCS-133-093-15D 

pressure sensors.  These sensors were flush mounted to static pressure ports, located in 

the bottom floor of the test article cavity.  Data was acquired at 40 kHz rates for several 

seconds for spectral analysis.  Figure 29 provides a typical example of an acoustic 

spectrum, along with the Rossiter Modes predicted by the modified Rossiter Equation, for 

the 11-inch cavity utilized by Milne [Milne 2012] in previous experimental studies at 

UTSI.   
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Figure 28. Sketch of HSWT with Schlieren Setup [Fowler 2012] 
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Figure 29. Baseline cavity spectra [Milne 2012]. 

 

Particle Image Velocimetry (PIV) 

Particle Image Velocimetry (PIV) was used to provide an understanding of the 

flow vectors and vorticity in the region around the test article and above the tunnel floor.  

PIV uses a laser sheet to excite molecules that have been seeded into the flow upstream 

of the test section.  This seed moves with the airflow and is assumed to have the same 

velocity vector as the airflow.  When excited by the laser the molecule of seed fluoresces.  

The laser is pulsed, like a photographer’s flash, with very precise timing so that the 

images can be compared.  Since the time between the images is known, the change in the 

particles position allows the velocity vector to be calculated.   
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The seeding is comprised of 70% isopropyl alcohol, 30% water, with a small 

amount of fluorescein dye powder, nominal diameter of 2 micrometers.  The fluid borne 

seed is injected into the tunnel flow using pressurized air via a coaxial tube in the 

convergent section of the nozzle. 

The TSI LASERPULSE PIV system contains two neodymium-doped yttrium 

aluminum garnet (Nd:YAG) lasers.  The beam is directed to the top of the test section 

through an articulated laser arm.  This arm included a series of prisms and mirrors and 

finally the beams pass through spherical and cylindrical lenses creating a 0.04 inch by 4-

inch laser sheet.  This sheet is used to illuminate the leading-edge device and the forward 

portion of the cavity, Figure 30.   

 

 

Figure 30. HSWT with PIV Apparatus [Loewen 2008]. 
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The TSI LASERPULSE PIV system utilizes INSIGHT™ PIV Software to operate 

the system components.  INSIGHT utilizes a “frame straddling” procedure to create the 

two images that will be compared to generate the velocity vectors.  This procedure 

compensates for the camera’s relatively low frame rates.  The 1st laser pulse occurs near 

the end of the 1st camera exposure and the 2nd laser pulse occurs at the beginning of the 

second camera exposure, Figure 31.  The time between the laser pulses (dT) is precisely 

controlled to 2 microseconds.  

 

 

Figure 31. Frame Straddling Exposure Technique [Thiemann 2013] 

 

The camera has a charge coupled device (CCD) with a sensor that has 1016 pixels 

high (y - from the tunnel floor toward the top of the test section), by 1000 pixels wide (x - 

in the flow direction).  The INSIGHT PIV calibration procedures were followed [] 

resulting in a conversion factor of 115.60672 micrometers per pixel.  Additional details 

concerning the TSI LASERPULSE PIV system and INSIGHT™ PIV Software operation, 

calibration and error analysis are included in references [Fowler 2010, Thiemann 2013, 

Loewen 2008, and Givogue et. al 2011].   
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After post processing of the data with Insight, the velocity vector data was 

imported into Tecplot.  Tecplot enabled the vector fields to be plotted and the vorticity in 

the z direction (ωz) to be plotted.  The z direction is directed out of the side window of 

the wind tunnel test section.  

Test Articles and Cavity Configurations 

Mixing in supersonic flows is limited by slow shear layer growth.  Passive flow 

control techniques are typically the most robust in harsh environments like supersonic 

combustors.  They are typically the best choice for enhancing fuel mixing in this type of 

environment.    

Two test articles were developed.  The test articles consisted of a vortex 

generating shape on the leading edge of a cavity.  Each had ports for air injection as well 

as for pressure measurements.  The test articles configurations were developed to provide 

reduced acoustic signature and increased vorticity to provide mixing downstream of the 

cavity. 

Two cavity and flow device configurations were chosen from a wider selection of 

configurations researched based on their potential mixing enhancement with lowest drag 

and shockwave losses.  Additionally, these cavities were fitted with (simulated fuel) flow 

injection jets to accommodate this additional aspect of flow control.  There were two jets 

located in the sidewall of the cavity, and three jets located in the front wall of the cavity.   
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The flow device and cavity geometries were innovatively designed to generate a 

relatively weak shock structure and thus have relatively low shock losses when compared 

with other flame holding and mixing schemes.  

Independent CFD predictions were conducted by Dr. A.J. Meganathan in support 

of conceptual design and to predict the resulting flow fields.  The CFD initially helped in 

minimizing the number of physical models which were fabricated and tested in the 

tunnel.  

The two configurations and the experiments that resulted were specifically 

designed to provide a broad base information to assess the effectiveness of this novel 

concept.  The two flow devices were selected to provide counter rotating vortices that 

would be lofted into the flow downstream.  One was designed to concentrate the vorticity 

in the center of the cavity and the second was to concentrate the vorticity near the 

sidewalls.  One cavity was designed to maximize the pressure oscillations within the 

cavity and the second was designed to minimize them.  The locations of the fuel injection 

ports were chosen to maximize interaction with the vortex flow structures. 

Test Article #1, Figure 32, had a pyramid like structure to generate vorticity just 

upstream of the cavity.  This structure was designed to concentrate the vorticity in the 

center of the cavity.  The cavity was slightly wider in the upstream than in the 

downstream and the bottom of the forward edge of the cavity had a radius of 0.5 inches 

and the bottom of the cavity tapered to the trailing edge.  The bottom of the cavity had 

three ports for high frequency pressure measurements.  At the base of the pyramid were 



40 

 

three ports for blowing downstream with the direction of flow.  These ports were 

designed to change the shear layer location with respect to the cavity.  There was also one 

port on each wall just down-stream of the cavity leading edge.  These ports simulated 

injection ports that should enhance fuel mixing with the vortex structures coming into the 

cavity.  This should enhance flame holding in the cavity and increase fuel penetration 

into the mean-flow downstream of the cavity.  In this test article, the cavity was designed, 

with a tapered floor and rear cavity wall, to passively reduce the acoustic response.   

Test Article #2, Figure 33, has a trapezoid ramp vortex generation device 

upstream of the cavity.  The trapezoid is wider upstream and is the same width as the 

cavity at the trailing edge.  This shape was chosen to concentrate vorticity near the cavity 

side walls.  The cavity was nearly a square planform and is constant in depth.  The cavity 

had an L/D of 4.  There were 3 static pressure ports in the bottom of the cavity.    

Like test article #1, at the base of the trapezoid ramp were three ports for blowing 

downstream with the direction of flow.  These ports were designed to change the shear 

layer location with respect to the cavity.  There was also one port on each wall just down-

stream of the cavity leading edge.  These ports simulated injection ports that should 

dampen the acoustics and enhance fuel mixing with the vortex structures coming into the 

cavity.  This should enhance flame holding in the cavity and increase fuel penetration 

into the mean-flow downstream of the cavity. 
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Figure 32. Test article number 1, dimensions in inches. 
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Figure 33. Test article number 2, dimensions in inches. 
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The two test articles were constructed by a 3d printing process at the UTSI Gas 

Dynamics Laboratory.  The parts were printed in sections and bolted together as can be 

seen in Figure 34.  The parts were then shaped with filler and sanded to provide the 

proper surface finish.    They were then painted and installed into the removable 

floorplate of the supersonic tunnel test section, Figure 35.  Tubing was attached to the 

blowing and transducer ports in the cavity. The air supply for blowing was plumbed to 

the five tubes on the left side in Figure 36.  The transducers were connected to the three 

tubing ports that are along the base of the cavity, shown on the right side in Figure 36.  

The test articles were then installed into the tunnel along with the floorplate, Figures 37 

and 38 

 

 

Figure 34. 3d Printed leading edge Section for test article #1 
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Figure 35. Test article assembled into the tunnel floorplate. 

 

 

Figure 36. Tubing added to the bottom of the test article for blowing and 

dynamic pressure measurement. 
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Figure 37. Test article #1 mounted inside the test section. 

 

 

Figure 38. Test article #2 mounted inside the test section. 
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Chapter 4: Results and Discussion 

Introduction 

In this chapter, the analysis of the data taken will be presented.  The testing was 

conducted over a period of more than a year.  Delays were caused by a number of higher 

priority tests, forcing interruptions in the availability of the wind tunnel.  These 

interruptions caused additional delays in the test program by requiring reinstallation and 

recalibration of test articles and data systems.   

While there were compromises in the data systems and optics, the results are clear 

enough to generate conclusions concerning the flow control techniques in question.  The 

Schlieren data was quantitatively analyzed to make quick assessments of blowing 

effectiveness. The PIV data was reduced and velocity, vorticity, turbulence, and 

Reynolds Stress were calculated.  Pressure data were analyzed to obtain spectra to help 

better understand the effects of the injected flow into the cavity on the flow field.  The 

results will be discussed in the following sections. 

Testing was completed with simulated fuel injection by blowing pressurized air 

through orifices in the cavity walls.  In the following discussion the label “No Jets” 

indicates that none of the flow orifices in the cavity had flow, the label “Axial Jets” refers 

to blowing flow through the 3 jets at the forward face of the cavity, the label “Side Jets” 

indicates that blowing is occurring through the orifices in the side of the cavity near the 

front face, and “all Jets” refers to flow through both the axial and side orifices. 
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Sources of Error and Uncertainty Analysis 

Typical sources of error include the equipment, equipment calibration, sampling, 

and processing algorithms.  The facility and measurement systems were effectively the 

same as those used in previous experiments in the same UTSI supersonic wind tunnel. A 

full description of the statistical error analysis is provided in references [Fowler 2010, 

Thiemann 2013, Loewen 2008, and Wolfe 1995].  In the following paragraphs, some 

additional factors contributing to the uncertainty of the results are described. 

Initial testing was completed with a Schlieren system.  The Schlieren system was 

compromised in two ways.  The first was the lack of adequate spacing for optimum 

mirror and screen spacing.  The second compromise was inadequate light source 

intensity.  The low intensity of the light source provided, resulted in low contrast and 

weak gradients, making the Schlieren images difficult to read and analyze.  Another 

contributing factor was the presence of Mach waves in the test section of the tunnel test 

section. 

PIV measurements were taken along the test unit centerline and along the side 

edge of the cavity.  One difficulty in taking PIV measurements off of the test cell 

centerline is the ability to get adequate seeding of the flow off centerline.  The seeding 

device is located in the plenum chamber on the cell centerline.  This device consists of 

two concentric rods with an orifice on one side.  The inner tube supplies the seed and the 

outer tube supplies blast air to atomize the seeding fluid.  But since this rod is inserted at 

the tunnel centerline in the plenum, most of the seed is along the test section centerline.  
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To compensate for this fact the rod that supplied the seed was turned at an angle to the 

flow in an attempt to get additional seeding at the cavity edge.  This technique had 

limited effect on the quality of seeding along cavity edge. 

The camera used to acquire the PIV images was compromised due to the presence 

of a bad pixel.  The inoperative pixel resulted in a line across the screen from the top to 

the bottom behind the cavity.  This created a discontinuity in the data which can be seen 

in all of the PIV images and the results.  Care must be taken to not mistake an artifact of 

this bad pixel for an actual flow phenomenon. 

A number of different factors can contribute to increasing uncertainties and errors 

in pressures, Schlieren, and PIV measured data for calculating and generating flow field 

information. They can be broadly classified into errors associated with hardware and 

setup. These types of errors are related to the sensors, equipment component setup, 

acquisition and data analysis for the measured variables.  

The Schlieren images obtained in this study were utilized as qualitative 

information and are used to detect relative changes in the flow field due to changes in 

model geometry and jets flow.   

Pressure measurements are affected by details of pressure transducer’s 

specifications such as accuracy and linearity; error band determined via calibration can be 

taken into account to estimate the overall order of accuracy for the measurement.   

For the PIV data, the measurement system is composed of the laser beams with 

Gaussian profile in Transverse Electro Magnetic mode 00, which translate into laser light 
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sheets uniformity and alignment, CCD camera resolution, synchronizer for timing 

between different frames, optical magnification is calibrated.  Aberrations inherent in the 

optics govern the overall uncertainty in the PIV data.  Even though most of these are 

carefully set up and selected for about one percent accuracy, the combined effects of the 

various factors increase the uncertainty to about 5%-10%, with the higher accuracy 

applicable to the higher speed ranges.  In the PIV setup used for our measurements, there 

was a damaged pixel in the CCD chip.  This resulted in a vertical line loss of data 

corresponding to the bad pixel, in each image matrix, and resulted in contamination of the 

calculated data in the proximity of the line.  Due to the averaging and interrogation sub 

window size of 32x32 pixels, this effect is evident in most processed data and images 

containing velocities, vorticity and stresses.  Since the affected area is in the downstream 

of the cavity its effect is not detrimental to the understanding of the flow field.  For this 

reason, the local patterns are generally not affecting the results and conclusions. 

Electronics, including timing synchronization circuits are highly accurate.  

Therefore, the error in the timing is normally ignored for the flow speeds in this study. 

For a given flow field, using a camera with highest density CCD with a nominal dT, (or 

Del t), improves the accuracy of calculated particle displacements.  Normally, a larger 

separation time is recommended, within the maximum feasible dT for a particular flow 

measurement equipment setup and a chosen interrogation window size. 

Estimating errors in PIV measurements are affected by components resolutions, 

optical set up and data analysis methodology.   The interrogation sub window size in this 
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study was 32 x 32 pixels including a 70 % overlap to increase the number of calculated 

vectors. Usually a 50% overlap related to the Nyquist criterion is used. Using a higher 

overlap only increases the number of vectors and not the scales that could be truly 

resolved.  Finer resolution of velocity vectors help to improve calculations of vorticity 

and turbulence properties. The dynamic spatial range is basically fixed by the image size 

and interrogation spot size. The interrogation process is repeated to cover the entire 

image for each pairs of images. Detailed studies have shown that cross-correlation 

methods, Figure 39, perform much better than any other method in terms of signal-to-

noise ratio and flexibility of choosing parameters for PIV imaging [Meganathan 2005]. 

 

 

Figure 39. A schematic of the cross-correlation process is shown [Meganathan 

2005]. 

 

PIV is typically set up to provide a required spatial resolution, which is balanced 

between the size of the flow structures to be resolved with the interrogation spot size and 

image magnification. The setup used in this study was to resolve the shear layer and the 

flow near the boundary including its effects into the main flow. 
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The recorded size of particles on the image is usually larger than the particle size 

due to magnification. This increase in size comes from different parameters including 

diffraction limit of the recording optics and the experiment specific intensity of image 

[Adrian 1997]. This is only the optical effect and the actual image size is substantially 

larger than what is calculated (possibly up to an order of magnitude larger). For good 

spatial resolution displacement of particles due to the maximum gradient should be less 

than 5% of the interrogation spot size.  Selecting the best dT between images and the best 

spot size (interrogation) is ideal for the expected upper flow velocities.  Best practices 

established by various investigators limit the displacement due to the highest velocity be 

less than or equal to 25% of interrogation spot size. 

Post processing of the raw vector field involves removal of the outliers using 

range, local median, standard deviation and mean filters, built into the PIV software. The 

eliminated vectors were filled through interpolation using Gaussian smoothing with 

exponent 1.3 [Meganathan 2005]. 

With the above considerations, all images were processed with an interrogation 

spot size of 32 x 32 pixels. The distance between any two adjacent vectors was 10 pixels. 

The calibration of the images was about 50 µm/pixel.  The resolution of the vector map is 

0.5 mm. In order to determine what minimum size vortex structures can be visualized, we 

have to decide how many data points are needed to determine a structure. When 

measuring flow turbulence, to characterize mixing effects, the dynamic spatial range and 

the dynamic velocity range are more important than the spatial resolution [Adrian 1997]. 



52 

 

These set the smallest size of the structures and the velocity fluctuations that would be 

resolved in a setup. The dynamic spatial range (DSR) is defined as the field-of view in 

the object space divided by the smallest resolvable spatial variation. [Adrian 1997].  The 

smallest resolvable scale is the smallest resolved particle displacement, which is due to 

with the maximum velocity. 

The dynamic velocity range (DVR) is defined as the ratio of maximum velocity to 

the minimum resolvable velocity.   Westerwheel [Westerwheel 1994, Westerwheel et.al 

1997] estimates that usually the error in resolving the location of a correlation peak is in 

the order of 0.1 pixels. The capability of a PIV system to have both a large dynamic 

velocity range and a large spatial range is determined by the product of DSR and DVR, 

which is a constant for a given experimental setup. PIV systems having a large constant 

are best suited for turbulence research, and measurements in higher Reynolds number 

flows. [Abraham 2005, Adrian 1997] calculated the constant for a nearly similar set up as 

used in this study obtained approximate values of DSR = 200 and DVR = 40, resulting in 

a constant of about 8000, which would resolve velocities between 10 m/s - 300 m/s.  This 

was for an assumed upper limit of image diameter of 10%, which will be improved to 1 

m/s – 300 m/s, if 1% is used. This is important to be aware of for flows with a wide range 

of velocities [Meganathan 2005]. 

Experimental setup errors include calibration errors, non-optimal choice of tracer 

particles and laser sheet alignment [Meganathan 2005]. The need to choose ideal seeding 

materials and seeding dispersion system has already been discussed. 
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“Computational errors include truncation errors, detection errors, and precision 

errors. Truncation errors are very similar to truncation error in numerical analysis caused 

by approximations using numerical discretization. Most PIV algorithms use a simple 

forward differencing interrogation scheme in which the velocity at time t is calculated 

using particle images recorded at time t and t+del t. This approximation is accurate to the 

order of del t, and second order in space increments” [Meganathan 2005].  These errors 

are systemic and cannot be completely eliminated due to the inherent nature of image 

correlations. There also exist certain small errors due to correlations between random 

particles that are not the same pair which influence the peak-searching algorithm.   

Various data processing smoothing operations, including sub pixel interpolations 

introduce certain amount of errors. Particularly of importance is the higher % errors 

introduced into the lower speeds regions are in the flow field in the cavity or near the 

boundaries, from the high-speed regions of the flow.   

Vorticity and stresses components are obtained by evaluating the velocity 

derivatives with a suitable finite difference, second order central difference scheme in 

this case. Here the typical numerical truncation errors and original errors in calculating 

the velocity itself are key contributions to the overall uncertainty in these variables.  As 

noted before, the complete PIV set up affects the uncertainty of these variables 

[Meganathan 2005]. 
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Table 1. Effect of sub pixel interpolation resolution on velocity uncertainty 

[Meganathan 2005]. 

Velocity 

(m/s)  

Pixel Size 

(micro-

meter)  

Sub pixel 

interpolation 

precision 

(±pixels)  

±% 

Uncertainty  

300 9 0.1 0.38 

250 9 0.1 0.45 

200 9 0.1 0.56 

150 9 0.1 0.75 

100 9 0.1 1.12 

50 9 0.1 2.25 

25 9 0.1 4.5 

20 9 0.1 5.63 

15 9 0.1 7.5 

10 9 0.1 11.25 

 

Clean Tunnel 

To be able to ascertain the effect of the flow control devices, it is first necessary 

to capture clean tunnel flow data.  The “clean tunnel’ can be described as an empty test 

section.  The cavity section of the floor plate was filled with a blank, and the area where 

the flow device is installed is left clean.  Therefore, the test section has no flow devices or 

cavities present.  Due to test facility conflicts, it was decided to utilize clean tunnel data 

from a previous study.  In this case the clean tunnel information is taken from Fowler 

[Fowler 2010].  Figure 40 is a photograph of the clean test section, showing the locations 

for the ramps and cavities in the smooth floor plate blocks.  Figure 41 is the resulting 
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calculated pressure spectra associated with the clean tunnel test section, indicating the 

baseline spectra contains no tunnel acoustic peak. 

 

 

Figure 40. Clean Tunnel Photograph [Fowler 2010]. 

 

The clean tunnel broad spectra are relatively flat, at approximately 100dB, and 

have no large distinct peaks.  Because the spectra are so well behaved, i.e. lacked the 

presence of resonant tones, this spectrum can simply be considered background noise.   

Fowler [Fowler 2010] also took Schlieren photographs of the clean tunnel test 

section.  Figure 42 is a summary of the analysis of the clean tunnel Schlieren data from 

Fowler [Fowler 2010].   

There is a thin, 3/8 of an inch, boundary layer along the floor of the tunnel.  The 

Mach waves present in the tunnel are due to slight manufacturing imperfections in the 

nozzle wall.  A trigonometric analysis of the Mach wave angle, 33 degrees, confirms the 

tunnel operation at a Mach number of 1.84.   
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Figure 41. Clean Tunnel Acoustic Spectra [Fowler 2010]. 
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Figure 42. Clean Tunnel – Schlieren Mach waves analysis [Fowler 2010]. 

 

Fowler [Fowler 2010] also took PIV data of the clean tunnel, shown below in 

Figure 43.  The flow in the test section is shown to be nearly uniform.  The spurious 

velocity vectors near the surface are due to the boundary layer.  The PIV analysis 

confirms the boundary layer analysis form Schlieren data.  Both of Schlieren and PIV 

analysis are very close to the calculated boundary layer thickness from [Fowler 2010].  

 

 

Figure 43. Clean Tunnel – PIV velocity vectors [Fowler 2010]. 

 

The clean tunnel data taken by Fowler [Fowler 2010] is an adequate basis for 

making assessments of the flow control techniques utilized in this study.  For details of 

the clean flow experiment and analysis the reader is referred to Fowler [Fowler 2010]. 
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Schlieren Analysis. 

Depicted in Figure 44 are typical Schlieren photographs from the test series.  The 

test noted in Figure 44 was conducted with test article number 2.  It is difficult to see the 

differences between the blowing and non-blowing cases.  However, when the images are 

examined carefully, there are clear differences.  In the case of blowing, the shock 

structure originating at the leading edge of the wedge is more diffused and appears as a 

few weaker waves.  The same observation applies to the shock structure originating along 

the top of the wedge.  There are also differences in the shock structure along the cavity, 

as the shock structure is more diffuse along the cavity with no blowing, indicating the 

shear layer effect due to blowing is affecting the main flow shocks. 

 

 

No Jets    All Jets 

Figure 44. Schlieren photographs with and without blowing (note a slight tilt in 

the image, tunnel floor is horizontal). 
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Computational Predictions 

Simulations (for a number of configurations) were performed, by Dr. A.J. 

Meganathan, using ACE+ and FASTRAN, finite volume based CFD flow solvers 

[Boudaghi, et..al 2018 ].  Figure 45 shows (only results for final configurations close to 

the ones which were tested are shown here) a computational prediction depicting the 

Mach contours and the streamlines, with and without blowing.  The prediction with 

blowing shows a thicker and more lofted shear layer.  In addition, the mixing is more 

intense from the vortices that are shedding from the corners of the flow device, upstream 

of the cavity, down into the cavity.  

Figure 46 is a CFD prediction of test article 2 depicting the streamlines with and 

without blowing.  When compared to Figure 45 the test article 2 prediction shows 

increased vorticity with the streamlines moving more deeply into, and out of, the cavity 

in Figure 46.    These simulations were in support of understanding, clarifying details and 

comparative validation. 
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No Jets 

 

All Jets 

Figure 45. CFD Predictions, Mach number contours and streamlines, with and 

without blowing. 
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No Jets 

 

All Jets 

Figure 46. Test Article Number 2 CFD Prediction with and without blowing. 
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PIV Measurements 

Initially the PIV laser sheet was located along the centerline of the cavity.  One 

shortfall of choosing this location is that it does not allow the PIV system to capture the 

corner vortices at the edges of the cavity.  These vortices are significant contributors to 

the mixing accomplished by the passive flow control device in the upstream of the cavity.  

In an attempt to capture the flow features and associated information with these important 

vortices, the test series was repeated with the laser sheet located along the outside edge of 

the cavity.  PIV test data labeled “Off- Centerline” refers to data taken with this second 

laser sheet location near the edge of the cavity.   

PIV Images 

The PIV system is capable of taking up to 10 image pairs within one second.  PIV 

images were acquired during the test runs.  Figure 47 provides a reference schematic, 

indicating grouping of jets that were active (blowing) in each test configuration.  The jets 

highlighted in red are those that have active blowing in that test run. 

 

 

No Jets   Axial Jets  Side Jets  All Jets 

Figure 47. Blowing Configurations for PIV analysis. 
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Figures 48 through 51 include one image from each blowing configuration shown 

in Figure 47.  All of the images in each figure are the same size and scale.  All of the 

figures show adequate seeding of the flow.  The vertical line through each image is a bad 

pixel in the camera CCD.  The horizontal line along the bottom of many of the images is 

the tunnel floor.  The bright area along this line on the right side of the image is not the 

aft wall of the cavity, as the cavity walls cannot be seen in the images.  This bright area is 

caused by seeding impinging on the tunnel floor.   

In Figure 48 the “No Jets” image highlights the vorticity being generated by the 

flow device and as denoted by the concentration of seeding shown trailing behind the top 

of the flow device.  In Figure 48 “Axial Jets” image the three axial jets at the rear face of 

the flow device are injecting air (or a simulated fuel) into the flow.  The shear layer 

appears to be lower near the surface of the cavity.  This is likely due to being entrained 

into the axial flow of the injectors.  In Figure 48 the image labeled “Side Jets” has the 

injectors on the side walls of the cavity flowing simulated fuel.  In Figure 48 image 

labeled “All Jets” all of the injectors are flowing simulated fuel.  The vorticity near the 

surface of the cavity is more defined in this figure. 
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Figure 48. Test Article 1 Centerline PIV Images.  The location of the leading and 

training edges of the flow device are located by the red arrows.  The trailing edge 

of the cavity is not in view  

 

Test Article Number 1 Centerline PIV Images 
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Side Jets 

 
All Jets 
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Figure 49. Test Article 1 Off-Center PIV Images.  The location of the trailing 

edge of the flow device is indicated by the red arrows.  The leading edge of the 

flow device and the training edge of the cavity are not in view.  

 

Test Article Number 1 Off-Centerline PIV Images 
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Figure 50. Test Article 2 Centerline PIV Images.  The leading and trailing edges 

of the flow devise and the training edge of the cavity are indicated by the red 

arrows.  

 

Test Article Number 2 Centerline PIV Images 
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Figure 51. Test Article 2 Off-Centerline PIV Images.  The leading and trailing 

edges of the flow devise and the training edge of the cavity are indicated by the 

red arrows. 

 

Test Article Number 2 Off-Centerline PIV Images 
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Figure 48 is a collage of test article 1 PIV images taken along the edge of the 

cavity.  The images show adequate seeding.  The images with the “Side Jets” and “All 

Jets” blowing, even though the side jets image is lighter due to seeding concentration 

differences, both show increased lofting of the vortex shedding from the corner of the 

flow control device.  This should improve fuel penetration into the core flow over the 

cavity.   

Test article 2 centerline PIV images are displayed in Figure 50.  In the images for 

test article 2, the rear face of the cavity can be seen.  The sheer layers in the “No Jets” 

and “Side Jets” images appear to be lofted slightly higher than those labeled “Axial Jets” 

and “All Jets”.  This is likely due to the axial flow entraining the flow and decreasing the 

vertical component of velocity.  

The off-centerline PIV images for test article 2 are depicted in Figure 51.  With 

the naked eye, no difference can be detected in the shear layer height, likely because of 

the location of the laser sheet.  The clouds of seeding in the image labeled “Side Jets” are 

likely due to some injection jet flow instabilities, or unsteady operation, of the seeding 

system.  The extra seeding density did not affect the quality of the PIV analysis.   

Average Velocity Uave  

Figures 52 through 55 are contour plots of average velocity, in meters per second, 

in the x direction, the flow along the tunnel’s test section.   

Figure 52 is the average velocity along the centerline to the tunnel.  The shear 

layers in the plots with blowing are more defined and closer to the cavity.  The overall 
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average velocity is lower, which is likely due to the affect blowing had on the shock 

structure at the leading edge of the flow device.  

In Figure 53 the off-center average velocity contour image is displayed.  The 

Laser sheet is near the edge of the cavity.  The velocity is higher in the non-blowing case.  

The cases with side blowing have the lowest average velocity.   

The centerline average velocity contour plots for test article 2 are depicted in 

Figure 54.  The discontinuity along the vertical line at X=78 is due to the failed pixel in 

the camera.  In this case the average velocity is lowest in the non-blowing case.  The 

shear layer is closest to the cavity in the cases with blowing.   

The test article 2 contour plots of average velocity along the cavity side edge are 

captured in Figure 55.  Again, here the lowest average velocities are present in the non-

blowing case.  The highest average velocity is in the case with the axial jets blowing.  

This is confirmed by the Schlieren photographs discussed earlier.   



70 

 

 

Figure 52. Test Article 1 Centerline PIV Uave in meters/second.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is not in view. 
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Figure 53. Test Article 1 Off-Centerline PIV Uave, m/s.  The trailing edge of the 

flow control device/leading edge of the cavity is at 40mm.  The trailing edge of 

the cavity is not in view.   
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Figure 54. Test Article 2 Centerline PIV Uave, m/s. The trailing edge of the flow 

control device/leading edge of the cavity is at 40mm.  The trailing edge of the cavity 

is at 95mm.  
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Figure 55. Test Article 2 Off-Centerline PIV Uave, m/s.  The trailing edge of the 

flow control device/leading edge of the cavity is at 40mm.  The trailing edge of 

the cavity is at 95mm. 
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Average Velocity, Vave 

Vave is the average velocity in the y direction, or in this case toward the top of 

tunnel.  This vertical component of velocity is important in the transport of fuel from the 

low velocity recirculation zone in the cavity out into the bulk of the airflow.   

Figures 56 through 59 are y velocity average contour plots.  In these plots the 

velocity is in meters/second.  In Figure 56 the effect of injection is clear.  When the 

simulated fuel is injected the vertical, or y, component of velocity increases well 

upstream of the increase in vertical velocity in the non-injection case.  This increase in 

velocity can be clearly seen above the cavity in the fuel injection cases.   

In the off-center PIV plots for test article 1, Figure 57, the results are similar to 

those depicted in Figure 56.  In in Figure 57 the side jet plot shows a large average 

vertical velocity component above the cavity and extending well into the flow.  In the 

side jets case the boundary behind the cavity is much smaller than in the other cases. 

The results from PIV, taken on the cavity centerline, in regard to average vertical 

velocity are somewhat different for test article 2.  Here, in Figure 58, the highest y values 

of Vave occur in the non-injection case.  The axial injection reduces the effectiveness of 

the wedge-shaped flow device in generating velocity upwards into the freestream flow.  

The side jets, to a lesser extent, also reduce the penetration into the flow.  However, when 

both side jets and axial jets are utilized then they interact together, and the result is 

somewhere between the axial jets and side jets injections, alone.   
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Figure 56. Test Article 1 Centerline PIV Vave, m/s.  The trailing edge of the flow 

device/leading edge of the cavity is at 40mm.  The trailing edge of the cavity is 

not in view.   
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Figure 57. Test Article 1 Off-Centerline PIV Vave, m/s.  The trailing edge of the 

flow control device/leading edge of the cavity is at 40mm.  The trailing edge of 

the cavity is not in view. 
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3  

Figure 58. Test Article 2 Centerline PIV Vave, m/s.  The trailing edge of the flow 

control device/leading edge of the cavity is at 40mm.  The trailing edge of the 

cavity is at 95mm. 
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Figure 59. Test Article 2 Off-Centerline PIV Vave, m/s.  The trailing edge of the 

flow control device/leading edge of the cavity is at 40mm.  The trailing edge of 

the cavity is at 95mm. 
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When the PIV laser sheet is moved off of the cavity centerline, the results are 

similar, see Figure 59.  In the case, where side jet injection is enabled, the y velocity 

component is larger.  The horizontal streaks in the flow are indications of longitudinal 

vorticity.   

Average Z Vorticity 

Figures 60 through 63 are vorticity contour plots in the Z direction (out of the side 

of the test section).  `For test article one, PIV measurements along the cavity centerline, 

Figure 60) show a distinct difference between the injection cases and the non-injection 

case.  Streaks in the flow are clear indications that longitudinal vortexes are forming over 

the flow device and the cavity.   

In the off-centerline case for test article 1, Figure 61, the shear layer at the top of 

the cavity is visible in the blowing cases.  And in the blowing cases vorticity is being 

generated along the top of the flow device.    

For test article 2, Figure 62 on the centerline, there is a shear laver visible above 

the cavity both with and without injection.  There are areas of high vorticity along the top 

surface of the flow device and along the side edge of the flow device. Off-centerline, 

Figure 63, there are areas of high vorticity along the top of the flow device and above the 

cavity.  In the injection cases these effects are stronger.   

The data depicted in Figures 60 through Figure 63 confirms that we were able to 

generate vorticity with our flow device-cavity pairs.   
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Figure 60. Test Article 1 Centerline PIV Zvorticity.  The trailing edge of the flow 

control device/leading edge of the cavity is at 40mm.  The trailing edge of the 

cavity is not in view. 
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Figure 61. Test Article 1 Off-Centerline PIV Zvorticity.  The trailing edge of the 

control device/leading edge of the cavity is at 40mm.  The trailing edge of the 

cavity is not in view. 
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Figure 62. Test Article 2 Centerline PIV Zvorticity. The trailing edge of the flow 

control device/leading edge of the cavity is at 40mm.  The trailing edge of the 

cavity is at 95mm.  
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Figure 63. Test Article 2 Off-Centerline PIV Zvorticity.  The trailing edge of the 

flow control device/leading edge of the cavity is at 40mm.  The trailing edge of 

the cavity is at 95mm. 
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Turbulence intensity 

Turbulent intensity is the ratio of the turbulent velocity fluctuations to the free 

stream velocity.  In high flow quality wind tunnels this number is ideally very low.  In 

our case the turbulent intensity provides a measure of how well mixing might occur.  

Areas with high turbulence intensity will be areas of high mixing.   

In the case of test article 1, Figure 64 shows a distinct difference in turbulence 

intensity between the cases with injection and the case without injection.  For the cases 

with injection, the areas of high turbulence intensity are around the flow control device, 

above the cavity, and along the boundary layer behind the cavity. 

Off center measurements, depicted in Figure 65, indicate that there are areas of 

low intensity turbulence above the cavity in all cases.  The intensity is higher just above 

the cavity in the injection cases.  The boundary layer is an area of increased turbulence 

intensity for the injection cases, especially in the cases with side jets flowing. 

In the case of test article 2, figure 66, on the centerline there are areas of high 

turbulent intensity along the flow device.  The free stream turbulent intensity is lowest in 

the axial jets case.  The axial jets case also has a region of high turbulent intensity along 

the top of the cavity.   

In the off-center case for test article 2, figure 67, the lowest overall turbulence 

intensity is the case with axial injection.  There are regions of high turbulence intensity 

along the flow device surfaces and along the top of the cavity.  These areas are less 

intense on the axial injection case. 
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Figure 64. Test Article 1 Centerline PIV Turbulence Intensity.  The trailing edge 

of the flow control device/leading edge of the cavity is at 40mm.  The trailing 

edge of the cavity is not in view. 
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Figure 65. Test Article 1 Off-Centerline PIV Turbulence Intensity.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is not in view. 
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Figure 66. Test Article 2 Centerline PIV Turbulence Intensity.  The trailing edge 

of the flow control device/leading edge of the cavity is at 40mm.  The trailing 

edge of the cavity is at 95mm. 
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Figure 67. Test Article 2 Off-Centerline PIV Turbulence Intensity.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is at 95mm. 
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Reynolds Stress 

Time averaged Reynolds stresses were computed and displayed in the contour 

plots.  If we had a two-dimensional incompressible flow the xx and yy components 

would be zero.  However, we have a compressible flow that has distinct turbulent 

fluctuations in all three dimensions.   

xy Reynold Stress 

The xy component of the Reynolds stress tensor is the Reynolds shear stress. In 

Figure 68 the Reynolds shear stress is higher for flows with injection in the area around 

the flow device and along the cavity surface and tunnel wall.  This is especially true for 

the axial jets condition. 

In Figure 69 where the PIV laser sheet is off the centerline the results are similar 

to those in Figure 68.  However, the effects of the side jets are now more evident.  This is 

likely due to their close proximity to the measurement location. 

For test article 2, on the cavity centerline (Figure 70), the greatest Reynolds shear 

stress is evidenced near the flow device in the non-blowing case. Things change when 

you take the measurement off center, Figure 71.  Here the lowest Reynolds shear stress 

occurs with Axial Jets flowing.  There are large areas of Reynolds stress around the flow 

device and in the boundary and shear layers over the cavity.   
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Figure 68. Test Article 1 Centerline PIV xy Reynolds Stress. The trailing edge of 

the flow control device/leading edge of the cavity is at 40mm.  The trailing edge 

of the cavity is not in view.  
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Figure 69. Test Article 1 Off-Centerline PIV xy Reynolds Stress.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is not in view. 
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Figure 70. Test Article 2 Centerline PIV xy Reynolds Stress.  The trailing edge of 

the flow control device/leading edge of the cavity is at 40mm.  The trailing edge 

of the cavity is at 95mm. 
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Figure 71. Test Article 2 Off-Centerline PIV xy Reynolds Stress.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is at 95mm. 
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xx Reynolds Stress 

For test article 1, Figure 72 displays the xx Reynolds stress.  These plots are very 

similar to xy Reynolds stress for test article 1, Figure 68.  In all cases there is a low stress 

area above the cavity surface.  The cases with injection have a much greater Reynolds 

stress near the flow device and along the cavity surface and the boundary layer behind the 

cavity.   

Off centerline, Figure 73, the results are very similar to those for xy Reynolds 

stress Figure 68 and those for the centerline measurements, except for the lower xx 

Reynolds stress values near the flow device.   

For test article 2, Figure 74, the lowest xx Reynolds stresses, in the free stream 

occurs, with axial blowing. The highest xx Reynolds stresses occurs with no jets flowing.  

There are high levels of xx Reynolds stress near the flow device surface and the axial jets 

flowing has a thick layer of high xx Reynolds stress over the cavity.   

The off-center measurements in Figure 75 indicate that the lowest xx Reynolds 

stress is the no injection case.  This case also does not have an area of high Reynolds 

stress at the top of the cavity, however all of the injection cases do.   
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Figure 72. Test Article 1 Centerline PIV xx Reynolds Stress.  The trailing edge of 

the flow control device/leading edge of the cavity is at 40mm.  The trailing edge 

of the cavity is not in view. 
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Figure 73. Test Article 1 Off-Centerline PIV xx Reynolds Stress.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is not in view. 
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Figure 74. Test Article 2 Centerline PIV xx Reynolds Stress.  The trailing edge of 

the flow control device/leading edge of the cavity is at 40mm.  The trailing edge 

of the cavity is at 95mm. 
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.  

Figure 75. Test Article 2 Off-Centerline PIV xx Reynolds Stress.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is at 95mm.  
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yy  Reynolds Stress 

In Figure 76 the centerline yy Reynold stresses for test article 1 are displayed.  

Like the xy and yy Reynolds stress cases, the lowest stresses occur in the non-injection 

case.  There are some higher stress areas near the flow device in the injection cases and 

there is a clear low stress area above the cavity in all cases.  

Figure 77 shows similar results for the off-center case. This same low stress area 

is exhibited above the cavity in each case.  There is a higher stress level at the top of the 

cavity in the side jet case, which is likely due to the proximity of the measurement to the 

side jet.    

For test article 2 the yy Reynolds stresses, Figures 78 and 79, look much like the 

xx Reynolds stresses presented in figure 74 and figure 75. The lowest stresses occur with  

the axial jets flowing.  There are high Reynolds stress areas at the rear of the flow device 

in the cases where the measurements were taken on the centerline, Figure 78.  The shear 

layer is visable just above the cavity in the side jet and all jets cases. 

In the off-center Reynold stress plots for test article 2 (Figure 79), there are high 

yy Reynold stress areas near the flow device.  The All Jets and Axial jets cases have a 

low stress area above the cavity just above a high stress area at the cavity surface. 
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Figure 76. Test Article 1 Centerline PIV yy Reynolds Stress.  The trailing edge of 

the flow control device/leading edge of the cavity is at 40mm.  The trailing edge 

of the cavity is not in view. 
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Figure 77. Test Article 1 Off-Centerline PIV yy Reynolds Stress.  The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is not in view. 
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Figure 78. Test Article 2 Centerline PIV yy Reynolds Stress.  The trailing edge of 

the flow control device/leading edge of the cavity is at 40mm.  The trailing edge 

of the cavity is at 95mm. 
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Figure 79. Test Article 2 Off-Centerline PIV yy Reynolds Stress. The trailing 

edge of the flow control device/leading edge of the cavity is at 40mm.  The 

trailing edge of the cavity is at 95mm.  
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Acoustic Spectra 

An analysis of the acoustic spectra taken from the pressure taps in the floor of the 

cavities was completed.  Figures 80 and 81 illustrate the frequency behavior inside the 

cavity and dominant acoustic modes.  In Figures 80 and 81 Power Spectral Density 

(PSD) is plotted verses frequency. 

An experiment was conducted without tunnel mean flow to determine if the 

injection scheme would have an effect of the cavity resonant tones.  The results of this 

experiment conducted on test article 2 are depicted in Figure 82.  This experiment proved 

that each jet configuration had a distinct effect on cavity acoustics.   

In Figures 80 and 81, the transducer located in the bottom of the cavity near the 

aft wall of the cavity provides the best representation of the pressure oscillations created 

by the flow over the cavity.  In all cases, injection into the cavity increases the amplitude 

of the pressure oscillations.  Side jet injection is more effective than axial jet injection 

and all jets flowing is more effective than either single injection mode at increasing high 

frequency pressure fluctuations in the cavity.  

Table 2 compares the calculated Rossiter modes to those measured 

experimentally.  The differences are likely due to the fact that modified Rossiter’s 

equation is best suited for flows up to Mach 1.5, and this testing was conducted at Mach 

1.84. 
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Figure 80. Acoustic Spectra Test Article 1, PSD (dB/Hz) vs Frequency (Hz). 
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Figure 81. Acoustic Spectra Test Article 2, PSD (dB/Hz) vs Frequency (Hz). 
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Figure 82. Acoustic Spectra Test Article 2, No Mean Flow, PSD (dB/Hz) vs 

Frequency (Hz). 
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Table 2. Oscillatory Modes of Cavity 2 

 

 

The increases in high frequency fluctuations inside the cavity with injection will 

provide for increased turbulence and molecular mixing.  The mixed flow is transported 

into the main flow, thereby increasing the fuel penetration into the flow for increased 

mixing and flame holding.  

Summary 

Based on contemporary literature, as noted in the cited literature, there are 

continuing efforts and needs to facilitate efficient fuel injection mixing in supersonic 

flows to be able to accomplish short practical supersonic combustors.  Increased efficient 

fuel injection penetration into the cross flow has remained the strongest challenge.  The 

present experimental study, compared with limited computational modeling, shows some 

success resulting from the passive configuration designed, based on fundamental flow 

physics, for a more efficient mixing methodology for high speed flows.  Comparisons of 

the measured velocity, vorticity, turbulence, and Reynolds stress plots between the 

injection and non-injection cases illustrate the effectiveness of the mixing enhancement 

as determined by penetration into the freestream flow.  The measurement results, contour 

 

 

Mode 

1 

Mode 

2 
Mode 3 

Mode 

4 

Rossiter Modes 2147 5010 7873 10735 

Experimental 2000 5900 7700~7900 10290 
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plots, indicate shear layer growth and flow penetration resulting in zones of high mixing 

over the cavity.  This information along with the pressure data, showing increased high 

frequency oscillations inside the cavity with injection, indicate that these zones have the 

potential to create a very effective flame holding system.  

The upstream boundary layer flow development/guiding passive designs and 

cavity combinations result in flows with counter rotating vortex pairs that are lofted into 

the main flow in the downstream.   The result would be more effective combustion and 

hence shorter combustor lengths. 
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Chapter 5: Conclusions and Recommendations 

Innovative passive flow path configurations were devised, integrating active fuel 

injection flow control methodology, and no moving parts, based on fundamental flow 

physics.   The flow control paths included an upstream flow conditioning component 

positioned upstream of a cavity to provide enhanced local mixing.   The cavities were 

fitted with flow injection jets (simulated fuel) to accommodate fuel injection as an 

integral aspect of flow control. The flow control path geometries were innovatively and 

integrally designed to generate relatively weak shock upstream structures and thus have 

relatively low shock losses when compared with other flame holding and mixing 

schemes.  The upstream boundary layer flow control devices were designed to generate 

counter rotating vortices that would be lofted into the flow in the downstream.  One was 

designed to concentrate the cavity vorticity in the center of the cavity and the second was 

to concentrate the vorticity near the sidewalls.  One cavity was designed to maximize the 

pressure oscillations within the cavity and the second was designed to minimize them.  

The locations of the fuel injection ports were chosen to maximize interaction with the 

overall vortex flow structures. Independent CFD predictions, performed by collaborating 

researchers, were used in support of furthering physical understanding and refining of 

conceptual and potential designs and to predict the resulting flow fields. 

Schlieren flow visualizations and preliminary numerical simulations were 

performed to identify dominant flow features for comparative analysis, redesign and 

refining two configurations for further study including detail experimental measurements.  
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The resulting flow fields were investigated experimentally in the University of Tennessee 

supersonic wind tunnel at a Mach number of approximately 1.84.  Flow visualizations 

and measurements were conducted with Schlieren imaging, Particle Image Velocimetry 

and high frequency response dynamic pressure system.  Independently performed, CFD 

simulations were helpful in the interpretation of the 2-D imaging and PIV results for 

comparative analysis of the various tested geometry and injection configuration 

measurements. 

PIV results, with complementary information from CFD, show that both 

configurations generated streamwise flow vortices, which interact with the flow in and 

around the cavity, and are convected vertically away from the tunnel floor.  The resulting 

streamwise swirling flow is coupled with strong cavity flow.  Simulated fuel jets 

interactions with these flow features lead to increased shear layer thickness/vorticity and 

increased Reynolds stresses in the mixing region.  These affect the vorticity spreading 

and help increased vorticity diffusion (mixing) regions.  

The overall flow path configuration enhances the mixing into the freestream, in 

relatively shorter downstream distance, which could lead to enhanced combustion in 

short combustors.   CFD results compared with experiments confirm that due to strong 

flow recirculation and swirl inside of the cavity, longer residence times is expected by the 

injected fuel inside of the cavity.  The rotational and recirculating lower-speed flow 

region in the cavity is ideal for flame holding.   Flow measurements, performed at a 

nominal supersonic free stream Mach number, indicate that this passive geometry design 
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is a relatively efficient and innovative approach for enhancing fuel injection, flame 

holding and mixing in a supersonic combustion environment.  

Future Research 

Due to the variety of issues with the Schlieren and PIV systems, in future 

experiments it would be beneficial to utilize 3D PIV and a higher quality Schlieren 

system to fully understand the flow structures.   

A larger, more modular set of model/components would enable a parametric 

approach to understanding the most critical design criteria for sizing flow devices and 

cavities as well as locating fuel injection ports for optimum performance. 

Experiments that include fuel injection with combustion are needed to fully 

understand the effectiveness of this concept as an operational flame holding and fuel 

injection technique, in high speed flows.  

A more detailed CFD analysis and comparison with these new experiments would 

provide additional insight to the flow generated by this novel approach that utilizes 

passive flow control with cavities and flow devices and active flow control through fuel 

and/or oxidizer injection.  
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