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This research aims to improve the fundamental understanding of the multiphysics nature of 

voice production, particularly, the dynamic couplings among glottal flow, vocal fold vibration and airway 

acoustics through high-fidelity computational modeling and simulations. Built upon in-house numerical 

solvers, including an immersed-boundary-method based incompressible flow solver, a finite element 

method based solid mechanics solver and a hydrodynamic/aerodynamic splitting method based 

acoustics solver, a fully coupled, continuum mechanics based fluid-structure-acoustics interaction model 

was developed to simulate the flow-induced vocal fold vibrations and sound production in birds and 

mammals. Extensive validations of the model were conducted by comparing to excised syringeal and 

laryngeal experiments. The results showed that, driven by realistic representations of physiology and 

experimental conditions, including the geometries, material properties and boundary conditions, the 

model had an excellent agreement with the experiments on the vocal fold vibration patterns, acoustics 

and intraglottal flow dynamics, demonstrating that the model is able to reproduce realistic phonatory 

dynamics during voice production. The model was then utilized to investigate the effect of vocal fold 

inner structures on voice production. Assuming the human vocal fold to be a three-layer structure, this 

research focused on the effect of longitudinal variation of layer thickness as well as the cover-body 

thickness ratio on vocal fold vibrations. The results showed that the longitudinal variation of the cover 



 
 

and ligament layers thicknesses had little effect on the flow rate, vocal fold vibration amplitude and 

pattern but affected the glottal angle in different coronal planes, which also influenced the energy 

transfer between glottal flow and the vocal fold. The cover-body thickness ratio had a complex 

nonlinear effect on the vocal fold vibration and voice production. Increasing the cover-body thickness 

ratio promoted the excitation of the wave-type modes of the vocal fold, which were also higher-

eigenfrequency modes, driving the vibrations to higher frequencies. This has created complex nonlinear 

bifurcations. The results from the research has important clinical implications on voice disorder 

diagnosis and treatment as voice disorders are often associated with mechanical status changes of the 

vocal fold tissues and their treatment often focus on restoring the mechanical status of the vocal folds. 
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CHAPTER 1 INTRODUCTION 

1.1. Physiology and anatomy 

The sound production system in the human body generally consists of the lung, the larynx, the 

vocal tract, the pharynx, the oral and nasal cavities (Titze, 2000). Briefly, neural commands are sent from 

the brain to contract the laryngeal muscles. Through muscle contraction, the geometry and tension of 

the laryngeal tissues could be adjusted to specific phonation condition. This process is known as 

posturing. Lung pressure, which is around 1 kPa in normal condition, functions to press the air to flow 

through the larynx. When pressed together during posturing (adducted), such as in the production of 

voiced sounds like the vowels, the vocal folds would vibrate due to lung pressure and generate pulsatile 

glottal flow in the frequency around 100-200Hz in adults. When not fully adducted during posturing, 

such as the production of unvoiced sound like /h/, the vocal folds would vibrate in very small amplitude 

and are never fully closed. The oscillating glottal flow would be filtered by the supraglottal tract, in 

which the energy in certain frequencies would be amplified mainly according to the shape of the tract. 

By changing the position of the tongue, teeth, lips, and the shape of the oral cavity etc., the shape of the 

tract is altered, resulting in different formant frequencies. Different combinations of the formant 

frequencies form the perceptive bases of different vowels and consonants.  

The larynx is a key component in this process, responsible for the generation of the pulsatile 

glottal flow, which is the sound source. It is located just above the trachea, consisting mainly of 

cartilages, muscles, and the vocal folds. The larynx is in the order of 1cm in size and is highly flexible 

without rigid bony connection to the skeleton (Titze, 2000). Other than phonation, the more vital role of 

the larynx is protecting the lower airway from foreign bodies such as food. During swallowing, the 
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epiglottis flaps down to block the entrance of the larynx and the vocal fold would also tightly close, 

preventing food dropping into the larynx and lung.   

1.1.1 Cartilages and muscles 

 

Figure 1.1 The laryngeal cartilages. (a) The thyroid, (b) the cricoid and (c) the arytenoid cartilages. 

The laryngeal cartilages include the cricoid cartilage, the thyroid cartilage and one pair of the 

arytenoid cartilages (Figure 1.1). The thyroid cartilage (Figure 1.1(a)) consists of two plates that joined at 

the anterior side with an angle of 90-120 degrees. There are four projections, known as the superior 

cornua and inferior cornua. The inferior cornua joins the cricoid cartilage at the cricothyroid (CT) 

articular facet and the superior cornua connects to the hyoid bone. The cricoid cartilage (Figure 1.1(b)) is 

located below the thyroid cartilage, atop the tracheal rings. It can rotate forwardly and anteriorly 

toward the thyroid cartilage around the CT joint (CT articular facet). The cricoarytenoid (CA) articular 

facets are small smooth elliptic surfaces that the arytenoid cartilage would attach to. The arytenoid 

cartilages (Figure 1.1(c)) are roughly pyramidal in shape. It is attached to the cricoid cartilage through 

the CA articular facet, allowing rotation and translation motion. It can move in both medial-lateral and 

anterior-posterior direction. The vocal process of the arytenoid is the attachment of the vocal ligament. 
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The muscle processes are the attachment of the posterior cricoarytenoid (PCA) and lateral 

cricoarytenoid (LCA) muscles. The cricoid and thyroid cartilages contact on CT joint, which allows 

rotation and gliding (Figure 1.2(a)). The gliding can contribute 30-40% of the vocal fold elongation 

(Alipour-Haghighi, Perlman and Titze, 1991). The cricoid and arytenoid cartilages contact on CA joint, 

which allows the arytenoid cartilage to slide along and rotate about the long axis of the cricoid articular 

facet (Zhang, 2016b). 

The intrinsic muscles in the larynx are the CT muscle, the thyroarytenoid (TA) muscle, the LCA 

muscle, the PCA muscle and the interarytenoid (IA) muscle. Different from the extrinsic muscles that 

move the location of the whole larynx, the intrinsic muscles are responsible for voice control through 

the adjustment of vocal fold shape and tension. CT-TA and PCA-LCA/IA are the two agonist-antagonist 

muscle pairs, responsible for adjusting the length and opening of the vocal folds, respectively.  

The CT and TA muscles are the primary pitch control muscles (Figure 1.2 (a, b)). The CT muscle, 

including the rectus and oblique parts, connects the cricoid and the thyroid cartilages. Originating from 

the anterior arch of the cricoid, the CT rectus inserts upward to the lower border of the thyroid cartilage 

and the CT oblique inserts upward and backward to the inferior cornua of the thyroid cartilage. By 

contracting CT muscle, the cricoid arch could be elevated and the thyroid depressed due to the rectus 

part (Figure 1.2(b)). The CT oblique might contribute to the forward motion of the thyroid cartilage but 

its exact function is controversial (Ludlow, 2005). CT contraction increases vocal fold length and tension, 

resulting in higher pitch. The TA muscle connects the thyroid cartilage (below thyroid notch) and the 

arytenoid cartilage. Contrary to the CT muscle, TA contraction draws the arytenoid cartilages forward, 

which would shorten and thicken the vocal fold. It will stiffen the inner layers and slacken the cover 

layer. The effect of the TA contraction on the pitch depends on whether and to what extent is the TA 
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muscle involved in the vibration. If the vibration is deep into the TA muscle, the pitch might increase. If 

the vibration is mainly in the slackened cover layer, the pitch might decrease (Titze, 1988; Titze, Jiang 

and Drucker, 1988; Chhetri and Park, 2016).  

 

Figure 1.2 Main cartilages and muscles in the larynx. CC: cricoid cartilage; TC: thyroid cartilage; AC: 

arytenoid cartilage; CT: cricothyroid muscle; TA: thyroarytenoid muscle; LCA: lateral cricoarytenoid 

muscle; PCA: posterior cricoarytenoid muscle. 

PCA is the primary abductor which moves the vocal folds laterally while the LCA/IA are the 

adductors that draw them medially (Figure 1.2 (c,d)). PCA originates from the posterior surface of the 
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cricoid cartilage and inserts upward and laterally to the muscular process of arytenoid cartilage. LCA 

originates from the cricoid cartilage and inserts into the muscular process of the arytenoid. IA connects 

the two arytenoid cartilages. The contraction of the PCA rotates and glides the arytenoid cartilage to 

move the vocal folds laterally at the posterior end. The contraction of the LCA draws the arytenoid 

forward and medially. It brings together vocal process thus also moves vocal folds medially at the 

posterior end. Contraction of the IA adducts the vocal folds by moving the two arytenoids medially, 

closing more in the posterior part of the glottis than in the anterior part. The function of abductors 

allows more air flowing through the glottis, which is important in unvoiced sound and breathing. The 

function of adductors closes the vocal folds which is critical in producing voiced sound.  

Briefly, the intrinsic muscles are innervated by two main branches of the vagus nerve (Titze, 

2000). One is the superior laryngeal branch that innervates the CT muscle only. The other branch is the 

recurrent laryngeal branch which innervates all the intrinsic muscles except the CT muscle. 

1.1.2 Morphology of the soft tissue of the vocal folds 

The vocal fold is a layered structure consisting of the epithelium, the lamina propria and the TA 

muscle (Hirano and Kakita, 1985; Titze, 2000). As shown in Figure 1.3, the epithelium is a very thin layer 

(0.05-0.08mm) made up of stratified squamous cells, with a Young’s modulus around 100kPa which is 

much higher than the other layers (Hirano and Kakita, 1985). The lamina propria is non-muscular tissue 

that is usually divided into three layers according to the density of fibrous components (Hirano and 

Kakita, 1985). The superficial layer of the lamina propria consists of mainly loosely organized elastin 

fibers surrounded by interstitial fluids. It is about 0.5mm thick in the middle. In the intermediate layer, 

the elastin fibers are uniformly oriented in the anterior-posterior direction. The deep layer of the lamina 

propria mainly consists of collagen fibers aligned in the anterior-posterior direction. The intermediate 
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and deep layers of the lamina propria together are about 1-2mm thick (Titze, 2000). Below the deep 

layer of the lamina propria is the TA muscle which is about 7-8mm thick.  

A lot of works have been done in measuring the material properties of the vocal fold layers 

(review papers: Miri, 2014; Dion et al., 2016). Typical measurements including traction testing, 

rheometry and indentation are performed to obtain the stress-strain (force-elongation) relationship, 

shear modulus and local force-deformation measurement in small samples, respectively. Elastic 

properties of the vocal folds also vary locally. The elastic modulus of the middle part of the ligament can 

be much stiffer (~10 times) than the two ends  (Kelleher et al., 2010; Bhattacharya, Kelleher and 

Siegmund, 2015). It has also been reported that the inferior medial surface is stiffer than the superior 

medial surface(Chhetri, Zhang and Neubauer, 2011; Oren et al., 2014). 

In phonation studies, for simplicity, these five histological layers are usually grouped into two or 

three layers based on their elastic properties (Hirano and Kakita, 1985; Titze, 2000) (Figure 1.3). In the 

two-layer model, the cover layer consists of the epithelium, the superficial and intermediate layers of 

the lamina propria, and the body layer consists of the deep layer of the lamina propria and the TA 

muscle. In the three-layer model, the cover layer consists of the epithelium and the superficial layer of 

the lamina propria, the ligament layer consists of the intermediate and deep layers of the lamina 

propria, and the body layer consists of the TA muscle. Vocal fold vibration is the direct result of the 

interaction between glottal flow and the layered vocal fold. Both the two-layer model (Hirano, 1974; 

Titze, 1988; Cook, Nauman and Mongeau, 2008; Chhetri, Zhang and Neubauer, 2011; Zhang and Luu, 

2012; Daily and Thomson, 2013) and the three-layer model (Titze and Talkin, 1979; Rosa et al., 2003; 

Xue et al., 2011; Zheng et al., 2011; Weiss et al., 2016) are widely used to study the effect of the 

structure and elasticity of vocal fold layers on the vibrations. 
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Figure 1.3 Layered structure of the vocal fold. E: Epithelium; SLP: superior layer of the lamina propria; 

ILP: intermediate layer of the lamina propria; DLP: deep layer of the lamina propria; M: TA muscle. 

1.2 Physics of the sustained energy transfer 

During vocal fold vibration, there is a continuous energy transfer from glottal air flow to the 

vocal fold tissue, avoiding the need of nerve stimulation at the same frequency of phonation frequency 

(Van den Berg, 1958). Asymmetric pressure during glottal opening and closing is responsible for the 

continuous energy transfer. One typical reason of such asymmetric pressure is the mucosal wave 

propagation (Titze, 1988). Figure 1.4 shows a typical pattern of the vocal fold vibration. The inferior side 

of the vocal fold always leads the motion, forming a convergent glottal shape in the opening phase and a 

divergent shape in the closing phase. The phase difference between the inferior and superior side of the 

vocal fold varies from 30o/mm to 60o/mm (Titze, Jiang and Hsiao, 1993). When the glottis is a 

convergent shape, intraglottal pressure is a positive value, decreasing from the subglottal pressure to 

ambient pressure in the streamwise direction. When the glottis is a divergent shape, due to flow 

separation, the intraglottal pressure is around 0 or a negative value in the glottis. Therefore, the 

direction of the pressure force applied on the vocal fold wall is the same with the vocal fold motion 

during most of the phase, resulting in continuous positive energy transfer from the air flow to tissue. 
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Such convergent-divergent type of vibration pattern is also observed experimentally in other mammals 

and birds (Elemans et al., 2015). If the vocal folds open and close in the same shape, e.g. in the one-

mass model, external mechanism such as an inertive supraglottal tract is necessary to generate the 

asymmetric pressure (Flanagan and Landgraf, 1968). The difference of aerodynamics of the glottal flow 

during flow increasing and decreasing, e.g. flow separation in the closing phase, could also generate 

asymmetric pressure distribution (Zhang, 2016b). 

 

Figure 1.4 Mucosal wave propagation. 

1.3 Modelling techniques 

With the development of computer technology, numerical models of the voice production 

improved remarkably in the recent decades. Nowadays, both reduced order models and the partial 

differential equation based models are extensively used. Numerical modelling is an alternative approach 

to the experiment measurement when it is limited by the small size of the larynx and the accessibility in 

vivo (Gómez et al., 2017).  

Numerical modelling has some advantages over the experiment measurement. First, it can 

provide comprehensive three-dimensional quantifications of the vocal fold geometry and tension 

distribution. Second, it can calculate the active stress in the muscles while in most of the conditions of 
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the experiment measurement, the preparation of an excised larynx already removes the possibility of 

muscle stimulation (Garcia and Herbst, 2018). Third, parameters are better controlled. In the 

experiment, the adjustment of one parameter is usually accompanied with change in other parameters, 

making the analysis of the causal relationship even more complicated. 

1.3.1 The tissue model 

1.3.1.1 Reduced order model 

In lumped-mass models, the vocal folds are simplified as mass-spring-damper systems that 

laterally connect to rigid walls. In the one-mass model (Flanagan and Landgraf, 1968), inertive vocal tract 

loading is necessary to achieve the self-sustained oscillation due to the lack of mucosal wave. In the two-

mass model (Ishizaka and Flanagan, 1972a), the vocal fold is separated into a superior mass and an 

inferior mass. The two masses are connected through another spring, enabling the ability to capture the 

vertical phase difference. Hence the self-sustained oscillation could be obtained with or without vocal 

tract. With asymmetric parameters, two-mass model could also capture nonlinear features such as 

asymmetric and chaotic vibration (Steinecke and Herzel, 1995; Xue et al., 2010). Variations based on the 

two-mass model include more mass units distributed in the sagittal plane (Titze, 1973; Wong et al., 

1991; Alipour et al., 2011). However, the above models do not include the layered structure feature of 

the vocal fold. To improve this, (Story and Titze, 1995) developed the three-mass model based on the 

body-cover concept (Hirano, 1974). It allows more physiologically relevant laryngeal adjustments. For 

example, the contraction of the TA muscle could be reflected by adjusting the spring stiffness standing 

for the body layer, and the contraction of the CT muscle could be reflected by adjusting the spring 

stiffness in both cover and body layers. Another model based on the body-cover concept is the rotating 

plate model that the cover layer is represented by a rotating surface that can propagate mucosal wave 
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(Titze, 1988; Fulcher and Scherer, 2019). The mucosal wave speed is employed as the model input which 

is more experimentally measurable compared with the parameter of spring stiffness (Titze, 1988).  

Reduced order model is computationally efficient and has been employed in improving the 

understanding of the basis of the self-oscillation process, laryngeal pathology and speech synthesis 

(Erath et al., 2013). To determine the model input of the reduced order model, rules have been provided 

to convert muscle activities, including the CT, TA, LCA, PCA muscles, into physical quantities such as the 

changes in the vocal fold  geometry and stiffness (Titze and Story, 2002). Neurophysiological fluctuations 

in the muscle activation could also be incorporated into this model to make the simulation more realistic 

(Manriquez et al., 2019). Optimization method to determine the two-mass model parameters has been 

developed by minimizing the trajectory difference of left/right vocal folds between high-speed 

recordings and the simulation results (Döllinger et al., 2002; Gómez et al., 2017). However, the 

relationship between model input and the tissue property is still complicated. Moreover, the reduced 

order models usually ignore the vertical motion of the vocal fold (Titze and Story, 2002) and are not very 

helpful in the study of vocal fold posturing. 

1.3.1.2 Continuum mechanics-based model 

The continuum mechanics-based models were proposed as early as Titze and Talkin (1979) and 

Alipour-Haghighi and Titze (1985). They are now widely used due to the development of the computer 

technology (Alipour, Berry and Titze, 2000; Suh and Frankel, 2007; Zhang, Neubauer and Berry, 2007; 

Luo et al., 2008; Zheng et al., 2009; Šidlof, Zörner and Hüppe, 2013, 2014). The simulation of vocal fold 

vibration around specific posturing position usually takes the assumption of small-deformation and 

employs linear material properties (Hirano and Kakita, 1985; Titze, 1988; Cook and Mongeau, 2007; Tao 

and Jiang, 2007; Xue et al., 2014; Zhang, 2015; Erath, Zañartu and Peterson, 2017). Such simplification is 
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based on the observation that the stress-strain relationship of the laryngeal muscles is roughly linear 

during vibration (Titze, 2006a). Contrarily, vocal fold posturing includes large deformation that the linear 

material assumption is not suitable. In this condition, nonlinear materials are employed. As is widely 

applied in material models of biological tissues, the tissue of vocal fold is usually assumed to be 

incompressible or nearly incompressible. 

In the studies of vocal fold vibration, considering the histological feature of the tissue and the 

observation that vocal folds vibrate mainly in the transverse plane, the tissue, especially the muscle, is 

usually assumed to be transversely isotropic with a very high value of stiffness in the longitudinal 

direction (Berry, 2001; Cook, Nauman and Mongeau, 2008). The cover layer is assumed to be either 

isotropic (Zhang, 2014) or transversely isotropic (Xue et al., 2014; Zhang, 2017a). The incompressible 

transversely isotropic material has only three independent parameters (Ep, Epz, Gpz) and the isotropic 

material has only one parameter (E). These values can be measured experimentally through traction 

testing, rheometry and indention as mentioned in Section 1.1.2. Furthermore, as reported by (Cook, 

Nauman and Mongeau, 2008), based on a two-layer model, when the longitudinal to transverse stiffness 

ratio is greater than 30, the relative frequency difference is less than 5%. It indicates that Epz could be 

assumed to be certain times (e.g. 30 times) larger than Ep to further reduce the material unknowns.  

In the studies of vocal fold posturing, nonlinear material is required due to the large 

deformation. The muscle model, which is of especial importance in posturing process, is usually treated 

as a parallel connection of the passive and active components (Yin and Zhang, 2013; Smith and Hunter, 

2014; Pham, Xue and Zheng, 2018). The passive stress could be calculated using isotropic (Hunter, Titze 

and Alipour, 2004), hyperelastic (Yin and Zhang, 2014, 2016), viscoelastic (Zhang, Siegmund and Chan, 

2009; Smith and Hunter, 2014) or fiber-reinforced models (Holzapfel, Gasser and Ogden, 2000; Pham, 
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Xue and Zheng, 2018). The active component of the muscle stress depends on many factors such as the 

maximum muscle stress, fiber stretch, strain rate and the response time of the muscle. In Yin and Zhang 

(2013), the active stress was assumed to be related with the activation level and the optimal stretch, 

neglecting the time-dependence features. In Smith and Hunter (2014), the time-dependent features 

such as the strain-rate and the response time were also taken into consideration, with parameters 

determined by comparing with data derived from muscle stimulation experiments (Alipour-Haghighi, 

Perlman and Titze, 1991).  

The advantages of the continuum mechanics-based model over the reduced order model are 

evident. It provides a direct relationship between tissue material and model parameters. Moreover, it 

has the ability to provide three-dimensional description of the tension distribution and the geometry 

even for the inner layers based on CT or MRI scans (Selbie, Gewalt and Ludlow, 2002; Chen et al., 2012; 

Bakhshaee et al., 2013). Continuum mechanics-based models have the advantage in studies with specific 

subjects such as clinic applications (Xue et al., 2014; Chang et al., 2016; Wu and Zhang, 2016), 

pathological conditions such as vocal fold nodules (Jiang, Diaz and Hanson, 1998; Gunter, 2004) and 

vocal fold posturing (Yin and Zhang, 2013, 2016).  

However, compared with the reduced order models, the continuum mechanics-based models 

require more computational resource and time. To reduce the cost, based on the finding that the 

superposition of first several modes could describe the vocal fold vibration with high accuracy (Berry et 

al., 1994), Zhang (2017b) proposed an eigenmode-based formulation of governing equation to greatly 

decrease the degrees of freedom of the governing equation to one hundred, while still having 

reasonable accuracy in parameters such as the fundamental frequency and the sound pressure level. 

This provides the potential to develop real-time applications such as speech synthesis.  
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1.3.2 The fluid model 

1.3.2.1 One dimensional flow 

The glottal flow could be modeled as simplified one dimensional, incompressible potential flow 

from the subglottal tract to the flow separation point while coupled with lumped-mass (Ishizaka and 

Flanagan, 1972a; Steinecke and Herzel, 1995) or continuum vocal fold models (Zhang, Neubauer and 

Berry, 2007). Corrections concerning the vena contracta effect at the glottal inlet, the viscous flow 

effect, the air inertance and the pressure recovery after the glottal exit (Ishizaka and Flanagan, 1972a) 

could be included in the model.  

The location of flow separation is critical in the one-dimensional flow calculation when the vocal 

folds form a divergent shape. In some studies, the flow separation location is assumed to be fixed at the 

superior edge of the vocal fold (Zhang, Neubauer and Berry, 2007; Bailly et al., 2008). Others take the 

location of the minimum cross-sectional area in the glottis (Steinecke and Herzel, 1995; Story and Titze, 

1995) or slightly downstream of it where the area ratio to the minimum area is 1.2 -2 (Alipour and 

Scherer, 2004; Decker and Thomson, 2007; Zhang, 2009, 2014; Farahani and Zhang, 2014). Pelorson et 

al. (1994) and Cisonni et al. (2010) applied an approach that allows a moving separation point based on 

the boundary-layer theory. The different assumptions of the flow separation location affect the 

calculation of vocal fold loading which will further influence the vibration pattern (Farahani and Zhang, 

2014).  

The acoustic propagation in the supraglottal tract is expensive to model using direct numerical 

simulation. One popular approach employed in the one-dimensional models is the wave-reflection 

algorithm (Ishizaka and Flanagan, 1972a; Story and Titze, 1995; Titze, 2000). The supraglottal tract is 

discretized into serial-connected short cylindrical tubes with constant cross-section-area in each section. 
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Planar wave propagates in the tract. At the interface of the tubes, the reflection coefficient defined as 

the ratio of reflective pressure to the incident pressure can be calculated as a function of the cross-

section-area ratio of the two sections with the assumption that the air density and the speed of sound 

are constants in the vocal tract (Titze, 2000). The boundary condition of the mouth is simplified as an 

open-end with the reflection coefficient to be -1. Therefore, the sound pressure transmitted from the 

vocal fold to the mouth can be calculated. The solution of the acoustic propagation could be coupled 

with the vocal fold vibration (Titze and Talkin, 1979; Zhang, 2015) or not (Steinecke and Herzel, 1995; 

Tao et al., 2007; Elemans, Zaccarelli and Herzel, 2008) depending on the specific problem being studied.  

With low computational cost, the one-dimensional flow model helps in understanding the 

physics of the self-sustained vibration, provides sound source in speech synthesis, and makes the 

parametric studies practical. Therefore, efforts have been made to increase the fidelity of the one-

dimensional flow model including considering the flow asymmetry (Erath et al., 2019), applying a 

momentum based flow model (Li et al., 2020) and adding the viscous loss term predicted by deep neural 

network model (Zhang, Zheng and Xue, 2020).  

1.3.2.2 Partial differential equation based flow  

Partial differential equation (PDE) based flow models employ the Navier-Stokes equation to 

describe the flow field. They have the capability to provide flow features in two or three dimensions 

with stationary (Suh and Frankel, 2008; Rios et al., 2019; Sundström and Oren, 2019; Yoshinaga, Nozaki 

and Wada, 2019) or dynamic glottal airway (Rosa et al., 2003; Daily and Thomson, 2013; Jiang, Zheng 

and Xue, 2017). The typical Reynolds number of the glottal flow is about 2000 (Luo et al., 2008). 

Considering the relative low Mach number (Mach<0.3) of the glottal flow (Scherer et al., 2010), 

incompressible flow models have been most frequently employed. PDE based flow models are applied in 
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the studies of glottal flow deflection (Zheng, Mittal and Bielamowicz, 2011), intraglottal vortices 

(Mihaescu et al., 2010; Oren, Khosla and Gutmark, 2014b) and the glottal pressure distribution (Scherer 

et al., 2010; Jiang, Zheng and Xue, 2017, 2019).  

Lighthill’s acoustic analogy (Lighthill, 1982; Link et al., 2009; Šidlof, Zörner and Hüppe, 2013, 

2014) or the linear perturbed compressible equation for low Mach number condition (Seo and Moon, 

2006; Seo and Mittal, 2011) can be utilized to obtain the acoustic solution based on the solution of the 

incompressible flow. Acoustic results can also be directly calculated through compressible flow models 

or slightly compressible models (Zhao, Frankel and Mongeau, 2001; Zhao et al., 2002; Suh and Frankel, 

2007; Larsson and Müller, 2009; Pickup and Thomson, 2011; Daily and Thomson, 2013; Farbos de Luzan 

et al., 2015; Yoshinaga, Nozaki and Wada, 2019; Zhang, Krane and Yu, 2019). Currently, the compressible 

models have only been applied to two dimensional glottal flow.  

1.3.3 Coupling 

While assuming the glottal flow to be incompressible, the coupling calculation would involve 

three aspects: the solid tissue, the incompressible glottal flow and the acoustic (Alipour et al., 2011) 

(Figure 1.5). In the two-way coupling of the solid tissue and the incompressible flow, the incompressible 

flow provides the loading force to drive the vocal fold motion and the deformed vocal fold provides the 

displacement and velocity boundary condition for the incompressible flow. For the calculation of the 

acoustic values, the linear source-filter theory assumes that the sound resonance in the vocal tract will 

not affect the vocal fold vibration. So the acoustic result calculated from the flow and tissue solution 

does not need to be fed back to the incompressible glottal flow or the vocal fold tissue. This allows more 

efficient calculation (Rosa et al., 2003; Duncan, Zhai and Scherer, 2006; Tao et al., 2007; Luo et al., 2008; 

Link et al., 2009; Mattheus and Brücker, 2011; Šidlof, Zörner and Hüppe, 2013).  
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Figure 1.5 The fluid-structure-acoustic coupling. 

In some conditions, however, the source-filter interaction is too strong to be ignored, for 

example, when the fundamental frequency is high and close to the formant of the glottal tract system 

which appears in children or singing (Titze, 2008; Migimatsu and Tokuda, 2019), or when the vocal folds 

have certain pathological conditions (Zhang, Neubauer and Berry, 2009). In these conditions, the 

acoustic resonance could result in register jump (Zhang, Neubauer and Berry, 2006b), changes in the 

fundamental frequency (Daily and Thomson, 2013), threshold pressure, flow pulse and further the 

vibration mode (Titze, 2008). One-way acoustic coupling is not able to capture these features because 

the contribution of the acoustic pressure to the vocal folds loading needs to be considered (Figure 1.5 

dashed arrows)(Hatzikirou, Fitch and Herzel, 2006; Daily and Thomson, 2013; Maxfield, Palaparthi and 

Titze, 2016).  

The moving boundary can be modeled using dynamic remeshing of the intraglottal fluid domain 

(Zhao et al., 2002), the pseudo-solid approach (Link et al., 2009) or the immersed-boundary method 

(Mittal et al., 2008; Yang et al., 2017). Among these approaches, the immersed-boundary method has 
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good capability in fluid-structure interaction applications especially for deformation of structures of 

complex geometries. 

To deal with vocal folds contact, one common approach is the penalty force contact model 

where an external force is applied on vocal fold surfaces when they are getting very close to the 

contralateral side to prevent large penetration (Geng, Xue and Zheng, 2016; Zhang, 2019). In partial 

differential equation based flow solvers, a small artificial gap is required even in the closed phase to 

avoid the failure of the solver. For this purpose, collision planes are set close to the midsagittal plane to 

stop the vocal folds (Decker and Thomson, 2007; Luo, Mittal and Bielamowicz, 2009; Xue et al., 2010; 

Pickup and Thomson, 2011; Daily and Thomson, 2013). However, doing so will introduce leakage flow. 

When the leakage flow is large, it might result in breathy voice and decrease in the maximum sound 

pressure level (Wang et al., 2019).  

1.4 Main research areas and findings 

1.4.1 Vocal fold mechanics 

The geometry and tension of the vocal folds play key role in the vocal fold dynamics and the 

acoustic outcome. These parameters vary between individuals and different phonation conditions. The 

causal relationship between physiological factors (tissue geometry, material property, muscle 

stimulation etc.) and the acoustic-related outputs (threshold pressure, pitch, intensity etc.) is not one-

to-one correspondence or monotonic. Factors that might even have opposite effects are contributing 

together and carefully adjusted to achieve the final goal of the voice control. Main research areas 

include the threshold pressure, F0 control, vocal register, vocal intensity and efficiency.  

Threshold pressure is the minimum lung pressure required to initiate phonation (Titze, 1992a). A 

small value of the threshold pressure indicates an easy phonation onset. Typical value of the threshold 
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pressure for human larynx ranged in 0.13-0.34kPa (Chan, Titze and Titze, 1997; Berry, Chhetri and 

Neubauer, 2012). Generally, the threshold pressure can be decreased by decreasing the mucosal wave 

speed (Titze, 1988; Chan, Titze and Titze, 1997), decreasing the prephonatory gap (Titze, 1988; Titze, 

Schmidt and Titze, 1995; Zhang, 2009, 2010, 2016a; Perrine et al., 2020), decreasing the vertical 

thickness of the medial surface (not applied to the very thin vocal fold) (Mendelsohn and Zhang, 2011; 

Zhang, 2016a), decreasing the stiffness in either layer of the vocal fold (Zhang, 2009, 2017a; Mendelsohn 

and Zhang, 2011), or changing to a more rectangular prephonatory glottal shape (Titze, 1988; Chan, 

Titze and Titze, 1997; Zhang, 2008; Wu and Zhang, 2019). Zhang (2010) explained the phonation onset 

through the eigen mode coupling of the first several modes. With linear stability analysis, the decrease 

of the prephonatory gap was found to have an effect of increasing the coupling strength of the eigen 

modes thus could decrease the threshold pressure. Geng, Xue and Zheng (2016) found that the vertical 

stiffness gradient also helps to decrease the threshold pressure in that the reduced stiffness at the 

superior aspect of the vocal fold allows a larger vibration. Moreover, when the vocal folds vibrate in 

acoustic driven style, featuring mainly in up-down motion instead of mucosal wave style motion, an 

inertive supraglottal tract or a compliant subglottal tract also helps to decrease the threshold pressure 

(Zhang, Neubauer and Berry, 2009). The favorable effect of an inertive supraglottal tract has also been 

reported in (Titze, 1988).   

The control of the fundamental frequency is complex. A smaller vocal fold generally has higher 

fundamental frequency such as in women or children (Bowling et al., 2017). With a certain vocal fold, 

main strategy to modulate fundamental frequency is adjusting the tension through CT/TA contraction. 

The increase of the tissue stiffness especially in the longitudinal direction significantly increases the 

fundamental frequency (Titze and Talkin, 1979; Zhang, 2009, 2016a, 2017a). The contraction of the CT 
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muscle that lengthens the vocal fold always increases the frequency. However, the effect of the 

contraction of the TA muscle depends (Titze, 1988; Titze, Jiang and Drucker, 1988; Chhetri and Park, 

2016). If the vibration happens mainly in the cover layer, the fundamental frequency might decrease 

due to TA contraction since the cover layer slacks due to shortening. If the vibration reaches deep into 

the TA, then the fundamental frequency would increase (Titze, 1988; Titze, Jiang and Drucker, 1988). By 

analyzing vocal fold shape during singing over two octaves, Unteregger et al. (2018) suggested that in 

the three stages from F0 to 2F0 and 4F0, the main muscles responsible for pitch control are the TA, CT 

and CT/TA together, respectively. In addition, vocal fold approximation (Zhang, 2016a), increased 

subglottal pressure (Titze and Talkin, 1979; Zhang, 2016a), the longitudinal gradient of the cross-section-

area (Kelleher et al., 2010) and the elastic modulus in the ligament (Bhattacharya, Kelleher and 

Siegmund, 2015) also contribute to higher fundamental frequency.  

Vocal registers, characterized by different vocal fold vibration patterns, have distinct features on 

sound quality and the laryngeal energy transfer. The vibration pattern with a complete vocal fold closure 

has better excitation of the high-order harmonics. Factors contributing to the complete closure include 

large longitudinal stiffness, large medial surface thickness (Zhang, 2016a) and a stiff epithelium layer of 

the vocal fold (Xuan and Zhang, 2014; Tse, Zhang and Long, 2015). During speaking, the register 

transitions might happen are the modal-falsetto transition, which happens also in singing, and the pulse-

modal transition, which might happen when pitch is low (~70Hz)(Titze, 2000). The modal register 

generally has strong mucosal-wave propagation, complete vocal fold closure and shadow spectral slope 

(Titze, 2000). The falsetto register has much weaker mucosal wave propagation, vocal fold closure and 

steep spectral slope. The relative contraction strength of the CT and TA muscles influences the modal-

falsetto transition (Hirano, 1974; Story and Titze, 1995; Zhang, 2009). When TA contracts more than CT 
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or both in low level, the vocal fold is thick (bulging out especially in the inferior part) and soft in the 

cover layer, enabling the mucosal-wave propagation in the entire vocal fold, resulting in modal register. 

Contrarily, when CT contracts much more powerfully than TA, the vocal fold would be thin (small 

vertical thickness) with high tension in all the layers. It results in weak mucosal-wave propagation and 

the falsetto register (Hirano, 1974; Tokuda et al., 2007). Zhang (2009, 2017a) suggested that the change 

of the vertical thickness of the medial surface rather than the stiffness resulted from the TA/CT 

activation might be the main reason of the modal-falsetto transition. The fact that these two are usually 

affected simultaneously makes it difficult to differentiate the cause. The glottal tract system also 

influences register transition (Titze, 2000). In the acoustically driven type of vibration that features 

strong up-down motion, the fundamental frequency is mainly decided by the formant of the glottal tract 

(Zhang, Neubauer and Berry, 2006a, 2006b, 2009; Daily and Thomson, 2013; Migimatsu and Tokuda, 

2019). Daily and Thomson (2013) showed that when the length of the subglottal tract changed from 50-

100cm to 250-300cm, it changed from 1/4 to 3/4 wavelength resonator, resulting in frequency jump.  

Vocal intensity is proportional with subglottal pressure (Titze and Talkin, 1979; Zhang, 2016a) 

and vocal fold length (Titze and Talkin, 1979; Zhang, 2016a). The vertical stiffness gradient (Geng, Xue 

and Zheng, 2016) also has positive effect on it and it is more prominent at low subglottal pressures.  

Vocal efficiency is defined as the ratio of radiated sound power to aerodynamic power (Titze, 

1992b; Titze, Maxfield and Palaparthi, 2016). Mass lesion of the vocal folds would significantly reduce 

the efficiency (Jiang et al., 2004). Strategies to improve the efficiency include the bulging of the medial 

surface (Titze and Talkin, 1979), the increase of the body-cover stiffness ratio (adjusted by TA/CT 

muscles)(Zhang, 2009) and the increase of the longitudinal stiffness especially in the cover layer (Zhang, 

2014). The maintenance of the vocal fold adduction through LCA/IA contraction (Chhetri and Park, 2016) 
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and the excitation of high-order modes that have more lateral motion(Zhang, 2009) also increase the 

vocal efficiency. Moreover, vocal efficiency was observed to be higher in adult than in children, 

suggesting a favorable effect from the maturation of the vocal ligament (Tang and Stathopoulos, 1995). 

Titze, Maxfield and Palaparthi (2016) suggested that a pressure conversion ratio might serve as the 

alternate of the efficiency due to the difficulty of the combined measurement of lung pressure and 

tracheal airflow. 

1.4.2 Flow field  

In the glottis, flow separation occurs slightly downstream of the minimum area location when 

the vocal folds are closing in a divergent shape. When Reynolds number is below 2000, flow separation 

might happen when the divergent angle is just 5 degrees (Sparrow, Abraham and Minkowycz, 2009). 

Flow separation affects the vibration pattern by influencing the pressure distribution on the vocal fold 

surface and introduces vortex structures that will contribute to the quadrupole sound source. When the 

wall shear force is zero, it indicates the occurrence of the flow separation (Pelorson et al., 1994; Cisonni 

et al., 2010). The flow separation location can also be determined manually from streamline through 

experiment visualization (Cisonni et al., 2010; Šidlof et al., 2011; Stewart, Erath and Plesniak, 2014) or 

numerical simulation (Smith and Thomson, 2012). The cross-section area ratio of where flow separates 

over the minimum area is found to be around 1~2 (Pelorson et al., 1995; Alipour and Scherer, 2004; 

Sciamarella and Le Quéré, 2008; Smith and Thomson, 2012) but can be much larger (5.5-8) shortly prior 

to the final close of the vocal fold (Decker and Thomson, 2007; Šidlof et al., 2011). Upstream movement 

of the flow separation within a divergent glottis was found to facilitate phonation (Zhang, 2008). Several 

factors might result in the upstream movement, such as a more divergent shape (Alipour and Scherer, 

2004; Li et al., 2006; Zhang, 2008), larger flow (Alipour and Scherer, 2004; Li et al., 2006; Sciamarella and 
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Le Quéré, 2008) and the outward motion of the vocal folds (Alipour and Scherer, 2004; Sciamarella and 

Le Quéré, 2008).  

Flow separation results in intraglottal vorticities. Vortex structures generated by the glottal jet 

shear layer instability travel downstream with the glottal jet at the speed about 50%-70% (Zhang, 

Mongeau and Frankel, 2002; Oren, Khosla and Gutmark, 2014a) of the jet speed. PIV measurements 

(Oren, Khosla and Gutmark, 2014a) and numerical studies (Mihaescu et al., 2010; Farbos de Luzan et al., 

2015) suggested that the intraglottal vortex structures during vocal fold closing had larger intensity 

under higher subglottal pressure condition. Such vortex structures that could result in negative pressure 

as high as about 55% of the value of the subglottal pressure (Oren, Khosla and Gutmark, 2014b) were 

supposed to have the effect of facilitating vocal fold closing and increasing the glottal waveform 

skewness, maximum flow deceleration rate and sound pressure level. However, by applying an external 

force with the similar value as provided in Oren, Khosla and Gutmark (2014b) downstream the flow 

separation location to mimic the effect of the intraglottal vortices, Farahani and Zhang (2014) found that 

the intraglottal vortices could only increase the MFDR by 12.5% corresponding to 1 dB increase in sound 

pressure level. By directly introducing the vortex structure near a plate, Pirnia et al. (2018) quantified 

that the effect of the intraglottal vortices on vocal fold dynamics might be negligible. Therefore, the 

effect of the intraglottal vortices on vocal fold dynamics is still under debate. 

Jet deflection, i.e. glottal jet attaching to one of the vocal folds walls, which may happen even in 

a symmetric glottis could result in pressure difference of the two walls to about 5-6% subglottal 

pressure value (Scherer et al., 2001). It influences the dipole sound source (Erath and Plesniak, 2006b) 

and could be a factor of normal jitter values (Scherer et al., 2001). Numerically, a partial-differential 

equation based fluid solver is needed to capture this phenomenon (Tao et al., 2007). One possible 
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mechanism of the jet deflection is known as the Coanda effect (Erath and Plesniak, 2006c) that the flow 

has the tendency to adhere to the adjacent surface. Experiment measurement on static vocal fold 

models showed that when the divergent angles were 10 and 20 degrees, the glottal flow attached to 

one side of the vocal folds. But this did not happened in the 40 degrees case (Erath and Plesniak, 2006a, 

2006c). Such jet deflection behavior was explained by referring to the maps of diffuser flow regimes: 

contrary to 10-20 degrees that are in the unstable transition regime, 40 degrees is in the fully developed 

stall regime, thus there is no flow attachment (Erath and Plesniak, 2006a). However, Pelorson et al. 

(1994) suggested that Coanda effect might not have enough time to establish itself in such small time 

range of vocal fold vibration. Another possible mechanism of jet deflection proposed by Zheng et al. 

(2011) and Zheng, Mittal and Bielamowicz (2011) is that it might be resulted from the downstream 

asymmetric vortex structures. They observed from the numerical results that the jet deflection was 

always preceded by large-scale asymmetry in the downstream portion of the glottal jet. Three-

dimensional jet has much smaller jet deflection compared with two-dimensional jet (Mattheus and 

Brücker, 2011; Zheng et al., 2011; Xue et al., 2014) and is even more stable in realistic configuration 

compared with simplified shape (Xue et al., 2014). The overestimation of the jet deflection in the two 

dimensional model might artificially generate low-frequency pattern in the acoustic spectrum due to the 

flow recirculation in the supraglottal space (Mattheus and Brücker, 2011).  

Features unique to the three-dimensional glottal flow include the jet axis switching and the 

longitudinal asymmetry. Axis switching of the jet is the phenomenon that the glottal jet narrows in the 

longitudinal direction but widens in the lateral direction when propagating downstream of the vocal 

folds (Khosla et al., 2008; Triep and Brücker, 2010; Zheng et al., 2011; Krebs et al., 2012; Kirmse and 

Brücker, 2014). Vortices resulted from the axis switching might affect voice quality (Khosla et al., 2008). 
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For the longitudinal asymmetry, Alipour and Scherer (2000) found that the pressure drop near the mid-

coronal plane was larger than the two ends. Pressure near two ends might be positive in the whole cycle 

which protects the vocal folds during collision. Such longitudinal pressure gradient might be more 

prominent when the glottis is a divergent shape. Secondary flow resulted from it can be around 10% of 

the axial velocity (Scherer et al., 2010). Khosla et al. (2008) observed that the glottal jet skewed toward 

the anterior end above the folds. From numerical study of a subject-specific vocal fold model, Xue et al. 

(2014) observed that both subglottal pressure and subglottal angle increased from the anterior to the 

posterior end. This resulted in a greater vertical motion at the posterior end which delayed the glottal 

opening.   

The effect of the ventricular folds on the glottal dynamics is another focus in the flow field. 

Ventricular folds, also knowns as the false vocal folds (FVFs), serve primarily as a protecting valve during 

swallowing (Kniesburges et al., 2017) and barely move in normal phonation. FVFs move in some special 

conditions such as glottal stops (Birk et al., 2016) or some special singing conditions (Kniesburges et al., 

2017). In FVF-related dysphonia, FVFs disturb phonation, resulting in hoarseness and change in pitch 

(Jiao et al., 2018). Stationary FVFs could straighten the glottal jet, i.e., suppress the jet deflection 

(Kucinschi et al., 2006; Bailly et al., 2008; Triep and Brücker, 2010; Kirmse and Brücker, 2014; Farbos de 

Luzan et al., 2015; Xue and Zheng, 2017; Sadeghi et al., 2018). Contrarily, the vibration of the FVFs 

decreased voice quality (Birk et al., 2016). When the FVF motion is in different phase with the vocal folds 

(Bailly, Henrich and Pelorson, 2010; Alipour and Scherer, 2012), it could result in irregular vibration 

pattern (Moisik and Esling, 2014). 

Many studies reported that the FVF decreased the threshold pressure (Zheng et al., 2009; Birk et 

al., 2016; Kniesburges et al., 2017) by decreasing the pressure level in the ventricle (Alipour and Scherer, 
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2012; Kniesburges et al., 2017). The minimum ventricle pressure might be achieved when the FVF-VF 

gap ratio is 2-5.3 (Agarwal, 2004; Farbos de Luzan et al., 2015; Bailly et al., 2008). Kniesburges et al. 

(2017) and Sadeghi, Döllinger, et al. (2019) found that the FVF has the effect of increasing the glottal 

flow resistance. Contrarily, the laryngeal flow resistance might decrease (Zhang et al., 2002; Zheng et al., 

2009; Farbos de Luzan et al., 2015; Sadeghi, Döllinger, et al., 2019). Xue and Zheng (2017) suggested 

that the final effect of FVF on laryngeal flow resistance might be the combined effect of the reduced 

mixing-related loss and the increased friction-related loss, both of which were highly related to the FVF 

gap.  

The FVF-vocal fold gap ratio could also affect the fundamental frequency. When FVF-VF gap 

ratio increased from 0 to 1, F0 would increase and keep around a constant value when the ratio further 

increased (Bailly et al., 2008). Birk et al. (2016) suggested that the FVFs wound confine the F0 increase. 

FVFs were also reported to have the effect of increasing the glottal flow rate (Sadeghi et al., 2018; 

Sadeghi, Kniesburges, et al., 2019), increasing the sound intensity (Alipour, Jaiswal and Finnegan, 2007), 

enhancing the monopole sound source (Zheng et al., 2009) and generating stronger glottal vortices 

(Farbos de Luzan et al., 2015; Sadeghi, Kniesburges, et al., 2019). McGowan and Howe(2010) reported 

that the effect of the FVFs on the output acoustic pressure was small when the movement of the vocal 

folds was prescribed. However, Farahani et al. (2013) suggested a back-coupling interaction between 

vocal folds and FVFs that the shedding vortex might rebound from FVFs and reach vocal folds again. 

Such cavity oscillation could generate high-order harmonic component in the acoustic output as a dipole 

source (Zhang et al., 2002). Alipour, Jaiswal and Finnegan (2007) suggested that FVF might be 

responsible for the low-frequency components in the acoustics and for oscillation instabilities.  
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1.4.3 Acoustics 

Analysis with acoustic analogy (Ffowcs Williams and Hawkings, 1969) shows that major sources 

contributing to the sound generation in the larynx are (1) a dipole source due to the unsteady axial 

forces exerted by the walls from the fluid; (2) a monopole source due to the mass of the volume of air 

displaced by the motion of the orifice walls; and (3) a quadrupole source related to kinetic energy 

fluctuations of the flow downstream of the orifice (Zhao et al., 2002). Dipole source is the principal 

sound source. McPhail, Campo and Krane (2019) demonstrated it by showing a strong correlation 

between the transglottal pressure and the radiated sound. In the 125Hz frequency condition, the 

strength of the monopole source is just around 1/5 of the dipole source. Dipole source from vortex 

shedding and the interaction with the vocal folds walls is responsible for the tonal sound (Suh and 

Frankel, 2007; Khosla et al., 2008). Moreover, Zhang and Mongeau (2006) suggested that the dipole 

source also included a random component caused by turbulent fluctuating pressures acting on the 

superior vocal folds walls. This random component and the quadrupole source together contribute to 

the broadband sound, which is dominant in high frequency and unvoiced sound (Zhang and Mongeau, 

2006).  

Glottal flow rate affects the sound source by influencing the jet pattern. When the jet core is 

short such as in the low flow rate condition, the vortex structures interact with the vocal folds walls in 

the glottis. It contributes to the dipole source. However, when the jet presents to be a long transition 

one in the high flow rate condition, the vortex structures would generate away from any surfaces, 

contributing to the quadrupole source (Kucinschi et al., 2006). FVFs affect the dipole source by 

stabilizing and straightening the glottal jet (Kucinschi et al., 2006) or directly interacting with the jet 

(Erath and Plesniak, 2006b). Frequency also influences the sound source. Since the strength of the 
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monopole source is proportional with the frequency while the dipole is not, the monopole source can be 

significant when the frequency increase to a high level, such as 400Hz as suggested by Zhao et al. (2002). 

Increased frequency also brings about more small-scale vortex structures which contribute to the 

broadband sound (Zhang and Mongeau, 2006). Sundström and Oren (2019) showed that in the nasal 

cavity, turbulence interacting with the nasal cavity walls generated the dipole source that was two 

orders of magnitude larger than the quadrupole source that generated by turbulence itself. 

1.5 Objectives of the current study 

The capability and complexity of computational modelling of phonation have significantly 

improved in the recent decades in both fluid and tissue aspects. However, challenged by the 

computational cost, most of the flow models are still based on Bernoulli flow and the vocal fold models 

are based on finite element method but with simplified geometry. The Bernoulli flow based models are 

much quicker and easier compared with the PDE based flow models but are limited since they are linear, 

and the viscous effects are neglected. Moreover, by applying uniform pressure in each transverse plane, 

the pressure loading on vocal folds is inaccurate especially when the airway shape is complex. 

Contrarily, three dimensional PDE based flow solution would describe the flow domain more accurately 

thus help to improve the understanding of the glottal flow dynamics and the FSI process. 

Another limitation of current studies is that the numerical models are usually validated by 

comparing with physiological possible range, without the verification against the specific object. 

Difficulties in the validation include the coupled modelling of the three-dimensional vocal fold vibration 

and the glottal flow and the uncertainly of material properties. Though there are literatures reporting 

the measurements of the material properties of the tissue, the data vary in a large range between 

individuals. Ideally, when performing the validation, the measurement of vocal fold vibration, the 
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geometry and the material property should come from the same subject. By applying the geometry and 

material property obtained from the experiment measurement in the simulation setup, a one-to-one 

comparison could be performed. 

Given the above limitations of the current studies, the objectives of the current study are (1) 

performing more rigorous validation of the numerical approach by performing one-to-one comparison 

of the numerical results with the experiment measurements, and (2) performing FSI simulations of the 

laryngeal flow with PDE based flow model to extend our current understanding about the source of the 

voiced sound, especially the effect from the layered structure of the vocal fold. The dissertation is 

outlined as follows:  

Chapter 2 describes the computational method that explicitly couples a sharp-interface 

immersed boundary method based incompressible fluid solver, a hydrodynamic/acoustics splitting 

method based acoustics solver and a viscoelastic solid solver.   

Chapter 3 provides the validation of the numerical solver against the experiment measurements 

on a canine larynx and pigeon syringes.  

Chapter 4 provides the application on a simplified human vocal fold and vocal tract system, 

which would serve as the baseline case of the parametric study in later chapters. The vocal fold has been 

considered as a three-layer structure including the cover, the ligament, and the body layers. In Chapter 5 

and 6, the degree of the longitudinal variation of the thickness of the cover and ligament layers, and the 

cover-body layer thickness ratio have been systematically varied in a large range. The effect on flow rate 

related parameters, vocal fold dynamics and the glottal energy transfer has been investigated. Chapter 7 

discusses the conclusions, limitations, and possible future works. 
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CHAPTER 2 NUMERICAL METHOD 

In the current study, a high-fidelity numerical solver that couples a sharp-interface immersed 

boundary method based incompressible fluid solver, a hydrodynamic/acoustics splitting method based 

acoustics solver and a viscoelastic solid solver was employed. This chapter provides the brief description 

of the numerical solvers. More details of the solvers could be referred to (Luo et al., 2008; Mittal et al., 

2008; Zheng, 2009; Seo and Mittal, 2011).   

2.1 The fluid solver 

The fluid solver is based on the immersed boundary method which was firstly proposed by 

(Peskin, 1972) in the cardiac application. By solving the governing equation on fixed Cartesian grid, it 

avoids the need to regenerate the grid during fluid-structure interaction and has the advantage in 

describing the complex tissue boundary in the vocal fold application. Two sets of grids are included in 

the fluid solver: (1) the Cartesian grid, where the governing equation of the fluid is solved and (2) the 

immersed boundary representing the shape of the fluid region. In the current phonation application, the 

immersed boundary presents the airway. Through fluid-structure coupling, the information about the 

tissue displacement/velocity would be transferred to the immersed boundary to build the boundary 

condition of the fluid domain.  

2.1.1 Governing equation and numerical scheme of the incompressible flow 

The Mach number in the glottal flow is less than 0.3 (Scherer et al., 2010). Therefore, the 

incompressible simplification, which has been employed in most of the studies as stated in Chapter 1, 

has also been applied in the flow field in the current study. The governing equation of the fluid is the 

three-dimensional, unsteady, viscous, incompressible Navier-Stokes equations: 

∇ ∙ �⃗⃗� = 0 (2.1) 
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𝜕�⃗⃗� 

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗� = −

1

𝜌0
∇𝑝 + 𝜐0∇

2�⃗⃗�  (2.2) 

where �⃗⃗� , 𝜌0, 𝑝, 𝜐0 are the incompressible flow velocity, density, pressure, and kinematic viscosity, 

respectively. The governing equation is solved in Cartesian grids and the primitive variables (�⃗⃗� , p) are 

stored at the cell center. Time marching of (2.2 is based on fractional-step method (van Kan, 1986). The 

equation is split as: 

𝑢∗ − 𝑢𝑛

∆𝑡
= −

1

𝜌0
∇𝑝𝑛 + 𝜐0∇

2�⃗⃗� − (�⃗⃗� ∙ ∇)�⃗⃗�  (2.3) 

𝑢𝑛+1 − 𝑢∗

∆𝑡
= −

1

𝜌0
∇𝑝′ (2.4) 

where 𝑢∗ is an intermediate velocity, 𝑝′ is pressure correction variable. Sub-steps have been taken to 

obtain the value of the variables (Mittal et al., 2008): 

Step 1. (2.3 is calculated at the cell nodes to obtain 𝑢𝑖
∗:  

𝑢𝑖
∗ − 𝑢𝑖

𝑛

∆𝑡
+

1

2
(3𝑁𝑖

𝑛 − 𝑁𝑖
𝑛−1) = −

1

𝜌0

δ𝑝𝑛

δ𝑥𝑖
+

1

2
(𝐷𝑖

∗ + 𝐷𝑖
𝑛)              (2.5) 

where 𝑁𝑖 =
𝛿(𝑈𝑗𝑢𝑖)

𝛿𝑥𝑗
 is the convective terms employing the Adams-Bashforth scheme with 𝑈𝑗  

representing the face-center velocities, 𝐷𝑖 = 𝜈
𝛿

𝛿𝑥𝑗
(
𝛿𝑢𝑖

𝛿𝑥𝑗
) is the diffusive term employing the implicit 

Crank-Nicolson scheme, 
δ

δx
 denotes a second-order central difference scheme.              (2.5 is solved 

using a line-SOR scheme. 

Step 2. The divergence of (2.4 generates the Poisson equation to obtain the pressure correction 

variable 𝑝′ as 𝑢𝑛+1 is divergence free according to the mass continuity equation ((2.1): 

1

𝜌0

𝛿

𝛿𝑥𝑖
(
𝛿𝑝′

𝛿𝑥𝑖
) =

1

Δ𝑡

𝛿𝑈𝑖
∗

𝛿𝑥𝑖
 (2.6) 



31 
 
 

 

The pressure Poisson equation is solved through a highly efficient multi-grid method that 

employs a Gauss-Siedel line-SOR smoother (Dong, Mittal and Najjar, 2006).  

Step 3. The pressure and velocity values are corrected using 𝑝′: 

𝑝𝑛+1 = 𝑝𝑛 + 𝑝′ (2.7) 

𝑢𝑖
𝑛+1 = 𝑢𝑖

∗ −
∆𝑡

𝜌0
(
𝛿𝑝′

𝛿𝑥𝑖
)

𝑐𝑐

 (2.8) 

𝑈𝑖
𝑛+1 = 𝑈𝑖

∗ −
∆𝑡

𝜌0
(
𝛿𝑝′

𝛿𝑥𝑖
)

𝑓𝑐

 (2.9) 

where cc and fc denote cell-center and face-center, respectively.  

2.1.2 Treatment of boundary condition 

The deformation of the immersed boundary provides the boundary condition for the 

incompressible flow calculation. Sharp-interface immersed boundary method has been employed to 

impose the boundary condition for the fluid domain (Mittal et al., 2008). 

Based on the location of the immersed boundary, the Cartesian grids in the computational 

domain would first be differentiated as solid or fluid. Ghost cell (GC) is defined as the solid cell that has 

at least one fluid cell neighbor. In the ghost-cell methodology, a probe that perpendicularly intersects 

with the immersed boundary is generated from the GC to the image point (IP) (Figure 2.1(a)). The 

boundary intercept is named as BI. Values of the fluid nodes surrounding IP are interpolated to obtain 

the fluid value at IP: 

𝛷𝐼𝑃 = ∑𝛽𝑖𝛷𝑖 (2.10) 

where 𝛷𝐼𝑃 is the fluid value at IP, 𝛷𝑖 is the fluid value at the nodes surrounding the IP, 𝛽𝑖 is the 

interpolating coefficient, i ranges from 1-4 in the 2D problem and 1-8 in the 3D problem. For Dirichlet 
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boundary condition, value at GC is obtained by linear interpolation as shown in (2.11 when BI locates in 

the middle of GC and IP: 

𝛷𝐺𝐶 = 2𝛷𝐵𝐼 − 𝛷𝐼𝑃 (2.11) 

where 𝛷𝐺𝐶  is the fluid value at GC,  𝛷𝐵𝐼 is the value at BI according to the displacement and velocity of 

the immersed boundary. For Neumann boundary condition,  

𝛷𝐺𝐶 = 𝛷𝐼𝑃 + Δ𝑙(
𝛿𝛷

𝛿𝑛
)𝐵𝐼 (2.12) 

Where Δl is the length of probe. In this boundary formulation methodology, second-order accuracy of 

the velocity variables can be achieved locally and globally (Mittal et al., 2008).    

 

                                                   (a)                                                                                  (b) 

Figure 2.1 (a) Ghost cell method; (b) The treatment of fresh cell. 

In the condition of a moving boundary, whether the cell is a fluid cell or a solid cell depends on 

the immersed boundary location at the specific time instant. Two types of special cells are termed as 

“Fresh cell” or “Dead cell”. “Fresh cell” refers to the cell that was solid in the previous time step but 

becomes fluid in the current time step. “Dead cell” refers to the cell that was fluid in the previous time 

step but becomes solid in the current time step.  Special treatment is required to obtain the value of the 
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fresh cell. As shown in Figure 2.1(b), BI is generated from probe pointing from fresh cell perpendicularly 

to the immersed boundary. Fresh cell locates in the middle of the BI and IP. 𝛷𝐼𝑃 is interpolated using 

surrounding nodes and BI:  𝛷𝐼𝑃 = 𝛷𝐵𝐼 + ∑𝛽𝑖𝛷𝑖  where i ranges 1-3 in the 2D case and 1-7 in the 3D case 

in the surrounding nodes excluding the fresh cell. Then the fresh cell value (𝛷𝐹𝑟𝑒𝑠ℎ) is obtained as: 

𝛷𝐹𝑟𝑒𝑠ℎ = (𝛷𝐵𝐼 + 𝛷𝐼𝑃)/2 in the case that it locates in the middle between BI and IP. 

During dynamic case, at the beginning of each time step, the immersed boundary is deformed 

according to the tissue motion. Then the GC values and the IP values are updated accordingly. The 

governing equations is iterated on the Cartesian grid until the convergence criteria has been satisfied. 

2.1.3 Acoustic solver 

In the glottal flow circumstance, direct numerical simulation of such low Mach number 

aeroacoustics faces the challenge of scale disparities between the hydrodynamic vortical motions and 

the acoustic waves (Seo and Moon, 2006). Alternatively, a hydrodynamic/acoustics splitting method 

based acoustics solver which is more computational efficient has been integrated with the 

incompressible fluid solver (Seo and Mittal, 2011). The method has been validated against the 

fundamental dipole/quadrupole noise problem and the low Mach turbulent flow noise problems (Seo 

and Moon, 2006, 2007; Moon et al., 2010). In the hydrodynamic/acoustics splitting method, the total 

flow variables are decomposed into the incompressible variables and the perturbed compressible ones: 

𝜌(𝑥 , 𝑡) = 𝜌0 + 𝜌′(𝑥 , 𝑡) 

�⃗⃗� (𝑥 , 𝑡) = �⃗� (𝑥 , 𝑡) + �⃗� ′(𝑥 , 𝑡) 

𝑃(𝑥 , 𝑡) = 𝑝(𝑥 , 𝑡) + 𝑝′(𝑥 , 𝑡) 

(2.13) 

where 𝜌, �⃗⃗� , 𝑃 are the total flow density, velocity and pressure, respectively, 𝜌0, �⃗� , 𝑝 are incompressible 

perturbed flow density, velocity, pressure, respectively, and 𝜌′, �⃗� ′, 𝑝′ are compressible perturbed flow 
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density, velocity, pressure, respectively. The calculation of the incompressible variables has been 

discussed before. The perturbed compressible parts employ the linearized perturbed compressible 

equation (LPCE) (Seo and Moon, 2006; Seo and Mittal, 2011):  

𝜕𝜌′

𝜕𝑡
+ (�⃗� ∙ ∇)𝜌′ + 𝜌0(∇ ∙ �⃗� ′) = 0 

𝜕�⃗� ′

𝜕𝑡
+ ∇(�⃗� ′ ∙ �⃗� ) +

1

𝜌0
∇𝑝′ = 0 

𝜕𝑝′

𝜕𝑡
+ (�⃗� ∙ ∇)𝑝′ + γ𝑝(∇ ∙ �⃗� ′) + (�⃗� ′ ∙ ∇)𝑝 = −

𝐷𝑝

𝐷𝑡
 

(2.14) 

where 𝛾 is the ratio of the specific heat. The 
𝐷𝑝

𝐷𝑡
 term on the RHS represents the sound source from the 

flow solver. The LHS presents the effects of acoustic wave propagation and refraction in the unsteady, 

inhomogeneous base flow. The boundary condition on the solid wall is: 

𝜕𝜌′

𝜕𝑛
= 0,

𝜕𝑝′

𝜕𝑛
= 0, �⃗� ′ ∙ �̂� = 0 

where �̂� is the unit vector of face normal direction. The LPCE is discretized with a sixth-order central 

compact finite difference scheme in space and integrated using a four-stage Runge-Kutta method in 

time. The LPCE based acoustic solver has been coupled with the IBM based incompressible fluid solver. 

Further details of this model can be found in (Seo and Moon, 2006; Seo and Mittal, 2011).  

2.2 The solid solver 

A finite element based three-dimensional solid solver is employed to solve the tissue dynamics 

(vocal fold vibration). Details has been discussed below.  

2.2.1 Constitutive law 

Based on the discussion in Chapter 1, vocal fold vibration around a given postured position is 

generally considered as small deformation with much larger deformation in the transverse plane than in 
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the longitudinal direction. Therefore, most of the studies studying the vocal fold vibration applies the 

linear assumption and many of them also employed the transversely isotropic assumption (Titze and 

Talkin, 1979; Berry et al., 1994; Cook and Mongeau, 2007; Kelleher et al., 2010; Xue et al., 2014; Zhang, 

2016a, 2017a; Erath, Zañartu and Peterson, 2017). Following these, in the current study, the material 

property of the tissue is assumed to be incompressible transversely isotropic. The Kelvin-Voigt model 

has been employed for modeling the viscoelastic material (Fung, 1993): 

𝝈 = 𝐂𝜺 + 𝛈�̇� (2.15) 

where 𝝈 is the stress tensor, 𝜺 is the strain tensor, �̇� is the strain rate tensor, C and 𝛈 are the material 

constant tensors corresponding to elasticity and viscosity, respectively. In the condition that x-y plane is 

the transverse plane and z is the longitudinal direction, the strain-stress relationship takes the form: 

[
 
 
 
 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜏𝑦𝑧

𝜏𝑧𝑥

𝜏𝑥𝑦]
 
 
 
 
 

=
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1 − 𝜈𝑝𝑧𝜈𝑧𝑝

𝐸𝑝𝐸𝑝𝑧Δ

𝜈𝑝 + 𝜈𝑝𝑧𝜈𝑧𝑝

𝐸𝑝𝐸𝑝𝑧Δ
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휀𝑥𝑥

휀𝑦𝑦

휀𝑧𝑧

𝛾𝑦𝑧

𝛾𝑧𝑥
𝛾𝑥𝑦]

 
 
 
 
 

 (2.16) 

where Δ =
(1+𝜈𝑝)(1−𝜈𝑝−2𝜈𝑝𝑧𝜈𝑧𝑝)

𝐸𝑝
2𝐸𝑝𝑧

. 𝜏𝑦𝑧, 𝜏𝑧𝑥, 𝜏𝑥𝑦 are the shear stresses in y-z, z-x, x-y planes, respectively; 

𝛾𝑦𝑧, 𝛾𝑧𝑥 , 𝛾𝑥𝑦  are the engineering shear strains in y-z, z-x, x-y planes equaling to 2휀𝑦𝑧, 2휀𝑧𝑥, 2휀𝑥𝑦, 

respectively. Ep, Epz stands for transverse and longitudinal Young’s modulus, respectively; Gpz is the shear 

modulus in longitudinal direction; νp, νpz are the transverse and longitudinal Poisson’s ratio, respectively. 

The symmetry of the stiffness matrix requires that 
𝜈𝑝𝑧+𝜈𝑝𝜈𝑝𝑧

𝐸𝑝
2Δ

=
𝜈𝑧𝑝+𝜈𝑝𝜈𝑧𝑝

𝐸𝑝𝐸𝑝𝑧Δ
 . Thus νzp can be calculated as 

νzp= νpzEpz/Ep.  



36 
 
 

 

The strain rate-stress relationship takes the form:  

[
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 (2.17) 

where η is the viscosity of the tissue. It is assumed that the strain rate-stress relationship is not affected 

by the Poisson effect. 

2.2.2 Governing equation and numerical scheme 

The governing equation of the tissue dynamics is the Navier equation: 

𝜌𝑡𝑖𝑠𝑠

𝜕2𝑑𝑖

𝜕𝑡2
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑡𝑖𝑠𝑠𝑓𝑖 (2.18) 

where i and j range from 1-3,  𝜌𝑡𝑖𝑠𝑠 is the tissue density, 𝑑𝑖  is the displacement, 𝜎𝑖𝑗 is the stress tensor, 

and 𝑓𝑖 is the body force. By employing the Galerkin method as the finite element formulation, (2.18 

becomes: 

𝑀𝛼𝛽�̈�𝛽 + 𝐶𝛼𝛽�̇�𝛽 + 𝐾𝛼𝛽𝑑𝛽 = 𝐹𝛼
𝑡 + 𝐹𝛼

𝑏 (2.19) 

where �̈� and �̇� are the second and first derivative of nodal displacement, 𝑀𝛼𝛽 = ∫ 𝜌𝑡𝑖𝑠𝑠𝑁𝑗𝛽𝑣
𝑁𝑖𝛼𝑑𝑣 is 

the mass matrix, 𝐶𝛼𝛽 = ∫ 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝛽𝑣
𝐵𝑖𝑗𝛼𝑑𝑣 is the damping matrix, 𝐾𝛼𝛽 = ∫ 𝐶𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝛽𝑣

𝐵𝑖𝑗𝛼𝑑𝑣 is the 

stiffness matrix, 𝐹𝛼
𝑡 = ∫ 𝜎𝑠𝑁𝑖𝛼𝑑𝑠

𝑠𝜎
 is the traction force on node α, 𝐹𝛼

𝑏 = ∫ 𝜌𝑡𝑖𝑠𝑠𝑓𝑖𝑁𝑖𝛼𝑑𝑣
𝑠𝜎

 is the body 

force on node α and N is the shape function. 𝐶𝑖𝑗𝑘𝑙 and 𝐴𝑖𝑗𝑘𝑙  are the tensor forms of the material 

coefficients in Equation 2.16 and Equation 2.17, respectively. 

Discretizing (2.19 in time using a second-order Newmark scheme results in the discretized 

equation as shown in (2.20: 
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𝛾

𝛽
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𝛾

2𝛽
− 1)Δ𝑡�̈�𝑛] 

(2.20) 

where β and γ are constants equaling to 0.25 and 0.5, respectively, in the current study. This provides 

second-order accuracy. The equation is solved by a banded LU decomposition solver and the Cutill-

Mckee and Gibbs-Poole-Stockmeyer methods are used to re-index the nodes to produce a banded 

matrix. Details regarding the numerical algorithm of the flow and solid solvers can be found in (Zheng, 

2009; Zheng et al., 2010; Xue, 2011). 

2.2.3 Contact model 

Vocal fold vibration will result in contact of the two sides vocal folds. Considering that the cases 

we would study employ the symmetric or near-symmetric vocal fold models, two contact planes have 

been set at the locations of x±Δx for the corresponding vocal folds, where x denotes the lateral location 

of the mid-sagittal plane and Δx denotes the offset of the contact plane. When the vocal fold vibrates to 

the position exceeding the contact plane, it is forced to stop at the contact plane and both velocity and 

acceleration are set to zero. An artificial gap (2Δx) would be maintained between the two vocal folds for 

the success of the fluid solver, which is also common in other partial-differential equation based fluid 

solvers (Suh and Frankel, 2007; Luo, Mittal and Bielamowicz, 2009; Daily and Thomson, 2013; Sadeghi, 

Kniesburges, et al., 2019). Though necessary, such artificial gap introduces leakage flow even when the 

vocal fold has been closed, which might result in breathy sound.  
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2.3 The coupling process 

The incompressible fluid, solid tissue and acoustic solvers are explicitly coupled through the 

interface of the immerse boundary and the surface mesh of the tissue (Figure 2.2). The surface meshes 

of the solid tissue and the immerse boundary (vocal tract) at the interface do not need to be conformal. 

Interpolation is performed to provide more flexibility during mesh generation. In each time step, the 

displacement and velocity boundary condition of the fluid domain has been updated from the 

deformation of the solid tissue in the previous step (or set as zero during initialization). Then the 

incompressible flow is marched by one time step. The acoustic solver is then marched with the updated 

incompressible flow field as well as the displacement and velocity boundary condition. The 

incompressible flow pressure and acoustic perturbation pressure together would be used to update the 

nodal force applied on the vocal fold tissue. In the end of the time step, the solid solver is marched by 

one step with the updated traction boundary condition.  

                        

Figure 2.2 The coupling scheme of the solvers. 
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CHAPTER 3 VALIDATION AGAINST ANIMAL EXPERIMENTS 

Due to the similarities in anatomical structures and vibration pattern, animal models have long 

been applied in the phonation studies. This chapter provides the validation of current numerical 

approach against the experiment measurements on a canine larynx and pigeon syringes. Model 

geometries are regenerated from the CT/MRI scan. Material properties have been inversely determined 

through an optimization method by minimizing the numerical and experimental difference of the static 

deformation. Numerical simulations follow the same setup with the experimental measurements and 

the key features and quantities have been compared.  

The work about the validation on the pigeon syringes has been published as “Jiang, Weili, Jeppe 

H. Rasmussen, Qian Xue, Ming Ding, Xudong Zheng, and Coen PH Elemans. ‘High-fidelity continuum 

modeling predicts avian voiced sound production.’ Proceedings of the National Academy of 

Sciences (2020).”  

3.1 The validation against a canine larynx 

3.1.1 Experiment measurement  

The experiment was performed by Dr.Khosla’s group from Department of Otolaryngology‑Head 

and Neck Surgery in University of Cincinnati Medical Center. One larynx was excised from a shared 

research Mongrel canine (weight 20kgs). The cartilages and soft tissues above the true vocal folds were 

removed to provide optical access to the glottis, and the mucosa was stitched to the edge of the thyroid 

cartilage, which was truncated at the folds’ height. The trachea was cut 5 to 6 tracheal rings below the 

cricoid cartilage (~5cm). The larynx internal geometry at rest was obtained using magnetic resonance 

imaging scans (MRI scans). 
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One larynx was excised from a shared research Mongrel canine (weight 20kgs). The cartilages 

and soft tissues above the true vocal folds were removed to provide optical access to the glottis. The 

larynx internal geometry at rest was obtained using magnetic resonance imaging scans (MRI scans). The 

excised larynx was placed on an aerodynamic nozzle connecting to an air supply. The nozzle supported 

the larynx at the tracheal level. The vocal folds were adducted with two three-pronged mechanical 

supports that were inserted into the arytenoid cartilages, similarly to the setup featured in previous 

research by (Oren, Khosla and Gutmark, 2014b). Velocity measurements were conducted in the mid-

membranous coronal plane (halfway between the anterior commissure and vocal process), using 

particle image velocimetry (PIV), similar to the setup in (Farbos de Luzan et al., 2020) . The PIV camera 

was fitted with a Nikon 105 mm F/2.8 macro lens, which yielded a spatial resolution of 94.76 pixels/ mm. 

The PIV camera was placed at an angle of 40° relative to the x-y plane. Processing of the PIV data was 

done using DAVIS 10.5 software (LaVision GmbH) with a multi-pass decreasing pixel size (96 to 32) with 

a 75% overlap, which yielded a spatial resolution of 15.90 vectors/mm.   

Projecting the laser sheet from above the larynx enabled to obtain intraglottal geometry and 

velocity measurements while the glottis was divergent. An electroglottograph (EGG) signal was used to 

determine the glottal closure instant, which was considered as the phase reference of every PIV 

instantaneous flow field, and used to trigger the PIV system (camera and laser). PIV measurement was 

performed nine loops to cover the phase time from 15 to 312 degree. Phase 0 was defined based on the 

EGG signal, which happened after the beginning of the closing but before the folds were completely 

closed. Each loop lasted 30 consecutive cycles and six different phases taken at 51.42-degree interval 

were acquired. The first phase times were shifted by 5 degrees in the next loop. The subglottal pressure 

(PSG) was measured inside the nozzle using a pressure transducer (Honeywell, FPG). The sampling rates 
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for the pressure transducer, EGG, and TTL signals, were 20 kHz using a National Instrument data 

acquisition system (NI, PXIe-6356). The timing of the PIV, high-speed images, and data acquisition was 

synchronized using a shared reference clock. 

3.1.2 Numerical model generation and determination of material property 

The geometries of the vocal folds and related laryngeal cartilages were reconstructed from the 

MRI scans using the commercial software Mimics 16.0 (The Materialise Group, Leuven, Belgium) (Figure 

3.1). The MRI scan had a resolution of 0.2mm in all three directions. The body-cover labelling scheme 

was adopted to describe the vocal fold inner structure and each layer was manually segmented for each 

vocal fold. The laryngeal cartilages were reconstructed to identify the contact areas of the vocal fold 

tissues and cartilages, where the constraint boundary conditions were applied in the simulations. The 

medial surface of each vocal fold was 12.5mm in the longitudinal direction and 3.5mm thick in the 

vertical direction (Figure 3.1 (c)). 

 

Figure 3.1 Model reconstruction from MRI scans. (a) A coronal plane of the larynx from the MRI scan, 

where the vocal fold tissue is annotated; (b) The reconstructed laryngeal model including the vocal fold 

tissues and related cartilages. The 3D geometry of the vocal fold on the right is made transparent to 

show the cover-body structure inside the vocal fold; (c) The dimensions of the medial surface of the 

vocal fold. 
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In this model, both the cover and body layers were modeled as transversely isotropic linear 

viscoelastic materials. Generally, five independent parameters are needed to describe this type of 

material, including the transverse Young’s modulus (Ep), longitudinal Young’s modulus (Epz), transverse 

Poisson ratio (νp), longitudinal Poisson ratio (νpz) and longitudinal shear modulus (Gpz). In our model, the 

values of νp and νpz were set to be 0.9 and 0.0 (Alipour, Berry and Titze, 2000; Cook, Nauman and 

Mongeau, 2008), respectively, for both the cover and body, to model the material incompressibility. By 

considering that vocal fold vibration is mostly in the transverse plane due to longitudinal tension, the 

values of Epz and Gpz were assumed to be 20 and 5 times greater than the magnitude of Ep, respectively, 

for both the cover and body layers. These treatments have significantly reduced the independent 

parameters of each layer, which now only includes Ep.  

 

Figure 3.2 Material property and boundary condition. (a) Comparison of the force-displacement 

relationship obtained from the numerical and experimental (Oren et al., 2014) indentations. (b) 

Schematic of the numerical indentation which was performed at the superior and inferior edges of the 

mid-coronal plane of the reconstructed vocal fold model. The indentation diameter was 1 mm. (c) 

Simulation setup and the boundary conditions. Surfaces denoted yellow were subjected to the 

aerodynamic loading and free to move. Surfaces denoted green were in contact with the cartilages and 

completely fixed during FSI simulations. 
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Past studies reported that stiffness of the cover layer increase from the superior to inferior 

aspect in both the human(Chhetri, Zhang and Neubauer, 2011) and canine (Chhetri and Rafizadeh, 2014; 

Oren et al., 2014) vocal folds. This vertical stiffness variation can affect vocal fold dynamics in terms of 

increasing the opening and closing speed and promoting the vertical phase difference and divergent 

angle (Geng, Xue and Zheng, 2016). To include this feature in our model, another independent 

parameter---vertical stiffness gradient (VSG, kPa/mm), defined as the transvers Young’s modulus 

gradient along the inferior-superior direction, was used to in the cover layer. In this way, the total 

independent parameters in our model include the transverse Young’s modulus of the body layer (Ep,b, 

kPa), the transvers Young’s modulus at the superior aspect of the cover layer (Ep,c, kPa) and VSG of the 

cover layer.  

An inverse method has been developed to determine the three parameters from in-situ micro-

indentation measurement. (Oren et al., 2014) measured the force (pressure)-displacement relationships 

at both the superior and inferior edges of the mid-coronal plane of excised canine vocal folds. The data 

was provided for the present study and is shown in the dash lines in Figure 3.2(a). Note that the data 

was an average of 11 canine larynges, and the loading and unloading curves have been averaged to 

exclude the hysteresis effect. Following our previous work (Geng, Xue and Zheng, 2017), finite element 

method based numerical indentations were performed on the reconstructed model at the same 

locations as those in the experiment (Figure 3.2 (b)). A generic algorithm-based optimization process 

was developed to search for the optimal material parameters to match the numerical force-

displacement curves with the experimental ones. The obtained numerical force-displacement curves 

were shown in the solid lines in Figure 3.2 (b). Note that the experimental curves reflected a nonlinear 

material behavior which cannot be represented by the linear material model in our method. However, 
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the nonlinearity only became evident when the strain was larger than 0.2 (0.8mm deformation). This 

corresponds to a stress larger than 4.7kPa at the superior edge and 10.2 kPa at the inferior edge. These 

values far exceed the possible pressure loadings on the vocal folds during vibrations. Thus, the 

numerical indentation was conducted up to the strain of 0.2. The values of the three material 

parameters obtained from the optimization were Eb= 4.76kPa, Ec= 1.33kPa and VSG= 0.43kPa/mm. 

These values were at the same order of magnitude as the experiment measurements reported in 

(Chhetri and Rafizadeh, 2014). Table 3-1 summarizes the material properties of each layer of the vocal 

fold in our model. 

Table 3-1 Material property of the vocal fold layers. For the cover layer, due to the existence of the VSG, 

values are listed only for the superior side of the vocal fold. VSG is the vertical stiffness gradient. 

 Ep (kPa) Epz (kPa) Gpz (kPa) νp νpz VSG (kPa/mm) 

Body 4.76 95.24 23.81 0.9 0.0 - 

Cover 1.33 26.70 6.68 0.9 0.0 0.43 

 

In the simulations, the airflow was supplied by a subglottal pressure through the trachea of the 

larynx and exhausted to the open environment without a supraglottal tract (same as the experiments). 

Two subglottal pressures of 1.2 kPa and 1.8 kPa, corresponding to the low and high pressure conditions, 

were tested in the experiments and simulations. In the rest of the text and figures, SIM_L and SIM_H 

denote the high-pressure and low-pressure simulations cases, respectively, and EXP_L and EXP_H 

denote the high-pressure and low-pressure experimental cases, respectively.  The kinematic viscosity of 

the air flow was 1.65×10-5m2/s and the density was 1.15kg/m3. A grid-independence test of the 

Cartesian mesh of the flow solver was conducted on a coarse mesh with the smallest grid size of 
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0.08mm and a fine mesh with that of 0.04mm. The two meshes showed the maximum difference of 

about 5% at the maximum flow rate. Considering that the fine mesh increased the CPU time remarkably 

by about 8 times, the coarse mesh was used for the rest of the simulations. This resulted in a 

128×128×128 non-uniform Cartesian grid setup.  

In the vocal fold model, the superior, medial, and inferior surfaces (yellow surface in Figure 3.2 

(c)) were the places subjected to the aerodynamic loading and free to move. The other surfaces (green 

surface in Figure 3.2 (c)) were connected to the cartilages and so fixed. The density of the tissues was 

1.04×103kg/m3. Each vocal fold model was discretized using 20643 tetrahedron elements. A hard-wall 

contact model was employed to mimic the vocal fold collision Moreover, a small artificial gap (0.16mm) 

between the vocal folds was enforced even during full glottal closure. It was for the success of the flow 

solver. The artificial gap resulted in small amount of leakages in the simulations. A small-time step of 

5.5x10-4 ms was applied on both the flow solver and the solid solver, which was determined by the CFL 

stability constraint. The simulations were performed using 128 processors on the XSEDE supercomputer 

(Towns et al., 2014). The computational time was about 5200 CPU hours / cycle for the low-pressure 

case and 6200 CPU hours /cycle for the high-pressure case. 

3.1.3 Results and discussion 

3.1.3.1 Glottal exit flow rate 

Each simulation was carried on until about 6 steady cycles were obtained. The PIV measurement 

provided the detailed velocity field at the mid-coronal plane of the glottis, from which the planar flow 

rate at the glottal exit can be calculated. We computed that same flow rate at the same plane and same 

glottal exit position in the numerical simulations. Figure 3.3 compares the waveform of the flow rate 

between the experiments and simulations. The waveform is plotted in a dimensionless space in which 
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the flow rate is scaled by the peak flow rate and the time is scaled by the total duration of open glottis. 

Figure 3.3 shows a general agreement between the experiments and simulations that the flow rate rose 

very slowly at the beginning and then rose quicker and steadily in the rest of the opening phase until it 

was near the peak. During glottal closing, the flow rate dropped much quicker than its rising and 

maintained a steady rate during most of the closing time. 

 

Figure 3.3 Comparison of the phase-averaged planar flowrate waveform. The flow rate was scaled by 

the peak flow rate and the time was scaled by the total duration of open glottis in each case. (a) is the 

low subglottal pressure condition and (b) is the high subglottal pressure condition. 

Figure 3.4 compares several flowrate waveform related quantities between the experiments 

and simulations, including the open quotient, skewness quotient, frequency, maximum flow rate and 

mean flow rate. The values of the low- and high- pressure cases are denoted by the circle and square 

scatters, respectively. The bar plot denotes the mean value of the two pressure conditions. The open 

quotient was the ratio of the total duration of open glottis to the period, and the skewness quotient was 

the ratio of the duration of flow rate increase to the duration of decrease. On the mean value level, the 

simulations had an accurate prediction on the open quotient and skewness quotient. But the 
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simulations under-predicted the maximum and mean flow rates and over-predicted the frequency, 

suggesting that the elasticity of the vocal fold tissues may have been over-estimated. Note that the 

material parameters of the vocal fold tissues were determined based on the averaged indentation data 

from 11 canine larynges (Oren et al., 2014). The real elasticity of the vocal fold tissues from which the 

model was reconstructed was not available. This is likely to cause the discrepancy. In the experiment 

measurements, the fundamental frequency increased with the subglottal pressure. However, it barely 

changed with the subglottal pressure in the simulation. This difference could be resulted from the linear 

assumption of the material property in the simulation. 

 

Figure 3.4 Comparison of flowrate waveform related parameters. The open quotient, skewness quotient, 

frequency, maximum flow rate and mean flow rate are compared. The values of the low- and high- 

pressure cases are denoted by the circle and square scatters, respectively. The bar plot denotes the 

mean value of the two pressure conditions. 

3.1.3.2 Vocal fold vibration 

Figure 3.5 shows the mid-coronal profile and top view of the vocal folds at two different time 

instants during one cycle in the high-pressure simulation case. The glottis was opening and closing at the 

two time instants, respectively. The changes of the mid-coronal profile clearly indicated a mucosal wave 
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traveling from the inferior to the superior, which resulted in a convergent glottal shape during opening 

and divergent glottal shape during closing. From the top view, the vocal folds vibrated in-phase in the 

anterior-posterior direction with the maximum amplitude occurring at the mid-coronal plane. The low-

pressure cases presented the similar vibration pattern. 

 

Figure 3.5 Comparison of the glottal angle. (a)The mid-coronal profile and top view of the vocal folds 

during vocal fold opening and closing in one cycle of the high-pressure simulation case. (b) Comparison 

of the time history of the glottal divergent angle during glottal closing between the experiments and 

simulations. The time was scaled by the total duration of glottal closing in each case. 

The PIV measurement captured the vocal fold medial surface when the glottis presented a 

divergent shape, which has allowed an estimation of the glottal divergent angle. We also computed the 

glottal divergent angles during glottal closing in the numerical simulations. Figure 3.5 (b) plots the time 

history of the glottal divergent angle during glottal closing in the experiments and simulations. The time 

was scaled by the total duration of glottal closing. Note that the PIV measurements are phase-locked 

measurements and the glottal angle showed some level of dispersion due to cycle-to-cycle kinematic 
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variations. In the low-pressure cases, the simulation predicted the angles close to those in the 

experiments. Between 0-0.6 closing phase, the angles in the experiment and simulation were quite 

close. After 0.6 closing phase, the angles in the simulation were about 5o smaller than those in the 

experiment. In the high pressure case, the divergent angles in the simulation were consistently about 

10o smaller than those in the experiment. The fact that the simulations under-predicted the divergent 

angles may be because of the under-predicted vocal fold vibration amplitudes due to the over-predicted 

elasticity as mentioned above. Studies reported that larger vibrations caused larger glottal angles (Oren, 

Khosla and Gutmark, 2019). Despite of these differences, similar dynamics of the glottal angle were 

observed between the simulations and experiments. First, the divergent angle continuously increased 

during glottal closing with the maximum angle occurring at the end of glottal closing. This suggested that 

the inferior had a higher closing speed than the superior edge through the entire closing phase. Second, 

the changing rate of the glottal angle with the dimensionless time was nearly linear in both the 

simulations and experiments. Third, a higher subglottal pressure generated higher divergent glottal 

angles. 

3.1.3.2 Intraglottal flow fields 

The PIV measurement provided detailed planar intraglottal velocity field, which allowed a 

thorough validation of the intraglottal flow simulations. Due to the accessibility, the PIV measurement is 

only possible when the glottis is in a divergent shape. Therefore, the measurement was only during 

glottal closing and was taken at the mid-coronal plane. We found that the low-pressure and high-

pressure cases generally showed similar flow fields and dynamics. Therefore, the comparison between 

the experiments and simulations is only demonstrated on the high-pressure case here. 



50 
 
 

 

The phase-averaged flow field was calculated by averaging the flow field at the same phase over 

the steady cycles. It eliminated the cycle-to-cycle variation. Figure 3.6 (a)&(b) show the contours of the 

phase-averaged y-velocity (vertical velocity component) at two phases at the mid-coronal plane of the 

glottis in the high-pressure experiment (Figure 3.6 (a)) and simulation (Figure 3.6 (b). The two phases 

were at 0.45Tc and 0.74Tc, respectively, representing middle and late closing phases. Tc was the phase 

time normalized by the duration of glottal closing. In both the experiment and simulation, it was 

observed that, in both phases, the flow separated from the vocal folds walls at a location downstream of 

the minimum glottal width; after the separation, a jet was formed, and then the high-velocity core of 

the jet entrained the ambient flow, resulting in a recirculation zone between the jet and vocal fold wall 

at each side.  

 

Figure 3.6 Comparison of the intraglottal flow velocity. Contours of the phase-averaged y-velocity 

(vertical velocity) at two phases at the mid-coronal plane of the glottis in the (a) experiment and (b) 

simulation with the high subglottal pressure. The two phases were at 0.45Tc and 0.74Tc, respectively, 
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representing middle and late closing phases. Tc was the phase time normalized by the duration of glottal 

closing. The location of the minimum glottal width in the simulation is denoted using the dash-dot line. 

(c) Profiles of the vertical velocity across the glottal width at the location of �̃�=0.8 corresponding to the 

velocity fields in (a) & (b). �̃�=0 and �̃�=1 correspond to the inferior and superior edge of the glottis, 

respectively (d) Time history of the maximum glottal jet speed at the mid-coronal plane of the glottis. 

The phase time was scaled by the duration of glottal closing. 

The corresponding profiles of the vertical velocity across the glottal width at the location of �̃�=0.8 

(dashed line in Figure 3.6 (a)(b)) were plotted in Figure 3.6 (c). �̃�=0 and �̃�=1 correspond to the inferior 

and superior edge of the glottis, respectively. In both the simulation and experiment, the velocity 

profiles showed a bell shape with negative velocities near the vocal folds walls, demonstrating the jet 

core and flow entrainment, and the jet width continuously decreased during glottal closing. If we define 

the jet width as the distance between the two locations where the velocity was 50% of the maximum 

velocity, the jet width decreased from 1.9mm to 1.5mm in the experiment and from 2.4mm to 1.0mm in 

the simulation from 0.45Tc to 0.74Tc. 

Figure 3.6 (d) shows the time history of the maximum glottal jet velocity at the mid-coronal plane of 

the glottis in the experiment and simulation. The time was scaled by the duration of glottal closing in 

each case. The simulation generally predicted a higher jet velocity than the experiment, which is especial 

evident in the low-pressure case. It was likely due to that the simulation under-predicted the vocal fold 

vibration amplitude and so the glottal opening. Both the simulation and experiment revealed that the 

maximum jet speed continued to increase at early time of glottal closing despite that the flow rate 

already started to decrease. The jet velocity was highest in the middle or late of the closing phase. A 

close examination found that the delay of the maximum glottal jet velocity comparing to the flow rate 
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was due to the fact that the decrease of the glottal area, which caused the velocity to increase, was 

much faster than the decrease of the flow rate at early glottal closing.  

 

Figure 3.7 Comparison of the intraglottal swirl strength. Time-instantaneous intraglottal swirl strength at 

0.45Tc, where Tc is the duration of glottal closing, in the (a) experiment and (b) simulation with the high 

subglottal pressure. (c) Variation of the maximum swirl strength during glottal closing. The phase time 

was scaled by the duration of glottal closing of each case. 

Figure 3.7 (a)&(b) show the contours of the swirl strength of the vortical structures in a time-

instantaneous flow field at 0.45Tc in the experiment and simulation with the high subglottal pressure. 

The swirl strength was calculated as the image part of the eigen value of the local velocity gradient 

tensor (Adrian, Christensen and Liu, 2000). In both the experiment and simulation, a large number of 

small vortical structures were generated between the jet and vocal folds walls, and it’s likely due to the 

shear layer instability due to the jet separation. The swirl strength of the vortical structures was at the 

same order of magnitude between the experiment and simulation. Figure 3.7 (c) compares the time 

history of the phase averaged maximum swirl strength during glottal closing between the experiments 

and simulations at both subglottal pressures. The time was scaled by the total duration of glottal closing. 

Note that the experimental data toward the very late closing was not available due to experimental 
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difficulties. It was observed that the predicted value and dynamic variation of the swirl strength in the 

low-pressure case was very close to those in the experiment. The swirl strength continued to increase 

during most of the closing phase. Such pattern was also observed in the high-pressure simulation. The 

high-pressure experiment, however, showed a fluctuation pattern of the swirl strength around a 

constant during the entire closing phase. But we also noted that, in a previous PIV measurement on 

excised canine larynges(Oren, Khosla and Gutmark, 2014a), the swirl strength increased with the closing 

phase and the subglottal pressure.  

 

Figure 3.8 The pressure contours of the phase-averaged flow fields at the mid-coronal plane in the high-

pressure simulation case.  

Figure 3.8 shows the pressure contours of the phase-averaged flow fields at the mid-coronal 

plane in the high-pressure simulation case. It was observed that the pressures were mostly negative 

inside the glottis with the value at the same order of magnitude as the subglottal pressure. It is generally 

thought that the air inertia in the supraglottal tract is the primary mechanism generating negative 

pressures inside the glottis during glottal closing, and if there is no supraglottal tract, the intraglottal 

pressure after flow separation would be around the ambient pressure based on the Bernoulli’s principle. 

In our simulations, there was no supraglottal tract, but significant negative pressures were observed 

inside the glottis throughout the closing phase. This indicated that these negative pressures were 
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generated by the flow viscous effect. In fact, it was noticed that the negative pressures were more 

significant in the recirculation zones where the intraglottal vortices were generated (Figure 3.7). It was 

also noticed that the negative pressures were most significant at the late closing phase (Figure 3.8), 

which was consistent with the growth of the swirl strength (Figure 3.7 (c)). 

3.2 The validation against pigeon syringes 

3.2.1 Experiment measurement  

The experiment was performed by Prof.Elemans’ group from Institute of Biology in University of 

Southern Denmark. The subjects were six adult domestic pigeons (Columba livia) obtained from local 

breeders. All procedures were carried out in accordance with the Danish Animal Experiments 

Inspectorate (Copenhagen, Denmark). Subjects were euthanized by overdosing with Isoflurane (Baxter 

Medicals, Il, USA) and the syrinx was extracted from the primary bronchi up to including ~10 cm of 

trachea (Figure 3.9 (a)). The syrinx was mounted to tracheal and bronchial connectors in the 

experimental setup described in detail in (Elemans et al., 2015; Rasmussen, Herbst and Elemans, 2018). 

In brief, this setup allows fine control of bronchial (pb) and air sac (pas) pressure, flow, temperature, and 

simultaneous high-speed imaging from sagittal and endoscopic tracheal views. Sound is recorded 

through a microphone placed 5-10 cm from the tracheal connector outlet on a 45° angle to avoid air jets 

from the tracheal outlet. In natural condition, the vibratory tissue in syrinx includes lateral vibratory 

mass (LVM) and medial tympaniform membrane (MTM). To decrease the control parameters, MTM was 

glued not to move leaving LVM the only vibratory tissue in the current setup. Tension of the LVM is 

adjusted by the pressure difference of pb and pas. 

First, static deformation of the LVM was performed and measured to obtain the LVM tissue 

properties later (Figure 3.9 (b)). The LVM is assumed to be incompressible isotropic material based on 
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earlier histological sections (Elemans, 2004). Hence there is only one unknown material property: the 

elastic modulus (E). After mounting, the stress-stain relationship of the LVM tissue was measured using 

a static loading test. The transmural pressure (pt), defined as pt=pb-pas, was stepwise increased every 

1.5s from 0-2 kPa (in increments of 0.1 kPa) corresponding to the in vivo pressure range (Elemans, 

Zaccarelli and Herzel, 2008). To prevent airflow through the syrinx, the trachea was closed. The static 

deformation of the LVMs has been imaged using a 1.2 mm flexible endoscope (Scholly, Germany) 

attached to a videokymographic (VKG) system (Videokymographic camera 2156, Cymo B.V., The 

Netherlands), which combines a high-speed linescan camera (7,200 lines/sec) with a full frame CMOS 

camera (25 frames/sec). The analog video output from the VKG was digitized together with the 

microphone and a synchronization signal using a video capturing device (Intensity Extreme, Black Magic 

Design, Australia). The digital kymograms were constructed perpendicular across the LVM. The edge 

position was quantified using outwards-in threshold detection of the edge. The length of dorsoventral 

glottis at mid LVM position was determined from each CT scan and allowed us to calibrate LVM 

displacement from the DKG in mm. For statistical purpose, five technical replicates were made for each 

transmural pressure setting. 

Second, the time-resolved motion of the LVMs, flow, pressure and sound during phonation were 

quantified. The boundary condition is: pb = 1.0 kPa, pas = 0.5 kPa, where LVM oscillations reliably 

occurred (Elemans et al., 2015; Rasmussen, Herbst and Elemans, 2018). The resulting positive 

transmural pressure mimics activation of the TL muscle (Elemans, Zaccarelli and Herzel, 2008). A 

powerful, stable light source (1700 Lumen white LED powered by PS23023, HQ Power amplifier, 

Belgium) trans-illuminated the syrinx from dorsal allowed us to capture LVM motion with a high-speed 

camera (MotionPro-X4, 12 bit CMOS sensor, Integrated Design Tools, Inc.; 4,000 frames/sec) mounted 
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on a stereomicroscope (M165-FC, Leica Microsystems). Before and after experiments, the mounted 

preparation was made a photo with a Leica DFC400 digital camera mounted on the M165-FC 

stereoscope. LVM shape was hand-traced in all specimens on 150-200 selected consecutive high-speed 

images (covering at least 5 full vibratory cycles) using a custom-made Matlab graphical user interface. 

After experiments were completed, the geometries of the syringes were obtained through 

microCT scan, taking care to mimic the exact geometry of the syrinx during the experiments based on 

earlier photos. One preparation was omitted for further analysis as it twisted after fixation compared to 

the experimental situation.  

A blinding procedure was employed that the modeling team (WJ, QX, XZ) was given access only 

to the DiceCT scan, static loading test (LVM displacement and transmural pressure) and asked to predict 

key performance traits of LVM kinematics (glottovibrogram) and acoustic waveforms during voiced 

sound production under listed posturing and pressure boundary conditions. After the simulations of all 

preparations were completed all experimental data was disclosed and analyzed. 

3.2.2 Numerical model generation and determination of material property 

To parameterize tissue elasticity for each subject, the finite-element LVM model was used to 

simulate LVM displacement as a function of pt as obtained in the experiment for a range of elastic 

moduli values. Uniform bronchial pressure steps were applied on the inner LVM surface and the 

maximum LVM gap was obtained for each pressure step. For each preparation, different elastic modulus 

values generated by a genetic algorithm-based optimization method (Liu et al., 2019) were randomly 

assigned to each static analysis solver, which resulted in a different displacement-transmural pressure 

slope. The elastic modulus of the LVMs for each preparation was determined in an iterative process by 

minimizing the difference between the slopes of LVM displacement versus pt measured in the 
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experiment with the 3D mesh model (Figure 3.9 (c)). The elastic modulus values obtained through this 

process ranged from 1.8 to 4.0kPa (Table 3-2). 

 

Figure 3.9 Parameterization of vocal organ geometry and tissue properties. (a) Workflow to 

parameterize FSAI model geometry (Subject P1), with from left to right: 1) photo of syrinx mounted in in 

vitro experimental setup, 2) voltex rendering of iodine contrasted microCT scan showing the bilateral 

Lateral Vibratory Masses (LVM), 3) 3D anatomy, and 4) Finite Element Mesh of LVM solid domain. 
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Yellow and white mesh elements on LVM outer surface have free and zero displacement boundary 

conditions, respectively. (b) Tissue properties were determined by a combined experimental and 

modeling approach. A stepwise increase of (top) transmural pressure (pt) caused a stepwise sideways 

displacement of the LVMs (bottom) as viewed by digital kymogram (DKG) along the white vertical line in 

the endoscopic image (left). (c) The reverse engineering approach used to determine the LVM elastic 

modulus (EM) for each individual. Top: stress-gap width curve of experimental (blue diamonds) and 

modeled displacement for LVMs with EM=1.8 kPa (black squares). Also indicated are simulated aligned 

gap widths of EM=1.2 (blue line) and 2.4 kPa (red line). Bottom: Minimal difference between 

experimental and simulated data indicates occurs at EM = 1.8 kPa for this individual. B1, bronchial ring; 

T1,…, T5, tracheal rings; LVM, Lateral Vibratory Membrane; pt, transmural pressure TL, tracheolateralis 

muscle; ST, sternotrachealis muscle. 

Table 3-2 LVM finite element model statistics and elastic moduli per individual. 

 Nodes Elements EM 

 Left LVM Right LVM Left LVM Right LVM kPa 

P1 3988 3835 15737 15190 1.69 

P2 1988 2278 8101 9838 1.8 

P3 2686 2159 11402 8532 4 

P4 4253 4551 17062 18436 2.24 

P5 4620 4693 18657 19131 2.4 

3.2.3 Simulation setup  

The vocal organ mesh was immersed in a computational domain that was about 12×10×40 mm 

in dimensions and straight tubes were added to each bronchial inlet and tracheal outlet to avoid reverse 

flows. The domain was discretized with a non-uniform 64×48×128 Cartesian mesh with the highest grid 

density around the LVMs. A non-penetration non-slip boundary condition was applied at the airway 

wall. The part of the airway wall contacting the LVMs was the interface of the fluid-structure 
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interactions on which the deformation and velocity of the LVM surface were transferred to the fluid 

solver and the fluid pressure on the LVM surface was transferred to the solid solver. The air density was 

set to 1.1455 kg/m3 at 37°C. We used a kinematic viscosity value of 6.6×10-5 m2/s (at 37°C) - four times 

the normal value - to reduce high frequency turbulence in the simulations, which significantly reduces 

the computational costs (Zheng et al., 2011). The Poisson ratio (ν) was set to be 0.46 to avoid the 

singularity problem at ν=0.5. The shear modulus (G) was obtained from the relationship of G=E/2/(1+ν) 

for isotropic materials. Tissue density was assumed to be 900 kg/m3, equaling to the density of fat.  

The acoustic results were first calculated using the LPCE method as mentioned in 2.1.3. 

However, the calculation of the LPCE showed that the root-mean-value of the acoustic flow rate was 

only 0.9% of the incompressible flow rate, suggesting a weak coupling effect between the acoustic field 

and incompressible flow field. Therefore, the linear source-filter theory was applied which assumes that 

the sound radiation in the tract is linearly coupled with the source generation in the syrinx so that the 

acoustic pressure does not affect vibrations. Because the dominant sound source of voice is a monopole 

source, the far-field acoustic pressure was calculated as: 𝑝′ =
𝜌

4𝜋𝑟

𝑑𝑄

𝑑𝑡
 , where p’ is the acoustic pressure, 

𝜌 is the air density, r is the distance from sound source to the microphone and dQ/dt stands for the time 

derivative of flow rate. 

The pressure boundary condition is pb=1.0kPa and pas=0.5kPa. A time step of about 1.0 μs was 

utilized in the fluid and solid solvers. Two artificial non-slip and non-penetrable collision planes were 80 

µm off the medial plane to enforce a finite 160 µm minimum gap between the two LVMs during closure. 

The LVM position was not allowed to exceed the corresponding collision plane during collision, to 

prevent failure of the solver due to the non-conserved mass in each zone. For each individual, the 
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simulation was performed on 16 processors and took about 1.5 days per vibration cycle. At least five 

cycles were obtained per individual. 

3.2.4 Results and discussion 

 

Figure 3.10 FSAI simulation accurately predicts key features of LVM kinematics. (a) Trans-illuminated 

syrinx in experiment (EXP, left) and simulation (SIM, right) showing the LVM shape in coronal plane at 
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330, 60 and 210° of the vibratory cycle, where 0° is defined as the first frame of full closure. (b) Glottal 

opening with white and black horizontal bars denoting open and closed phase. (c) Coronal 

glottovibrogram showing time-resolved glottal opening along caudocranial axis of 5 oscillations. The 

white lines indicate the mucosal wavespeed regression slopes based on the closed glottis. (d) Observed 

experimental data and simulation predictions are not significantly different for the above indicated four 

key kinematic parameters (See Table 3-3 for values and statistics). 

Table 3-3 Comparison of experimental and simulation data. 

 Simulation Experiment Heteroscedastic 
two-tailed 

paired t-test 
p = 

 
Mean ± S.D. 

n=5 
Range 

Mean ± S.D. 
n=5 

Range 

F0 (Hz) 143±18 115-158 123±25 95-154 0.18 

Mucosal wave speed 
(m/s) 

1.02±0.26 0.68-1.38 0.82±0.34 0.48-1.27 0.50 

Peak minimal 
opening (mm) 

1.06±0.43 0.62-1.64 1.80±0.24 1.49-2.11 0.06 

Open closed quotient 1.6±0.3 1.1-2.1 1.3±0.7 0.7-2.5 0.11 

Both the in vitro syrinx and corresponding individual FSAI models demonstrated self-sustained 

stable oscillations in all five cases (Figure 3.10). To quantifying the time-resolved vocal fold shape within 

oscillations, we took advantage of both the unique coronal view offered by the pigeon syrinx (Elemans 

et al., 2015) and the lack of a dorsoventral vibrational component (Rasmussen, Herbst and Elemans, 

2018), to quantify the time-resolved syringeal or glottal opening as a function of caudo-cranial position, 

i.e. a coronal glottovibrogram (Figure 3.10(c)). 

Key vibratory and acoustic predictions by the simulations were compared to the behavior in the 

experiment. The glottovibrogram allowed for comparing four key parameters describing vibratory 

kinematics: fundamental frequency of the vibration (Fo), the speed of the mucosal wave, peak of the  
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Figure 3.11 FSAI simulation accurately predicts within-cycle LVM shape. (a) Bilateral LVM shape of 

experiment (EXP) and simulation (SIM) in coronal plane at 0, 60,120, 180, 240, 300 degrees averaged 

over 5 cycles (mean (solid lines) ± S.D (dotted lines). (b) Lateral position difference between experiment 

and simulation left and right LVMs and (c) unsigned cumulative area difference between experiment and 

simulation shows that the predicted shapes are very similar to the observed shapes. The most 

pronounced discrepancies occur during late closed/early opening. Dotted lines are mean. Asterisks 

indicate significant difference (p>0.01) between simulation data and 1000x bootstrapped experimental 

LVM shapes for 2-sample Kolmogorov-Smirnov tests. 
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minimal glottal opening, and the open-closed quotient. The open-closed quotient is the ratio between 

duration of open and closed glottis. At group level, all predicted values were not significantly different 

from the experimental values (Table 3-3). 

The LVM shapes between experiment and simulation at fixed phases within an oscillatory cycle 

were further compared (Figure 3.11). During the closed phase (0-120°) the simulated LVM shape 

matched the experiments very well and was never significantly different from the bootstrapped shape 

(p<0.01). The only observed significant (p>0.05, 2-sample Kolmogorov-Smirnov test) discrepancy 

occurred during late closed/early opening in three subjects on one side, where the LVM mass tended to 

move ~0.5 mm more cranial (superior in human anatomical terminology) in experiments compared to 

simulations (Figure 3.11 (b)(c)). Taken together, the model accurately predicted key kinematic 

parameters of LVM motion. 

Lastly, two key acoustic parameters specifying a sound source – in addition to f0 (Figure 3.10(d)) 

-, namely source level and spectral slope were compared and found to be with no significant difference 

(Figure 3.12(a)). Because the simulated LVM vibratory kinematics matched the experiment 

measurement, parameters that could not be quantified in the current experiments could be calculated 

through the numerical model, such as spatiotemporal pressure and flow velocity distributions over the 

vibratory cycle (Figure 3.12 (b)-(e)). The convergent LVM shape during opening causes high glottal 

pressures (~0.9 kPa) that transfer 23.4±15.7 μJ of positive energy (N=5) from flow into LVM (Figure 

3.12(f)), facilitating opening. When maximum opening is reached at 300° phase, the LVMs are straight 

(0° angle in Figure 3.12(e)) reducing glottal pressure. During early closing the inferior LVM edge is 

moving inwards causing an energy transfer of 7.2±2.2 μJ back into the flow. Consecutively, the LVMs 

close the glottis by moving together in a divergent shape causing rapid pressure reduction driven by  
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Figure 3.12 Numerical predictions of acoustics and spatiotemporal pressure and power profiles. (a) The 

simulations accurately predicted key acoustic parameters: source level, spectral slope and acoustic 

power. (b) 3D flow inside the syrinx as indicated by flow streamlines (pressure color-contoured). 

Horizontal arrows indicate the motion direction of the LVMs. (c) Flow rate Q (black line) correlates 

strongly with glottal opening (red). (d) Spatiotemporal pressure distribution along the airway centerline 

over a cycle with superimposed dQ/dt (red solid line) as a proxy for sound pressure. (e) Glottal pressure 

(black line) evaluated at the horizontal dotted line in (d) with LVM angle (red line). (f) Spatiotemporal 

power transfer distribution from flow to LVM evaluated along the airway centerline with superimposed 

flow Q (black solid line).  
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elastic forces (Arrow in Figure 3.12(e)). Furthermore, flow inertia in the trachea causes negative 

pressures (-0.52±0.23 kPa) near the glottis exit prior to full closure (blue region in Figure 3.12(d)), 

facilitating closing. Interestingly, another positive energy transfer to LVMs is observed nearly the end of 

the cycle. Thus it show that two primary factors contribute to the pressure asymmetry during vocal fold 

opening and closing that drive self-sustained oscillation: i) an alternating convergent/divergent medial 

surface profile and ii) airflow inertia, corroborating earlier model predictions (Titze, 1988) and 

measurements on (hemi)larynges (Alipour and Jaiswal, 2008) in mammalian voice production. 

3.3 Summary 

The validation of current numerical approach against the experiment measurement on a canine 

larynx and pigeon syringes has been provided. In both studies, the material properties were determined 

through an optimization-based inverse process using experimental indentation measurement in the 

canine case and the static deformation measurement in the pigeon case. 

In the canine case, the simulations and the experiments results are compared with respect to 

the glottal flowrate waveform, glottal jet dynamics, vocal fold divergent angles, intraglottal velocity 

fields, vortical structures and swirl strength. The simulation result shows higher fundamental 

frequencies and lower glottal flow rate, which might be due to the overestimated tissue elasticity. Some 

features, such as the increased frequency with increased subglottal pressure was not observed in the 

simulation result due to the linear assumption of the material property. Regarding the intraglottal flow 

fields, the model predicted the key features observed in the experiments, including the similar glottal jet 

dynamics and intraglottal recirculation zones in the phase-averaged flows and similar intraglottal 

vortical structures and swirl strength in the instantaneous flows. The limitation of the validation of the 

canine case is that the material measurement was an average of 11 canine larynges, the obtained 
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material parameters may be different from the exact properties of the specific larynx model used in the 

present study.  

The pigeon study provides a strict one-to-one comparison in that the geometry, material 

property and dynamic measurement all come from one single subject. The numerical model accurately 

predicted key performance traits of tissue motion and acoustics driven solely by physiological 

parameters (static geometry, tissue elasticity, and boundary conditions) and without optimization of 

either geometry or material properties parameterization on dynamic performance (Chang et al., 2016). 

While the numerical model implementation itself is complex, the inputs are simple and have, most 

importantly, directly measurable physiological, material, and geometrical properties. Measurements of 

vocal fold material properties, initial configuration (Miri, 2014; Dion et al., 2016), initial stress, and 

detailed flow-induced 3D vocal fold motion (Vahabzadeh-Hagh, Zhang and Chhetri, 2017b) have been 

achieved separately in human and mammalian model systems, but complete physiological data sets 

have not been obtained in these clades, nor in any birds, in single individuals nor consecutively used to 

thoroughly test numerical model predictions in a blinded approach. Recent studies encouragingly 

suggested that realistic continuum 3D models lead to more robust vocal fold dynamics compared to 1D 

and 2D models(Zheng et al., 2011). The current data shows that realistic continuum 3D models also lead 

to accurate predictions. Moreover, it presents strong support for the current numerical approach as a 

critical first step toward the endeavor of integrating in vitro, ex vivo, and in vivo experimental data with 

brute force computational approaches into a causal model of motor control of voiced sound production 

applicable to birds and mammals. 
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CHAPTER 4 FLUID-STRUCTURE-ACOUSTIC INTERACTION SIMULATION IN SIMPLIFIED HUMAN 

LARYNX AND VOCAL TRACT SYSTEM 

This chapter provides the application of the numerical approach on a simplified human vocal 

fold and vocal tract system, which will serve as the baseline case in the later chapters. The study in this 

chapter has been published in “Jiang, Weili, Xudong Zheng, and Qian Xue. ‘Computational modeling of 

fluid–structure–acoustics interaction during voice production.’ Frontiers in bioengineering and 

biotechnology 5 (2017): 7.” 

4.1 Model and simulation setup 

The geometric model of the simulation is shown in Figure 4.1 (a). The geometry of the larynx 

was roughly reconstructed from a thin-slice CT scan of the larynx of a 30-year-old male subject (Zheng et 

al., 2009). The geometry of the vocal folds was constructed based on the mathematical model proposed 

by (Titze and Talkin, 1979), which has considered the three-dimensional shape of the vocal fold including 

the anterior-posterior variation. The cross-section area of the supraglottal vocal tract was taken from an 

in-vivo based neutral vowel model proposed by (Story, 2005), and it was superimposed onto a realistic 

airway centerline from the in-vivo MRI measurement (Story, Titze and Hoffman, 1996) to generate the 

supraglottal tract model. The length of the supraglottal tract was 17.4cm and the length of the 

subglottal tract was 3.05cm. The vocal tract generally did not move except the place that contacted with 

the vocal folds. 

The vocal fold was divided into three layers including the cover, ligament and muscle (Hirano, 

Kurita and Nakashima, 1981). Longitudinal variation in layer thickness exists (Hirano, Kurita and 

Nakashima, 1981) but has been shown to have a negligible effect on vocal fold vibrations (Xue et al., 

2011). Therefore, each layer was assumed to be longitudinally invariant in the current model. The 
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thickness of the cover and ligament layer was 0.5mm and 1.1mm, respectively, adopted from (Titze and 

Talkin, 1979). The vocal fold tissue was modeled as viscoelastic, transversely isotropic material. The 

material properties (shown in Table 4-1) were adopted from (Alipour, Berry and Titze, 2000) and (Xue et 

al., 2012). Since vocal fold barely vibrates in the longitudinal direction, an in-plane motion constraint 

was implemented by employing relatively large values for the longitudinal Young’s moduli (Cook and 

Mongeau, 2007). The boundary conditions for the vocal fold are shown in Figure 4.1 (b). A zero-

displacement boundary condition was applied at the anterior, posterior and lateral surfaces, and a 

traction boundary condition was applied at the medial, inferior and superior surface. A simple hard-wall 

contact model was incorporated to model the collision of vocal folds. Two artificial non-slip and non-

penetrable collision planes were placed one grid (in this case corresponds to ±0.1mm) off the medial 

plane to enforce a finite but small (0.2mm) minimum glottal gap. 

 

Figure 4.1 Simulation setup. (a) The computational domain and geometry of the vocal folds, larynx and 

vocal tract. (b) The inner-layer structure of the vocal fold as well as the boundary conditions applied on 

vocal folds walls. 
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Table 4-1 Material properties of the three inner layers of the vocal fold. ρ is the tissue density and η is 

the damping ratio. 

Layer 
Property 

ρ (g/cm3) Ep (kPa) νp Epz (kPa) νpz Gpz (kPa) η (poise) 

Cover 1.043 2.01 0.9 40 0.0 10 5 

Ligament 1.043 3.31 0.9 66 0.0 40 7.5 

Body 1.043 3.99 0.9 80 0.0 20 12.5 

 

The entire geometry was immersed into a 2.4×10.8×14.5cm rectangular computational domain 

(Figure 4.1 (a)). For the flow model, a 0.8kPa pressure drop was applied between the inlet and outlet.  A 

non-penetration non-slip boundary condition was applied at the vocal tract wall. The density of air was 

set as 1.146kg/m3 at human body temperature. To alleviate computational cost, the kinematic viscosity 

of the air was set as 6.6×10-5m2/s, which corresponded to approximately 1/4 of the Reynolds number of 

normal human phonation. Such treatment would affect the turbulence flow in the supraglottal tract that 

is related with high frequency effects. For the acoustics model, a hard wall boundary condition was 

implemented on the vocal tract walls as  
𝜕𝜌′

𝜕𝑛
= 0, 

𝜕𝑝′

𝜕𝑛
= 0, �⃗� ′ ∙ �̂� = 0, where �̂� is the outer normal 

vector. At the inlet, a zero Dirichlet boundary condition was applied as 𝑝′ = 0 and �⃗� ′ = 0. At the 

outlet, a complete reflection boundary condition was applied as 𝑝′ = 0  and ∇�⃗� ′ = 0. The speed of 

sound was assumed to be 352 m/s.   

Both the incompressible flow solver and acoustics solver employed a high resolution, non-

uniform 64×256×192 Cartesian mesh, with highest grid density around the intraglottal region. The vocal 

fold was discretized by 28997 tetrahedral elements. The grid was based on our experience with previous 

three-dimensional simulations of similar configurations (Zheng et al., 2010, 2011; Xue et al., 2012, 2014; 

Xue and Zheng, 2017). A small time step of 1.149 μs was employed in the incompressible flow and solid 
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solvers, while 1/20 of this value was employed in the acoustics solver to provide a good temporal 

resolution as well as to satisfy the CFL stability constraint. The simulation was carried out 60000 steps on 

XSEDE COMET cluster, using 256 processors. The computational expense was about 15360 CPU hours 

per vibration cycle.    

4.2 Results and discussion 

4.2.1 Glottal flow waveform 

 

Figure 4.2 Glottal air flow rate. (a) Time history of glottal opening and air flow rate. (b) Phase averaged 

total flow, decomposed into incompressible part and acoustic perturbation part. (c) Spectrum analysis of 

acoustic flow rate. 
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The simulation was carried out for thirteen cycles, and the steady-state vibration was achieved 

at the 10th cycle. Figure 4.2(a) shows the time history of the glottal flow rate measured at the vocal 

tract outlet (mouth) as well as the opening size of the glottis during the last four cycles. The opening size 

of the glottis was calculated as the minimum distance between the two vocal folds at the mid-coronal 

plane. It shows that the shape of the flow rate generally followed the opening size. It increased with the 

increasing opening size and decreased with the decreasing opening size. It was noticed that during 

glottal closure (the opening size stayed at the minimum value), the flow rate did not stay at the 

minimum value but had a high peak. This high peak was mainly associated with the oscillation of the 

acoustic pressure associated with the first formant. The adopted hydrodynamic/acoustic splitting 

method allowed decomposing the total flow rate into the incompressible component and acoustic 

perturbation component, which are termed as the incompressible flow rate and acoustic flow rate, 

respectively, in the subsequent sections. Figure 4.2(b) shows the phase-averaged incompressible and 

acoustic flow rates along with the total flow rate. It shows that the incompressible flow rate is a typical 

glottal flow waveform with slow rise and rapid fall. The total flow rate generally followed the shape of 

the incompressible flow rate with fluctuations due to the oscillation of the acoustic flow rate. The strong 

peak during the glottal closure corresponded well with the peak of the acoustic flow rate at the same 

phase. Strong effects of acoustic coupling on glottal flow rate was also previously observed in the model 

of (Titze, 2006a, 2008) in which the glottal flow rate was calculated using the electrical circuit analogs 

method (Ishizaka and Flanagan, 1972a). Two to three evident ripples were generated on the flow rate 

waveform due to the acoustic coupling. In another work (Zañartu, Mongeau and Wodicka, 2007) which 

coupled the one-mass vocal fold model, Bernoulli flow model and wave reflection analog to simulate the 

fluid-structure-acoustics interaction, the depression of the flow rate during glottal opening was 
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observed, and this phenomenon was also shown to be due to the strong acoustic perturbation. It should 

be noticed that even though the glottis was closed, it was still possible to have high acoustic flow rate in 

the supraglottal tract due to the density change. It also needs to point out that the effect of acoustic 

coupling in the current model appeared stronger than in the aforementioned models. It was likely due 

to the total reflection boundary condition at the mouth and hard wall boundary condition at the vocal 

tract wall which had excluded the acoustic energy loss and would exaggerate the acoustic flow rate. 

However, such boundary conditions were considered as reasonable simplifications given small 

compliance of the vocal tract wall and very large area expansion at the mouth.   

If the supraglottal tract is considered to be an ideal straight open-closed tube, its resonant 

frequencies can be analytically calculated as Fn=(2n-1)c/4L (n=1, 2, 3 …) (Titze, 2000).  For the current 

model with the length of 17.4cm and the speed of sound of 352m/s, the first three lowest formants of 

the tube would be 505Hz, 1517Hz, and 2528Hz. If the area variation along the tract was considered, 

these values would be shifted. (Story and Titze, 1998) have calculated the formants of the current 

supraglottal tract shape with a frequency domain transmission line technique (Sondhi and Schroeter, 

1987), and they found the first and second formant as 628 Hz and 1510 Hz, respectively. The first 

formant has shifted significantly due to the area variation of the tract. Figure 4.2(c) shows the frequency 

spectrum of the acoustic flow rate obtained from the current simulation. Its dominant frequency was 

609 Hz. This value was very close to the first formant calculated by (Story and Titze, 1998), indicating 

that the oscillation of the acoustic flow rate was dominated by the first formant resonance.  

Several important voice quality-related parameters were computed based on the waveforms of 

the flow rate and opening size of the glottis. The average values as well as the physiological range of 

each quantity are listed in Table 4-2. It was found that these values were well within the physiological 
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range, indicating that the model had reproduced the essential biomechanics of voice production. It was 

noticed that the fundamental frequency (F0) approached the higher end of the physiological range, 

which was likely due to the large values of longitudinal Young’s moduli employed in the vocal fold 

model.  It was of particular interest to look at the open quotient (τo) and the skewness quotient (τs). τo is 

defined as the duration of the open glottis divided by the period of the cycle, calculated based on the 

opening size of the glottis. τ0 range from 0.4 to 0.7 for normal voice. A value lower than 0.4 indicates a 

“pressed” sound; a value above 0.7 indicates a “breathy” sound (Titze, 2000). In the current simulation, 

τo was 0.67, which was although within the normal range, indicated a breathier sound. τs is defined as 

the duration of flow acceleration divided by the duration of flow deceleration. This quantity was 

calculated based on the incompressible flow rate, as the flow acceleration and deceleration were more 

meaningful in the incompressible flow. τs typically ranges from 1.1 to 3.4 (Ishizaka and Flanagan, 1972b; 

LaMar, Qi and Xin, 2003; Duncan, Zhai and Scherer, 2006; Luo et al., 2008). A higher value indicates that 

flow decreases rapidly in closing phase which will lead to higher vocal intensity (Baken and Orlinkoff, 

2000; Titze, 2006b). In the current simulation, τs was 1.75, indicating moderate intensity. This was 

consistent with the 0.8kPa pressure drop across the larynx in the current simulation which was typical 

for moderate intensity voice production. 

Table 4-2 Flow rate waveform related parameters. 

 Computed value Physiological range (Xue et al., 2014) 

𝐹0  (Hz) 203 60-250 

𝑄𝑚𝑒𝑎𝑛 (mL/s) 143.43 110-220 

𝑄𝑚𝑎𝑥  (mL/s) 223.51 200-350 

𝜏𝑜 0.67 0.4-0.7 

𝜏𝑠 1.75 1.1-3.4 
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4.2.2 Acoustics 

Figure 4.3(a) shows the frequency spectrum of the acoustic perturbation pressure (p’) at the 

point of Y=4.0cm, Z=3.2cm, which was at the mid-coronal plane and 0.1cm above the vocal fold superior 

surface, indicated by the black dot in the inlaid graph. It shows that the energy of the third harmonic, 

which was 619Hz, and the seventh harmonics, which was 1444 Hz, has been boosted due to the close 

distance to the first and second formants of the tract shown in the previous section. The first formant of 

an open-close tube generates quart-wave resonance. To verify that, Figure 4.3 (b) shows the acoustic 

perturbation pressure (p’) along the centerline of the vocal tract at different time instances during one 

vibration cycle. Distance represents the distance from the vocal fold superior surface, with positive value 

corresponding to the supraglottal tract and negative value corresponding to the subglottal tract. It 

shows that a standing wave was formed within the supraglottal tract. Acoustic perturbation pressure 

(p’) oscillated in phase along the distance. The minimum vibration was at the supraglottal tract exit 

(distance=17.4cm) and maximum vibration was at the glottis exit (distance=0). This wave shape 

resembled the first mode of the quarter-wave resonator. Figure 4.3 (c)-(e) show the time-spatial 

variation of acoustic perturbation pressure (p’), incompressible pressure (p) and total pressure (P) along 

the centerline of vocal tract. The fluctuation of the wave amplitude of acoustic perturbation pressure 

(p’) with time was noticed. It may be because of the highly turbulent flow pattern inside the vocal tract 

which generated fluctuation in pressures. It was interesting to see that while the frequency of the 

incompressible pressure (p) remained same as the vocal fold vibration frequency, the frequency of the 

total pressure (P) had been largely influenced by the acoustic perturbation pressure (p’), especially in 

the supraglottal tract region. This also suggested a strong acoustic coupling effect in the glottis.  
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Traditional linear source-filter theory of voice production assumes that the source-filter 

interaction was weak during normal phonation and so the acoustic pressure perturbation has little 

influence on the vocal fold vibration (Fant G., 1960; Flanagan, 1972). This assumption is made based on 

the fact that the vocal fold vibration frequency is normally well below the formants of the vocal tract so  

 

Figure 4.3 Pressure in the supraglottal tract. (a) Frequency spectrum of the acoustic perturbation 

pressure (p') at the point of Y=4.0cm, Z=3.2cm, which was at the mid-coronal plane and 0.1cm above the 

vocal fold superior surface, indicated by the black dot in the inlaid graph. (b) Acoustic perturbation 

pressure (p’) along the centerline of the vocal tract at different time instants during one vibration cycle. 

(c)-(e): The time-spatial variation of acoustic perturbation pressure (p’), incompressible pressure (p) and 

total pressure (P) along the centerline of the vocal tract. 
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that the acoustic resonance does not happen. For this case, the acoustic pressure perturbation will be 

much smaller than the incompressible pressure so that it had little effect on vocal fold vibrations. 

However, the strong effect of acoustic perturbation pressure (p') on the total pressure (P) observed in 

Figure 4.3 (c) and Figure 4.2 (b) suggested that this assumption may not be valid. Figure 4.4 shows the 

time variation of the total pressure (P), acoustic perturbation pressure (p') and incompressible pressure 

(p) and at four different locations, three of which were within the glottis ((a) Y=3.6cm, (b) Y=3.7cm, and 

(c) Y=3.8cm) and one was just above the glottis ((d) Y=4.0cm). The variation of glottal opening is also 

plotted in the lower part of each subfigure. It shows that, firstly, throughout the cycle, acoustic 

perturbation pressure (p') and incompressible pressure (p) were at the same order at all positions. With 

the high value of acoustic perturbation pressure (p'), the driving force on the vocal folds as well as their 

vibrations will be significantly affected. Secondly, the total pressure (P) generally followed the shape of 

the incompressible flow pressure with fluctuations due to the oscillation of the acoustic perturbation 

pressure (p'). Thirdly, the effect of acoustic perturbation pressure (p') on the total pressure (P) was more 

significant toward the superior direction, suggesting stronger coupling effect inside the supraglottal 

tract. Therefore, these results suggested a strong acoustic-coupling effect during normal phonation, 

which maybe important to be included in future modeling works. Our observation was also supported 

by a recent study (Maxfield, Palaparthi and Titze, 2016) in which eight human subjects were recorded 

producing F0 glide with arbitrary lengthened supraglottal vocal tract, even F0 was well below the first 

formant of supraglottal tube, vocal fold vibration could be destabilized and resulted in F0 jump.  
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Figure 4.4 The time variation of the pressure at four different locations. (a) Y=3.6cm, (b) Y=3.7cm, (c) 

Y=3.8cm, (d) Y=4.0cm. P is total pressure, p' is acoustic perturbation pressure and p is incompressible 

pressure. The locations of the points are indicated by the black dot in the inlaid graph. The variation of 

glottal opening is also plotted in the lower part of each subfigure. 

4.2.3 Vocal Fold Vibration 

Figure 4.5 shows the vocal fold vibration pattern at four time instants during one vibration cycle. 

The first row shows the top view of the vocal folds, and the second row shows the vocal folds profile at 

the mid-coronal plane. It shows that the glottis presented a convergent shape during opening (instant a) 

and divergent shape during closing (instant c). At instant b, the glottis reached maximum opening and it 



78 
 
 

 

formed a straight channel. At instant d, the glottis was fully closed with the artificial gap remained. This 

convergent-divergent type of motion, also called the mucosal wave propagation, is an important 

indicator of healthy vocalization in clinic. From the mechanical point of view, it generates a temporal 

pressure asymmetry inside the glottis which ensures the net energy transfer from the airflow to vocal 

folds to sustain vibrations (Titze, 2000).  

 

Figure 4.5 Vocal fold vibration pattern at four time instants during one vibration cycle. The first row 

shows the top view of the vocal folds, and the second row shows the profile of the vocal folds at the 

mid-coronal plane. The waveform of the opening size of the glottis is shown in the inlaid graph with the 

black dot superimposed indicating the time instant. 

To have a quantitative analysis, the method of proper orthogonal decomposition (POD) was 

utilized to extract the dominant vibratory modes (Berry et al., 1994; Zheng et al., 2011). Figure 4.6 (a) 

shows the two most energetic modes. Mode 1 presented a clear convergent-divergent type motion, and 

Mode 2 was a lateral motion. The two modes captured 92% of the total vibration energy with Mode 1 

and 2 was 70% and 22%, respectively. It should be pointed out that the shape of the two dominant 
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modes as well as the associated energy percentage were found to be very similar to (Berry et al., 1994) 

which found that the first and second modes of vocal fold vibration in the simulation in (Alipour-

Haghighi and Titze, 1985) captured 72% and 26% of the total energy, respectively. Figure 4.6 (b) is the 

time history of the modal coefficients of these two modes. The positive (negative) coefficient of Mode 1 

corresponded to a convergent (divergent) shape, and the positive (negative) coefficient of Mode 2 

corresponded to glottis abduction (adduction). The two coefficients oscillated with the frequency same 

as F0, implying a 1:1 mode entrainment, which is an important indicator of normal phonation (Berry, 

2001). Figure 4.6  (b) also shows that the increasing of the coefficient of Mode 2 was always companied 

by the positive coefficient of Mode 1, and vice versa. It indicated that the convergent glottal shape 

formed when vocal folds opened and a divergent shape formed when it closed, which was consistent 

with the observations in Figure 4.5. 

 

Figure 4.6 Empirical eigenmodes and the corresponding coefficients. (a) The three-dimensional and mid-

coronal profile of the most energetic two empirical eigenmodes of the vocal fold at two-extreme phases 

through POD analysis. (b) Modal coefficients time history of the two eigenmodes. 
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4.3 Summary 

A three-dimensional, first-principle based fluid-structure-acoustics interaction computer model 

of voice production which employed a more realistic human laryngeal and vocal tract geometries. Self-

sustained vibrations and a reasonable glottal flow waveform were captured by the model and important 

voice-quality associated parameters were found to be well within the normal physiological ranges. The 

important convergent-divergent vibration pattern of vocal folds was captured. POD analysis 

demonstrated the 1:1 entrainment of the two dominant vibratory modes. The analogy between the 

vocal tract and a quarter-wave resonator was demonstrated. The simulation result reflected that the 

acoustic perturbed flux and pressure inside the glottis as well as the supraglottal tract were all at the 

same order with their incompressible counterparts, suggesting strong source-filter interactions during 

normal phonation.  

The model demonstrated the capability of providing fully resolved and coupled fluid, structure 

and acoustics solutions in complex laryngeal shapes. It would be useful for studying the fundamental 

mechanisms of voice production, especially those related to the source-tract coupling effect, turbulent 

sound and different voice types. The model also can greatly extend the current framework of voice 

modeling to a wide range of pathological conditions which often involve complex vibration conditions. 

The limitations of the current model have been listed. First, the current model assumed that 

vocal fold tissue was linear viscoelastic material. In general, vocal fold tissue exhibits a nonlinear stress-

strain relationship (Min, Titze and Alipour-Haghighi, 1995; Chan and Titze, 1999; Zhang, Neubauer and 

Berry, 2007). However, this nonlinearity becomes obvious only during large deformation events such as 

posturing. During phonation, vocal folds exhibit a nearly linear stress strain relationship when active 

muscular tension is present (Titze, 2006a). Therefore, the material properties adopted in the current 
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study can be interpreted as properties for a given posturing. Second, the current model had reduced the 

Reynolds number to 1/4 of the normal value to alleviate the computational cost. Such treatment would 

affect the turbulence flow in the vocal tract which is related to high frequency effects. Third, an artificial 

gap was imposed between the two vocal folds, allowing leakage flow even during what would be 

considered as glottal closure. Fourth, the current model had employed the total reflection boundary 

condition at the mouth and hard wall boundary condition at the vocal tract wall which had excluded the 

acoustic energy loss and would exaggerate the acoustic flux. However, such boundary conditions were 

considered as reasonable simplifications given small compliance of the vocal tract wall and very large 

area expansion at the mouth. Last, the calculation of Navier-Stokes equation based fluid solver requires 

more computational resource and time than the reduced order based solver, limiting the ability to 

perform real-time simulation. However, the continually increasing computer ability and the parallel 

computing technique would decrease the computational time in the future.   
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CHAPTER 5 EFFECT OF LONGITUDINAL VARIATION OF LAYER THICKNESS 

In this chapter, the influence of longitudinal variation of the vocal fold inner layer thickness has 

been studied. This work is reproduced from “Jiang, Weili, Qian Xue, and Xudong Zheng. ‘Effect of 

longitudinal variation of vocal fold inner layer thickness on fluid-structure interaction during voice 

production.’ Journal of biomechanical engineering 140, no. 12 (2018).”  

5.1 Introduction 

In the human vocal fold, the thickness of each layer is known to vary along the longitudinal 

direction (Hirano, Kurita and Nakashima, 1981). Usually, the stiffer ligament layer is thicker at the sites 

of attachment at the anterior commissure and the vocal process of the arytenoid to withstand the 

massive stress of vocal fold action. The softer cover layer is thicker at the middle to provide a cushion 

for vocal fold collision (Titze, 2000). Figure 5.1 shows the averaged thickness of the cover and ligament 

layers at different longitudinal positions of five male vocal fold samples measured by (Hirano, Kurita and 

Nakashima, 1981). The square and diamond symbols represent the original measurements of the 

ligament and cover, respectively, and the curves are the fourth-order polynomial curves fitting the data. 

According to the data, the variation of the thickness in the longitudinal direction is up to 57% and 43% 

for the cover and ligament, respectively, about their average values. These are relatively large variations 

which could have a significant impact on stiffness distribution on the vocal fold. Based upon the 

aforementioned findings that inner layer stiffness can significantly affect vocal fold vibration amplitude 

and pattern, the longitudinal variation of thickness might affect vocal fold vibration through its effect on 

stiffness. (Bhattacharya, Kelleher and Siegmund, 2015) has computationally investigated the influence of 

longitudinal stiffness variation of the vocal fold on vibration by changing the elastic modulus. It was 

found that the stiffness variation could affect the fundamental frequency and flow rate and caused 
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anterior-posterior asymmetry and a wave motion in the longitudinal direction. However, in that study, 

the vocal fold was modeled as a one-layer isotropic material. Vocal fold is anisotropic and it was 

reported that the anisotropy could significantly suppress the wave motion in the longitudinal direction 

(Zhang, 2014). Moreover, vocal fold is pre-stressed in the longitudinal direction during posturing. This 

condition will stiffen the vocal fold and further suppress the wave motion in the longitudinal direction. 

However, this feature was not modeled in (Bhattacharya, Kelleher and Siegmund, 2015). Therefore, the 

model may have over-predicted the wave motion in the longitudinal direction. In fact, it was observed in 

the experiment that vocal fold vibration was mostly in the transverse plane and very little in the 

longitudinal direction(Berry, Montequin and Tayama, 2001; Cook, Nauman and Mongeau, 2008). 

Therefore, it remains unclear how the stiffness variation in the longitudinal direction affects vocal fold 

vibrations if the anisotropy and longitudinal stiffening was considered. Furthermore, it is also unknown 

to what extent the thickness variation in inner layers affects the stiffness variation on vocal fold. Such 

understanding would be important to estimate the ultimate effect of thickness variation on vocal fold 

vibrations. (Xue et al., 2011) utilized an anisotropic vocal fold model to investigate the effect of 

longitudinal variation of thickness on vocal fold eigenmodes and found that the eigenmodes were 

insensitive to such variations; yet, it is unclear whether this conclusion still holds when fluid-structure 

interactions is considered.  

Therefore, in the present chapter, numerical approach validated in the previous chapter was 

utilized to investigate the effect of longitudinal variation of inner layer thickness on glottal flow 

dynamics and vocal fold vibrations. However, the acoustic solver was excluded as our focus is 

investigating the effect on the vocal fold dynamics. Four vocal fold models of different degrees of 

variations were generated for the purpose of covering the limit of inter-subject variation. The effect of 
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thickness variation on vocal fold stiffness distribution, glottal flow waveform, vocal fold vibration 

pattern, glottal angle, and energy transfer was studied by comparing between the cases. The possible 

underlying mechanism of the differences was also discussed. 

 

Figure 5.1 The averaged thickness of the cover and ligament layers of five male vocal fold samples 

measured. The square and diamond symbols represent the original measurement of ligament layer and 

cover layer, respectively. Fourth-order polynomial curves are applied to fit the data: y=5.92x4-

12.16x3+11.16x2-4.84x+1.51 for the ligament and y=5.10x4-9.29x3+3.60x2+0.62x+0.15 for the cover, 

where x is the non-dimensioned longitudinal position and y is the layer thickness (mm). 1.11mm and 

0.33mm are the averaged layer thicknesses for the ligament and cover, respectively. 

5.2 Simulation setup 

The vocal fold inner layer thickness was modified based on the model in Chapter 4. Four vocal 

fold models with different levels of variation of layer thickness were created. The first model was a 

uniform thickness model. The thickness of each layer was based on the average value of Hirano’s 

measurement, as shown in Figure 5.1, which was 0.33mm for the cover and 1.11mm for the ligament. In 

the second model, the thickness variation was directly based on Hirano’s data by using the fitting curves 
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as shown in Figure 5.1. In the context below, these two cases are denoted as the baseline model and 

Hirano model, respectively. 

Nevertheless, Hirano’s measurement was the average value of five subjects (Hirano, Kurita and 

Nakashima, 1981). To include the possible extreme conditions of inter-subject variation, we created two  

 

Figure 5.2 The longitudinal thickness variation in the four parametric cases. (a) The geometry and 

boundary conditions of the vocal fold. T denotes the height of the medial surface. Points A and B locate 

at Y=3.86cm and Y=3.66cm, respectively, which were used in the calculation of the glottal angles; (b) The 

varied thickness along the longitudinal direction of the cover and ligament layers in the four cases; (c) 

&(d) The three-dimensional configurations of the cover and ligament layers of the vocal fold in the 

baseline case and extreme variation case, respectively. The shapes of the cross section in the vertical 

direction in the medial surface of the cover and ligament layers were plotted beside the vocal fold with 

the color of red and black, respectively.   



86 
 
 

 

more cases to have more significant changes of the thickness in the longitudinal direction. The methods 

for creating the models are briefly described below. A thickness ratio, TR, was defined for each layer, 

which was computed as the ratio of the largest thickness to smallest thickness along the longitudinal 

direction. TRc and TRl denote the ratio of the cover and ligament, respectively. In the Hirano model, TRc 

=3.38 and TRl =2.07. In the third model, we doubled the values of TR to be TRc =6.77 and TRl =4.15. In 

the fourth model, the values of TR were further increased to be TRc =8.67 and TRl =4.28. These two 

values were chosen because further increasing TRc and TRl only resulted in small changes in the largest 

thickness of each layer. For example, further doubling TRc and TRl beyond this point only resulted in less 

than 10% changes in the largest thickness in the cover and ligament layers. Therefore, the fourth model 

represented an extreme condition. In the context below, the third and fourth models are denoted as the 

intermediate variation case and extreme variation case, respectively. The absolute values of the 

thickness at the five longitudinal positions as in the Hirano’s measurement (referred to Figure 5.1) were 

computed by using the TRc and TRl and based on the constraint that the average value remained the 

same and the assumption that the thickness at the anterior and posterior ends were equal.  Figure 5.2 

(b) shows the variation of the thickness of the cover and ligament layers in the four models, 

respectively.  

To clearly illustrate the internal structure, Figure 5.2 (c) and (d) show the three-dimensional 

configurations of the inner layers of the baseline model and the extreme variation model, respectively. 

The shapes of the cross section in the vertical direction of the medial surface of the cover and ligament 

layers were plotted beside the vocal folds in red and black, respectively. It shows that in the extreme 

variation model, the cover layer is thickest at the middle and the ligament layer is thickest at the 

anterior and posterior ends.    
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A 1.0 kPa pressure drop was applied between the outlet and inlet of the vocal tract. Non-slip 

and non-penetration boundary conditions were applied on the vocal tract walls. The kinematic viscosity 

of the air was set to be 1.65×10-5 m2/s corresponding to the human body temperature of 37°C. A zero-

displacement boundary condition was applied at the anterior, posterior and lateral surfaces of the vocal 

fold and other surfaces were free to move. The simulations were carried out on the XSEDE COMET 

cluster, using 128 processors. The computational expense was about 4600 CPU hours per vibration cycle 

which equals to 1.5 days per cycle. 

5.3 Results and discussion 

5.3.1 Effect on stiffness distribution on vocal fold surface 

Because the ligament is stiffer than the cover, the spatial variation of layer thickness would 

affect the stiffness distribution on the vocal fold. Specifically, the thickened cover and thinned ligament 

at the middle of the vocal fold would reduce the stiffness at the position, and the thinned cover and 

thickened ligament at the anterior/posterior aspects would increase the stiffness at the position. To 

examine the extent to which the thickness variation affected the stiffness distribution, a numerical 

indentation technique was used to measure the stiffness on the vocal fold surface. The indentation was 

implemented by applying a uniform pressure loading on a small area and then solving the deformation 

using the finite element solver. The stiffness, defined as the slope of the force-displacement curve, can 

be calculated as k=PA/∆x, where k is the stiffness, P is the pressure loading, A is the area and ∆x is the 

maximum deformation. The details about the numerical indentation method can be found in (Geng, Xue 

and Zheng, 2017). To obtain the distribution of the stiffness, the medial surface of the vocal fold was 

evenly divided into 21 sections with 7 sections in the longitudinal direction and 3 sections in the vertical 

direction (shown in Figure 5.3). The portion that is close to the two ends was excluded since they were 
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constrained by the fixed boundary condition and would barely vibrate. The numerical indentation was 

applied at each section. Figure 5.3 shows the stiffness distribution along the longitudinal direction on 

the medial surface of the four vocal fold models by averaging the values in the vertical direction. It 

reflects that, for all the vocal fold models, the stiffness was lowest at the center and highest at the 

posterior end. It needs to be pointed out that stiffness is a function of many properties including the 

material properties, material orientation, geometric dimensions, type of constraint, loading direction 

and position. Therefore, even though the layers were uniform in the baseline model, the stiffness was 

still increased toward the anterior/posterior end and that was the effect of fixed boundary condition. 

Generally, a larger thickness variation resulted in a larger stiffness variation. Such effect was most 

prominent when comparing the baseline model and Hirano model. The thickness variation has resulted 

in a much lower stiffness in the middle and higher stiffness toward the anterior/posterior ends. It was 

also interesting to notice that further increasing the thickness variation in the intermediate variation 

model and extreme variation model only resulted in a small change in the stiffness at most places of the 

vocal fold except near the anterior/posterior ends. That means the stiffness distribution became 

insensitive to the thickness variation once the thickness variation level exceeded that in the Hirano 

model. Quantitatively, by using the values in the baseline model as the normalized values, the stiffness 

decreased by 16%, 21%, 24% at the middle, increased by 18%, 12%, 47% near the anterior end, and 

increased by 5%, 10%, 29% near the posterior end for the Hirano model, intermediate variation model 

and extreme variation model, respectively. The average stiffness (kave in Table 5-1) over the entire 

medial surface was computed by averaging the stiffness values in the 21 sections. Interestingly, it was 

found that the value only changed by -3%, -5%, +5% in the Hirano model, intermediate variation model, 

and extreme variation model, respectively. Considering that the same average thickness was kept for 
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each layer among the cases, it implied that the average stiffness was highly correlated with the average 

thickness of the inner layers.  

 

Figure 5.3 The stiffness distributions in the longitudinal direction at the medial surface of the four vocal 

fold models. The subfigure illustrates the sections used in the numerical indentation. 

5.3.2 Effect on the waveforms of the glottal flowrate and opening size 

The time history plot of the glottal flow rate and glottal opening size of the baseline case was 

shown in Figure 5.4 (a). And the phase-averaged flow rate and opening size for the four cases was 

shown in Figure 5.4 (b). The opening size was defined as the minimum distance between the two vocal 

folds across the vertical direction in the mid-coronal plane. Based on the waveforms of the flow rate and 

opening size, several voice-quality related quantities were calculated for the four cases and listed in 

Table 5-1. These include the fundamental frequency (F0), open quotient (τo), skewness quotient (τs), 

maximum flow declination rate (MFDR), maximum flow rate (Qmax), mean flow rate (Qmean) and 

maximum glottal opening (Gapmax). τo and τs were calculated based on the waveform of the glottal flow 
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rate. MFDR was obtained by calculating the time derivative of the flow rate during the closing phase of 

the glottis. It should be pointed out that these quantities were computed by using the phase-averaged 

flow rate and opening size which has eliminated the effect of cyclic variation.  

 

Figure 5.4 The glottal flow rate and opening for the four cases. (a) The time history of the glottal flow 

rate and glottal opening of the baseline case. (b) The phase-averaged flow rate and glottal opening for 

the four cases. 

To compare between the cases, the relative differences of the parameters by using the values in 

the baseline case as the normalized values were computed. They are shown in the round brackets in 

Table 2. Moreover, the percent values of cyclic variation of some of the parameters, which was 

computed as the root-mean-square of the variation of each cycle from the mean value, were also 
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computed and listed in the square brackets. It was found that the differences with the baseline case in 

these parameters were generally below 5% except that τs in the Hirano model increased by 8% and Qmax 

in the extreme variation case decreased by 5.9%. The cyclic variations were generally at the same level. 

Therefore, the thickness variations did not have a significant effect on the glottal flow and opening size 

waveforms.  

It is generally assumed that, with the reduced stiffness at the middle of the vocal fold, the 

vibration amplitude and flow rate would increase because the middle area is where the largest vibration 

occurs. However, in our simulations, although the stiffness was reduced by 16%-24% at the middle in 

the cases, the vibration amplitude and flow rate remained nearly the same as the baseline case. 

Considering that the average stiffness remained nearly the same among the cases, our simulation results 

implied that the vibration amplitude and flow rate were determined by the average stiffness, not the 

local stiffness. This result contradicted with the conclusion of a previous study which applied modulus 

gradients in the longitudinal direction in an isotropic vocal fold model and found that the stiffness 

gradients affected the fundamental frequency and flow rate (Bhattacharya, Kelleher and Siegmund, 

2015). However, as aforementioned in the introduction, the model employed the isotropic material 

assumption and did not incorporate the effect of longitudinal stiffening of vocal fold, and therefore 

created a strong wave motion in the longitudinal direction. This artificial wave motion would affect the 

motion in the transverse plane and further affect the fundamental frequency and flow rate. 

Furthermore, it was unclear if the average stiffness was maintained among the cases in (Bhattacharya, 

Kelleher and Siegmund, 2015). Therefore, it was unclear if the observed effect due to the stiffness 

gradient or the change of the average stiffness.  
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Table 5-1 The glottal flow rate and opening waveforms related parameters. The numbers in the round 

brackets denote the difference with the baseline value (%). The numbers in the square brackets denote 

the percent value of root-mean-square cyclic oscillation (%).  

 
Baseline 

case 
Hirano case Intermediate 

variation case 
Extreme 
variation 

case 

Physiological 
range (Xue et 

al., 2012) 

F0 
(Hz) 

170.3  
[0.8] 

167.9  
[0.9] 

(-1.34) 

165.8  
[0.9] 

(-2.61) 

168.7  
[1.0] 

(-0.89) 

60-250 

τo 

0.537  
[1.1] 

0.539  
[1.3] 

(0.26) 

0.535  
[1.6] 

(-0.36) 

0.544  
[1.0] 

(1.16) 

0.4-0.7 

τs 

2.29  
[2.5] 

 

2.48  
[3.9] 

(8.05) 

2.30  
[3.0] 

(0.37) 

2.38  
[5.3] 

(3.94) 

1.1-3 

MFDR 
(m3/s2) 

0.479  
[2.7] 

0.468  
[4.9] 

(-2.12) 

0.473  
[2.0] 

(-1.12) 

0.462  
[3.5] 

(-3.41) 

- 

Qmean 

(mL/s) 

159.8  
[1.6] 

154.7  
[0.5] 
(-3.2) 

154.7  
[0.8] 
(-3.2) 

153.8  
[1.5] 
(-3.7) 

110-220 

Qmax 

(mL/s) 

333.9 
[0.8] 

323.1  
[2.8] 
(-3.5) 

326.9  
[0.7] 
(-2.4) 

315.1  
[2.6] 
(-5.9) 

200-350 

Gapmax 

(mm) 

0.98  
[1.2] 

0.978  
[5.3] 
(-0.2) 

1.023  
[1.8] 
(4.4) 

1.001  
[3.3] 

(2.14) 

- 

kave 

(kPa∙cm) 
1.31 1.27 

(-3.0) 
1.24 
(-5.1) 

1.37 
(5.0) 

- 

 

5.3.3 Effect on vocal fold vibration pattern 

While the four cases showed nearly the same vibration amplitude, it would be of interest to 

examine their vibration patterns. When the vocal folds vibrate, a mucosal wave forms and propagates in 

the cover layer. This wave generates an inferior-superior phase difference in the motion, creating an 

alternating convergent-divergent glottal shape, which is a key mechanism for sustained energy transfer 
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from the air flow to vocal folds. Figure 5.5 plots the mid-coronal profile of the vocal folds at four time 

instants during one vibration cycle for the baseline case and the extreme variation case. The time instant 

associated with each subfigure is indicated as a black dot on the flow rate plot shown at the right-

bottom. It shows that the glottis was alternating convergent-divergent shapes in both cases. At instant 

(a), the glottis was about to open with a very clear convergent shape in the inferior-superior direction. 

At instant (b), the glottis reached its maximum opening, forming a nearly straight channel. Due to flow 

inertia, the glottal flow was still increasing although the glottis had already started to close. At instant 

(c), the glottis was closing with a very clear divergent shape, and the glottal flow was decreasing. At 

instant (d), the glottis was fully closed (with artificial gap). It is also important to see that the profiles 

from the two cases nearly overlapped each other, indicating the high similarity of the vibration pattern.  

To have a quantitative comparison of the vibration pattern between the cases, the technique of 

proper orthogonal decomposition (POD) was applied to extract the principle modes of the vibration 

(Berry et al., 1994; Zheng et al., 2011). As the vibration was nearly symmetric about the centerline, only 

the left vocal fold was analyzed. Figure 5.6 (a) and (b) show the three-dimensional shape as well as the 

mid-coronal profile of the vocal fold of the two most energetic modes of the baseline case. The two 

modes together captured 93% of the total kinetic energy, 82% and 11% in each mode, respectively. 

Mode 1 was mostly an in-phase lateral motion and Mode 2 was an out-of-phase lateral motion. The 

same modal shapes were observed in other cases. The energy associated with the two modes was 80% 

and 12% in the Hirano model, 77% and 13% in intermediate variation case, 78% and 13% in extreme 

variation case, respectively. To precisely quantify the similarity of the modal shapes, the dot-products of 

the unit vectors of the two corresponding modes between the baseline case and the other three cases 

were computed. The value of one indicated an exact match of the modal shape, and value of zero 
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indicated complete orthogonality. The results showed that the dot-products of the two corresponding 

modes between the baseline case and other cases were all above 0.98, indicating nearly the same 

vibration patterns between the cases. 

 

Figure 5.5 The mid-coronal profiles of the vocal folds at four time instants during one vibration cycle in 

the baseline and extreme variation cases. The corresponding time instant is indicated as a black dot on 

the flow rate plot shown at the right-bottom of each subfigure. 

 

Figure 5.6 The two most energetic modes of the baseline case. (a) Mode 1; (b) Mode 2. In each 

subfigure, the left side is the three-dimensional shape and the right side is the mid-coronal profile of the 

vocal fold. 

5.3.4 Effect on glottal angles 

Figure 5.7 shows the phase-averaged variation of the glottal angle at three coronal planes for 

the four cases. Because the vocal folds vibrated symmetrically about the mid-sagittal plane, the glottal 
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angle was measured between the right vocal fold and mid-sagittal plane. It was calculated by assuming a 

straight line between two points on the vocal fold that were initially at Y=3.86 and Y=3.66cm (indicated 

in Figure 5.2(a)). A positive angle corresponded to a convergent shape and a negative angle 

corresponded to a divergent shape. Two common features were observed for all the cases. First, the 

glottal angle decreased from the mid-coronal plane to the anterior and posterior ends. It is easy to 

understand because the vocal folds were fixed at the anterior and posterior ends so that the vibration 

was gradually constrained toward them. Second, at each plane, the maximum convergent angle was 

larger than the maximum divergent angle (absolute value). At the mid-coronal plane (Figure 5.7 (a)), the 

maximum convergent angles were 6.57±0.11o, 7.62±0.50o, 8.45±0.25o, 8.79±0.21o in the baseline, 

Hirano, intermediate variation, extreme variation cases, respectively, and the maximum divergent 

angles were 3.05±0.16o, 4.03±0.52o, 4.74±0.36o, 4.24±0.81o, respectively. The second number denotes 

the root-mean-square value of the cyclic variation. This feature may be related to the slow opening and 

fast closing of the vocal folds so that there was less time for developing the angle during closing. 

 

Figure 5.7 The phase-averaged glottal angle variation at the three coronal planes. The position of each 

coronal plane is denoted at the top-right corner of each figure. 
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Differences between these cases were also observed. In Figure 5.7 (a) which is for the mid-

coronal plane, the baseline case had the smallest maximum angles in both the convergent and divergent 

shapes. A higher level of thickness variation generated larger maximum angles. However, the difference 

between the cases gradually vanished toward the anterior end, as shown in Figure 5.7 (b) to Figure 5.7 

(c). To further illustrate this difference, Figure 5.8 (a) and (b) show the maximum convergent and 

divergent angles at different longitudinal positions for the cases. It was found that the thickness 

variations generated larger maximum convergent and divergent angles in the middle of the vocal fold 

and smaller angles near the anterior and posterior ends. Specifically, Figure 8(a) shows that the 

thickness variations had a large effect on the convergent angles at the middle of the vocal fold and small 

effect near the anterior and posterior ends. The effect at the middle of the vocal fold was monotonic 

that a higher level of thickness variation generated larger angles. Interestingly, Figure 5.8 (b) shows a 

non-monotonic trend that the intermediate variation case generated the largest maximum divergent 

angle in the middle while the extreme variation case generated the smallest maximum divergent angle 

near the anterior and posterior ends. Also, the intermediate variation case had a larger maximum 

divergent angle than the Hirano model near the anterior end. A closer comparison with the stiffness 

values in Figure 5.3 revealed that this non-monotonic trend was highly correlated to the stiffness 

distributions. It was observed in Figure 5.3 that the intermediate variation case had the smallest 

stiffness at the longitudinal position between 0.65 - 0.8 and smaller stiffness than the Hirano model near 

the anterior end. It was consistent with the trend of divergent angles at these positions. It was noticed 

that the intermediate variation case did not have the smallest stiffness at the middle but had the largest 

divergent angles there. It could be the effect of the adjacent tissues at the longitudinal position between 

0.65 - 0.8 which had much larger angles than other cases. The above observations implied that the 
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glottal angles were largely affected by the local stiffness. Such relationship was more prominent in the 

divergent angles which might be due to that glottal closing is primarily driven by the elastic recoil force 

inside the vocal folds which are directly related to the stiffness.   

It needs to be pointed out that the maximum convergent angles increased by up to 34% and the 

maximum divergent angles increased by up to 55% among the thickness variation cases by comparing to 

the baseline case. However, the absolute changes were small which was less than 2.3o for the 

convergent angle and 1.8o for the divergent angle. Considering that the angle was calculated for half of 

the glottis, the absolute change would be less than 4.6° and 3.6o for convergent and divergent angles, 

respectively, if the full angle between the two vocal folds was used. This small change in the glottal 

angle did not result in noticeable difference in the vibration patterns.   

 

Figure 5.8 The phase-averaged maximum glottal angle distribution in the longitudinal direction. (a) 

convergent angle and (b) divergent angle. 
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5.3.5 Effect on energy transfer 

Figure 5.9 (a) shows the phase-averaged power transfer from the air flow to the vocal fold 

during one vibration cycle for the four cases. Figure 5.9 (b) shows the phase-averaged glottal opening 

size. The power was calculated by multiplying the flow pressure with the normal components of the 

velocity vectors and integrating over the entire vocal fold surface. The contribution of the viscous force 

to the power was neglected since it is usually two orders of magnitude smaller than the pressure 

contribution (Thomson, Mongeau and Frankel, 2005). It was interesting to see that, for all these cases, 

the power was positive at the very early opening phase and most of the closing phase. During other 

times, it was negative. It suggested that the aerodynamic pressure facilitated the vocal fold motion 

during the early opening phase and most of the closing phase and retarded its motion at other times. 

 

Figure 5.9 The phase-averaged energy transfer and glottal opening for the four cases. (a) The time 

history of the power transferred from the air flow to one vocal fold. (b) The glottal opening size. The 

time instants of MFDR are represented by black dots. 
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The cyclic net energy transfer to the vocal fold was calculated by integrating the power over one 

vibration cycle. It was 28.56±1.47µJ, 26.21±1.73µJ, 27.50±0.84µJ, 24.15±0.95µJ for the baseline, Hirano, 

intermediate variation, and extreme variation cases respectively. The second number denotes the root-

mean-square variation between cycles. Hence the cyclic net energy transfer decreased by -8.2%, -3.7% 

and -15.4% in the Hirano model, intermediate variation model and extreme variation model, 

respectively, compared to the baseline model. The cyclic variation was 5.1%, 6.6%, 3.0% and 3.9% of the 

mean values, in the baseline model, Hirano model, intermediate variation model and extreme variation 

model, respectively. Figure 5.9 reflected that the effect on the cyclic net energy transfer might be 

associated with the positive peak of the power that occurred when the glottis was about to close. This 

peak contributed a significant amount of positive energy to the vocal fold. The changing trend of the 

peak among the cases was in accordance with the changing trend of the cyclic net energy transfer.   

To explore the reason of the changes of the power peak among the cases, Figure 5.10 plots the 

phase-averaged flow pressure along the centerline of the glottis at the time instant when the positive 

power peak occurred for all the cases. It shows that, at this time instant, the flow pressure dropped to a 

negative value around -1 to -1.5kPa inside the glottis in all the cases. The baseline case had the lowest 

negative pressure, followed by the intermediate variation case, extreme variation case and the Hirano 

case in the ordered sequence. This low negative pressure generated a larger vacuum force to pull the 

vocal folds to close. Therefore, a lower negative pressure would contribute to higher power peak. Such 

sequence of intraglottal pressure is generally in accordance with the sequence of the power peak as 

shown in Figure 5.9 except that the Hirano case had the higher intraglottal pressure than the extreme 

variation case. It should be noticed that, other than the intraglottal pressure, the vocal fold velocity, face 

normal direction and the integration in time would also affect the energy consumption during vibration. 
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This might explain that though the Hirano case had the highest intraglottal pressure, the energy 

consumption was not the lowest. However, the trend that the longitudinal thickness variation would 

increase the intraglottal pressure which would further decrease the energy needed to sustain the vocal 

fold vibration was clear.  

 

Figure 5.10 The phase-averaged intraglottal pressure along the centerline at the time instants of the 

positive power peak observed in Figure 5.9 for the four cases. 

Then, it became interesting to explore the mechanism responsible for the lowest negative 

pressure in the baseline case. There are two primary mechanisms responsible for the negative 

intraglottal pressure during the closing phase. One is the steady effect that is related to the Bernoulli’s 

effect, in which the pressure drop is proportional to the square of the flow rate. But such effect will be 

weak at the time instant when the flow rate was very low, such as the condition in the current cases. 

The second mechanism for the negative intraglottal pressure would be the unsteady effect which is 

related to the flow inertance. The pressure difference caused by the flow inertance in a tube can be 

calculated as ∆p=I(dQ/dt), where I is the flow inertance characterized by the density of the fluid, length 

and cross-section area of the tube, and Q is the volumetric flowrate. In contrast to the Bernoulli’s effect 
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which is directly related to the flowrate, the flow inertance caused pressure change is related to the 

time derivative of the flow rate. During the closing phase of the glottis, the deceleration of the flow 

caused the negative time derivative of the flow rate and therefore the negative flow pressure inside the 

glottis. Figure 5.9 also denotes the time instants of the MFDR in the opening size plot for all the cases. It 

was found that the time instants of the positive power peak and MFDR were very close. Therefore, the 

very low intraglottal pressure observed in Figure 5.10 was primarily caused by the strong flow inertance 

effect due to the MFDR. Table 5-1 listed values of the MFDR for the cases. The baseline case had the 

highest MFDR value. Therefore, its intraglottal pressure was able to drop to a lowest value. That further 

explained the highest positive power peak in the baseline case. 

5.4 Summary 

The effect of longitudinal variation of vocal fold inner layer thickness on vocal fold vibration has 

been investigated using the three-dimensional fluid-structure interaction model. Four cases, one with 

the constant layer thickness in the longitudinal direction and three with different degrees of longitudinal 

variation, were studied and compared. In the extreme variation case, the thickest part of the 

cover/ligament layer can be 8.67/4.28 times the thinnest part. Such variation has caused 24% reduction 

in the stiffness at the middle of the vocal fold and 47% and 29% increase in the stiffness at the anterior 

and posterior ends, respectively. The main observations and discussions are summarized as below: 

(1) The variation of inner layer thickness in the longitudinal direction as well as the resulted 

variation of stiffness distribution on the vocal fold did not affect the flow rate and vibration amplitude. 

The results implied that the flow rate and the vibration amplitude were highly related to the average 

stiffness over the vocal fold medial surface rather than the stiffness at the middle of the vocal fold. In 

our models, the stiffness at the middle of the vocal fold decreased up to 24%; however, the changes in 
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the average stiffness were only within 5%. The changes in the flow rate and vibration amplitude were 

within 6%. 

(2) The maximum glottal angles were increased at the middle of the vocal fold and reduced at 

the anterior/posterior ends in the thickness varied cases. The results implied that the maximum 

convergent and divergent glottal angles along the longitudinal direction were largely determined by the 

local stiffness at the longitudinal positions. Such a relationship was more prominent in the divergent 

angles maybe because glottal closing is primarily driven by the elastic recoil force inside the vocal folds 

which are directly related to the stiffness. 

(3) The thickness variations had little effect on the vocal fold vibration patterns. The proper 

orthogonal decomposition analysis showed nearly the same principle modes and energy distributions 

between the modes for all the models. 

(4) The energy analysis revealed that a key contribution to the positive net energy transfer to 

the vocal fold was a positive power peak when the glottis was about to close. This positive power peak 

was primarily due to the negative intraglottal pressure caused by flow inertance which was related to 

MFDR. The thickness variations in the longitudinal direction were found to help decrease the energy 

needed in the sustained vibration due to the higher intraglottal pressures which were related with the 

smaller MFDR.  

It is useful to point out that our results were based on the models with specific material 

properties. Vocal fold material properties vary from individual to individual depending on factors such as 

gender, race, age, and health. These variations are likely to affect the quantitative conclusions. For 

example, increasing the difference of Young’s modulus between the cover and ligament layers will 

increase the variation of the stiffness along the longitudinal direction in the models, and this will affect 
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the quantities reported in the present study. There has been more experimental work recently to 

provide more comprehensive material measurements, including the anisotropic and nonhomogeneous 

aspects (Miri, 2014; Oren et al., 2014; Dion et al., 2016). These data can provide new insight in modeling 

vocal fold tissues.  
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CHAPTER 6 EFFECT OF COVER LAYER THICKNESS 

In this chapter, the influence of vocal fold cover layer thickness on vocal fold vibratory dynamics 

has been studied. This work is reproduced from “Jiang, Weili, Xudong Zheng, and Qian Xue. ‘Influence of 

vocal fold cover layer thickness on its vibratory dynamics during voice production.’ The Journal of the 

Acoustical Society of America 146, no. 1 (2019): 369-380”, with the permission of AIP Publishing. 

6.1 Introduction 

The cover layer thickness varies with vocal fold conditions. For instance, it increases in aging 

vocal folds of females (Hirano, Kurita and Sakaguchi, 1989). It is affected by voice warm-up and 

hydration.16 It can also be altered by vocal pathologies, such as polyps and nodules, and surgical 

treatments, such as dissection for treating cancers. Understanding how the cover layer thickness affects 

the vocal fold vibration and voice production will provide valuable insights into the diagnosis and 

treatment of related voice disorders. 

Due to the difficulties of the measurement and control of vocal fold inner layers, past studies on 

the effect of vocal fold inner layer properties on voice production mostly relied on the theoretical, 

computational, and physical vocal fold models (Titze, Jiang and Drucker, 1988; Alipour et al., 2011; 

Murray and Thomson, 2011; Xuan and Zhang, 2014; Zhang, 2017a). A number of studies have reported 

the effect of cover layer properties, including the thickness, damping, geometry, and elastic modulus, on 

the threshold pressure, a) onset frequency, and glottal closure(Titze, 1988; Zhang, 2009; Mendelsohn 

and Zhang, 2011). For the cover thickness, it is generally believed, based on the string formula, that a 

thicker cover layer results in a lower fundamental frequency(Titze, Jiang and Drucker, 1988; Titze, 2011). 

By using a theoretical surface wave model and a physical model of the vocal fold, Titze and his 

colleagues (Titze, Schmidt and Titze, 1995; Chan, Titze and Titze, 1997) found a positive dependence of 
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the phonation threshold pressure on the thickness of the cover layer. With a lumped mass model, 

(Gunter, 2004) showed that the mechanical stress during vocal fold collision was negatively correlated 

with the cover layer thickness. (Erath, Zañartu and Peterson, 2017) obtained the same conclusion by 

using a quasi, 1-D viscoelastic contact model. Using eigen analysis of a continuum vocal fold model, 

(Cook, Nauman and Mongeau, 2009) found that the eigenfrequencies were more influenced by layer 

elastic modulus rather than thickness. In another study on the eigenmodes of vocal fold, (Xue et al., 

2011) showed that the eigenmodes were not sensitive to the inner layer thickness either. 

Despite these previous studies, the effect of the cover layer thickness on flow-induced vocal fold 

vibration has not been systematically studied. As the cover layer is closely associated with the 

propagation of the mucosal wave, we hypothesize that increasing the cover layer thickness would 

promote the formation and propagation of the mucosal wave, and so promote the excitation of the 

wavetype eigenmodes of the vocal fold. Such an effect would further affect the synchronization of the 

eigenmodes during fluid-structure interactions, and finally change the vocal fold vibration pattern, 

fundamental frequency, frequency spectrum, and voice outcomes. This study aimed to test this 

hypothesis through the current numerical approach. The acoustic solver was excluded as the focus is 

investigating the effect on the vocal fold dynamics. The cover-body thickness ratio was systematically 

varied in a wide physiologically-possible range. The effect of these variations on vocal fold stiffness, 

eigenfrequencies and modes, fundamental frequency, glottal flow rate, vocal fold vibratory dynamics, 

and the synchronization of the eigenmodes were analyzed in detail. 

6.2 Simulation setup 

Based on the model in Chapter 4, for the parametric study, seven different values of the cover 

thickness were considered, including Tc=0.5Tco, Tco, 1.5Tco, 2Tco, 2.5Tco, 3Tco and 5Tco. In these cases, the 
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ligament layer thickness was unchanged. The body layer thickness (Tb in Figure 6.1(a)) was adjusted 

accordingly to keep the total volume of the vocal fold unchanged. Hence these seven cases correspond 

to the cover-body thickness ratio (Tc/Tb) of 0.02, 0.05 (baseline), 0.07, 0.09, 0.12, 0.15 and 0.28, 

respectively. In the rest of the paper, the Tc/Tb value is used to represent the cases. Figure 6.1 (b) shows 

the inner layer profiles at the mid-coronal plane of the selective models. It should be noticed that Tc/Tb 

=0.28 (5Tco) might be an exaggerated value from a physiological point of view. However, the fact that a 

periodic doubling bifurcation occurred when Tc/Tb =0.15 (3Tco), which would be discussed later, 

indicated that the system was during a transition between two steady states and one of the steady stats 

occurred at Tc/Tb =0.28. That is the reason this case is included in the study. Although this case may be 

exaggerated physiologically, it provided a complete picture of the underlying mechanism driving the 

nonlinear dynamic transition of the system. Such knowledge would be very useful to understand the 

nonlinear dynamics observed in real vocal systems, such as those reported in (Berry et al., 1996; Tokuda 

et al., 2008; Zañartu et al., 2011).  

 

Figure 6.1 The cover thickness variation in the parametric cases. (a) A mid-coronal plane profile of the 

layered vocal fold showing the definition of the layer thicknesses (Tc, Tl, Tb) in the current study. They 



107 
 
 

 

add up to 0.875cm in all the cases. (b) The inner layer structures of the vocal fold in the selective cases 

in the parametric study. 

6.3 Results and discussion 

6.3.1 Effect on vocal fold stiffness 

The cover layer has the lowest transverse Young’s modulus among the three layers (Titze and 

Talkin, 1979; Kimura, Mau and Chan, 2011; Zhang and Luu, 2012). A thickened cover layer will result in a 

reduced stiffness of the vocal fold, and vice versa. It should be noted that, in this study, a distinction was 

made between the elastic property and stiffness. The elastic property is the material property just 

related with the material itself while the stiffness measures the local resistance under deformations. The 

stiffness is influenced by the elastic property as well as the geometric dimensions, loading direction and 

type of constraint. A numerical indentation technique was applied to measure the stiffness on the vocal 

fold surface. It was performed by applying a uniform pressure on a small area on the vocal fold surface 

and then numerically solving the static deformation using the finite element method. Let P be the 

pressure load, A be the loading area and ∆x be the maximum deformation, the stiffness k was computed 

as k=PA/∆x. The details of this method are referred to (Geng, Xue and Zheng, 2017). In the current 

study, P=4kPa and A=1mm2. The constant pressure loading was applied to create a loading condition 

comparable to that during fluid-structure interactions. The stiffness was measured at three locations at 

the mid-coronal plane of the vocal fold, including the superior and inferior side of the medial surface 

and a location on the subglottal surface, as shown in Figure 6.2 (a). Ideally, if the tissue surface is 

significantly larger than the size of the indentation (for example, a half infinite-surface), the stiffness 

only depends on the material properties, and if the material properties are uniform, it doesn’t change 

along the surface. However, for the vocal fold model, its size is comparable to the indentation size, 
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therefore, its local stiffness is significantly affected by the geometries. The indentation depth varied with 

the location and the model. The smallest indentation depth was 0.26 mm and occurred at the inferior 

surface of the vocal fold model with the thinnest cover layer (Tc/Tb=0.02), while the largest indentation 

depth was 0.72 mm and occurred at the superior edge of the medial surface of the vocal fold model 

with the thickest cover layer (Tc/Tb=0.28).  

 

Figure 6.2 The stiffness measured at three locations at the mid-coronal plane of the vocal fold. (a) The 

three indentation locations in the superior and inferior sides of the medial surface and the inferior 

surface of the vocal fold. All of them were in the mid-coronal plane with the loading P=4kPa and loading 

area A=1mm2. (b) The stiffness variation with cover-body layer thickness ratio in the three indentation 

locations. 

Figure 6.2 (b) shows the stiffness values at the three locations and their variations with the 

cover-body layer thickness ratio. When the cover-body layer thickness ratio increased from 0.02 to 0.28, 

the stiffness decreased 31.2% at the superior side of the medial surface, 52.1% at the inferior side of the 
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medial surface, and 46.1% at the inferior surface. The decreasing rate of the stiffness decreased with the 

increasing cover-body thickness ratio, indicating a reduced sensitivity of the stiffness to an increased 

cover-body thickness ratio. It was also observed that the stiffness increased from the superior to the 

inferior. It was caused by two factors. The first is related to the asymmetric geometry of the vocal fold 

from inferior to superior and that the extra subglottal part provided more resistance to the loading 

according to (Geng, Xue and Zheng, 2017). The second is related to the fact that some parts of the 

superior measurement area only had the resistance from the cover layer below it while all the inferior 

measurement area had the resistance from the cover, ligament and body layers.  

6.3.2 Effect on eigenmodes and eigenfrequencies 

Since the ultimate vibration pattern of the vocal fold is determined by the shape of the excited 

eigenmodes, especially the low order modes, the effect of the cover-body layer thickness ratio on the 

eigenmodes and eigenfrequencies was evaluated. Figure 6.3 (a) displays the profile of the mid-coronal 

plane of the vocal fold at the two extreme positions of the five lowest-eigenfrequency modes of the 

baseline model. The dashed line represents the original shape and the solid lines represent the 

deformed shapes. The modes are ordered in a way that the eigenfrequency increases with the mode 

number. Mode 1 and 2 primarily represented a vertical motion and a medial-lateral motion of the vocal 

fold, respectively. Starting from Mode 3, the wave motions were observed on the vocal fold surface. 

From Mode 3 to Mode 5, the wavelength gradually decreased with the mode order. Moreover, in Mode 

3, the wave was primarily on the superior surface of the vocal fold, while, in Mode 4 and 5, the waves 

were on the entire vocal fold surface. A close look at the wave patterns in Mode 4 and Mode 5 revealed 

that these two modes generated an out-of-phase motion between the superior and inferior edges of the 
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medial surface of the vocal fold, which was essential for the energy transfer from the airflow to the 

vocal fold.  

 

Figure 6.3 Profiles of the mid-coronal plane of the vocal fold for eigenmodes 1-5. (a) the baseline case; 

(b) Tc/Tb=0.28 case. The solid lines represent the two extreme deformed shapes and the dashed line 

represents the original shape. 

 

Figure 6.4 The similarity of the eigenmodes 1-5 between the Tc/Tb =0.28 case and baseline case. The ith 

bar in the category of Mode j represents the dot product between the jth mode in the baseline case and 

the ith mode in the Tc/Tb =0.28 case. 
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For the cases where the cover-body thickness ratio was between 0.02 and 0.15, the eigenmodes 

were very similar to those in the baseline case. In the case Tc/Tb =0.28, the eigenmodes were different. 

Figure 6.3 (b) shows the shape of the five lowest-eigenfrequency modes for the Tc/Tb =0.28 case. A close 

comparison of these modes to those in the baseline case revealed that Mode 1, 2, 5 were highly similar 

with the corresponding modes in the baseline case, while Mode 3 and Mode 4 switched the modal 

order. Specifically, Mode 3 and 4 in this case were highly similar with Mode 4 and 3 in the baseline case, 

respectively. To precisely quantify the similarity between the modes, the dot-product between the 

eigenmodes of the two cases were computed (Xue et al., 2011). The method is described below. The jth 

mode was written into a single vector  𝑞𝑗⃗⃗  ⃗ = (𝑢𝑗1, 𝑣𝑗1, 𝑤𝑗1 …𝑢𝑗𝑁 , 𝑣𝑗𝑁 , 𝑤𝑗𝑁), where 𝑢𝑗𝑚, 𝑣𝑗𝑚 and 𝑤𝑗𝑚 

represent the displacements of the mth grid point in the x, y and z directions, respectively. This vector is 

normalized with its own magnitude leading to a normalized vector: 𝑄𝑗
⃗⃗⃗⃗ = 𝑞𝑗⃗⃗  ⃗/|𝑞𝑗⃗⃗  ⃗|, where |𝑞𝑗⃗⃗  ⃗| =

√∑ (𝑢𝑗𝑖
2 + 𝑣𝑗𝑖

2 + 𝑤𝑗𝑖
2)𝑁

𝑖=1  and N  is the total number of grid points. The dot-product of any two normalized 

modes is indicative of the similarity between the two modes with the value of one corresponding to an 

exact match, and zero indicating orthogonality. Figure 6.4 shows the dot-products between each mode 

in the Tc/Tb =0.28 case and each mode in the baseline case. It is clear that Mode 1, 2 and 5 in the Tc/Tb 

=0.28 case were highly similar to the corresponding modes in the baseline case with the dot-products 

ranging between 0.79 and 0.94. Mode 3 and 4 in the Tc/Tb =0.28 case were highly similar to Mode 4 and 

3 in the baseline case with the dot-product value of 0.72 and 0.78, respectively. Since Mode 4 was the 

lowest-eigenfrequency mode in the baseline case presenting the elastic wave on the entire vocal fold 

surface, its moving-up in the modal order in the Tc/Tb =0.28 case implied that a very thick cover would 

promote the formation of the elastic waves on the vocal fold surface. 
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Figure 6.5 shows the value of eigenfrequencies of mode 1-5 in each case and their variations 

with the change of the cover-body thickness ratio. The eigenfrequencies decreased with the increasing 

cover-body thickness ratio. This was due to the reduced vocal fold stiffness. 

 

Figure 6.5 The eigenfrequencies of mode 1-5 and the fundamental frequency (F0) in each case. 

6.3.3 Effect on glottal flow rate and spectrum 

Figure 6.6 shows the time variation of the volumetric flow rate through the glottis in each case. 

Interestingly, it was seen that when the cover-body thickness ratio was low (Tc/Tb =0.02-0.07), the flow 

rate reached the periodic, steady cycles very quickly. When the cover-body thickness ratio was 

increased to Tc/Tb =0.09, the waveform of the flow rate became irregular and non-periodic with large 

variations in the frequencies and peak values from cycle to cycle. The irregularity continued in the Tc/Tb 

=0.12 case. When the thickness ratio was increased to Tc/Tb =0.15, the flow rate showed a periodic 

waveform again, but with alternating low and high peaks, indicating a period-doubling behavior 

characterized by two alternating peaks in each cycle. Keeping increasing the thickness ratio to Tc/Tb 
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=0.28, the system was back to the regular and periodic vibration again, but with a much longer 

transition time to reach the steady cycles compared to the baseline case.  

 

Figure 6.6 The time history of the volumetric glottal flow rate in each case. 

The changes of the flow waveforms clearly indicated a nonlinear bifurcation of the system 

associated with the changes of the cover-body thickness ratio. Period-doubling is often associated with 

the appearance of a subharmonic in the frequency spectrum. To examine this behavior, Figure 6.7 

shows the spectrum of the flow rate in each case. The spectrum was obtained through performing fast 

Fourier transform in all the cases with the time period of about 0.05 s, indicating a frequency resolution 

of about 19Hz. The values of the fundamental frequency and signal-to-noise ratio (SNR) are also shown 

in each sub-figure. The spectrum and SNR were calculated based on the data of the steady cycles or late 

cycles if there was no steady state. In the cases where the cover-body thickness ratio was between 0.02 
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and 0.07, the spectrum showed a typical pattern of limit-cycle oscillations, dominated by the 

fundamental frequency and its superharmonics. The SNR deceased with the increasing cover-body 

thickness ratio. In the Tc/Tb =0.09 case, the spectrum became noisy. The SNR decreased by about 53% 

from the baseline case. The spectrum showed two nearly equal peaks at 165Hz and 201Hz with the peak 

at 201 Hz slightly higher than the peak at 165 Hz. The superharmonics of the peaks could no longer be 

distinguished. This case indicated the onset of the bifurcation. In the Tc/Tb =0.12 case, the spectrum was 

still noisy. The SNR further decreased to just about 12% of that in the baseline case. In the Tc/Tb =0.15 

case, the spectrum clearly showed a 1/2 subharmonic frequency (frequency below the fundamental 

frequency in a ratio of 1/2) and it was dominated by the fundamental frequency, the subharmonic and 

the linear combination of the two. This case indicated the complete of the period-doubling bifurcation. 

The system was stable again at this new state and the SNR increased to 42% of that in the baseline case. 

Further increasing the cover-body thickness ratio to 0.28 created another bifurcation that the system 

returned to the periodic, limit-cycle oscillation with the spectrum dominated by the fundamental 

frequency and its superharmonics again and the SNR as high as 96% of that in the baseline case.  

6.3.4 Effect on the fundamental frequency and mode synchronization  

The fundamental frequency of each case is superimposed in Figure 6.5 using the diamond 

symbols. It was interesting that, while the fundamental frequency decreased when Tc/Tb was increased 

from 0.05 to 0.07 and from 0.09 to 0.28, which was as expected since the stiffness of the vocal fold was 

reduced, it increased when the thickness ratio was increased from 0.07 to 0.09. This singular behavior 

violates the general understanding that the fundamental frequency decreases with the decreasing 

stiffness of the vocal fold based on the string formula. By noticing that the case Tc/Tb =0.09 was the 

onset of the period-doubling bifurcation as observed in Figure 6.7, we hypothesized that the period-



115 
 
 

 

doubling bifurcation and the jump of the fundamental frequency were related and their occurrence 

were due to the increased strength of the higher-frequency modes in the modal synchronization process 

that broke the initial modal synchronization and attracted the modes to synchronize at higher 

frequencies.  

To test the hypothesis, we computed the normalized modal coefficient of each eigenmode in 

each case. The coefficient reflected the contribution of each mode to the unit length of the 

displacement vector of the vocal fold vibration. The approach is described below. The vocal fold 

vibration was assumed to be a linear superposition of the eigenmodes as shown in (6.1 

𝑉(𝑡) = 𝑐1(𝑡)𝑉1 + 𝑐2(𝑡)𝑉2 + ⋯+ 𝑐𝑛(𝑡)𝑉𝑛 (6.1) 

where V(t) is the vocal fold displacement vector at the time instant of t, Vi (i=1~n) is the ith eigenmode 

and ci (t) is the corresponding eigen coefficient that is a function of time as it is different at different 

time steps. Based on this assumption, the vocal fold displacement vector was transferred from the 

general three-dimensional physical coordinates system to a modal coordinates system. The modal 

coefficients were the amplitudes of each modal component. It needs to be pointed out the equilibrium 

position of the vocal fold during vibration was shifted from the initial rest position due to the subglottal 

pressure. Therefore, the displacement vector, V, was computed based on the equilibrium position which 

was the average of the coordinates of the vocal fold nodes throughout the steady cycles. Based on the 

orthogonality of the eigenmodes (𝑉𝑗[𝑀]𝑉𝑖 = 𝛿𝑖𝑗), the modal coefficients were computed as  

𝑐𝑖(𝑡) = 𝑉(𝑡)[𝑀]𝑉𝑖 (6.2) 

where [M] is the global mass matrix. The modal coefficients were further normalized by the magnitude 

of the displacement vector as 𝑐𝑖
′(𝑡) = 𝑐𝑖(𝑡)/√|𝑉(𝑡) ∙ 𝑉(𝑡)|. The modal coefficients represented the 

amplitudes of the vibration of each mode per unit length of the displacement vector. 
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Figure 6.7 The spectrum of the flow rate waveform in each case. The fundamental frequency (F0) and 

signal-to-noise ratio (SNR) of each case are denoted in the subfigures. The emergence of the 

subharmonic is highlighted in the Tc/Tb =0.15 case. 

Figure 6.8 shows the root-mean-square (RMS) values of ci'(t) of the five lowest-eigenfrequency 

modes in each case. It was found that when Tc/Tb was between 0.02 and 0.07, the amplitudes of Mode 

1, 2, 3 were much higher than those of Mode 4, 5. According to Figure 6.5, the fundamental frequencies 
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of these cases were close to the eigen frequencies of Mode 2 and 3. It was further found that in these 

cases, the amplitudes of Mode 2 and 4 decreased with the increase of the cover-body thickness ratio 

while that of Mode 3 increased. However, when the thickness ratio was increased from 0.09 to 0.15, the 

amplitudes of Mode 4 and 5 quickly increased with the amplitude of Mode 3 dropping quickly and the 

amplitudes of Mode 1 and 2 remaining nearly unchanged. This behavior confirmed our hypothesis that 

the jump of the fundamental frequency and the chaotic vibration at Tc/Tb =0.09 were associated with 

the increase of the strength of the higher-frequency modes. With the continuous increase of the cover-

body thickness ratio, the amplitudes of Mode 4 and 5 continued to increase and the amplitude of 

Mode3 continued to drop. At Tc/Tb =0.15, they had nearly the same amplitudes, indicating a comparable 

strength among them, which may be the reason for the periodic doubling vibration which has two 

energy peaks (fundamental and its subharmonics). With the further increase of the cover-body thickness 

ratio, at Tc/Tb =0.28, although the amplitudes of Mode 4 only increased slightly, the amplitude of Mode 

3 dropped significantly; therefore, the relative strength of Mode 4 and 5 was still increased. This has led 

the system back to a new regular periodic vibration state but with the fundamental frequency near the 

eigenfrequency of the higher-frequency modes. As Mode 2 represents a medial-lateral motion involving 

all the layers and Mode 4 and 5 represent wave motions on the vocal fold surface, the energy decrease 

of Mode 2 when Tc/Tb increased from 0.02 to 0.07 and the energy increase of Mode 4 and 5 when Tc/Tb 

increased from 0.07 to 0.28 suggest that increasing the cover-body thickness ratio would make the 

vibration more concentrated on the superficial layer of the vocal fold and generate higher frequencies. It 

may have implications to modal-falsetto transition as high-frequency falsetto is mostly with cover and 

ligament layer vibrating and low-frequency modal register also involves the body layer. The results imply 
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that the vocal fold vibration in falsetto might be dominated by the higher-order wave-type of eigen 

modes and increasing the cover-body thickness ratio would be easier to generate falsetto. 

 

Figure 6.8 The root-mean-square values of ci' of eigenmodes 1-5 in each case. ci' stands for the 

amplitude of the vibration of each mode per unit length of the displacement vector. 

Figure 6.9 shows the frequency spectrum of the modal coefficients of the five lowest-

eigenfrequency modes in each case. The frequency resolution of all the cases is about 19Hz which is the 

same with the ones in Figure 6.7. It will allow us to examine the vibration frequency of each eigenmode 

so that the modal synchronization can be analyzed. The five lowest eigenfrequencies were also indicated 

by the vertical lines in each subfigure to show the relationship between the vibration frequencies and 

the eigenfrequencies. The spectra clearly show that, for the cases where the cover-body thickness ratio 

was between 0.02 and 0.07, all the modes were vibrating at the same frequencies. When Tc/Tb was 

increased to 0.09, the modes started to show different spectrum patterns, indicating that the modal 
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synchronization was broken. It was noticed that, for all the modes, there were two dominant peaks, one 

close to the eigenfrequency of Mode 3 and the other close to the eigenfrequency of Mode 5, indicating  

 

Figure 6.9 The spectrum of each modal coefficient (ci) of eigenmodes 1-5 in each case. The vertical lines 

in each subfigure indicate the eigenfrequencies of eigenmodes 1-5 in the corresponding case. The 

frequency of the subharmonic (98Hz) is denoted in the Tc/Tb =0.15 case. 
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that the higher-frequency modes (Mode 4 and 5) started to act as another basin of attraction for the 

system. This was due to the increased strength of the two modes, as seen in Figure 6.8. At Tc/Tb =0.12, 

the system showed the similar two-peak behavior except that the two peaks were close to the 

eigenfrequency of Mode 1 and 5, respectively. When Tc/Tb =0.15, the two-peak behavior vanished and 

all the modes only showed one peak which was close to the eigenfrequency of Mode 5. Moreover, 

Mode 2-5 all have energy concentration at the subharmonic frequency (98Hz). With the further increase 

of the energy portion of Mode 4 and 5, at Tc/Tb =0.28, all the modes were entrained to the same 

frequency close to the eigenfrequency of Mode 4.  

In summary, the increased cover-body thickness ratio has promoted the excitation of the wave-

type eigenmodes of the vocal fold (Mode 4 and 5), which gradually became a stronger basin of 

attraction for the system, driving the system to a new periodic doubling vibration state and then back to 

the regular periodic vibration with higher fundamental frequencies. During the transition between the 

two steady states, the modes were vibrating at different vibration frequencies, resulting in complex 

chaotic and period-doubling vibrations.  

6.3.5 Effect on vocal fold vibration pattern 

Figure 6.10 shows the phase-plane plot of the lateral displacements of the points at the superior 

and inferior sides of the medial surface in the mid-coronal plane of the vocal fold in each case. The 

positions of the two points are denoted in Figure 6.2(a). It clearly shows that when Tc/Tb was between 

0.02 and 0.07, the systems underwent the limit-cycle vibrations. At Tc/Tb =0.09 and 0.12, the systems 

underwent the chaotic vibrations with both the vibration amplitude and pattern varying from cycle to 

cycle. At Tc/Tb =0.15, the system showed the period-doubling vibration with the alternative larger and 

smaller vibration amplitudes. At Tc/Tb =0.28, the limit-cycle vibration resumed. Throughout all the cases, 
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the vibration amplitude at both points increased with the increasing cover-body thickness ratio in 

accordance with the decreased stiffness on the vocal fold surface. Moreover, a 45o dash line was 

superimposed in the figures to examine the glottal shape change. The points on the 45o line indicate a 

straight glottal channel, the points below the line indicate a divergent channel and the points above the 

line indicate a convergent channel. Moreover, the distance from the point to the 45o line reflected the 

glottal angle. When the point was more away from the line, the glottal angle was larger. Figure 6.10 

reflected that, with the increasing cover-body thickness ratio, the phase plot gradually shifted from 

upper left to lower right. This change indicated a gradually decreased convergent angle and increased 

divergent angle during vocal fold vibration. By carefully examining the vibrations of the vocal folds, it 

was noticed that this effect was due to the larger opening of the superior part of the vocal folds with the  

 

Figure 6.10 The phase-plane plot of the lateral displacement of the points at the superior and inferior 

sides of the mid-coronal medial surface of the vocal fold in each case. The positions of the two points 

are denoted in Figure 6.2 (a). The 45o dashed line indicates a straight glottal channel shape. The plot 

goes clockwise direction chronologically. 
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increased cover-body thickness ratio. Briefly, when the cover-body thickness ratio was low (between 

0.02 and 0.07), the inferior and superior parts of the vocal fold reached their maximum openings at 

almost the same time when the glottis was straight. After that, they both started to close. When the 

cover-body thickness ratio was increased, when the inferior part had reached the maximum and was 

about to close, the superior was still in the opening motion. This has resulted in a longer time of a 

divergent glottis as well as a larger maximum divergent angle. Therefore, the phase plot was shifted to 

the right.  

 

Figure 6.11 The maximum divergent angle during vocal fold vibration of each case. 

Figure 6.11 plots the maximum divergent angle between the two vocal folds in each case. The 

angle was calculated by tracing the lateral displacement of the inferior and superior side points. The plot 

clearly shows that the maximum divergent angle increased with the increasing cover-body thickness 

ratio. When the cover-body thickness ratio was between 0.02 and 0.07, the angle was below or around 8 

degrees. At Tc/Tb =0.09, the angle was quickly increased to 13 degrees. When Tc/Tb =0.12 and 0.15, it 

was further increased to 16 degrees. At Tc/Tb =0.28, the angle had another quick increase to a value as 

high as 31 degrees. The two quick increases of the maximum divergent angle occurred at the onset of 

the two bifurcations. As the larger divergent angle indicated larger amplitude of the mucosal wave 
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propagation, such effect was in accordance with our previous analysis that the increase of the cover-

body thickness ratio excited the wave-type eigenmodes, which had caused the bifurcations of the 

dynamics of vocal fold vibrations.   

6.4 Summary 

The cover-body layer thickness ratio was systematically varied in a wide range. The effect of the 

cover-body layer thickness ratio on the vocal fold stiffness, eigenfrequencies and eigenmodes, 

fundamental frequencies, glottal flow rate, vocal fold vibratory dynamics and synchronization of the 

eigenmodes were analyzed in detail. The main conclusions are summarized below.  

As the cover-body thickness ratio increased, the stiffness of the vocal fold decreased. This 

resulted in the decrease of the eigenfrequencies and the increase of the vibration amplitude of the vocal 

fold. A significant increase of the cover-body thickness ratio (Tc/Tb =0.28 in the present study) also 

affected the order of the eigenmodes in which the wave-type eigenmodes moved up with lower 

eigenfrequencies.   

The cover-body layer thickness ratio significantly affected the strength and synchronization of 

the eigenmodes during vibration, and ultimately affected the fundamental frequency and vocal fold 

vibration pattern. It was found that when the cover-body thickness ratio was low, the vocal fold 

vibration was dominated by the eigenmodes 1-3, which synchronized all the eigenmodes to a 

fundamental frequency near their eigenfrequencies. Because these three modes were not wave-type 

modes in the medial surface, they did not create a strong mucosal wave on the vocal fold surface; 

therefore, the divergent angle of the vocal fold vibration was small. In these cases, the fundamental 

frequency decreased with the increasing cover-body thickness ratio. When the cover-body thickness 

ratio was increased beyond a critical value (0.09 in this work), the strength of the wave-type higher-
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eigenfrequency modes was significantly increased. These modes became a stronger basin of attraction, 

breaking the initial synchronization of the modes and attracting other modes to vibrate at higher 

frequencies. As a result, the modes started to vibrate at different frequencies, resulting in chaotic 

vibrations. Also, because more energy was shifted to higher frequencies, the fundamental frequency 

was increased. Further increasing the cover-body thickness ratio continued to increase the strength of 

the higher-frequency modes and created a new steady state where the system underwent a period-

doubling vibration. At this state, all the modes were synchronized at the fundamental frequency and its 

½ subharmonics. The presence of the subharmonic was likely due to the comparable strength of 

eigenmodes 1-3 and higher-eigenfrequency modes. At last, further increasing the cover-body thickness 

ratio continuously increased the strength of the higher-eigenfrequency modes, resulting in a new steady 

regular periodic vibration where all the modes were synchronized at the fundamental frequency near 

the higher eigenfrequencies. During this process, because of the continuous increase of the strength of 

the wave-type modes, the mucosal wave on the vocal fold surface became stronger, and so the 

maximum divergent angle of the glottis was increased.      

In summary, our simulation results showed that the cover-body thickness ratio had a complex 

nonlinear effect on the vocal fold vibration and voice production. Increasing the cover-body thickness 

ratio would promote the excitation of the wave-type modes of the vocal fold, which were also higher-

eigenfrequency modes. These modes became a stronger basin of attraction for the system, driving all 

the modes to vibrate at higher frequencies, creating a period-doubling bifurcation state and eventually a 

new steady regular vibration at a fundamental frequency near the higher eigenfrequencies. Because of 

the increased strength of the higher-eigenfrequency modes, the fundamental frequency could have a 

sudden increase with the increasing cover-body thickness ratio although the stiffness of the vocal fold 
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was decreased. During the transition, the modes vibrated at different vibration frequencies, resulting in 

chaotic vibrations. The increased cover-body thickness ratio also resulted in the increase of the 

maximum divergent angles during the vibration.  

In the end, it is useful to point out the limitations of the study. First, the study was based on one 

set of model parameters including the geometry of the vocal fold and inner structures, the lung pressure 

and the elastic properties. Different choices of these parameters may result in different system 

behaviors. For example, a higher or lower value of the lung pressure might result in the transition 

happening at different values of the cover-body thickness ratio. Moreover, changing the Young’s moduli 

might change the eigenmode shape and order, onset of the nonlinear bifurcation, bifurcation type, vocal 

fold vibration pattern, etc. However, the main finding of the study was that a larger cover-body layer 

thickness ratio would reduce the stiffness on the vocal fold surface and promote the excitation of the 

wave-type eigenmodes during vocal fold vibration, which could cause complex nonlinear behaviors. This 

effect was due to that the elastic modulus of the cover layer is smaller than that of the other two layers. 

We think the conclusion has general validity in normal phonation condition because the elastic modulus 

of the cover layer is normally lower than the other two layers. Second, the effect of intrinsic laryngeal 

muscle activation was not considered due to the complexity of the model. The stiffness of the vocal fold 

would be significantly affected by the muscle activations and it might change the eigenmode shape and 

order, onset of the nonlinear bifurcation, bifurcation type, vocal fold vibration pattern, etc. Lastly, the 

vocal fold model was based on the three-layer assumption. Ideally, a more complicated vocal fold model 

which consists of the five histological layers with their accurate mechanical properties would provide 

more physiologically realistic predictions on vocal fold vibration patterns. For the cover layer, it was 

reported that the epithelium has a much larger elastic modulus than the superficial layer of the lamina 
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propria(Hirano and Kakita, 1985). The experiments on synthetic vocal folds(Murray and Thomson, 2011; 

Xuan and Zhang, 2014) found that adding a stiff epithelium layer with an elastic modulus higher than the 

other layers would improve the closure and mucosal wave of vocal fold vibrations. However, there exists 

very little measurement of the mechanical properties of vocal fold tissues based on the five layers. Most 

of the measurement were based on either the two-layer or three-layer assumption(Miri, 2014; Dion et 

al., 2016). Furthermore, the focus of the current study was on the effect of cover layer thickness whose 

variation is mostly due to the changes in the superficial layer of the lamina propria. Based on these 

considerations, we think the three-layer assumption is reasonable for the current study. However, it is 

important to study the effect of the epithelium in the future. 
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CHAPTER 7 CONCLUSION 

The voice production is a complex process. The current study focuses mainly on the generation 

of the sound source- the fluid-structure interaction process in the larynx. A high-fidelity in-house 

numerical solver, including a sharp-interface immersed boundary method based incompressible fluid 

solver, a hydrodynamic/acoustics splitting method based acoustics solver and a viscoelastic solid solver 

has been employed to simulate the flow-induced vocal fold vibrations. The numerical approach has been 

first validated against experiment measurements and then employed in the study of the effect of the 

longitudinal variation of layer thickness and the effect of the cover-body thickness ratio. Main 

observations and discussions are summarized as below: 

(1) Subject-specific modellings with canine larynx and pigeon syringes have been provided as 

validation of the numerical approach. Specifically, the pigeon study is a strict one-to-one comparison 

that the tissue geometry, material property and tissue dynamics all come from one single subject and a 

blinding procedure has been employed that the geometry or material properties are not adjusted 

according to dynamic performance. Glottal flow waveform, vocal apparatus dynamics (vocal fold 

divergent angles, vibration shape, mucosal wave speed), acoustic features (fundamental frequency, 

source level, spectral slope and acoustic power) and intraglottal velocity fields (glottal jet dynamics, 

swirl strength) have been compared between the simulation results and the experiment measurement 

and showed good agreement. This validation demonstrated that the model could reproduce realistic 

phonatory dynamics during voice production.  

(2) The numerical solver has been applied in a simplified human vocal fold and vocal tract 

system. With fluid-structure-acoustic interaction simulation, the result shows that a reasonable glottal 

flow waveform were captured by the model and important voice-quality associated parameters were 
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found to be well within the normal physiological ranges. The important convergent-divergent vibration 

pattern of vocal folds was captured. POD analysis demonstrated the 1:1 entrainment of the two 

dominant vibratory modes. The analogy between the vocal tract and a quarter-wave resonator was 

demonstrated. The simulation result suggested a strong source-filter interaction since the acoustic 

perturbed flux and pressure inside the glottis as well as the supraglottal tract were all at the same order 

with their incompressible counterparts. 

(3) Based on the model in (2), the effect of longitudinal variation of cover and ligament layers 

thicknesses on vibration has been investigated. Four cases with thickness ratio ranges from 1 to 8.67 for 

the cover layer and 1 to 4.28 for the ligament layer have been calculated. The results show that the 

variation of inner layer thickness in the longitudinal direction as well as the resulted variation of stiffness 

distribution on the vocal fold have little effect on the flow rate, vocal fold vibration amplitude and 

pattern (POD modes). The small effect on flow rate and the vibration amplitude might be due to the 

relatively small change in the average stiffness. However, glottal angle, which is more affected by the 

local stiffness, has been increased around the midcoronal plane but decreased near two ends in high 

thickness ratio cases. Energy analysis shows that the longitudinal thickness variations helped decrease 

the energy needed in the sustained vibration due to the higher intraglottal pressures during closing. 

(4) Still based on the model in (2), the cover-body thickness ratio has been increased from 0.02 

to 0.28, corresponding to the cover layer thickness changes from 0.5 to 5 times of the baseline value. 

The results showed that the cover-body thickness ratio had a complex nonlinear effect on the vocal fold 

vibration and voice production. Increasing the cover-body thickness ratio would promote the excitation 

of the wave-type modes of the vocal fold, which were also higher-eigenfrequency modes. These modes 

became a stronger basin of attraction for the system, driving all the modes to vibrate at higher 
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frequencies, creating a period-doubling bifurcation state and eventually a new steady regular vibration 

at a fundamental frequency near the higher eigenfrequencies. Because of the increased strength of the 

higher-eigenfrequency modes, the fundamental frequency could have a sudden increase with the 

increasing cover-body thickness ratio although the average stiffness of the vocal fold was decreased. 

During the transition, the modes vibrated at different vibration frequencies, resulting in chaotic 

vibrations. The increased cover-body thickness ratio also resulted in the increase of the maximum 

divergent angles during the vibration.  

The limitations regarding each specific study have been discussed in the end of each chapter. A 

summary is provided here: 

(1) Due to the model complexity and the high numerical cost, the parametric study was still in a 

relatively small range. For example, in Chapter 6, though the cover layer thickness already changed from 

0.5 to 5 times of the baseline value, the material property remained the same in the whole process. The 

result would be more general and conclusive if the material properties could also cover a large range. 

(2) The material property of the vocal fold was assumed to be linear based on the current 

understanding that the vocal fold vibration could be considered as small deformation. Though this 

assumption is also commonly used in other studies, it should be noted that in some conditions, the 

vibration amplitude is large that it might be more proper to use nonlinear material or include the 

geometric nonlinearity into the model. Moreover, as noticed in Chapter 3, with a linear material, the 

dependence of the fundamental frequency with subglottal pressure could not be observed.      

In the future, this study could be extended in several aspects: 
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(1) The current partial differential equation based fluid solver could be applied in the study of 

unvoiced sound, where the vortex structures and turbulence in the glottal tract play an important role.  

The detailed flow field solution will help to understand the mechanism in this process.  

(2) The current model could be used to improve the reduced order models. For example, the 

potential flow based flow solver has the potential in real time simulation but does not consider viscous 

loss and might fail in complex airway shapes such as the shapes with multi-channels. Partial differential 

equation based flow solver has the ability to provide accurate result in such condition. With proper 

combination with machine learning technologies, correction coefficients could be obtained for the 

reduced order flow models to provide more accurate solution of glottal flow rate and vocal fold 

dynamics. 
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