6 research outputs found

    A partial least-squares regression model to measure Parkinson’s disease motor states using smartphone data

    Get PDF
    Design choices related to development of data-driven models significantly impact or degrade predictive performance of the models. One of the essential steps during development and evaluation of such models is the choice of feature selection and dimension reduction techniques. That is imperative especially in cases dealing with multimodal data gathered from different sources. In this paper, we will investigate the behavior of Partial Least Squares (PLS) regression for dimension reduction and prediction of motor states of Parkinson’s disease (PD) patients, using upper limb motor data gathered by means of a smartphone. The results in terms of correlations between smartphone-based and clinician-derived scores were compared to a previous study using the same data where principal component analysis (PCA) and support vector machines (SVM) were used. The findings from this study show that PLS is superior in terms of prediction performance of motor states in PD than combining PCA and SVM. This indicates that PLS could be considered as a useful methodology in problems where data-driven analysis is needed

    Comparison of Filter Techniques for Two-Step Feature Selection

    Get PDF
    In the last decade, the processing of the high dimensional data became inevitable task in many areas of research and daily life. Feature selection (FS), as part of the data processing methodology, is an important step in knowledge discovery. This paper proposes nine variation of two-step feature selection approach with filter FS employed in the first step and exhaustive search in the second step. The performance of the proposed methods is comparatively analysed from the stability and predictive performance point of view. As the obtained results indicate the choice of the filter FS in the first stage has strong influence on the resulting stability. Here, the choice of univariate Pearson correlation coefficient based FS method appears to provide the most stable results

    INTEGRATING KANO MODEL WITH DATA MINING TECHNIQUES TO ENHANCE CUSTOMER SATISFACTION

    Get PDF
    The business world is becoming more competitive from time to time; therefore, businesses are forced to improve their strategies in every single aspect. So, determining the elements that contribute to the clients\u27 contentment is one of the critical needs of businesses to develop successful products in the market. The Kano model is one of the models that help determine which features must be included in a product or service to improve customer satisfaction. The model focuses on highlighting the most relevant attributes of a product or service along with customers’ estimation of how these attributes can be used to predict satisfaction with specific services or products. This research aims at developing a method to integrate the Kano model and data mining approaches to select relevant attributes that drive customer satisfaction, with a specific focus on higher education. The significant contribution of this research is to improve the quality of United Arab Emirates University academic support and development services provided to their students by solving the problem of selecting features that are not methodically correlated to customer satisfaction, which could reduce the risk of investing in features that could ultimately be irrelevant to enhancing customer satisfaction. Questionnaire data were collected from 646 students from United Arab Emirates University. The experiment suggests that Extreme Gradient Boosting Regression can produce the best results for this kind of problem. Based on the integration of the Kano model and the feature selection method, the number of features used to predict customer satisfaction is minimized to four features. It was found that either Chi-Square or Analysis of Variance (ANOVA) features selection model’s integration with the Kano model giving higher values of Pearson correlation coefficient and R2. Moreover, the prediction was made using union features between the Kano model\u27s most important features and the most frequent features among 8 clusters. It shows high-performance results
    corecore