673 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    STT-RAM์„ ์ด์šฉํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์บ์‹œ ์„ค๊ณ„ ๊ธฐ์ˆ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ตœ๊ธฐ์˜.์ง€๋‚œ ์ˆ˜์‹ญ ๋…„๊ฐ„ '๋ฉ”๋ชจ๋ฆฌ ๋ฒฝ' ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์˜จ ์นฉ ์บ์‹œ์˜ ํฌ๊ธฐ๋Š” ๊พธ์ค€ํžˆ ์ฆ๊ฐ€ํ•ด์™”๋‹ค. ํ•˜์ง€๋งŒ ์ง€๊ธˆ๊นŒ์ง€ ์บ์‹œ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜์–ด ์˜จ ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ์ˆ ์ธ SRAM์€ ๋‚ฎ์€ ์ง‘์ ๋„์™€ ๋†’์€ ๋Œ€๊ธฐ ์ „๋ ฅ ์†Œ๋ชจ๋กœ ์ธํ•ด ํฐ ์บ์‹œ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ์—๋Š” ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ SRAM์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋” ๋†’์€ ์ง‘์ ๋„์™€ ๋‚ฎ์€ ๋Œ€๊ธฐ ์ „๋ ฅ์„ ์†Œ๋ชจํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ์ˆ ์ธ STT-RAM์œผ๋กœ SRAM์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ STT-RAM์€ ๋ฐ์ดํ„ฐ๋ฅผ ์“ธ ๋•Œ ๋งŽ์€ ์—๋„ˆ์ง€์™€ ์‹œ๊ฐ„์„ ์†Œ๋น„ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹จ์ˆœํžˆ SRAM์„ STT-RAM์œผ๋กœ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์€ ์˜คํžˆ๋ ค ์บ์‹œ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” STT-RAM์„ ์ด์šฉํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์บ์‹œ ์„ค๊ณ„ ๊ธฐ์ˆ ๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ, ๋ฐฐํƒ€์  ์บ์‹œ ๊ณ„์ธต ๊ตฌ์กฐ์—์„œ STT-RAM์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฐฐํƒ€์  ์บ์‹œ ๊ณ„์ธต ๊ตฌ์กฐ๋Š” ๊ณ„์ธต ๊ฐ„์— ์ค‘๋ณต๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์— ํฌํ•จ์  ์บ์‹œ ๊ณ„์ธต ๊ตฌ์กฐ์™€ ๋น„๊ตํ•˜์—ฌ ๋” ํฐ ์œ ํšจ ์šฉ๋Ÿ‰์„ ๊ฐ–์ง€๋งŒ, ๋ฐฐํƒ€์  ์บ์‹œ ๊ณ„์ธต ๊ตฌ์กฐ์—์„œ๋Š” ์ƒ์œ„ ๋ ˆ๋ฒจ ์บ์‹œ์—์„œ ๋‚ด๋ณด๋‚ด์ง„ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ํ•˜์œ„ ๋ ˆ๋ฒจ ์บ์‹œ์— ์จ์•ผ ํ•˜๋ฏ€๋กœ ๋” ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์“ฐ๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฐํƒ€์  ์บ์‹œ ๊ณ„์ธต ๊ตฌ์กฐ์˜ ํŠน์„ฑ์€ ์“ฐ๊ธฐ ํŠน์„ฑ์ด ๋‹จ์ ์ธ STT-RAM์„ ํ•จ๊ป˜ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์„ ์–ด๋ ต๊ฒŒ ํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์žฌ์‚ฌ์šฉ ๊ฑฐ๋ฆฌ ์˜ˆ์ธก์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” SRAM/STT-RAM ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์บ์‹œ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ, ๋น„ํœ˜๋ฐœ์„ฑ STT-RAM์„ ์ด์šฉํ•ด ์บ์‹œ๋ฅผ ์„ค๊ณ„ํ•  ๋•Œ ๊ณ ๋ คํ•ด์•ผ ํ•  ์ ๋“ค์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. STT-RAM์˜ ๋น„ํšจ์œจ์ ์ธ ์“ฐ๊ธฐ ๋™์ž‘์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํ•ด๊ฒฐ๋ฒ•๋“ค์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๊ทธ์ค‘ ํ•œ ๊ฐ€์ง€๋Š” STT-RAM ์†Œ์ž๊ฐ€ ๋ฐ์ดํ„ฐ๋ฅผ ์œ ์ง€ํ•˜๋Š” ์‹œ๊ฐ„์„ ์ค„์—ฌ (ํœ˜๋ฐœ์„ฑ STT-RAM) ์“ฐ๊ธฐ ํŠน์„ฑ์„ ํ–ฅ์ƒํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. STT-RAM์— ์ €์žฅ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์žƒ๋Š” ๊ฒƒ์€ ํ™•๋ฅ ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ €์žฅ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์˜ค๋ฅ˜ ์ •์ • ๋ถ€ํ˜ธ(ECC)๋ฅผ ์ด์šฉํ•ด ์ฃผ๊ธฐ์ ์œผ๋กœ ์˜ค๋ฅ˜๋ฅผ ์ •์ •ํ•ด์ฃผ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” STT-RAM ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํœ˜๋ฐœ์„ฑ STT-RAM ์„ค๊ณ„ ์š”์†Œ๋“ค์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๊ณ  ์‹คํ—˜์„ ํ†ตํ•ด ํ•ด๋‹น ์„ค๊ณ„ ์š”์†Œ๋“ค์ด ์บ์‹œ ์—๋„ˆ์ง€์™€ ์„ฑ๋Šฅ์— ์ฃผ๋Š” ์˜ํ–ฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋งค๋‹ˆ์ฝ”์–ด ์‹œ์Šคํ…œ์—์„œ์˜ ๋ถ„์‚ฐ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์บ์‹œ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋‹จ์ˆœํžˆ ๊ธฐ์กด์˜ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์บ์‹œ์™€ ๋ถ„์‚ฐ์บ์‹œ๋ฅผ ๊ฒฐํ•ฉํ•˜๋ฉด ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์บ์‹œ์˜ ํšจ์œจ์„ฑ์— ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” SRAM ํ™œ์šฉ๋„๊ฐ€ ๋‚ฎ์•„์ง„๋‹ค. ๋”ฐ๋ผ์„œ ๊ธฐ์กด์˜ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์บ์‹œ ๊ตฌ์กฐ์—์„œ์˜ ์—๋„ˆ์ง€ ๊ฐ์†Œ๋ฅผ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์—†๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ถ„์‚ฐ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์บ์‹œ ๊ตฌ์กฐ์—์„œ SRAM ํ™œ์šฉ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋‘ ๊ฐ€์ง€ ์ตœ์ ํ™” ๊ธฐ์ˆ ์ธ ๋ฑ…ํฌ-๋‚ด๋ถ€ ์ตœ์ ํ™”์™€ ๋ฑ…ํฌ๊ฐ„ ์ตœ์ ํ™” ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฑ…ํฌ-๋‚ด๋ถ€ ์ตœ์ ํ™”๋Š” highly-associative ์บ์‹œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฑ…ํฌ ๋‚ด๋ถ€์—์„œ ์“ฐ๊ธฐ ๋™์ž‘์ด ๋งŽ์€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์‚ฐ์‹œํ‚ค๋Š” ๊ฒƒ์ด๊ณ  ๋ฑ…ํฌ๊ฐ„ ์ตœ์ ํ™”๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์บ์‹œ ๋ฑ…ํฌ์— ์“ฐ๊ธฐ ๋™์ž‘์ด ๋งŽ์€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณ ๋ฅด๊ฒŒ ๋ถ„์‚ฐ์‹œํ‚ค๋Š” ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์ด๋‹ค.Over the last decade, the capacity of on-chip cache is continuously increased to mitigate the memory wall problem. However, SRAM, which is a dominant memory technology for caches, is not suitable for such a large cache because of its low density and large static power. One way to mitigate these downsides of the SRAM cache is replacing SRAM with a more efficient memory technology. Spin-Transfer Torque RAM (STT-RAM), one of the emerging memory technology, is a promising candidate for the alternative of SRAM. As a substitute of SRAM, STT-RAM can compensate drawbacks of SRAM with its non-volatility and small cell size. However, STT-RAM has poor write characteristics such as high write energy and long write latency and thus simply replacing SRAM to STT-RAM increases cache energy. To overcome those poor write characteristics of STT-RAM, this dissertation explores three different design techniques for energy-efficient cache using STT-RAM. The first part of the dissertation focuses on combining STT-RAM with exclusive cache hierarchy. Exclusive caches are known to provide higher effective cache capacity than inclusive caches by removing duplicated copies of cache blocks across hierarchies. However, in exclusive cache hierarchies, every block evicted from the upper-level cache is written back to the last-level cache regardless of its dirtiness thereby incurring extra write overhead. This makes it challenging to use STT-RAM for exclusive last-level caches due to its high write energy and long write latency. To mitigate this problem, we design an SRAM/STT-RAM hybrid cache architecture based on reuse distance prediction. The second part of the dissertation explores trade-offs in the design of volatile STT-RAM cache. Due to the inefficient write operation of STT-RAM, various solutions have been proposed to tackle this inefficiency. One of the proposed solutions is redesigning STT-RAM cell for better write characteristics at the cost of shortened retention time (i.e., volatile STT-RAM). Since the retention failure of STT-RAM has a stochastic property, an extra overhead of periodic scrubbing with error correcting code (ECC) is required to tolerate the failure. With an analysis based on analytic STT-RAM model, we have conducted extensive experiments on various volatile STT-RAM cache design parameters including scrubbing period, ECC strength, and target failure rate. The experimental results show the impact of the parameter variations on last-level cache energy and performance and provide a guideline for designing a volatile STT-RAM with ECC and scrubbing. The last part of the dissertation proposes Benzene, an energy-efficient distributed SRAM/STT-RAM hybrid cache architecture for manycore systems running multiple applications. It is based on the observation that a naive application of hybrid cache techniques to distributed caches in a manycore architecture suffers from limited energy reduction due to uneven utilization of scarce SRAM. We propose two-level optimization techniques: intra-bank and inter-bank. Intra-bank optimization leverages highly-associative cache design, achieving more uniform distribution of writes within a bank. Inter-bank optimization evenly balances the amount of write-intensive data across the banks.Abstract i Contents iii List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Exclusive Last-Level Hybrid Cache 2 1.2 Designing Volatile STT-RAM Cache 4 1.3 Distributed Hybrid Cache 5 Chapter 2 Background 9 2.1 STT-RAM 9 2.1.1 Thermal Stability 10 2.1.2 Read and Write Operation of STT-RAM 11 2.1.3 Failures of STT-RAM 11 2.1.4 Volatile STT-RAM 13 2.1.5 Related Work 14 2.2 Exclusive Last-Level Hybrid Cache 18 2.2.1 Cache Hierarchies 18 2.2.2 Related Work 19 2.3 Distributed Hybrid Cache 21 2.3.1 Prediction Hybrid Cache 21 2.3.2 Distributed Cache Partitioning 22 2.3.3 Related Work 23 Chapter 3 Exclusive Last-Level Hybrid Cache 27 3.1 Motivation 27 3.1.1 Exclusive Cache Hierarchy 27 3.1.2 Reuse Distance 29 3.2 Architecture 30 3.2.1 Reuse Distance Predictor 30 3.2.2 Hybrid Cache Architecture 32 3.3 Evaluation 34 3.3.1 Methodology 34 3.3.2 LLC Energy Consumption 35 3.3.3 Main Memory Energy Consumption 38 3.3.4 Performance 39 3.3.5 Area Overhead 39 3.4 Summary 39 Chapter 4 Designing Volatile STT-RAM Cache 41 4.1 Analysis 41 4.1.1 Retention Failure of a Volatile STT-RAM Cell 41 4.1.2 Memory Array Design 43 4.2 Evaluation 45 4.2.1 Methodology 45 4.2.2 Last-Level Cache Energy 46 4.2.3 Performance 51 4.3 Summary 52 Chapter 5 Distributed Hybrid Cache 55 5.1 Motivation 55 5.2 Architecture 58 5.2.1 Intra-Bank Optimization 59 5.2.2 Inter-Bank Optimization 63 5.2.3 Other Optimizations 67 5.3 Evaluation Methodology 69 5.4 Evaluation Results 73 5.4.1 Energy Consumption and Performance 73 5.4.2 Analysis of Intra-bank Optimization 76 5.4.3 Analysis of Inter-bank Optimization 78 5.4.4 Impact of Inter-Bank Optimization on Network Energy 79 5.4.5 Sensitivity Analysis 80 5.4.6 Implementation Overhead 81 5.5 Summary 82 Chapter 6 Conculsion 85 Bibliography 88 ์ดˆ๋ก 101Docto

    CHARACTERIZATION OF HOTSPOT COVERAGE PLAN IN 2.4/ 5GHZ FREQUENCY BAND (NNAMDI AZIKIWE UNIVERSITY, NIGERIA, AS A CASE STUDY)

    Get PDF
    Research and tertiary institutions today uses wireless connectivity owing to the benefits of mobility flow-awarecommunication and flexibility advantages generally. In this case, mobility computing involving the use of smartdevices, laptops, wifi-desktops, etc, largely depends on a deployed hotspot infrastructure. In particular, the physicalposition of the mobile system (and hence of the user) and the hotspot infrastructure design layout are fundamentalconsiderations for service efficiency. While previous works have focused on user position estimation, signal strengthquality and network QoS, this work leverages the contemporary challenges of network connectivity in tertiaryinstitutions in Nigeria with respect to optimal coverage and cost minimization. Using Nnamdi Azikiwe University-Unizik, Awka as testbed, we carried out a study on hotspot/WLAN IEEE 802.11 deployments while devising a costeffective coverage plan in 2,4/5GHz frequency band. A mathematical model on cost optimization for WLANHotpot project processes was developed using Linear programming, the installation procedure, coverage plan basedon specifications of the deployment hardware, and data security were covered in this work. Consequently, from themodel, we argue that with careful selection of optimization criteria in the deployment, an efficient design cost plan,and QoS, could eliminate possible trade-offs in the deployment contexts by over 95%.Keywords: Mobility, Flow-aware, Hotspot, Infrastructure, Optimization, Design, Minimizatio

    Variation-aware high-level DSP circuit design optimisation framework for FPGAs

    Get PDF
    The constant technology shrinking and the increasing demand for systems that operate under different power profiles with the maximum performance, have motivated the work in this thesis. Modern design tools that target FPGA devices take a conservative approach in the estimation of the maximum performance that can be achieved by a design when it is placed on a device, accounting for any variability in the fabrication process of the device. The work presented here takes a new view on the performance improvement of DSP designs by pushing them into the error-prone regime, as defined by the synthesis tools, and by investigating methodologies that reduce the impact of timing errors at the output of the system. In this work two novel error reduction techniques are proposed to address this problem. One is based on reduced-precision redundancy and the other on an error optimisation framework that uses information from a prior characterisation of the device. The first one is a generic architecture that is appended to existing arithmetic operators. The second defines the high-level parameters of the algorithm without using extra resources. Both of these methods allow to achieve graceful degradation whilst variation increases. A comparison of the new methods is laid against the existing methodologies, and conclusions drawn on the tradeoffs between their cost, in terms of resources and errors, and their benefits in terms of throughput. In some cases it is possible to double the performance of the design while still producing valid results.Open Acces

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously
    • โ€ฆ
    corecore