717 research outputs found

    Modifying the Kinematic Structure of an Anthropomorphic Arm to Improve Fault Tolerance

    Get PDF
    Abstract-It is well known that anthropomorphic manipulators, such as the PA-10, are intolerant to a single locked joint failure of the elbow. This is because the elbow is the only joint that can change the distance between the spherical shoulder joint and the spherical wrist. In this work, it is shown how such arms can be made significantly more fault tolerant by a minor modification to the kinematic structure of the arm. We quantify the degree of fault tolerance to locked joint failures as the minimum of the smallest singular value of the resulting seven Jacobians over all possible single failures. The DH parameters for the modified arm are designed so that the corresponding fault tolerant properties are close to those of a robot with an optimally failure tolerant Jacobian. The fault tolerance of the designed robot is evaluated for two different classes of applications, i.e., point-to-point motions and specified end-effector trajectories

    Kinematic design and motion planning of fault tolerant robots with locked joint failures

    Get PDF
    2019 Summer.Includes bibliographical references.The problem of kinematic design and motion planning of fault tolerant robots with locked joint failure is studied in this work. In kinematic design, the problem of designing optimally fault tolerant robots for equal joint failure probabilities is first explored. A measure of local fault tolerance for equal joint failure probabilities has previously been defined based on the properties of the singular values of the Jacobian matrix. Based on this measure, one can determine a Jacobian that is optimal. Because these measures are solely based on the singular values of the Jacobian, permutation of the columns does not affect the optimality. Therefore, when one generates a kinematic robot design from this optimal Jacobian, there will be 7! robot designs with the same locally optimal fault tolerant property. This work shows how to analyze and organize the kinematic structure of these 7! designs in terms of their Denavit and Hartenberg (DH) parameters. Furthermore, global fault tolerant measures are defined in order to evaluate the different designs. It is shown that robot designs that are very similar in terms of DH parameters, e.g., robots generated from Jacobians where the columns are in reverse order, can have very different global properties. Finally, a computationally efficient approach to calculate the global pre- and post-failure dexterity measures is presented and used to identify two Pareto optimal robot designs. The workspaces for these optimal designs are also shown. Then, the problem of designing optimally fault tolerant robots for different joint failure probabilities is considered. A measure of fault tolerance for different joint failure probabilities is defined based on the properties of the singular values of the Jacobian after failures. Using this measure, methods to design optimally fault tolerant robots for an arbitrary set of joint failure probabilities and multiple cases of joint failure probabilities are introduced separately. Given an arbitrary set of joint failure probabilities, the optimal null space that optimizes the fault tolerant measure is derived, and the associated isotropic Jacobians are constructed. The kinematic parameters of the optimally fault tolerant robots are then generated from these Jacobians. One special case, i.e., how to construct the optimal Jacobian of spatial 7R robots for both positioning and orienting is further discussed. For multiple cases of joint failure probabilities, the optimal robot is designed through optimizing the sum of the fault tolerant measures for all the possible joint failure probabilities. This technique is illustrated on planar 3R robots, and it is shown that there exists a family of optimal robots. After the optimally fault tolerant robots are designed, the problem of planning the optimal trajectory with minimum probability of task failure for a set of point-to-point tasks, after experiencing locked joint failures, is studied. The proposed approach first develops a method to calculate the probability of task failure for an arbitrary trajectory, where the trajectory is divided into small segments, and the probability of task failure of each segment is calculated based on its failure scenarios. Then, a motion planning algorithm is proposed to find the optimal trajectory with minimum probability of task failure. There are two cases. The trajectory in the first case is the optimal trajectory from the start configuration to the intersection of the bounding boxes of all the task points. In the other case, all the configurations along the self-motion manifold of task point 1 need to be checked, and the optimal trajectory is the trajectory with minimum probability of task failure among them. The proposed approach is demonstrated on planar 2R redundant robots, illustrating the effectiveness of the algorithm

    Control algorithm implementation for a redundant degree of freedom manipulator

    Get PDF
    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Advanced development for space robotics with emphasis on fault tolerance

    Get PDF
    This paper describes the ongoing work in fault tolerance at the University of Texas at Austin. The paper describes the technical goals the group is striving to achieve and includes a brief description of the individual projects focusing on fault tolerance. The ultimate goal is to develop and test technology applicable to all future missions of NASA (lunar base, Mars exploration, planetary surveillance, space station, etc.)

    Design and control of kinematically redundant robots for maximizing failure-tolerant workspaces

    Get PDF
    2021 Spring.Includes bibliographical references.Kinematically redundant robots have extra degrees of freedom so that they can tolerate a joint failure and still complete an assigned task. Previous work has defined the "failure-tolerant workspace" as the workspace that is guaranteed to be reachable both before and after an arbitrary locked-joint failure. One mechanism for maximizing this workspace is to employ optimal artificial joint limits prior to a failure. This dissertation presents two techniques for determining these optimal artificial joint limits. The first technique is based on the gradient ascent method. The proposed technique is able to deal with the discontinuities of the gradient that are due to changes in the boundaries of the failure tolerant workspace. This technique is illustrated using two examples of three degree-of-freedom planar serial robots. The first example is an equal link length robot where the optimal artificial joint limits are computed exactly. In the second example, both the link lengths and artificial joint limits are determined, resulting in a robot design that has more than twice the failure-tolerant area of previously published locally optimal designs. The second technique presented in this dissertation is a novel hybrid technique for estimating the failure-tolerant workspace size for robots of arbitrary kinematic structure and any number of degrees of freedom performing tasks in a 6D workspace. The method presented combines an algorithm for computing self-motion manifold ranges to estimate workspace envelopes and Monte-Carlo integration to estimate orientation volumes to create a computationally efficient algorithm. This algorithm is then combined with the coordinate ascent optimization technique to determine optimal artificial joint limits that maximize the size of the failure-tolerant workspace of a given robot. This approach is illustrated on multiple examples of robots that perform tasks in 3D planar and 6D spatial workspaces

    A sparsity-based method for fault-tolerant manipulation of a redundant robot

    Get PDF
    As an important part of the manufacturing industry, redundant robots can undertake heavy and tough tasks, which human operators are difficult to sustain. Such onerous and repetitive industrial manipulations, that is, positioning and carrying, impose heavy burdens on the load bearing for redundancy robots' joints. Under the circumstances of long-term and intense industrial operations, joints of redundant robots are conceivably to fall into functional failure, which may possibly cause abrupt joint lock or freeze at unknown time instants. Therefore, task accuracy by end-effectors tends to diminish considerably and gradually because of broken-down joints. In this paper, a sparsity-based method for fault-tolerant motion planning of redundant robots is provided for the first time. The developed fault-tolerant redundancy resolution approach is defined as L1-norm based optimization with immediate variables involved to avoid discontinuity in the dynamic solution process. Meanwhile, those potential faulty joint(s) can be located by the designed fault observer with the proposed fault-diagnosis algorithm. The proposed fault-tolerant motion planning method with fault diagnosis is dynamically optimized by resultant primal dual neural networks with provable convergence. Moreover, the sparsity of joint actuation by the proposed method can be enhanced by around 43.87% and 36.51%, respectively, for tracking circle and square paths. Simulation and experimental findings on a redundant robot (KUKA iiwa) prove the efficacy of the developed defect tolerant approach based on sparsity

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Fault Detection and Fault Tolerance in Robotics

    Get PDF
    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth. Future work will extend the analyses done in this paper to enhance Trick, a robotic simulation testbed, with fault tolerant capabilities in an expert system package.National Science FoundationMitre Corporation Graduate FellowshipNSF Graduate Fellowshi

    Parallel algorithm and architecture for the control of kinematically redundant manipulators, A

    Get PDF
    Includes bibliographical references (pages 413-414).Kinematically redundant manipulators are inherently capable of more dexterous manipulation due to their additional degrees of freedom. To achieve this dexterity, however, one must be able to efficiently calculate the most desirable configuration from the infinite number of possible configurations that satisfy the end-effector constraint. It has been previously shown that the singular value decomposition (SVD) plays a crucial role in doing such calculations. In this work, a parallel algorithm for calculating the SVD is incorporated into a computational scheme for solving the equations of motion for kinematically redundant systems. This algorithm, which generalizes the damped least squares formulation to include solutions that utilize null-space projections and task prioritization as well as augmented or extended Jacobians, is then implemented on a simple linear array of processing elements. By taking advantage of the error bounds on the perturbation of the SVD, it is shown that an array of only four AT&T DSP chips can result in control cycle times of less than 3 ms for a seven degree-of-freedom manipulator
    corecore