
1

Fault Detection and Fault Tolerance in Robotics

Monica Visinsky, Ian D. Walker, and Joseph R. Cavallaro
Department of Electrical & Computer Engineering

Rice University
Houston, TX 77251-1892

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/7432364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 1 INTRODUCTION

Abstract

Robots are used in inaccessible or hazardous environments in or-
der to alleviate some of the time, cost and risk involved in prepar-
ing men to endure these conditions. In order to perform their
expected tasks, the robots are often quite complex, thus increas-
ing their potential for failures. If men must be sent into these
environments to repair each component failure in the robot, the
advantages of using the robot are quickly lost. Fault tolerant
robots are needed which can effectively cope with failures and
continue their tasks until repairs can be realistically scheduled.
Before fault tolerant capabilities can be created, methods of de-
tecting and pinpointing failures must be perfected. This paper
develops a basic fault tree analysis of a robot in order to obtain
a better understanding of where failures can occur and how they
contribute to other failures in the robot. The resulting failure
flow chart can also be used to analyze the resiliency of the robot
in the presence of specific faults. By simulating robot failures
and fault detection schemes, the problems involved in detect-
ing failures for robots are explored in more depth. Future work
will extend the analyses done in this paper to enhance Trick, a
robotic simulation testbed, with fault tolerant capabilities in an
expert system package.

1 Introduction

In hazardous environments or environments which are not read-
ily accessible to man, robots must be able to efficiently adapt
to failures in both software and hardware in order to continue
working until the problem can be realistically repaired. Before
a robot can try to cope with a failure, however, it must first
be able to detect and pinpoint the problem. This paper devel-
ops a basic fault tree analysis of robots in order to obtain a
better understanding of where failures can occur and how they
contribute to other failures or limitations in each robot. The
resulting flow chart style picture of failures in a robot can also
be used to analyze the resiliency of the robot in the presence of
specific faults. Once a failure has been detected, the robot can
reorganize its view of its internal structure in such a way as to
hide or isolate the fault so the robot can continue working. The
focus of this research is on finding real-time fault detection and
fault tolerance methods which maintain as much of the robot’s
functionality as possible while not requiring that redundant or
extra parts be added to the robot.

1.1 Previous Work

1.1.1 Redundancy Based Fault Tolerance

Previous work on fault tolerance in robotics has concentrated on
dealing with faults in one specific part of the robot (mechanical

1.1 Previous Work 3

failure in the motor, kinematic joint failure, etc.) with only to-
ken thought going to the more critical, systemwide effect of the
failures. Relatively little focus has been given to the question of
how to detect failures in robots. Previous research tends to con-
centrate on fault tolerance algorithms, especially those schemes
which rely on duplicating parts such as joint motors [13, 16] for
their fault tolerant abilities. These redundancy based schemes
are similar to several computer fault tolerant algorithms which
are also based on redundancy of parts. One common computer
fault tolerant algorithm is Triple Modular Redundancy (TMR)
in which three processors all work on the same problem and com-
pare their results. If one of the processors is faulty and its result
does not agree with the results of the other two processors, the
faulty processor is voted out of the final decision and the correct
result is passed on to the rest of the system. This fault toler-
ance scheme fails, however, if more than one of the processors is
faulty. Duplication of physical parts provides a backup in case
the element performing the work fails. Redundancy of parts can
also provide a useful means of checking to see if a component is
in error.

For the equivalent redundancy based robot fault tolerant al-
gorithms, two motors have been placed in each robot joint to
provide a backup in case one motor stalls, runs away, or be-
gins free-spinning. The fault tolerant advantages of redundancy
has also led to adding extra parallel structures, such as seven
legs when only six are needed, in order to allow many differ-
ent configurations in the presence of a failure. Previous work
by Tesar, et al at UT, Austin [13] and independently by Wu
[16] with Lockheed at Johnson Space Center have explored the
aforementioned method of duplicating motors. Two motors in
a joint work together so as to provide one output velocity for
the joint. When one of the motors breaks, the other one takes
over the faulty motor’s functions. The faulty motor must be
isolated from the system or the second motor must be able to
adjust its output to account for any transients introduced to the
system by the failed motor. If the robot is performing a time-
critical or delicate task, fault tolerance must allow the robot to
get a run-away motor (which could cause drastic changes in the
robot’s motion) under control quickly before any damage to the
environment occurs.

1.1.2 Structure-Independent Fault Tolerance

Many useful robots have already been created. In order to pro-
vide fault tolerance for these robots without redesigning them,
algorithms need to be developed that will utilize the advantages
of the existing structure and not require the addition of extra
motors, sensors, or other components to the robot. These algo-
rithms should be easily adaptable to most robots regardless of
the robot structure.

4 1 INTRODUCTION

To avoid adding redundant parts for fault tolerance in comput-
ers, algorithms have been developed which reconfigure the data
or code in a computer system among the working parts after one
component has failed. Some computer fault tolerant systems
handle a fault by allowing a graceful degradation in function-
ality or speed. The literature speaks of time redundancy [4] in
which a computational cycle is lengthened so a fault-free part (or
parts) will have enough time to handle the tasks of a faulty com-
ponent. Other systems use set-switching or processor-switching
schemes [4] for reconfiguration. In processor-switching, fault-
free components can be collected to form a basic subpart of the
configuration, such as a row of an array, until the full config-
uration is achieved. This method may, however, require many
extra interconnections between components. In software, check
bits and error correction codes help insure that data is success-
fully transmitted in the system and allow a reconstruction of the
original data if a transmission line is faulty.

For robotics, however, little work has been done in developing
algorithms for accommodating a failure using only the available
physical parts. Many robots exist which do not have redundant
motors or extensive sensors in the joints. Duplicating motors in-
creases the size of the robot, the cost involved in building it, and
the weight and inertia which affect the robot controller. It would
thus be cost effective to find fault tolerance schemes that do not
rely on a specific robotic architecture but reorganize the robotic
algorithms in the controller or utilize the self-motion capability
of robots with redundant joints in order continue working. In
order to develop these schemes, the advantages and capabilities
of a general robot architecture must be researched.

Maciejewski at Purdue University has quantified the effect of
joint failure on the remaining dexterity of a kinematically redun-
dant manipulator [9]. He calculates an optimal configuration of
redundant arms to maximize the fault tolerance while minimiz-
ing the degradation of the system in the event of a failure. His
method currently only provides fault tolerance if the robot is
near this initial configuration and can try and arrange its joints
to mimic the fault safe configuration as close as possible. Robot
controllers may further attempt to keep the robot arm in a con-
figuration where the joints are arranged to stay away from any
possible singularities or uncomfortable positions in case a joint
fails during the operation. These studies do not rely on adding
extra motors or other components to the robot, but they also do
not explore what the robot controller must do in order to utilize
the remaining dexterity to continue its tasks.

This paper considers and analyzes systemwide failures (elec-
tromechanical, computer software/hardware, etc.) and their
inter-relationship via fault trees. We focus on developing fault
detection and fault tolerance schemes using only the components
normally available to the robot. Previous work in fault tolerance
forms a subset of our analysis, and our structure has the addi-
tional advantage of allowing the best results from more specific
fault schemes to be embedded into our tree analysis.

1.2 Riceobot and Robo-MEDIC

This paper begins by specifically analyzing the fault trees of
the Rice University robot, the Riceobot, but the results apply
to most robots. The fault tolerant algorithms developed from

1.3 Fault Detection Simulator and Trick 5

�

�

�

��
�

�

� �

�

� �

�

�

��..........
..........
......��
��
�

�
�

�
�� �� �� ��

......................................

		

“Trick”

CPU
Controller
Real-Time

Simulation and
Control Software

Error Detection and
Robot Manipulator

Operator Interface

Intelligent Correction
“Robo-MEDIC”Robot Manipulator

Operator

Figure 1: Robo-MEDIC Robotic Fault Tolerance
Hardware/Software Environment.

this analysis will be embedded into the CLIPS expert system
environment [6]. This NASA-developed public domain software
package is commonly used by government agencies and is run-
ning on our computer systems.

The resulting expert system package, Robo-MEDIC (Robot Ma-
nipulator Error Detection and Intelligent Correction) will pro-
vide diagnostic assistance to the operator and will interface with
the control computer of the robot as shown in Figure 1. Robo-
MEDIC will be able to use the fault trees as a flow chart of
failures. Nodes in the trees will have some fault tolerant action
associated with them that will allow the robot to take advantage
of inherent backup or alternate paths charted by the fault tree.
By maneuvering around the trees, Robo-MEDIC will perform
fault tolerant recovery actions as a sequence of these smaller,
simpler actions.

1.3 Fault Detection Simulator and Trick

In addition to the fault tree analysis, we are examining fail-
ures and testing fault detection schemes using a simulation of
a generic four link, planar robot. We will be integrating the
concepts derived from the simulator into Trick [1], a robotics
software testbed developed at NASA Johnson Space Center by
Leslie J. Quiocho and Robert Bailey.

The Trick software package already contains the information to
model the seven-joint Robotic Research Arms, the Space Shut-
tle RMS, and the full Riceobot with base and two arms. Data
modules provided by Trick allow the user to build customized
robots with many different types of sensors, joints, and links.
The software can currently model a joint failure by locking the
joint. Our research is expanding the capabilities of the software
to model runaway joints, fault detection schemes, and fault toler-
ance algorithms. The flexibility of the software allows the failure
analysis developed in this paper to be extended to a variety of
different robots.

2 Robotic Fault Tree Analysis

2.1 Analysis Technique

Fault Tree Analysis (FTA) is a deductive method in which failure
paths are identified by using a fault tree drawing or graphical

6 2 ROBOTIC FAULT TREE ANALYSIS

Table 1: Fault Tree Analysis Symbols

Symbol Function

AND gate All inputs required to produce output
event.

OR gate Any one input event causes the output
event.

Rectangle A malfunction which results from a
combination of fault events through
logic gates.

Diamond A fault event for which the causes are
left undeveloped.

Circle A basic fault event. This includes
component failures whose frequency
and failure mode are known.

Triangle A suppressed tree. The tree is detailed
in another figure.

representation of the flow of fault events [2]. FTA is a well-
known analysis technique often used in industry for computer
control systems and large industrial plants. Each event in the
tree is a component failure, an external disturbance, or a system
operation. The top event is the undesired event being analyzed
and, in this research, is the failure of the entire robot. The
events are connected by logic symbols to create a logical tree of
failures. Some of the basic symbols are explained in Table 1.

The explanation of the FTA technique in [2] promotes a top
down development of the fault tree. The top event is broken
down into primary events that can, through some logical com-
bination, cause the failure at the top. This process is repeated
to deeper levels until a basic event or an undeveloped event is
reached. Some conditions or causes may be left undeveloped if
the probability that they will occur is small enough to be ig-
nored.

2.2 Failure Propagation/Probability Analysis

Once the fault trees are built, the information available may be
enhanced by a quantitative analysis of the failures. Failure rates
are assigned to each input event and propagated up the tree
based on the rules of the connecting logic gates. The output of
an OR gate is the sum of the inputs. The resulting probability
of the combined input events is greater than the probability of
an individual input event. The output of an AND gate is the
product of the inputs. The resulting probability of all the events
occurring is thus less than the probability of any one occurring.
The AND gates represent some form of redundant measurement
or capability and are more desirable in the fault tree as the
probability of a failure decreases through the combination of
lower level events.

A Markov or semi-Markov model approach to probability anal-
ysis can also be developed based on the PAWS/STEM [3] and
CARE III [12] reliability analysis packages. These packages can
analyze simpler fault trees as well as Markov chains, but they
are not necessarily optimized to handle the simpler structures

2.3 Fault Tree Pruning 7

[10]. These analysis tools were also not designed for robotics
and thus would not take advantage of some of the commonality
within robot structures. We will include some of the advan-
tageous aspects of using Markov models in our CLIPS-based
expert system, Robo-MEDIC.

A quantitative analysis provides a measure of the overall chance
of a complete failure for each robot. The structure provided by
the fault trees organizes the probabilities appropriately for the
robot system and provides a simple map of how the probabilities
relate to each other. Using the trees, robots of significantly
different origin and structure can be compared for fault tolerant
abilities and survivability. The integrated Robo-MEDIC expert
system will provide diagnostic capabilities by using the fault
trees and will alert the operator of an impending failure. It
can be used for off-line comparisons of robots or for suggesting
possible corrective actions to an operator and the low-level robot
controller during real operations.

2.3 Fault Tree Pruning

A suggested drawback of FTA is that there is no way to ensure
that all the causes of a failure have been evaluated [2]. The
designer tends to pick out the important or most obvious events
that would cause a given failure. However, the events that are
not modeled normally have a low probability of occuring and can
be ignored or treated as a basic event without overly biasing the
analysis.

Several failures may also be interconnected creating lateral
branches or cycles in the fault tree. In some robots, one mo-
tion at a joint may be coupled with another motion such that
failure of either motion causes the failure of the other. It is also
difficult to determine the relationships between some failures.
For example, the failure of all the internal feedback sensors at
the elbow joint of a robot may make the robot blind to the el-
bow position. The elbow has not actually failed, but the robot is
unable to detect the results of any commands sent to the elbow.
Thus, the sensor malfunction does not contribute to an elbow
failure specifically but may cause a failure of the entire robot.
Relationships like these make the tree complex and difficult to
understand. These problems can be overcome by working to
simplify the tree. In the case of the coupled motions, the two
failures can be considered as one with twice as likely a probabil-
ity of occurring.

2.4 Riceobot Fault Trees

To provide a foundation for the analysis of general robots, we
have chosen to analyze the arm of the Rice University Riceobot.
The arm has eight degrees of freedom: three motions in the
shoulder (z translation, pitch, and yaw), two motions in the
elbow (roll and pitch), and three motions in the wrist (roll, pitch,
and yaw). The results obtained from the Riceobot apply to most
general robots especially since the Riceobot has a wide variety
of commonly used link, joint, and motor arrangements.

Overall Robot Failure

Several fault trees have been developed and a few are reproduced
in the following pages. The top event is obviously the failure of
the robot (Figure 2). The primary causes of a robot failure are

8 2 ROBOTIC FAULT TREE ANALYSIS

Failure of Robot

Failure of
Computer
System

Power
Failure External

Failure of
Shoulder

Failure of
Elbow

Failure of
Wrist

Failure of
Gripper

Figure 2: Top Level Fault Tree for Entire Riceobot.

power failure, computer system failure, or a combination of fail-
ures of the joints. If the robot is fault tolerant, it can withstand
the failure of several joints. By stablizing the faulty motion or
joint in some manner (such as locking the joint), it is possible
that the other motions can still provide some functional capabil-
ity to the robot. This ability results in the AND gate combining
the joint failures in Figure 2 and decreases the probability of a
failure of the robot.

Joint Failures

The Riceobot has two directly driven motions: the shoulder z-
direction motion and the wrist roll motion (Figure 3). The fault
trees for these motions are quite simple since only the failure of

External

Gear-Train
Failure

Failure of
Wrist

Failure of
Wrist Pitch/Yaw

External

Failure of
Wrist Roll

Link
Breaks

Chain/
Cable
Loose

External Chain/
Cable
Snap

Cable
Guide
Wheel
Loose
or Off

Connector
Failure

Jacket
Unscrews

Cable
Comes
Free of
Clamp

Strip
Threads

Failure of
Universal
Joint

Failure of
Motor

Failure of
Motor

Joint
Link
Becomes
Stuck

Joint
Breaks

Joint
Clamp
to Motor
Loosens

Figure 3: Sub-Level Fault Tree for Wrist System.

2.4 Riceobot Fault Trees 9

the motor plays an important role in the failure of the motion.
The other motions of the Riceobot depend on some form of gear-
train assembly to allow the spatially separated motor to drive
the joint. Failure of the gear-train can be caused by basic events
as simple as a loosening of the chain or cable.

Motor and Sensor Failures

The probability of a motor failure is dependent on the type of
motor used. The Riceobot contains both brushless DC and step-
per motors. Each motor also has a gear box which may fail due
to gear slippage or wear. A power failure affects all motors as
well as any other electrically driven parts in the robot, but each
motor could lose power separately if its specific power cables
break. A motor failure could conceivably also be the cause of
a sensor failure when sensors are mounted on the shafts of the
motors. Sensors are also affected by incorrect calibration and
external noise or vibrations. (See Figure 4.)

Computer System Failures

The computer system of the Riceobot consists of three main
parts: (1) amplifiers which read from the optical encoders and
drive the motors, (2) servo control chips which store informa-
tion about the different motors and convert the desired angles
into currents for each motor, and (3) an on-board host computer
which is programmed in C and computes the desired angles for
the desired motions (Figure 5). These three parts each contain
at least one board filled with TTL chips, capacitors, power tran-
sistors, resistors, and other analog and digital circuit parts. A
failure of any one of these parts may not cause a failure of the
entire board; but if a board did fail, the robot would be unable
to function. The robot cannot withstand the failure of all the
servo controllers or all the amplifiers because it would no longer
be able to communicate with the joints.

External

Gear-Train
Failure

Failure of
Wrist

Failure of
Wrist Pitch/Yaw

External

Failure of
Wrist Roll

Link
Breaks

Chain/
Cable
Loose

External Chain/
Cable
Snap

Cable
Guide
Wheel
Loose
or Off

Connector
Failure

Jacket
Unscrews

Cable
Comes
Free of
Clamp

Strip
Threads

Failure of
Universal
Joint

Failure of
Motor

Failure of
Motor

Joint
Link
Becomes
Stuck

Joint
Breaks

Joint
Clamp
to Motor
Loosens

Figure 3: Sub-Level Fault Tree for Wrist System.

10 2 ROBOTIC FAULT TREE ANALYSIS

Sensor
Failure

 Local
Power Lines
 Fail

Incorrect
Callibration

 Sensor
Logic Board
 Failure

 External
Damage/
 Noise

Failure of
Motor

 Local
Power Lines
 Fail

Internal
Motor
Failure

Gear Box
Failure

Gears
Slip

Wear
on
Gears

Connection
to Amp Failure

Lose
Cable
Strip

Connector
for Cable
Strip
Faulty

Figure 4: Sub-Level Fault Tree for Sensor System.

Detecting a non-terminal failure in the computer system requires
some form of testing circuitry or the ability to poll components
to see if they are still alive. The IEEE standard 1149.1 Test
Access Port may be incorporated into any VLSI chip on the
boards and could be used for active testing. Radiation hard-
ened circuits [15] should also be used in the computer system.
Correction code bits can be used to check data transfers and
could identify a bus failure if the bits were consistently wrong.

2.5 Derived Riceobot Fault Detection

The qualitative analysis of these fault trees has proven useful in
pointing out some of the limitations of the Riceobot in regards
to fault detection and fault tolerance. With only one sensor at
each joint, the Riceobot represents the worst case scenario for
detecting sensor and joint failures. The only option available to
the fault detection software is to compare the sensed angles with
the calculated desired angles. After accounting for a predeter-
mined threshold to mask any precision errors in the calculations
or sensing equipment and possibly adjust for load effects, any
difference between the sensed and desired values must be con-
sidered the result of a failure. The computer is, however, unable
to differentiate between a sensor malfunction and an actual joint
failure due, for example, to a frozen motor. The computer must
therefore shut down the joint and proceed with fault tolerance
schemes based on a new model of the robot with fewer possible
motions.

The Riceobot’s fault detection capabilities could be improved
by drawing on the vision system to determine the joint angles.
With the computer’s calculations and the sensor reading, this
third estimate of the angle would help distinguish between a
sensor failure and a real joint failure. The Riceobot would still
be able to function in the presence of one sensor failure. Using
the vision system for this task, however, increases the load on the
image processing software and may hinder the system’s ability

11

Sensor
Failure

 Local
Power Lines
 Fail

Incorrect
Callibration

 Sensor
Logic Board
 Failure

 External
Damage/
 Noise

Failure of
Motor

 Local
Power Lines
 Fail

Internal
Motor
Failure

Gear Box
Failure

Gears
Slip

Wear
on
Gears

Connection
to Amp Failure

Lose
Cable
Strip

Connector
for Cable
Strip
Faulty

Figure 4: Sub-Level Fault Tree for Sensor System.

to perform its normal vision tasks.

3 Robot Fault Detection

The fault trees give an idea of the interaction between failures
in a system. The trees also provide a map of alternate paths
for detecting faults or bypassing failures. In order to expand on
this information and to show how modeling errors or other un-
certainties affect fault detection, we need to simulate the robot
and the fault detection algorithm. Because of the Riceobot’s
lack of sensors and the complexity needed for its fault detec-
tion algorithm, we are initially simulating fault detection using
a computer modeled planar, four link robot [7]. The current
program will need to be expanded extensively for the Riceobot
and will be accomplished by implementing the fault detection
routine in the CLIPS expert system as part of Robo-MEDIC.

The four link robot is essentially just four cylinders placed end-
to-end. All joints are rotational and move in the same plane. A
simulated optical encoder and tachometer were added for each
joint. The fault tree for this robot is relatively simple (Figure 6).
We have not included the possibility of link breakage or global
power failure in the simulation. The motors are in essence direct
drive with no gear trains and fail only in a locked mode. This
conditions pruned each joint subtree down from the complexity
of the Riceobot trees to an easily simulated failure situation.

It is interesting to note that it is the fault detection software
which allows the joint to survive in the presence of a single sensor
failure thus creating the AND gate under each motor failure
in the tree. If both sensors at a joint fail, the host computer
is blind to that joint and the fault detection routine forces a
motor failure to prevent the joint from moving too far without
computer supervision. Thus, the dual sensor failure subtree is a
cause of the motor failure event for each joint.

12 3 ROBOT FAULT DETECTION

Failure of
Computer System

Card Cage
Failure

External
Host Computer
Failure

Amplifier
Board Failure

Servo-Control
Board Failure

Sensor
Failures

Failure of
Components bonding,

status indicators,
 etc., fail

Sensor
Failure (n)

Sensor
Failure (2)

Sensor
Failure (1)

Failure of
Components

 transistors,
capacitors, or
 resistors,
 fail

 TTL chips,
processors,
ROM, RAM
 fail

 soldering,
 chip sockets,
 etc, fail

 bonding,
status indicators,
 sockets
 fail

Sensor
Failures

Failure of
Components

Figure 5: Sub-Level Fault Tree for Computer System.

3.1 Fault Detection Simulator

The structure of the simulator is shown in Figure 7. The flow
of information is from the simulated host computer through the
robot and then the sensors to the fault detection program and
finally back to the host computer. The host computer uses the
desired angles computed by a planner routine and the estimated
present position of the robot derived from the sensors to calcu-
late the torque necessary to move each link to its desired desti-
nation. The controller is a standard PD computed torque type
controller. The robot routine then takes the calculated torques
and determines the new position, velocity, and acceleration for
each joint. The optical encoders estimate the positions by trun-
cating the value of each angle based on each encoder’s precision.
The tachometers pass the velocities through a first order filter
based on a predetermined motor lag time. The sensors are mod-
ules from the Trick simulation package and represent our initial
efforts at integration with Trick. These estimates of the an-
gles and velocities are passed into the fault detection procedure
which checks for failures and either passes to the host what it
considers good estimates of the position, velocity, and accelera-
tion or signals the motor of a joint with two bad sensors to shut
down.

3.2 Host Computer Model

The simulated host computer uses the following dynamics equa-
tion as a model for the robot:

τ = [M(θ)]θ̈ + N(θ, θ̇), (1)

where τ is the joint torque vector, [M] is the inertia matrix, and
N is the Coriolis and centrifugal torque vector. The [M] matrix
and N vector are computed based on the estimated angles from
the sensors. Since the robot is planar, gravity is orthogonal to

3.2 Host Computer Model 13

Failure of
Computer System

Card Cage
Failure

External
Host Computer
Failure

Amplifier
Board Failure

Servo-Control
Board Failure

Sensor
Failures

Failure of
Components bonding,

status indicators,
 etc., fail

Sensor
Failure (n)

Sensor
Failure (2)

Sensor
Failure (1)

Failure of
Components

 transistors,
capacitors, or
 resistors,
 fail

 TTL chips,
processors,
ROM, RAM
 fail

 soldering,
 chip sockets,
 etc, fail

 bonding,
status indicators,
 sockets
 fail

Sensor
Failures

Failure of
Components

Figure 5: Sub-Level Fault Tree for Computer System.

the plane of motion and there are no resultant gravity torques
to consider. Friction is also ignored in this model.

The PD controller for this model becomes:

τ = [M(θ)]{θ̈d + [KP](θd − θ) + [KD](θ̇d − θ̇)} + N(θ, θ̇). (2)

The matrices [KP] and [KD] are the position and derivative
gains, respectively, and are used to control tracking and steady
state errors by feedback control. For critical damping, the gains
become:

Failure of
Joint 0

Failure of Robot

Failure of
Joint 1

Failure of
Joint 2

Failure of
Joint 3

Failure of
Motor

Failure of
Motor Parts

Failure of
Tachometer

Failure of
Encoder

Figure 6: Four Link, Planar Robot Fault Tree

14 3 ROBOT FAULT DETECTION

θ
e

θ
t

Instigate
Failures

Fault
Detection

Encoders

Tachs

Robot

(calc real
 accelerations,
 velocities,
 and angles)

Host Computer
(calc torques)Planner

Report of
Failures

Failure
Information

fail motor
signal

τ

θ
d

θ
d

θ
d

θ θ θ

θ
d

θ
d

θ
d

θr

θr

Figure 7: Fault Detection Simulator Flow Chart

[KD] = 2ω, [KP] = ω2, (3)

where ω is the natural frequency input by the user. The natural
frequency is typically set to 1 for most runs of the simulator. A
higher natural frequency would increase the effects of the gains
in the feedback control.

3.3 Robot Model

The simulated robot is a procedure which takes the computed
torque from the simulated host computer and determines the
resulting four robot angle accelerations based on the equation:

θ̈ = [M̂]−1τ − [M]−1(N̂). (4)

Here, [M̂] and N̂ are the inertia matrix and Coriolis and cen-
trifugal torque vector as before but are now based on the real
robot angles instead of the sensed angles. The matrices have
also been injected with a small constant error to simulate the
effects of a load on the robot.

The joint angle, θ, and its first derivative are estimated by the
equations:

θ̇i = θ̇i−1 + (Δt)θ̈i, (5)

θi = θi−1 + (Δt)θ̇i. (6)

If a motor failure has occurred, θ̈ and θ̇ are set to zero to simulate
the effects of a locked motor. The position thus remains con-
stant. Only the locked motor is currently simulated, but other
failure modes could result in runaway motors or free-spinning
motors.

The robot’s position, velocity, and acceleration calculated in this
procedure are sent to the sensor routines. The robot position
is also sent to the graphics simulator which displays the motion
on the screen. This is the same graphics program used by the
Trick simulation package.

3.4 Fault Detection Capabilities 15

3.4 Fault Detection Capabilities

3.4.1 Failure Modes

If a sensor breaks and the failure goes undetected, the host com-
puter will be performing its calculations using erroneous infor-
mation. In this simulator, the encoders break in a frozen mode
continuously reporting the last value read before the failure.
The tachometers fail by continuously reporting zero velocities
and thus constant positions. With these failure modes, the host
sees the error between the sensed angle and the desired angle
grow for the joint with the faulty sensor, and the control equa-
tions increase the appropriate output torque to the robot to try
and compensate for the error. The joint with the faulty sensor
swings wildly off course because the host keeps trying harder and
harder to get the broken sensor value to match the desired value.
Since the calculations for all the joints are based on knowledge
of where the other joints are located, all of the other output
torques are also computed incorrectly and the joints all stray
from their desired paths.

When a motor fails, it locks in position and the joint is then
unable to move. If a motor failure goes undetected, the sensors
are still reading the correct information. In reality, the motor
failure would probably result in a sensor failure as well, but the
result would still be that both sensors are reporting a constant
joint angle. The control equations try to push the broken joint
closer to the desired value but the frozen motor does not respond
to the torques. Since the sensors are still reporting the actual
position of the joint, all the other calculations are based on cor-
rect data and the other joints can continue with their normal
motions. The plan must be modified, however, to get the end
effector to its desired location.

3.4.2 Thresholds

These two undetected failures reveal the importance of getting
accurate sensor readings and of detecting a sensor failure quickly.
A frozen motor is not as critical a failure in most cases and can
be dealt with at a more leisurely pace. Since the sensors are not
perfectly accurate, an acceptable threshold for the error between
sensor reading and desired value must be chosen. Unfortunately,
even during normal operation, the error between the actual angle
and the desired angle can be relatively large especially at the
beginning of a run before the controller has time to bring the
error under control. Choosing the maximum error found during
a failure-free run results in a threshold that is so large, it may
take several time steps to notice the error from a broken sensor.
By the time the failed sensor is detected, the robot controller
has already been infected with the erroneous information and
the robot is either off course or has damaged itself.

Fortunately, the error between the angles recorded by the two
sensors during normal operation is very small even after integrat-
ing the tachometer reading to get the angular position. Fortu-
nately, modeling errors and errors induced by unpredicted loads
would affect both sensors in a similar manner. A tight threshold
can be chosen for a comparison of the two sensed positions. If
this threshold is exceeded, the fault detection software assumes
that one of the sensors has failed and appropriately chooses one
as the working sensor from which to take the recorded data. The
larger thresholds from the typical error between the sensed and
desired angles are still monitored, however. The large thresholds

16 3 ROBOT FAULT DETECTION

provide a means of checking for a motor failure.

The psuedocode for these checks is reproduced below. The angle
θd and its derivatives are the desired values. The variables θt,
θ̇t, and θ̈t are the values derived from the tachometer reading.
The results based on the encoder are θe, θ̇e, and θ̈e. Finally, θ
and its derivatives are the values sent to the robot controller.

If ((encoder working) and (tachometer working)){
θ = θe, θ̇ = θ̇t, θ̈ = θ̈t

If ((|θt − θe|) >= threshold){
if (encoder working){

tachometer = failed
θ = θe, θ̇ = θ̇e, θ̈ = θ̈e

}else{
encoder = failed
θ = θt, θ̇ = θ̇t, θ̈ = θ̈t

}
}else{

if ((|θd − θt|) >= tachometer-threshold)
tachometer = failed

if ((|θd − θe|) >= encoder-threshold)
encoder = failed

}
}
If ((tachometer == failed) and (encoder != failed)){

if ((|θd − θe|) < encoder-threshold){
θ = θe, θ̇ = θ̇e, θ̈ = θ̈e

}else{
encoder = failed
motor = failed
send stop motor signal to robot

}
}
If ((encoder == failed) and (tachometer != failed)){

if ((|θd − θt|) < tachometer-threshold){
θ = θt, θ̇ = θ̇t, θ̈ = θ̈t

}else{
tachometer = failed
motor = failed
send stop motor signal to robot

}
}

Choosing which sensor has failed and which is still working when
the tight tolerance is exceeded is the most difficult task. Intu-
itively, one would expect the sensor with a reading closer to
the desired value to be the working sensor and would switch to
obtaining all the information from that sensor. However, ex-
perience has shown that the fault detection software choses the
correct sensor only when the desired values are increasing. If
the desired angles are decreasing in value, it consistently picks
the failed sensor as the working one.

This problem is a result of the time it takes the controller to
bring the errors under control and the failure modes for the sen-
sors. Both the encoders and the tachometers fail by reporting a
constant angular position either directly or by integration of a
zero velocity. First, let us assume the sensors always read less
than the desired value. If a sensor fails and gets stuck at a spe-
cific value while the desired values are increasing, the error will

3.4 Fault Detection Capabilities 17

Table 2: Sensor Failure Detection Tests

Ordering Encoder Fails Tachometer Fails
θd < θt, θe largest error largest error

(2) (2)
θt, θe < θd smallest error smallest error

(1,2) (1,2)
θt < θd < θe largest error smallest error

(1,2)
θe < θd < θt smallest error largest error

(1,2)

grow and the fault detection routine should take the angle in-
formation from the sensor that reads closer to the desired value.
However, if the sensor fails while the desired values are decreas-
ing, the desired values are approaching the failed value. The
error starts decreasing and the surviving sensor is often the one
whose absolute error is larger. (See Table 2 for listing of results.)
The opposite relationships hold if both sensors are reading val-
ues greater than the desired angle. A failed sensor would then
have the smaller error during an increase in desired angles and
the larger error during a decrease in desired angles.

The various sensor failure situations that arise in the presence
of increasing desired values and the relative size of the error for
the surviving sensor are listed in Table 2. The cases in which the
initial, naive algorithm is successful in choosing the survivor are
marked with an “1”, and the cases in which the second algorithm
is successful are marked with a “2”. The table represents half
of the possible cases. The table for decreasing desired values
would look similar with the equivalent number of successes for
each algorithm as in Table 2.

By checking whether the desired values are increasing or de-
creasing and performing the appropriate comparisons to choose
the surviving sensor, the algorithm’s success rate for the cases
listed in the table increases from 50% to 75%. The algorithm
still has a problem with the cases where the sensors are reading
on opposite sides of the desired value. The fault detection pro-
gram picks a failed tachometer as the survivor if the tachometer
value is trailing a trend of decreasing desired values while the
encoder is preceding the desired values. Similarly, the fault de-
tection program should pick a failed encoder as the surviving
sensor during a trend of increasing desired values if the encoder
value is preceding the desired value by a large enough margin
while the tachometer is trailing the desired value. We were un-
able to demonstrate this second error as the encoder value was
close enough to the desired value that when the encoder failed,
the desired value passed the failed value in the next time step.
The fault detection scheme was able to guess correctly in this
situation.

In general, our simple fault detection simulator is capable of de-
tecting for each joint a single sensor failure, a single sensor failure
followed by a motor failure, or a motor failure. The simulator
will eventually detect a second sensor failure and will catch the
single failures it has missed, but it has allowed enough erroneous
sensor readings through to the controller that other joints have
been knocked off course and fail as well. In order to improve the
fault detection algorithm, we must switch from the hard-coded
voting scheme presented above to other forms of analytical re-

18 4 CONCLUSIONS AND FUTURE WORK

dundancy which use filters [14, 11], adaptive thresholds [8], or
parity relations [5]. Willsky [14, 5] gives a good overview of the
various methods of analytical redundancy. Most of the work
in this area has been focused on failure detection in aircraft,
power generation system and other mechanical systems. Unfor-
tunately, the amount of uncertainty and modeling errors present
in most robotic control systems makes several of these methods
inaccurate. The generation of residuals using parity relations is
one example of a method which would be unsuitable for robotic
applications. [8].

4 Conclusions and Future Work

In this paper we have presented new results in fault tree analysis
and fault detection for robot manipulators. This research sets
the stage for significantly enhanced activity in fault tolerance
for robotics. Once a failure can be detected and isolated, a fault
tolerant expert system like Robo-MEDIC can proceed with the
appropriate actions to make use of the existing robot structure,
redundancy, and alternate paths. There already exist a variety
of computer fault tolerance schemes which can provide a starting
point for creating these structurally independent robotic fault
tolerance algorithms.

The fault tree analysis for the Riceobot has proven useful in
pointing out some trouble spots for fault detection and fault
tolerance. Even without a quantitative analysis, the importance
of certain components and the severity of different failures are
revealed in the fault trees. For robots, the good health of the
internal sensors is shown to be extremely desirable. Erroneous
data from even one sensor at a joint can cause the whole robot
to deviate drastically from its course if the failure is not detected
quickly. Without the sensors, the robot also loses much of its ca-
pability to detect faults. Developing methods for early detection
of sensor malfunctions thus has a high priority in this research.

By simulating relatively simple fault detection situations, we are
gaining a better understanding of how to satisfy this need for
early detection. Our simulator has shown that to avoid false
alarms due to modeling errors and noise we must implement
large thresholds which let some failures go undetected for too
long. Other relationships must be developed concerning the in-
formation available in order to improve the fault detection algo-
rithms. Once these schemes have been perfected, we will be able
to embed the algorithms in an expert system and integrate the
simulation into the Trick simulation package to create a more
flexible fault detection and fault tolerance simulator.

The analysis of the fault trees in this paper will be useful in
creating fault tolerant algorithms. Through an analysis of the
structures, fault tolerance schemes must be developed which will
attempt to maintain the health of the internal nodes in the pres-
ence of failures in their children. Detection schemes and fault
tolerant algorithms will be tested on the Trick robotic software
testbed.

Acknowledgments

This work was supported in part by the National Science Foun-
dation under grants MIP-8909498 and MSS-9024391 and in part

REFERENCES 19

by a Mitre Corporation Graduate Fellowship and an NSF Grad-
uate Fellowship.

References

1. Bailey, R. W. and Quiocho, L. J., Trick Simulation En-

vironment Developer’s Guide, NASA JSC Automa-
tion and Robotics Division, Houston, TX, Beta-release edi-
tion, February 1991.

2. Bloch, H. P. and Geitner, F. K., An Introduction

to Machinery Reliability Assessment, Van Nostrand
Reinhold, New York, NY, 1990.

3. Butler, R. W. and Stevenson, P. H., “The PAWS and STEM
Reliability Analysis Programs,” NASA Technical Mem-

orandum 100572, NASA Langley Research Center, Hamp-
ton, VA, March 1988.

4. Chean, M. and Fortes, J. A., “A Taxonomy of Reconfig-
uration Techniques for Fault-Tolerant Processor Arrays,”
IEEE Computer, 23(1):55–67, January 1990.

5. Chow, E. Y. and Willsky, A. S., “Analytical Redundancy
and the Design of Robust Failure Detection Systems,”
IEEE Transactions on Automatic Control, AC-
29(7):603–614, July 1984.

6. Giarratano, J. and Riley, G., Expert Systems: Prin-

ciples and Programming, PWS-Kent Publishing Co.,
Boston, MA, 1989.

7. Hamilton, D. L., “A Simulation of Robot Motion Control,”
Advisors: I. D. Walker and J. K. Bennett, Rice Univer-
sity, Department of Electrical and Computer Engineering,
Houston, Texas, April 1991.

8. Horak, D. T., “Failure Detection in Dynamic Systems
with Modeling Errors,” AIAA Journal of Guidance,

Control, and Dynamics, 11(6):508–516, November-
December 1988.

9. Maciejewski, A. A., “Fault Tolerant Properties of Kinemat-
ically Redundant Manipulators,” In 1990 IEEE Confer-

ence on Robotics and Automation, pages 638–642,
Cincinnati, OH, May 1990.

10. Martensen, A. L. and Butler, R. W., “The Fault-Tree Com-
piler,” NASA Technical Memorandum 89098, NASA
Langley Research Center, Hampton, VA, January 1987.

11. Merrill, W. C., DeLaat, J. C., and Bruton, W. M., “Ad-
vanced Detection, Isolation, and Accommodation of Sensor
Failures - Real-Time Evaluation,” Journal of Guidance,

Control, and Dynamics, 11(6):517–526, November-
December 1988.

12. Stiffler, J. J. and Bryant, L. A., “CARE III Phase II Re-
port - Mathematical Description,” NASA Contractor

Report 3566, NASA Langley Research Center, Hampton,
VA, 1982.

13. Tesar, D., Sreevijayan, D., and Price, C., “Four-Level Fault
Tolerance in Manipulator Design for Space Operations,” In
NASA First International Symposium on Measure-

ment and Control in Robotics, volume 3, page J3.2.1,
Houston, TX, June 1990.

14. Willsky, A. S., “A Survey of Design Methods for Failure De-
tection in Dynamic Systems,” Automatica, 12:601–611,
1976.

15. Winokur, P. S., “Radiation-Hardened Circuits for
Robotics,” Proc. Fourth Topical Meeting on

20 REFERENCES

Robotics and Remote Systems, pages 311–315, Febru-
ary 1991.

16. Wu, E., Diftler, M., Hwang, J., and Chladek, J., “A
Fault Tolerant Joint Drive Systems for the Space Shuttle
Remote Manipulator System,” In 1991 IEEE Interna-

tional Conference on Robotics and Automation,

pages 2504–2509, Sacremento, CA, April 1991.

