8 research outputs found

    Combining machine learning and metaheuristics algorithms for classification method PROAFTN

    Get PDF
    © Crown 2019. The supervised learning classification algorithms are one of the most well known successful techniques for ambient assisted living environments. However the usual supervised learning classification approaches face issues that limit their application especially in dealing with the knowledge interpretation and with very large unbalanced labeled data set. To address these issues fuzzy classification method PROAFTN was proposed. PROAFTN is part of learning algorithms and enables to determine the fuzzy resemblance measures by generalizing the concordance and discordance indexes used in outranking methods. The main goal of this chapter is to show how the combined meta-heuristics with inductive learning techniques can improve performances of the PROAFTN classifier. The improved PROAFTN classifier is described and compared to well known classifiers, in terms of their learning methodology and classification accuracy. Through this chapter we have shown the ability of the metaheuristics when embedded to PROAFTN method to solve efficiency the classification problems

    An evolutionary approach to preference disaggregation in a MURAME-based credit scoring problem

    Get PDF
    In this paper we use an evolutionary approach in order to infer the values of the parameters (weights of criteria, preference, indifference and veto thresholds) for developing the multicriteria method MURAME. According to the logic of preference disaggregation, the problem consists in finding the parameters that minimize the inconsistency between the model obtained with those parameters and that one connected with a given reference set of decisions revealed by the decision maker; in particular, two kinds of functions are considered in this analysis, representing a measure of the model inconsistency compared to the actual preferential system. In order to find a numerical solution of the mathematical programming problem involved, we adopt an evolutionary algorithm based on the Particle Swarm Optimization (PSO) method, which is an iterative heuristics grounded on swarm intelligence. The proposed approach is finally applied to a creditworthiness evaluation problem in order to test the methodology on a real data set provided by an Italian bank

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area

    An artificial immune algorithm for ergonomic product classification using anthropometric measurements

    Get PDF
    © 2016 Elsevier Ltd Product classification using anthropometric measurements leads to ergonomic product design and user satisfaction. We propose an effective artificial immune algorithm (AIA) to classify ergonomic products with multi-criteria anthropometric measurements and tune the AIA parameters with a full factorial experimental design approach. We demonstrate the applicability and efficacy of the proposed algorithm by considering the anthropometric measurements of the hand, developing an ergonomic computer mouse, and classifying consumers into three categories. The resulting classifications are compared with expert opinions to facilitate the conformity of the computer mouse to user requirements

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    An Evolutionary Framework Using Particle Swarm Optimization for Classification Method PROAFTN

    No full text
    The aim of this paper is to introduce a methodology based on the particle swarm optimization (PSO) algorithm to train the Multi-Criteria Decision Aid (MCDA) method PROAFTN. PSO is an efficient evolutionary optimization algorithm using the social behavior of living organisms to explore the search space. It is a relatively new population-based metaheuristic that can be used to find approximate solutions to difficult optimization problems. Furthermore, it is easy to code and robust to control parameters. To apply PROAFTN, the values of several parameters need to be determined prior to classification, such as boundaries of intervals and weights. In this study, the proposed technique is named PSOPRO, which utilizes PSO to elicit the PROAFTN parameters from examples during the learning process. To test the effectiveness of the methodology and the quality of the obtained models, PSOPRO is evaluated on 12 public-domain datasets and compared with the previous work applied on PROAFTN. The computational results demonstrate that PSOPRO is very competitive with respect to the most common classification algorithms.Peer reviewed: YesNRC publication: Ye
    corecore