811 research outputs found

    A Self-adaptive Fireworks Algorithm for Classification Problems

    Get PDF
    his work was supported in part by the National Natural Science Foundation of China under Grants 61403206 and 61771258, in part by the Natural Science Foundation of Jiangsu Province under Grants BK20141005 and BK20160910, in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 14KJB520025, in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions, in part by the Open Research Fund of Jiangsu Engineering Research Center of Communication and Network Technology, NJUPT, under Grant JSGCZX17001, and in part by the Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, under Contract SKL2017CP01.Peer reviewedPublisher PD

    Development of Hybrid PS-FW GMPPT Algorithm for improving PV System Performance Under Partial Shading Conditions

    Get PDF
    A global maximum power point tracking (MPPT) algorithm hybrid based on Particle Swarm Fireworks (PS-FW) algorithm is proposed which is formed with Particle Swarm Optimization and Fireworks Algorithm. The algorithm tracks the global maximum power point (MPP) when conventional MPPT methods fail due to occurrence of partial shading conditions. With the applied strategies and operators, PS-FW algorithm obtains superior performances verified under simulation and experimental setup with multiple cases of shading patterns

    Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity

    Get PDF
    Uzimajući u obzir nezadovoljavajuće djelovanje grupiranja srodnog širenja algoritma grupiranja, kada se radi o nizovima podataka složenih struktura, u ovom se radu predlaže prilagodljivi nadzirani algoritam grupiranja srodnog širenja utemeljen na strukturnoj sličnosti (SAAP-SS). Najprije se predlaže nova strukturna sličnost rješavanjem nelinearnog problema zastupljenosti niskoga ranga. Zatim slijedi srodno širenje na temelju podešavanja matrice sličnosti primjenom poznatih udvojenih ograničenja. Na kraju se u postupak algoritma uvodi ideja eksplozija kod vatrometa. Prilagodljivo pretražujući preferencijalni prostor u dva smjera, uravnotežuju se globalne i lokalne pretraživačke sposobnosti algoritma u cilju pronalaženja optimalne strukture grupiranja. Rezultati eksperimenata i sa sintetičkim i s realnim nizovima podataka pokazuju poboljšanja u radu predloženog algoritma u usporedbi s AP, FEO-SAP i K-means metodama.In view of the unsatisfying clustering effect of affinity propagation (AP) clustering algorithm when dealing with data sets of complex structures, an adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity (SAAP-SS) is proposed in this paper. First, a novel structural similarity is proposed by solving a non-linear, low-rank representation problem. Then we perform affinity propagation on the basis of adjusting the similarity matrix by utilizing the known pairwise constraints. Finally, the idea of fireworks explosion is introduced into the process of the algorithm. By adaptively searching the preference space bi-directionally, the algorithm’s global and local searching abilities are balanced in order to find the optimal clustering structure. The results of the experiments with both synthetic and real data sets show performance improvements of the proposed algorithm compared with AP, FEO-SAP and K-means methods

    Wide-field Infrared Survey Explorer Observations of the Evolution of Massive Star-forming Regions

    Get PDF
    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars

    Introductory Review of Swarm Intelligence Techniques

    Full text link
    With the rapid upliftment of technology, there has emerged a dire need to fine-tune or optimize certain processes, software, models or structures, with utmost accuracy and efficiency. Optimization algorithms are preferred over other methods of optimization through experimentation or simulation, for their generic problem-solving abilities and promising efficacy with the least human intervention. In recent times, the inducement of natural phenomena into algorithm design has immensely triggered the efficiency of optimization process for even complex multi-dimensional, non-continuous, non-differentiable and noisy problem search spaces. This chapter deals with the Swarm intelligence (SI) based algorithms or Swarm Optimization Algorithms, which are a subset of the greater Nature Inspired Optimization Algorithms (NIOAs). Swarm intelligence involves the collective study of individuals and their mutual interactions leading to intelligent behavior of the swarm. The chapter presents various population-based SI algorithms, their fundamental structures along with their mathematical models.Comment: Submitted to Springe

    Swarm Intelligence and Metaphorless Algorithms for Solving Nonlinear Equation Systems

    Get PDF
    The simplicity, flexibility, and ease of implementation have motivated the use of population-based metaheuristic optimization algorithms. By focusing on two classes of such algorithms, particle swarm optimization (PSO) and the metaphorless Jaya algorithm, this thesis proposes to explore the capacity of these algorithms and their respective variants to solve difficult optimization problems, in particular systems of nonlinear equations converted into nonlinear optimization problems. For a numerical comparison to be made, the algorithms and their respective variants were implemented and tested several times in order to achieve a large sample that could be used to compare these approaches as well as find common methods that increase the effectiveness and efficiency of the algorithms. One of the approaches that was explored was dividing the solution search space into several subspaces, iteratively running an optimization algorithm on each subspace, and comparing those results to a greatly increased initial population. The insights from these previous experiments were then used to create a new hybrid approach to enhance the capabilities of the previous algorithms, which was then compared to preexisting alternatives.A simplicidade, flexibilidade e facilidade de implementa¸c˜ao motivou o uso de algoritmos metaheur´ısticos de optimiza¸c˜ao baseados em popula¸c˜oes. Focando-se em dois destes algoritmos, optimiza¸c˜ao por exame de part´ıculas (PSO) e no algoritmo Jaya, esta tese prop˜oe explorar a capacidade destes algoritmos e respectivas variantes para resolver problemas de optimiza¸c˜ao de dif´ıcil resolu¸c˜ao, em particular sistemas de equa¸c˜oes n˜ao lineares convertidos em problemas de optimiza¸c˜ao n˜ao linear. Para que fosse poss´ıvel fazer uma compara¸c˜ao num´erica, os algoritmos e respectivas variantes foram implementados e testados v´arias vezes, de modo a que fosse obtida uma amostra suficientemente grande de resultados que pudesse ser usada para comparar as diferentes abordagens, assim como encontrar m´etodos que melhorem a efic´acia e a eficiˆencia dos algoritmos. Uma das abordagens exploradas foi a divis˜ao do espa¸co de procura em v´arios subespa¸cos, iterativamente correndo um algoritmo de optimiza¸c˜ao em cada subespa¸co, e comparar esses resultados a um grande aumento da popula¸c˜ao inicial, o que melhora a qualidade da solu¸c˜ao, por´em com um custo computacional acrescido. O conhecimento resultante dessas experiˆencias foi utilizado na cria¸c˜ao de uma nova abordagem hibrida para melhorar as capacidades dos algoritmos anteriores, a qual foi comparada a alternativas pr´e-existentes
    corecore