
 September | 2023

Swarm Intelligence and Metaphorless Algorithms
for Solving Nonlinear Equation Systems
MASTER DISSERTATION

Sérgio Gonçalves Sumares Betencourt Ribeiro
MASTER IN INFORMATICS ENGINEERING

Swarm Intelligence and Metaphorless Algorithms
for Solving Nonlinear Equation Systems
MASTER DISSERTATION

Sérgio Gonçalves Sumares Betencourt Ribeiro
MASTER IN INFORMATICS ENGINEERING

SUPERVISION
Luiz Carlos Guerreiro Lopes

Swarm Intelligence and Metaphorless Algorithms

for Solving Nonlinear Equation Systems

Sérgio Gonçalves Sumares Betencourt Ribeiro

B.Sc. in Informatics Engineering

Supervisor:

Prof. Dr. Luiz Carlos Guerreiro Lopes

A thesis presented to the University of Madeira

in fulfillment of the requirements for the degree

of Master of Science in Informatics Engineering

Evaluation Committee:

Prof. Dr. Filipe Magno de Gouveia Quintal, FCEE/UMa(Committee Chair)

Prof. Dr. Eduardo Leopoldo Fermé, FCEE/UMa

Prof. Dr. Luiz Carlos Guerreiro Lopes, FCEE/UMa

Funchal, Portugal, September 2023

Acknowledgements

I would like to acknowledge, first and foremost, my supervisor, Luiz Guerreiro

Lopes, for all the insight and support throughout this thesis, as well as Bruno

Silva, whose ideas and perspectives were not only helpful but also a source

of motivation.

I would also like to thank my family, in particular my wife, who

encouraged me until the end.

iii

Contents

1 Introduction 1

1.1 Preamble . 1

1.2 Motivation . 2

1.3 Background . 4

1.4 Thesis structure . 5

References . 6

2 Overview and Computational Analysis of PSO Variants for Solving

Systems of Nonlinear Equations 8

2.1 Introduction . 9

2.2 PSO-based algorithms for nonlinear equation systems 11

2.2.1 Standard PSO . 11

2.2.2 HPSO . 12

2.2.3 PPSO . 12

2.2.4 nbest PSO . 13

2.2.5 imPSO . 13

2.2.6 APSO–BFA . 14

2.3 Experimental setting . 15

2.3.1 Parameters used for each PSO variant 16

2.3.2 Test problems . 16

2.4 Experimental results and discussion 20

2.5 Conclusion . 23

References . 23

3 PSO Performance for Solving Nonlinear Systems of Equations:

Comparing Segmentation of Search Space and Increase of Number

iv

CONTENTS v

of Particles 27

3.1 Introduction . 28

3.2 Particle swarm optimization 28

3.3 Evolution of search space . 29

3.4 Segmented PSO . 31

3.5 Test problems . 33

3.6 Results obtained . 37

3.7 Conclusion . 40

References . 40

4 PSO–FWA: A New Hybrid Algorithm for Solving Nonlinear

Equation Systems 43

4.1 Introduction . 43

4.2 Background . 44

4.2.1 Particle swarm optimization 44

4.2.2 Fireworks optimization 45

4.3 Related work . 47

4.4 Proposed PSO–FWA algorithm 49

4.5 Experimental setup . 51

4.5.1 Experimental setting 51

4.5.2 Test problems . 51

4.6 Results and discussion . 53

4.7 Conclusion . 56

References . 56

5 Solving Systems of Nonlinear Equations Using Jaya and Jaya-Based

Algorithms: A Computational Comparison 59

5.1 Introduction . 60

5.2 Related work . 62

5.2.1 Jaya algorithm . 62

5.2.2 Modified Jaya algorithm 62

5.2.3 Enhanced Jaya algorithm 63

5.2.4 SAMP–Jaya algorithm 65

5.2.5 Oppositional Jaya algorithm 66

5.3 Computational experiments 67

CONTENTS vi

5.3.1 Experimental setting and implementation 67

5.3.2 Test problems . 68

5.4 Results and discussion . 70

5.5 Conclusion . 84

References . 84

6 Conclusions 88

6.1 Main findings . 88

6.2 Future work . 89

Abstract

The simplicity, flexibility, and ease of implementation have motivated the

use of population-based metaheuristic optimization algorithms. By focusing

on two classes of such algorithms, particle swarm optimization (PSO)

and the metaphorless Jaya algorithm, this thesis proposes to explore the

capacity of these algorithms and their respective variants to solve difficult

optimization problems, in particular systems of nonlinear equations converted

into nonlinear optimization problems. For a numerical comparison to be

made, the algorithms and their respective variants were implemented and

tested several times in order to achieve a large sample that could be used

to compare these approaches as well as find common methods that increase

the effectiveness and efficiency of the algorithms. One of the approaches

that was explored was dividing the solution search space into several

subspaces, iteratively running an optimization algorithm on each subspace,

and comparing those results to a greatly increased initial population. The

insights from these previous experiments were then used to create a new

hybrid approach to enhance the capabilities of the previous algorithms, which

was then compared to preexisting alternatives.

Keywords: Computational intelligence; Particle swarm optimization; Jaya

algorithm; Systems of nonlinear equations.

vii

Resumo

A simplicidade, flexibilidade e facilidade de implementação motivou o uso

de algoritmos metaheuŕısticos de optimização baseados em populações.

Focando-se em dois destes algoritmos, optimização por exame de part́ıculas

(PSO) e no algoritmo Jaya, esta tese propõe explorar a capacidade destes

algoritmos e respectivas variantes para resolver problemas de optimização de

dif́ıcil resolução, em particular sistemas de equações não lineares convertidos

em problemas de optimização não linear. Para que fosse posśıvel fazer

uma comparação numérica, os algoritmos e respectivas variantes foram

implementados e testados várias vezes, de modo a que fosse obtida uma

amostra suficientemente grande de resultados que pudesse ser usada para

comparar as diferentes abordagens, assim como encontrar métodos que

melhorem a eficácia e a eficiência dos algoritmos. Uma das abordagens

exploradas foi a divisão do espaço de procura em vários subespaços,

iterativamente correndo um algoritmo de optimização em cada subespaço,

e comparar esses resultados a um grande aumento da população inicial, o

que melhora a qualidade da solução, porém com um custo computacional

acrescido. O conhecimento resultante dessas experiências foi utilizado na

criação de uma nova abordagem hibrida para melhorar as capacidades dos

algoritmos anteriores, a qual foi comparada a alternativas pré-existentes.

Keywords: Inteligência computacional; Otimização por enxame de part́ıculas;

Algoritmo Jaya; Sistemas de equações não lineares.

viii

List of Figures

3.1 Effect of increasing the search space 32

3.2 Sections of search space for two and three variables 32

3.3 Diagram of von Neumann topology with rank 4 (extracted

from [7]) . 40

5.1 Algorithms performance for Problem 5 – Economics modeling

application . 72

5.2 Algorithms performance for Problem 13 – Nonlinear resistive

circuit . 72

ix

List of Tables

2.1 Average fitness for each variant and problem 21

2.2 Best fitness for each variant and problem 22

3.1 Optimization problems . 31

3.2 Results for PSO with Gbest topology 38

3.3 Results for segmented PSO with von Neumann topology . . . 39

4.1 Average performance of each algorithm 54

4.2 Best performance of each algorithm 55

5.1 Average fitness for each algorithm and problem with dimension 4 74

5.2 Average fitness for each algorithm and problem with dimension 8 75

5.3 Average fitness for each algorithm and problem with

dimension 12 . 76

5.4 Average fitness for each algorithm and problem with

dimension 16 . 77

5.5 Average fitness for each algorithm and problem with

dimension 20 . 78

5.6 Best fitness value for each algorithm and problem with

dimension 4 . 79

5.7 Best fitness value for each algorithm and problem with

dimension 8 . 80

5.8 Best fitness value for each algorithm and problem with

dimension 12 . 81

5.9 Best fitness value for each algorithm and problem with

dimension 16 . 82

x

LIST OF TABLES xi

5.10 Best fitness value for each algorithm and problem with

dimension 20 . 83

Chapter 1

Introduction

1.1 Preamble

This master’s thesis is based on the following peer-reviewed published papers:

Ribeiro, S., Lopes, L.G. (2022). Overview and Computational Analysis

of PSO Variants for Solving Systems of Nonlinear Equations. In: Sharma,

H., Shrivastava, V., Kumari Bharti, K., Wang, L. (eds.) Communication

and Intelligent Systems. Lecture Notes in Networks and Systems, vol. 461.

Springer, Singapore. doi: 10.1007/978-981-19-2130-8 84

Ribeiro, S., Lopes, L.G. (2022). PSO Performance for Solving Nonlinear

Systems of Equations: Comparing Segmentation of Search Space and Increase

of Number of Particles. In: Gervasi, O., Murgante, B., Misra, S., Rocha,

A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications –

ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science,

vol. 13377. Springer, Cham. doi: 10.1007/978-3-031-10536-4 18

Ribeiro, S., Lopes, L.G. (2023). PSO–FWA: A New Hybrid Algorithm

for Solving Nonlinear Equation Systems. In: Gervasi, O., Murgante, B.,

Rocha, A.M.A.C., Garau, C., Scorza, F., Karaca, Y., Torre, C.M. (eds.)

Computational Science and Its Applications – ICCSA 2023 Workshops.

ICCSA 2023. Lecture Notes in Computer Science, vol. 14112. Springer,

Cham. doi: 10.1007/978-3-031-37129-5 5

1

CHAPTER 1: Introduction 2

Ribeiro, S., Silva., B., Lopes, L.G. (2023). Solving Systems of Nonlinear

Equations Using Jaya and Jaya-Based Algorithms: A Computational

Comparison. In: Yadav, A., Nanda, S.J., Lim, M.-H. (eds.) Proceedings

of International Conference on Paradigms of Communication, Computing

and Data Analytics: PCCDA 2023. Algorithms for Intelligent Systems.

Springer, Singapore. doi: 10.1007/978-981-99-4626-6 10

The content of the four papers submitted for publication, which comprise

the main chapters of this master’s thesis, was left unchanged, but their

original format was changed to fit the adopted standard, which led to several

tables having to be modified to the landscape format.

To maintain the original numbering of the references in each paper, the

references of each of them were kept at the end of the corresponding chapter,

as is quite common in theses based on published work, rather than being

integrated into a single list of references at the end of the thesis.

The test problems used in each of the four studies carried out are also

described in each of the corresponding chapters. The fact that the problems

are distinct and their order differs in each of the works is due solely to the fact

that these computational studies were developed at different times without

regard for maintaining exactly the same test problems and their order.

All the algorithms considered in this thesis were implemented in Julia,

a dynamic, user-friendly, and open-source high-level programming language

with a syntax similar to that of MATLAB, originally developed for high-

performance scientific computing and data analysis [1].

1.2 Motivation

Different classes of stochastic computational intelligence algorithms have

been used to solve difficult optimization problems, including swarm

intelligence algorithms such as Particle Swarm Optimization (PSO) [3] and,

more recently, metaphorless algorithms such as Jaya [8], whose simplicity

and efficiency make them quite appealing in comparison to other classes

of more complex population-based algorithms such as genetic and other

evolutionary algorithms.

These stochastic metaheuristic algorithms are comparatively flexible,

CHAPTER 1: Introduction 3

efficient, and robust, which is advantageous when determining near-optimal

solutions to large-scale problems within an acceptable time frame. The trade-

off of not requiring good initial approximations is that the convergence of

these algorithms to a solution is not guaranteed.

A large number of population-based metaheuristic algorithms, such as

PSO and the Fireworks algorithm (FWA) [11], have been proposed. These

algorithms allow for efficient exploration of the search space and have

the ability to escape from local optima. As an added convenience, these

algorithms do not rely on function’s continuity and derivatives, making them

also useful for discontinuous functions.

The potential advantages of these population-based computational

intelligence algorithms make them natural choices for solving difficult

problems, such as large nonlinear equation systems transformed into

nonlinear optimization problems, which motivated the choice of such

algorithms for this research.

In turn, nonlinear equation systems, the class of problems chosen for

this research, appear in almost all simulations of physical processes [5] and

are important in many branches of knowledge, including but not limited

to Engineering, Economics, Chemistry, and Physics [7]. Nonlinear equation

systems are also challenging and hard to solve, especially systems with a

great number of equations and variables.

It is possible to transform a system of nonlinear equations into a nonlinear

optimization problem by adopting the sum of the absolute value of each

equation in the system as an objective function to be minimized, which allows

the use of population-based metaheuristic algorithms to solve the resulting

nonlinear equation systems.

Traditional iterative numerical methods, such as Newton’s method, can

also be used to solve systems of nonlinear equations, but such iterative

methods require good initial approximations for convergence [2]. As the

number of variables increases, so does the challenge of finding good

approximations. It is frequent for numerical optimization algorithms to fail

to converge if the initial approximations adopted are not sufficiently good.

Because of their complexity and difficulty in solving, these problems were

chosen as good test problems to be used throughout this thesis.

CHAPTER 1: Introduction 4

1.3 Background

Only the most important swarm optimization and metaphorless algorithms,

PSO and Jaya, will be briefly outlined here, as these algorithms and several

of their variants will be addressed in more detail in the four main chapters

of this thesis.

The Particle Swarm Optimization (PSO) algorithm was first proposed by

Eberhart and Kennedy [3, 6]. It makes use of information communication

between potential solutions, called particles. This exchange of information

was inspired by the cooperative behaviour of social animals, such as flocks of

birds and schools of fish. These particles iteratively move through the search

space, slowly exploring it while moving towards promising regions until they

converge into a solution.

The equations that update each particle’s position at each iteration are

as follows:

vt+1
i = w · vt

i + r1
t
i · c1 · (pbestti − xt

i) + r2
t
i · c2 · (gbestt − xt

i), (1.1)

xt+1
i = xt

i + vt+1
i . (1.2)

The equation that calculates the updated velocity is subject to three

parameters: w is the inertia weight, used to reduce the weight of the previous

velocity. c1 and c2 are the cognitive and social factor, respectively. The higher

c1, the more each particle will move towards pbest, the best solution it found.

The higher c2, the more each particle will move to gbest, the best solution

found by all the particles in the flock. r1 and r2 are uniformly distributed

random numbers between 0 and 1.

One of the drawbacks of PSO and other similar population-based

metaheuristic algorithms is the number of parameters that affect the

performance of the algorithm. The Jaya algorithm was proposed by Rao

[8, 9] as a simple and efficient parameter-less algorithm that remains efficient

and effective. The only parameters are the population size and the maximum

number of iterations.

Assuming a numV ar number of decision variables, where v is the index of

the variable, a p population index, and an iteration i, the proposed solution

CHAPTER 1: Introduction 5

xv,p,i is the vth proposed solution at iteration i for the decision variable at

index v. The updated value at iteration i + 1 is given by the following

equation:

xnew
v,p,i = xv,p,i + r1,v,i (xv,best,i − |xv,p,i|)− r2,v,i (xv,worst,i − |xv,p,i|) , (1.3)

where r1,v,i and r2,v,i are uniformly distributed random numbers between 0

and 1, and xv,best,i and xv,worst,i are the candidate solutions with the best

and the worst fitness values, respectively.

In simple terms, at each iteration, each member of the population will

move toward the best solution and away from the worst.

These two simple and efficient population-based algorithms will serve as

the basis for the four studies that constitute the body of this thesis. In

the following chapters, additional information about these two algorithms

and some of their variants will be presented, along with the results of

comparative analyzes of the performance of these algorithms in solving

systems of nonlinear equations, which is commonly regarded as the most

difficult problem in all of numerical mathematics (see, e.g., [4, 10]).

1.4 Thesis structure

The present thesis is comprised of four computational studies that can

be divided into two parts. The first is focused on the Particle Swarm

Optimization (PSO) algorithm and its variants, corresponding to Chapters

2, 3, and 4. The second part, which corresponds only to Chapter 5, explores

the use of metaphorless algorithms, namely Jaya and some of its variants,

which constitute a more recent class of population-based metaheuristics.

Chapter 2 introduces the standard PSO algorithm as well as a number of

PSO variants and compares their performance on a set of nonlinear equation

system problems.

In Chapter 3, a comparison of the results produced by PSO with a higher

number of particles versus a segmentation of the search space is presented

and discussed.

Chapter 4 presents a new population-based hybrid optimization algorithm

derived from the hybridization of PSO and the Fireworks Algorithm (FWA).

CHAPTER 1: Introduction 6

The Jaya metaphorless algorithm and some of its variants are described

in Chapter 5 and their performance when solving some difficult nonlinear

equation system problems is compared.

Finally, in Chapter 6, the main findings of the research are presented,

along with some suggestions for future work.

References

[1] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.

Julia: A fresh approach to numerical computing. SIAM Review 59, 1

(2017), 65–98.

[2] Choi, H., Kim, S., and Shin, B.-C. Choice of an initial guess for

Newton’s method to solve nonlinear differential equations. Computers

& Mathematics with Applications 117 (2022), 69–73.

[3] Eberhart, R., and Kennedy, J. A new optimizer using particle

swarm theory. In 6th International Symposium on Micro Machine

and Human Science, Nagoya, Japan, 4–6 October 1995 (1995), IEEE,

pp. 39–43.

[4] Karr, C., Weck, B., and Freeman, L. Solutions to systems of

nonlinear equations via genetic algorithms. Engineering Applications of

Artificial Intelligence 11, 3 (1998), 369–375.

[5] Kelley, C. Solving Nonlinear Equations with Newton’s Method. SIAM,

Philadelphia, PA, 2003.

[6] Kennedy, J., and Eberhart, R. Particle swarm optimization.

In International Conference on Neural Networks, Perth, Australia, 27

November–1 December 1995 (1995), vol. 4, IEEE, pp. 1942–1948.

[7] Pérez, R., and Lopes, V. Recent applications and numerical

implementation of quasi-Newton methods for solving nonlinear systems

of equations. Numerical Algorithms 35, 2–4 (2004), 261–285.

CHAPTER 1: Introduction 7

[8] Rao, R. Jaya: A simple and new optimization algorithm for solving

constrained and unconstrained optimization problems. International

Journal of Industrial Engineering Computations 7 (2016), 19–34.

[9] Rao, R. Jaya: An Advanced Optimization Algorithm and its

Engineering Applications. Springer, Cham, Switzerland, 2019.

[10] Rice, J. Numerical Methods, Software, and Analysis, 2nd ed. Academic

Press, Boston, 1993.

[11] Tan, Y., and Zhu, Y. Fireworks algorithm for optimization. In

International Conference on Swarm Intelligence (2010), pp. 355–364.

Chapter 2

Overview and Computational

Analysis of PSO Variants for

Solving Systems of Nonlinear

Equations

The problem of solving systems of nonlinear equations is one of great

difficulty, especially as the scale of these systems grow. Traditional numerical

methods rely on selecting good initial estimates for the roots and refine

them iteratively, which is not a simple task, especially with large systems

of nonlinear equations. Particle Swarm Optimization (PSO), in turn, is

a nature-inspired meta-heuristic algorithm for finding the minimum of a

function for which multiple improvements and different hybridizations have

been proposed. These modifications range from dynamically choosing

parameters and topologies to hybridization with other population-based

optimization algorithms. All of these modifications have the goal of improving

the basic algorithm, and a broader comparison between these proposals is

necessary to further understand what might be the path forward in achieving

better and more exact results. In this paper, after a brief overview of PSO-

based algorithms for nonlinear equation systems, several PSO variants are

tested on a number of problems in order to find the solution to non-trivial

systems of nonlinear equations. Each variant was tested 100 times on each

problem, in order to produce enough samples for a legitimate comparison.

8

CHAPTER 2: Overview and Computational Analysis of PSO Variants 9

2.1 Introduction

Solving systems of nonlinear equations is possibly the most difficult and

challenging problem in all of numerical mathematics [15, 26] and there is

not a general method sufficiently efficient and robust for its solution [24].

The difficulties associated with obtaining good numerical approximations

to the solutions of nonlinear equation systems are amplified as the number

of equations increases. However, it is not hard to find many examples of

systems of nonlinear equations with less than ten algebraic or transcendental

equations, from different areas of science and engineering, that are difficult

to solve adequately by traditional numerical techniques.

In addition, although there are a variety of iterative methods in the

extensive literature for the numerical solution of systems of nonlinear

equations (see, e.g., the methods and references in [9, 16, 25]) much of them

are severely limited by their domains of convergence, and the success of their

application is strongly dependent on the initial approximations used. Cases

of non-convergence to any of the solutions are relatively frequent in practice.

Nonlinear equations and nonlinear equation systems appear in nearly all

simulations of physical processes [17]. An example of this are the physical

models expressed mathematically by nonlinear partial differential equations

which, when discretized for numerical solution, are transformed into large

systems of nonlinear equations, many of them difficult to solve by traditional

iterative methods.

In fact, solving systems of nonlinear equations is of fundamental

importance in many fields, such as chemistry, economics, electronics,

mechanics, robotics, medicine and different branches of engineering

[1, 23, 28].

Due to the drawbacks mentioned above, nature-inspired metaheuristic

and hybrid approaches, including PSO-based algorithms, have attracted

increasing interest in more recent years due to their potential for solving

systems of nonlinear equations and other difficult numerical problems. In

the particular case of solving nonlinear equation systems, these approaches

usually consist in transforming the original problem into a corresponding

nonlinear optimization problem [3], and numerically approximating the

solutions of this problem by using a pure metaheuristic search algorithm

CHAPTER 2: Overview and Computational Analysis of PSO Variants 10

or even a hybrid metaheuristic-based strategy.

When the use of exact optimization algorithms is not possible due to

the fact that the problems are large and highly complex, which occurs

for example when viewing the problem of solving a large-scale system of

nonlinear equations as a multiobjective optimization problem, it is necessary

to use stochastic optimization algorithms [30], which allow to find near-

optimal solutions within a reasonable execution time.

Nature-inspired metaheuristic optimization algorithms, a large and

important class of stochastic optimization techniques [14] that allow the

efficient exploration of search spaces and the solving of complex problems

with multiple conflicting objectives [4], include swarm intelligence (SI) based

algorithms.

These algorithms are characterized by their robustness and the ability

to escape from local optima, which although fundamental for any search

algorithm, it is not found in traditional iterative methods of optimization. In

addition, the complexities and discontinuities present in the equations that

constitute a given system have little or no effect on their search performance.

This paper focuses in one of such SI based algorithms, known as Particle

Swarm Optimization (PSO), for which multiple modifications have been

proposed (see, e.g., [11]), some of which specifically to deal with the

problem of solving systems of nonlinear equations, whose performance is

here compared and reported.

Since the focus of this comparison is the use of PSO variants for solving

systems of nonlinear equations, other alterations proposed to the PSO

algorithm for generic optimization, such as the one presented in [8] were

not implemented.

In the comparison carried out in this study, there are some other PSO

variants that could not be used for different reasons. For example, Abraham

et al. [2] proposed some alterations to the PSO algorithm to solve Diophantine

equations. However, since the solution space for the problems used for testing

is different, the results could not be fairly compared. Other two variants,

both from [29] were not used since that paper does not mention some of the

parameters used, and tests of the implementations could not reproduce the

original results.

CHAPTER 2: Overview and Computational Analysis of PSO Variants 11

2.2 PSO-based algorithms for nonlinear equation

systems

A brief overview of the main PSO-based algorithms for solving systems of

nonlinear equations is presented below beginning with a short description of

the standard PSO algorithm with inertia weight parameter, followed by a

succinct characterization of the essence of the other PSO-based algorithms

used in this study for solving nonlinear equation systems.

2.2.1 Standard PSO

Particle swarm optimization (PSO) was introduced by Eberhart and Kennedy

[10, 18]. It is a meta-heuristic algorithm which is based on the movement

of cooperative groups of animals, such as flocks of birds and schools of fish.

There are a number of particles, with position x, each representing a potential

solution to the problem. The particles in the swarm move with velocity v

through the solution space, according to the following equations (see, e.g.,

[5, 11]), corresponding to the standard PSO algorithm with the inertia weight

parameter introduced by Shi and Eberhart [27]:

vt+1
i = w · vt

i + r1
t
i · c1 · (pbestti − xt

i) + r2
t
i · c2 · (gbestt − xt

i), (2.1)

xt+1
i = xt

i + vt+1
i . (2.2)

The algorithm is subject to three different parameters: w is the inertia

weight, c1 is called the cognitive factor, and c2 the social factor. These

parameters influence how much the movement of each particle i will tend to

their best visited position up to the iteration t, pbestti or to the best solution

found so far, gbestt. In turn, r1 and r2 are vectors of uniformly distributed

random numbers. The particles explore the solution space with a tendency to

move towards better locations, following the particles closer to the minimum.

There is no guarantee that the particles will not prematurely converge to a

local minimum, and several modifications have been proposed to tackle this

issue.

CHAPTER 2: Overview and Computational Analysis of PSO Variants 12

2.2.2 HPSO

The hybrid particle swarm optimization (HPSO) algorithm [22] was proposed

as a potential improvement over the standard PSO algorithm. It hybridizes

PSO with the Nelder–Mead Simplex method. The main goal of this idea was

to use PSO’s global search capabilities with simplex method local search.

The basic algorithm is similar to PSO but after evaluating each particle,

the worst particle is replaced by a new particle using the simplex method. It

has the advantage of being a simple hybridization that always improves the

overall position of the particles in the swarm by adjusting the worst particle,

at a low computational cost. One of the particularities of this approach is that

the number of particles must be N + 1, where N is the number of variables

of the system, so that the simplex can be calculated. Another particularity

is the equation used to calculate the inertia weight,

w = (wmax − wmin) · exp
(
tmax − t

tmax

)
− wmin. (2.3)

Instead of using a fixed or linear inertia weight, this variant uses a weight

that takes smaller steps towards the minimum as the number of iterations

increases.

2.2.3 PPSO

Since the parameters of the PSO algorithm can change its performance, the

Proposed Particle Swarm Optimization (PPSO) [13] chooses to bypass this

choice by altering the velocity and position update equations. Using the

following equations to calculate the velocity, inertia weight and position for

each particle, the performance of the algorithm is not dependent on the social

and cognitive factor:

vt+1
i = (2r1

t
i − 0.5)vt

i + (2r2
t
i − 0.5)(pbestti −xt

i) + (2r3
t
i − 0.5)(gbestt−xt

i),

(2.4)

wt+1 = (2r4
t
i − 0.5)(gbestt − pbestti) + (2r5

t
i − 0.5)(gbestt − xt

i), (2.5)

xt+1
i = pbestti + (2r6

t
i − 0.5)vt+1

i + (2r7
t
i − 0.5)wt+1, (2.6)

CHAPTER 2: Overview and Computational Analysis of PSO Variants 13

where r1 to r7 are uniform random numbers between 0 and 1.

One notable difference is that the position always has the pbest of the

particle as a basis, so particles do not stray to non-promising areas of the

search space. While this can be an advantage, it also limits exploration.

2.2.4 nbest PSO

The original PSO assumed a gbest topology, meaning that, for the purpose of

calculating the velocity, the best point found by every particle is considered.

However, this is not the only possible topology for PSO. In [10], Eberhart and

Kennedy proposed an alternative topology, called lbest, where each particle

only takes into account the pbest of k other particles, usually with k = 2.

This has the effect of reducing the problem of premature convergence. Thus,

the gbest topology is a particular case of lbest, where k is equal to the number

of particles.

What the nbest PSO algorithm proposes is a dynamic topology [7], where

each particle is in the same neighborhood as the k particles closest to itself.

This way, even if some particles get stuck in local minima, some particles

are still free to explore the search space. This can also be used to find

multiple solutions to the system of nonlinear equations. This method has the

disadvantage of being very computationally expensive, as for each iteration,

it is necessary to calculate the distance of each particle in relation to each

other and select the k closest particles.

There are multiple ways of selecting the number of particles in the

neighborhood, from selecting a fixed number to using a formula to calculate

the number at each iteration. One equation proposed in [6] sets a minimum

and a maximum k. For each iteration t, k is calculated according to the

following equation:

kt =
⌈tmax − t

tmax

· (kinitial − kfinal) + kfinal

⌉
. (2.7)

2.2.5 imPSO

Improved PSO (imPSO) is a proposal for an improvement on standard PSO

for its adapted inertia weight [19]. The inertia weight is calculated according

CHAPTER 2: Overview and Computational Analysis of PSO Variants 14

to the following equation:

w = a− c
1

b gbestt
+ d

1

f bfc + 1
. (2.8)

There is a large number of added parameters to this method. According

to [19], a is a value between 0.8 and 1, b should have a value between 1 and

1.5, c a value between 0.6 and 1.2, d should be between 0.05 and 0.2, and

f should have a value between 1 and 2.5. gbestt is the best value found on

iteration t and bfc is the standard deviation of the position of the particles.

According to the first fraction of the equation, as the gbest tends towards 0

the inertia weight will also decrease. When the particles are spread out, the

inertia weight will be larger, but as they converge to a single position, the

inertia weight will decrease.

There is another factor associated with imPSO that will be ignored for

the purpose of a fair comparison with the remaining algorithms, but must be

here mentioned. The probability of getting the optimal value is calculated

through multiple simulations in order to calculate the number of restarting

times mb.

The algorithm is ran until the number of simulations reaches mb or a

solution is found. If the number of simulations reaches mb, the output is “No

results”, meaning that a solution does not exist. While this is a good method

to achieve reliable results in order to solve a system of nonlinear equations,

for the purpose of comparing different approaches—as any algorithm will

achieve a better result if it is executed multiple times and only those where

it converges to the global minimum are selected—comparisons using imPSO

ignore this part of the algorithm.

2.2.6 APSO–BFA

APSO–BFA is an hybridization between PSO and Bacterial Foraging

Algorithm (BFA) [20]. In a similar way to PSO, BFA is a nature-

inspired optimization algorithm where every member of a population

represents a candidate solution in the solution space. BFA contains three

main components: chemotaxis, reproduction, and elimination-dispersal.

Chemotaxis is the exploration phase of the algorithm. In APSO–BFA, this

CHAPTER 2: Overview and Computational Analysis of PSO Variants 15

corresponds to the usual iteration of the PSO algorithm, where the velocity

and position of each particle are calculated, as well as the update of the best

values found. This is followed by the reproduction phase, where only the

particle with the best value for the fitness function survive and duplicate.

This means that the worst particles are removed every few iterations and

each remaining particle is copied. Although the particles are copied, the

random elements of the velocity equation guarantees that the duplicate

particle will not have exactly the same velocity and position as the original

one. Finally, there is the elimination-dispersal phase, where bacteria are

eliminated with a small probability and replacements randomly initialized.

This is the final phase, meaning it is the one that occurs the least number

of times. The phases are executed in nested loops, meaning that for each

reproduction phase, the chemotaxis phase will occur a fixed number of

times and that the reproduction phase will occur a number of times for each

elimination-dispersal phase.

PSO–BFA, unlike other PSO variants, does not keep going until a

predefined maximum iteration number is reached or the minimum is found.

Each phase is repeated several times, with the initial phases being nested

inside the later ones. However, it would be simple to make the modification

to the algorithm to include stopping criteria at the start of each chemotaxis

phase. The equations to calculate velocity and position are the same

as standard PSO, but each individual phase of BFA is integrated in this

hybridization.

2.3 Experimental setting

The aforementioned variants, as well as the standard PSO algorithm with

inertia weight were tested on a number of problems. As each variant was

presented with different parameters on their respective papers, these values

were followed, meaning that the only parameter in common was the number

of particles used, with the exception of HPSO, since the number of particles

is dependent on the number of variables of the system. This means that

in terms of the raw number of particles, HPSO used much fewer particles.

The number of particles for the remaining variants was 100. The number of

CHAPTER 2: Overview and Computational Analysis of PSO Variants 16

iterations was always 1 000, with the exception of the APSO–BFA, since it

uses nested phases. The values of parameters used were the ones used in [20],

meaning that the chemotaxis phase ocurred 300 times.

2.3.1 Parameters used for each PSO variant

While choosing the same parameters for each PSO variant was an option

when testing the results, it was decided that using the values adopted in

each variant’s original article would be a fairer method to compare them,

since there was the possibility that each variant performed better with a

different set of parameters.

For PSO, the inertia weight was 0.7, the cognitive factor 1.8, and the

social factor 1.5. For HPSO, wmax was 0.9 and wmin was 0.4. PPSO had

no parameters. Nbest’s inertia weight linearly decreased between 0.7 and

0.1, the cognitive factor and social factor were both 1.4, kinitial = 5, and

kfinal = 1. ImPSO’s set of parameters were a = 1.0, b = 1.8, c = 1.5, d = 0.2

and f = 2.0. APSO–BFA’s inertia weight linearly decreases between 0.9 and

0.4, the cognitive factor was 1.2, and the social factor was 1.8. The number of

chemotaxis repetitions for each reproduction phase, Nc was 15. The number

of reproduction phases for each dispersal-elimination phase, Nre was 10 and

the number of dispersal-elimination phases was 2. During the dispersal-

elimination phase, the probability that a particle is randomly deleted, Ped

was 0.25.

2.3.2 Test problems

The test problems used on each PSO variant were the following:

Problem 1. ([28], Interval arithmetic benchmark i1), n = 10.

f1(x) = x1 − 0.25428722− 0.18324757 x4x3x9

f2(x) = x2 − 0.37842197− 0.16275449 x1x10x6

f3(x) = x3 − 0.27162577− 0.16955071 x1x2x10

f4(x) = x4 − 0.19807914− 0.15585316 x7x1x6

f5(x) = x5 − 0.44166728− 0.19950920 x7x6x3

f6(x) = x6 − 0.14654113− 0.18922793 x8x5x10

f7(x) = x7 − 0.42937161− 0.21180486 x2x5x8

CHAPTER 2: Overview and Computational Analysis of PSO Variants 17

f8(x) = x8 − 0.07056438− 0.17081208 x1x7x6

f9(x) = x9 − 0.34504906− 0.19612740 x10x6x8

f10(x) = x10 − 0.42651102− 0.21466544 x4x8x1

D = ([−2, 2], . . . , [−2, 2])T

Problem 2. ([12], Problem D1 – Modified Rosenbrock), n = 12.

f2i−1(x) =
1

1 + exp(−x2i−1)
− 0.73

f2i(x) = 10(x2i − x2
2i−1),

i = 1, . . . , n
2

x(0) = (−1.8,−1, . . . ,−1.8,−1)T

D = ([−10, 10], . . . , [−10, 10])T

Problem 3. ([12], Problem D2 – Augmented Rosenbrock), n = 12.

f4i−3(x) = 10(x4i−2 − x2
4i−3)

f4i−2(x) = 1− x4i−3

f4i−1(x) = 1.25x4i−1 − 0.25x3
4i−1

f4i(x) = x4i,

i = 1, . . . , n
4

x(0) = (−1.2, 1,−1, 20, . . . ,−1.2, 1,−1, 20)T

D = ([−10, 10], . . . , [−10, 10])T

Problem 4. ([12], Problem D3 – Powell badly scaled), n = 12.

f2i−1(x) = 104x2i−1x2i − 1

f2i(x) = exp(−x2i−1) + exp(−x2i)− 1.0001, i = 1, . . . , n
2

x(0) = (0, 100, . . . , 0, 100)T

D = ([0, 100], . . . , [0, 100])T

Problem 5. ([12], Problem D4 – Augmented Powell badly scaled), n = 12.

f3i−2(x) = 104x3i−2x3i−1 − 1

f3i−1(x) = exp(−x3i−2) + exp(−x3i−1)− 1.0001

f3i(x) = φ(x3i),

i = 1, . . . , n
3
, where:

φ(t) =


t
2
− 2, if t ≤ −1
1

1998
(−1924 + 4551t+ 888t2 − 592t3), if t ∈ [−1, 2]

t
2
+ 2, if t ≥ 2

x(0) = (0, 1,−4, . . . , 0, 1,−4)T

D = ([−5, 5], . . . , [−5, 5])T

CHAPTER 2: Overview and Computational Analysis of PSO Variants 18

Problem 6. ([12], Problem D5 – Tridimensional valley), n = 12.

f3i−2(x) = (c2x
3
3i−2 + c1x3i−1) exp

(
−
x2
3i−2

100

)
− 1,

f3i−1(x) = 10 (sin(x3i−2)− x3i−1)

f3i(x) = 10 (cos(x3i−2)− x3i),

i = 1, . . . ,
n

3
,

where:

c1 = 1.003344481605351

c2 = −3.344481605351171× 10−3

x(0) = (−4, 1, 2, 1, 2, 1, 2, . . .)T

D = ([−10, 10], . . . , [−10, 10])T

Problem 7. ([12], Problem D6 – Shifted and augmented trigonometric

function with an Euclidean sphere), n = 12.

fi(x) = n− 1−
n−1∑
j=1

cos(xj − 1) + i(1− cos(xi − 1))− sin(xi − 1),

i = 1, . . . , n− 1

fn(x) =
n∑

j=1

x2
j − 10000

x(0) = (0, . . . , 0)T

D = ([−200, 200], . . . , [−200, 200])T

Problem 8. ([12], Problem D7 – Diagonal of three variables premultiplied by

a quasi-orthogonal matrix), n = 12.

f3i−2(x) = 0.6x3i−2 + 1.6x3
3i−1 − 7.2x2

3i−1 + 9.6x3i−1 − 4.8

f3i−1(x) = 0.48x3i−2−0.72x3
3i−1+3.24x2

3i−1−4.32x3i−1−x3i+0.2x3
3i+2.16

f3i(x) = 1.25x3i − 0.25x3
3i,

i = 1, . . . , n
3

x(0) = (50, 0.5,−1, 50, 0.5,−1, . . .)T

D = ([−5, 5], . . . , [−5, 5])T

Problem 9. ([12], Problem D8 – Diagonal of three variables premultiplied

by an orthogonal matrix, combined with inverse trigonometric function),

n = 12.

f3i−2(x) = 64(x3i−2 + x3i−1 + x3i)− 0.64 + 0.48 arctan(x3i)+

0.60(c1 + c2x3i−1 + c3x
2
3i−1 + c4x

3
3i−1)

f3i−1(x) = 0.48− 48(x3i−2 + x3i−1 + x3i) + 0.36 arctan(x3i)+

CHAPTER 2: Overview and Computational Analysis of PSO Variants 19

0.80(c1 + c2x3i−1 + c3x
2
3i−1 + c4x

3
3i−1)

f3i(x) = 0.60− 60(x3i−2 + x3i−1 + x3i) + 0.80 arctan(x3i),

i = 1, . . . , n
3

c1 = 13.901020408163270000

c2 = −1.4056122448979600000
c3 = −2.2183673469387760000
c4 = −0.27704081632653060000
x(0) = (10,−5.223,−1.393, 10,−5.223,−1.393, . . .)T

D = ([−200, 200], . . . , [−200, 200])T

Problem 10. ([21], 20 – Watson function), n = 31.

fi(x) =
m∑
j=2

(j − 1)xjt
j−2
i −

(
m∑
j=1

xjt
j−1
i

)2

− 1,

t = i
29
, i = 1, . . . , 29

f30(x) = x1

f31(x) = x2 − x2
1 − 1

x(0) = (0, . . . , 0)T

D = ([−100, 100], . . . , [−100, 100])T

Problem 11. ([21], 22 – Extended Powell singular function), n = 12.

f4i−3(x) = x4i−3 + 10x4i−2

f4i−2(x) =
√
5(x4i−1 − x4i)

f4i−1(x) = (x4i−2 − 2x4i−1)
2

f4i(x) =
√
10(x4i−3 − x4i)

2,

i = 1, . . . , 5

x(0) = (3,−1, 0, 1, . . . , 3,−1, 0, 1)T

D = ([−100, 100], . . . , [−100, 100])T

Problem 12. ([21], 25 – Variable dimensioned function), n = 12.

fi(x) = xi − 1, i = 1, . . . , n

fn+1(x) =
n∑

j=1

j(xj − 1)

fn+2(x) =

(
n∑

j=1

j(xj − 1)

)2

x(0) = (1− 1

n
, 1− 2

n
, . . . , 0)T

D = ([−100, 100], . . . , [−100, 100])T

CHAPTER 2: Overview and Computational Analysis of PSO Variants 20

Problem 13. ([21], 28 – Discrete boundary value function), n = 12.

f1(x) = 2x1 − x2 + h2(x1 + h+ 1)3/2

fn(x) = 2xn − xn−1 + h2(xn + nh+ 1)3/2

fi(x) = 2xi − xi−1 − xi+1 + h2(xi + ti + 1)3/2, i = 2, . . . , n− 1,

where h = 1
n+1

e ti = ih.

x(0) = (φj), φj = tj(tj − 1), j = 1, . . . , n

D = ([0, 5], . . . , [0, 5])T

Problem 14. ([31], Example 4.2), n = 100.

fi(x) = xi −
1

2n

(
n∑

j=1

x3
j + i

)
, i = 1, . . . , n

D = ([−10, 10], . . . , [−10, 10])T

2.4 Experimental results and discussion

Each of the PSO-based algorithms was run 100 times for each problem

and the results were recorded. Table 1 shows the average value for each

variant and for each problem. Table 2 shows the minimum value found. The

minimum values for each problem are shown in bold.

The APSO–BFA variant achieved the best average results on 10 out of

14 problems, performing much better than the alternatives on problems 10,

11 and 12 in particular. However, when we look at the best fitness found,

while it did achieve the best result in six problems, the standard PSO with

inertia weight had the same number of minimum values found. PPSO had

the best performance on problem 8 in particular. HPSO, nbest PSO and

imPSO performed consistently worse than the alternatives.

It is interesting to note that the PSO with inertia weight reached the

best fitness for many problems, when it did not perform particularly well on

average. A possible explanation is that the PSO variants often rely on solving

the problem of premature convergence of the PSO algorithm. However, when

the particles are near the absolute minimum, this characteristic is a positive

one, giving an advantage to the PSO algorithm.

C
H
A
P
T
E
R

2:
O
verv

iew
an

d
C
om

p
u
tation

al
A
n
aly

sis
of

P
S
O

V
arian

ts
21

Table 2.1: Average fitness for each variant and problem

Probl. PSO HPSO PPSO nbest PSO imPSO APSO-BFA

1 0.0528181 1.2455202 0.1184616 1.0001038 0.0908982 0.3082658

2 2.9814693 43.7396248 4.3049946 19.5092511 63.8314145 0.0532433

3 8.9968749 28.3936415 7.778936 9.9269534 26.5228901 3.0211635

4 146074.6665 18933.73947 102024.748 9636600 1748.411864 7.5670768

5 8.6065558 305.9715265 5.3841644 14.6271948 257.0224481 5.1945554

6 3.9516086 26.9582765 5.5350005 16.1843605 28.7878497 3.4509692

7 12.0141506 5436.467177 14.513556 24.5525433 156.6607548 18.4907909

8 3.1546608 14.3154373 2.5051079 6.8354779 10.9075963 4.7466275

9 55.2570537 9512.331841 97.1277246 9620.411493 355.9871371 52.9168442

10 687.0008116 4111.382325 1203.176166 1979.955606 968.4655094 11.4743482

11 86.4270586 1335.560895 38.544432 615.5957049 1373.850167 0.0000172

12 103.1314993 96.6219912 82.1260091 141.369621 317.349339 0.00001

13 3.6060743 0.3698597 3.723098 6.4950727 7.7535702 0.1959979

14 3.7440374 12.9426592 4.1950816 11.2938565 15.6786825 8.0368876

C
H
A
P
T
E
R

2:
O
verv

iew
an

d
C
om

p
u
tation

al
A
n
aly

sis
of

P
S
O

V
arian

ts
22

Table 2.2: Best fitness for each variant and problem

Probl. PSO HPSO PPSO nbest PSO imPSO APSO-BFA

1 0.0001408 0.3478782 0.0046987 0.3204995 0.0020883 0.041756

2 0.6129596 2.4106494 0.4826853 3.9993273 16.74129 0.0063515

3 1.6164305 3.3723909 2.0379767 5.3806241 9.4492288 3.0000000

4 0.0005094 1674.549033 3.8449885 2800000 8.386666 5.879998

5 1.5390559 5.7505782 1.4736512 2.1391297 20.05712 1.7346438

6 0.4550197 7.5608556 0.7633491 7.1926957 8.8070766 1.7496797

7 3.0020004 21.8360809 4.0097878 12.7831969 47.5687671 4.8217703

8 0.4606752 4.071636 0.1132738 3.080901 1.35673 1.246511

9 15.6940951 138.9986975 30.8773803 454.4669816 79.2954677 10.1141256

10 67.613611 6.5066936 158.6487704 217.3058526 4.5687597 1.7578917

11 9.3435249 11.0110084 0.761295 132.8155348 562.7917561 1.41e−31

12 33.3304672 14.8876008 22.8491931 69.2140424 197.5205035 0

13 1.0650655 0.2007966 1.3024803 4.8109839 3.1403194 0.1611444

14 0.3559807 6.6422099 0.6392254 4.9785431 7.3584499 1.6831947

CHAPTER 2: Overview and Computational Analysis of PSO Variants 23

2.5 Conclusion

Overall, the algorithms were not always successful in solving the nonlinear

equation systems. One of the reasons for this is the number of variables in

each system, which were considerably higher than the ones present in the

variant’s original articles, whose tests consisted often of systems with less

than six variables.

As such, these results are a good way of comparing the variants in

complex, non-trivial problems on a number of particles that was evidently

not high enough to reach the solutions for each system.

The most successful PSO-based algorithm was APSO-BFA, which can

be explained by being the one that changes the PSO algorithm much more

drastically than the other alternatives. In stark contrast, imPSO, which only

made slight alterations to the inertia weight, performed poorly, and so did

HPSO, which modifies only the worst-performing particle, in addition to the

modified inertia weight. The best fitness found for each variant show that

the PSO algorithm, while not performing the best on average, finds the best

solution at least some of the time, a result of rapid convergence if one of

the particles happens to start in a promising position. This also occurs in

APSO-BFA, due to the reproduction phase leading to an exploration of a

promising local region.

References

[1] Abdollahi, M., Bouyer, A., and Abdollahi, D. Improved cuckoo

optimization algorithm for solving systems of nonlinear equations. The

Journal of Supercomputing 72, 3 (2016), 1246–1269.

[2] Abraham, S., Sanyal, S., and Sanglikar, M. Particle swarm

optimisation based Diophantine equation solver. International Journal

of Bio-Inspired Computation 2, 2 (2010), 100–114.

[3] Amaya, I., Cruz, J., and Correa, R. Real roots of nonlinear

systems of equations through a metaheuristic algorithm. Dyna 78, 170

(2011), 15–23.

CHAPTER 2: Overview and Computational Analysis of PSO Variants 24

[4] Blum, C., and Roli, A. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys 35, 3

(2003), 268–308.

[5] Bonyadi, M., and Michalewicz, Z. Particle swarm optimization

for single objective continuous space problems: A review. Evolutionary

Computation 25, 1 (2017), 1–54.

[6] Brits, R. Niching strategies for particle swarm optimization. M.Sc.

Thesis, University of Pretoria, Pretoria, South Africa, 2002.

[7] Brits, R., Engelbrecht, A., and van den Bergh, F. Solving

systems of unconstrained equations using particle swarm optimization.

In IEEE International Conference on Systems, Man and Cybernetics,

Yasmine Hammamet, Tunisia, 6–9 October 2002 (2002), vol. 3, 6 pp.,

IEEE.

[8] Clerc, M. The swarm and the queen: Towards a deterministic and

adaptive particle swarm optimization. In 1999 Congress on Evolutionary

Computation – CEC99 (Cat. No. 99TH8406) (1999), vol. 3, pp. 1951–

1957.

[9] Deuflhard, P. Newton Methods for Nonlinear Problems. Springer-

Verlag, Berlin, 2006.

[10] Eberhart, R., and Kennedy, J. A new optimizer using particle

swarm theory. In 6th International Symposium on Micro Machine

and Human Science, Nagoya, Japan, 4–6 October 1995 (1995), IEEE,

pp. 39–43.

[11] Freitas, D., Lopes, L., and Morgado-Dias, F. Particle swarm

optimisation: A historical review up to the current developments.

Entropy 22, 3 (2020), 362.

[12] Friedlander, A., Gomes-Ruggiero, M., Kozakevich, D.,

Mart́ınez, J., and Santos, S. Solving nonlinear systems of equations

by means of quasi-newton methods with a nonmonotone strategy.

Optimization Methods & Software 8, 1 (1997), 25–51.

CHAPTER 2: Overview and Computational Analysis of PSO Variants 25

[13] Jaberipour, M., Khorram, E., and Karimi, B. Particle swarm

algorithm for solving systems of nonlinear equations. Computers &

Mathematics with Applications 62, 2 (2011), 566–576.

[14] Jr., I. F., Yang, X.-S., Fister, I., Brest, J., and Fister,

D. A brief review of nature-inspired algorithms for optimization.

Elektrotehnǐski Vestnik 80, 3 (2013), 115–122.

[15] Karr, C., Weck, B., and Freeman, L. Solutions to systems of

nonlinear equations via genetic algorithms. Engineering Applications of

Artificial Intelligence 11, 3 (1998), 369–375.

[16] Kelley, C. Iterative Methods for Linear and Nonlinear Equations.

SIAM, Philadelphia, PA, 1995.

[17] Kelley, C. Solving Nonlinear Equations with Newton’s Method. SIAM,

Philadelphia, PA, 2003.

[18] Kennedy, J., and Eberhart, R. Particle swarm optimization.

In International Conference on Neural Networks, Perth, Australia, 27

November–1 December 1995 (1995), vol. 4, IEEE, pp. 1942–1948.

[19] Li, Y., Wei, Y., and Chu, Y. Research on solving systems of

nonlinear equations based on improved PSO. Mathematical Problems

in Engineering 2015, paper 727218 (2015).

[20] Mai, X., and Li, L. Bacterial foraging algorithm based on PSO

with adaptive inertia weigh for solving nonlinear equations systems. In

Advanced Materials Research, vol. 655–657. Trans Tech Publishers, 2013,

pp. 940–947.

[21] Moré, J., Garbow, B., and Hillstrom, K. Testing unconstrained

optimization software. ACM Transactions on Mathematical Software 7,

1 (1981), 17–41.

[22] Ouyang, A., Zhou, Y., and Luo, Q. Hybrid particle swarm

optimization algorithm for solving systems of nonlinear equations.

In 2009 IEEE International Conference on Granular Computing,

Nanchang, China, 17–19 August 2009 (2009), IEEE, pp. 460–465.

CHAPTER 2: Overview and Computational Analysis of PSO Variants 26

[23] Pérez, R., and Lopes, V. Recent applications and numerical

implementation of quasi-Newton methods for solving nonlinear systems

of equations. Numerical Algorithms 35, 2–4 (2004), 261–285.

[24] Press, W., Teukolsky, S., Vetterling, W., and Flannery, P.

Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed.

Cambridge University Press, New York, 2002.

[25] Rheinboldt, W. Methods for Solving Systems of Nonlinear Equations,

2nd ed. SIAM, Philadelphia, PA, 1998.

[26] Rice, J. Numerical Methods, Software, and Analysis, 2nd ed. Academic

Press, Boston, 1993.

[27] Shi, Y., and Eberhart, R. A modified particle swarm optimizer.

In 1998 IEEE International Conference on Evolutionary Computation

Proceedings. IEEE World Congress on Computational Intelligence

(Cat. No. 98TH8360), 1998 (1998), IEEE, pp. 69–73.

[28] van Hentenryck, P., McAllester, D., and Kapur, D. Solving

polynomial systems using a branch and prune approach. SIAM Journal

of Numerical Analysis 34, 2 (1997), 797–827.

[29] Wang, Q., Zeng, J., and Jie, J. Modified particle swarm

optimization for solving systems of equations. In Advanced Intelligent

Computing Theories and Applications. With Aspects of Contemporary

Intelligent Computing Techniques (2007), Springer, pp. 361–369.

[30] Weise, T., Zapf, M., Chiong, R., and Nebro-Urbaneja, A.

Why is optimization difficult? In Nature-Inspired Algorithms for

Optimisation (2009), R. Chiong, Ed., Springer, pp. 1–50.

[31] Yamamura, K., Kawata, H., and Tokue, A. Interval solution

of nonlinear equations using linear programming. BIT Numerical

Mathematics 38, 1 (1998), 186–199.

Chapter 3

PSO Performance for Solving

Nonlinear Systems of Equations:

Comparing Segmentation of Search

Space and Increase of Number of

Particles

Metaheuristic algorithms have been used for different optimization problems

and many modifications and hybridizations of these algorithms have been

proposed. One such algorithm, Particle Swarm Optimization (PSO), has

been proposed and modified for many distinct problems. Solving systems of

nonlinear equations is one of its many applications, but as these systems grow,

the effectiveness of PSO and PSO-based algorithms decrease. As such, there

need to be modifications that impact the performance of the algorithm, such

as increasing the number of particles or the number of iterations. However,

there are problems where the combined use of both of these strategies does

not solve all the drawbacks associated with the use of these algorithms, so a

possibility would be to reduce the search space of the problems considered.

In this article, the effect of the search space segmentation for solving nonlinear

systems of equations using PSO is explored, and an experimental comparison

is made between a simple segmentation of the search space to an increase of

the number of particles.

27

CHAPTER 3: PSO Performance for Solving NSEs 28

3.1 Introduction

Finding accurate numerical approximations to the solutions of problems

involving large systems of nonlinear equations remains a challenging problem

[4], not only due to the inherent complexity of obtaining good initial guesses

to the solutions so that the algorithm used can converge, but also because

these problems can reach considerable proportions, which makes them even

more difficult to solve. Nonlinear equation systems are present in most

simulations of physical processes, which makes them relevant in many areas,

including e.g. Physics, Chemistry and different Engineering fields.

An alternative to traditional iterative numerical algorithms are

metaheuristic algorithms, which trade high accuracy for robustness and

good estimates on a reasonable time. One of these algorithms is the so-called

Particle Swarm Optimization (PSO) algorithm, introduced by Eberhart and

Kennedy [1] and inspired on the movement of cooperative groups of birds,

fishes and other social animals.

In the PSO algorithm, a fixed number of potential or candidate solutions,

called particles, move around the search space, trying to find an adequate

solution to the problem considered. While larger problems need a bigger

number of particles to find good approximations to the solution, adding

particles also adds to the computational cost of finding the solution, so blindly

adding a large number of particles is not a computationally efficient approach.

A proposed alternative is to reduce the search space into more manageable

space sections, and run the algorithm with a smaller number of particles on

each smaller section.

The two approaches mentioned above (i.e., increase of number of particles

and segmentation of search space) are compared on a set of large scale test

problems arising from the literature on systems of nonlinear equations and

the results are described and analysed in the following sections.

3.2 Particle swarm optimization

Particle Swarm Optimization (PSO), as mentioned above, is a metaheuristic

algorithm inspired by the movement of cooperative groups of animals, such as

schools of fish and flocks of birds. A number of particles is randomly spread

CHAPTER 3: PSO Performance for Solving NSEs 29

throughout the search space, where each particles position x is a potential

solution to the problem, and information is shared between them on the

best positions. Then, the particles move towards the more promising regions

with velocity v, hopefully converging to a solution of the problem under

consideration. Each particle knows the best position it has visited, denoted

as pbest, as well as the best candidate solution found by all particles in the

swarm, called gbest.

At each iteration, the velocity and position of each particle i in the swarm

is updated as follows (see, e.g., [2]):

vt+1
i = w · vti + r1

t
i · c1 · (pbestti − xt

i) + r2
t
i · c2 · (gbestt − xt

i) (3.1)

xt+1
i = xt

i + vt+1
i (3.2)

where c1 and c2 are called the cognitive factor and social factor, respectively,

which determine the attraction of each particle towards its own best position,

pbest, and the global best position, gbest, while r1 and r2 are uniformly

distributed random numbers between 0 and 1. Therefore, in order to

guarantee that at each iteration a particle does not move further away than it

was before, but is also able to explore the space adequately, c1 and c2 should

have values between 1 and 2. The factor w is the inertia weight, introduced

by Shi and Eberhart [12] in order to limit the effect of the velocity of the

particle. This modification of the original algorithm is now known as the

standard PSO.

The standard PSO (SPSO) algorithm can be used for general optimization

and several other modifications have been made to improve its performance,

from modifications to the fundamental equations that determine the velocity

and position of the particles or different swarm topologies, to hybridization

with other optimization algorithms, both traditional and metaheuristic [6, 9].

3.3 Evolution of search space

There are a few parameters that have a predictable effect on the performance

of the PSO algorithms. While many attempts have been made to select and

adjust the parameters in the velocity and position equations, ultimately, these

CHAPTER 3: PSO Performance for Solving NSEs 30

are often problem dependent. On the other hand, adding more particles,

more iterations always improves the performance of the algorithms, at a

computational cost.

The time complexity of PSO is O(n · i), for a number of particles n

and a maximum number of iterations i. Both the number of particles and

the maximum number of iterations linearly increase the computation time.

However, these are not equivalent. After the particles converge, they will not

further explore the search space, so adding more iterations does not have a

significant effect. However, adding more particles increases the probability

that at least one particle will either be initialized or pass through a good

position while the algorithm is running.

The problem function also has some parameters that affect the

performance of the algorithm, by making the correct solution harder to find.

In a nonlinear system of equations, the higher the number of variables, the

more complex and more difficult to solve the system is.

Some research has been done on the dimensionality reduction for

optimization using PSO, e.g. in feature selection for classification problems

[5] and for the distribution system reconfiguration problem [13]. However,

these solutions are not adequate for solving systems of nonlinear equations.

These solutions involve alternating variables, which is not possible for solving

nonlinear systems of equations, since the system would be underdetermined.

The solution cannot be found by solving for different variables, one at

a time, so simplifying the problem in this way is not possible. The search

space of the problem is the region where the solution resides. The larger this

space, the less likely it is that a particle will find the optimal region of the

search space.

Some tests were done on known optimization problems, in order to

evaluate the effect of an increase of the search space. The optimization

problems chosen are indicated in Table 3.1. For each of these optimization

problems, PSO was run with the following parameters: w : 0.7; c1 : 1.5;

c2 : 1.8.

The algorithm was run 50 times for the following combination of

parameters:

CHAPTER 3: PSO Performance for Solving NSEs 31

number of variables: 1 to 10 with step 1;

number of iterations: 100 to 400 with step 100;

number of particles: 30 to 100 with step 10;

search space: 10 to 100, with step 10.

Table 3.1: Optimization problems

Sphere
∑

x2
i

Rastigrin 10d+
∑

x2
i − 10 cos(2πxi)

Schwefel
∑

xi sin(
√
|xi|)

Salomon − cos 2π
∑

x2
i + 0.1

∑
x2
i + 1

Griewank
∑ x2

i

4000
−
∏

cos xi√
i
+ 1

Rosenbrock
∑

100(xi+1 − x2
i)

2 + (xi − 1)2

The results from the simulation, when averaged for all the parameters

except for the search space and problem, were plotted:

The data in Figure 3.1 shows that as the search space increases, the worse

the average value found by PSO. It seems reasonable to assume that reducing

the search space will increase the probability of finding the solution to a large

nonlinear system of equations.

3.4 Segmented PSO

If the search space is separated into two equal sides for each variable, then

the number of spaces to be searched is 2n, where n is the number of variables

in the nonlinear system of equations.

The space could be separated into more sections per variable, but since

the number of sections grows exponentially with the number of variables, the

cost of increasing the number of separations per variable is very high.

As can be seen from Figure 3.2, for two variables the search space is

segmented into four sections, and for three variables into eight sections. For

very large real-world problems where the solution needs to be found only once,

it might be more efficient segment the space, even if the time complexity if

very large, rather than using a very large number of particles. There is also

the advantage that running the algorithm for each section can easily be done

in a distributed manner.

CHAPTER 3: PSO Performance for Solving NSEs 32

Figure 3.1: Effect of increasing the search space

Figure 3.2: Sections of search space for two and three variables

CHAPTER 3: PSO Performance for Solving NSEs 33

Running PSO in this segmented way was done and compared with running

PSO with a large number of particles. The parameter values for PSO were

the same used in Section 3.3, and 1,000 iterations were performed.

With regard to the number of particles, each segment was run on 50

particles and 400 iterations were performed. Normally, these parameters

would not result in convergence for large problems, but only a small portion

of the solution space is being searched. In the experiment with a large number

of particles, the number of particles was 2n, which for the problems considered

resulted in a very large number of particles that escalates with the number

of variables in the same proportion as the number of segments.

Overall, in terms of raw evaluations of the objective function, in the

segmented version they were evaluated 400 × 50 × 2n times. So, for most

of the problems, with an n of 12, they were evaluated 81,920,000 times. In

comparison with SPSO with an increased number of particles, the evaluations

were 2n × 1,000, which for an n of 12 is 4,096,000 evaluations.

In unimodal problems, the number of particles does not need to be so

large, provided the number of iterations is enough for convergence. For

multimodal problems, the number of particles necessary for convergence is

higher, thus requiring a much larger number of particles [11].

3.5 Test problems

The following nonlinear systems of equations were chosen as test problems

for the comparison performed in this study:

Problem 1. ([14], Interval arithmetic benchmark i1), n = 10.

f1(x) = x1 − 0.25428722− 0.18324757 x4x3x9

f2(x) = x2 − 0.37842197− 0.16275449 x1x10x6

f3(x) = x3 − 0.27162577− 0.16955071 x1x2x10

f4(x) = x4 − 0.19807914− 0.15585316 x7x1x6

f5(x) = x5 − 0.44166728− 0.19950920 x7x6x3

f6(x) = x6 − 0.14654113− 0.18922793 x8x5x10

f7(x) = x7 − 0.42937161− 0.21180486 x2x5x8

f8(x) = x8 − 0.07056438− 0.17081208 x1x7x6

f9(x) = x9 − 0.34504906− 0.19612740 x10x6x8

CHAPTER 3: PSO Performance for Solving NSEs 34

f10(x) = x10 − 0.42651102− 0.21466544 x4x8x1

D = ([−2, 2], . . . , [−2, 2])T

Problem 2. ([3], Problem D1 – Modified Rosenbrock), n = 12.

f2i−1(x) =
1

1 + exp(−x2i−1)
− 0.73

f2i(x) = 10(x2i − x2
2i−1),

i = 1, . . . , n
2

x(0) = (−1.8,−1, . . . ,−1.8,−1)T

D = ([−10, 10], . . . , [−10, 10])T

Problem 3. ([3], Problem D2 – Augmented Rosenbrock), n = 12.

f4i−3(x) = 10(x4i−2 − x2
4i−3)

f4i−2(x) = 1− x4i−3

f4i−1(x) = 1.25x4i−1 − 0.25x3
4i−1

f4i(x) = x4i,

i = 1, . . . , n
4

x(0) = (−1.2, 1,−1, 20, . . . ,−1.2, 1,−1, 20)T

D = ([−10, 10], . . . , [−10, 10])T

Problem 4. ([3], Problem D3 – Powell badly scaled), n = 12.

f2i−1(x) = 104x2i−1x2i − 1

f2i(x) = exp(−x2i−1) + exp(−x2i)− 1.0001, i = 1, . . . , n
2

x(0) = (0, 100, . . . , 0, 100)T

D = ([0, 100], . . . , [0, 100])T

Problem 5. ([3], Problem D4 – Augmented Powell badly scaled), n = 12.

f3i−2(x) = 104x3i−2x3i−1 − 1

f3i−1(x) = exp(−x3i−2) + exp(−x3i−1)− 1.0001

f3i(x) = φ(x3i),

i = 1, . . . , n
3
, where:

φ(t) =


t
2
− 2, if t ≤ −1
1

1998
(−1924 + 4551t+ 888t2 − 592t3), if t ∈ [−1, 2]

t
2
+ 2, if t ≥ 2

x(0) = (0, 1,−4, . . . , 0, 1,−4)T

D = ([−5, 5], . . . , [−5, 5])T

CHAPTER 3: PSO Performance for Solving NSEs 35

Problem 6. ([3], Problem D5 – Tridimensional valley), n = 12.

f3i−2(x) = (c2x
3
3i−2 + c1x3i−1) exp

(
−
x2
3i−2

100

)
− 1,

f3i−1(x) = 10 (sin(x3i−2)− x3i−1)

f3i(x) = 10 (cos(x3i−2)− x3i),

i = 1, . . . ,
n

3
,

where:

c1 = 1.003344481605351

c2 = −3.344481605351171× 10−3

x(0) = (−4, 1, 2, 1, 2, 1, 2, . . .)T

D = ([−10, 10], . . . , [−10, 10])T

Problem 7. ([3], Problem D6 – Shifted and augmented trigonometric function

with an Euclidean sphere), n = 12.

fi(x) = n− 1−
n−1∑
j=1

cos(xj − 1) + i(1− cos(xi − 1))− sin(xi − 1),

i = 1, . . . , n− 1

fn(x) =
n∑

j=1

x2
j − 10000

x(0) = (0, . . . , 0)T

D = ([−200, 200], . . . , [−200, 200])T

Problem 8. ([3], Problem D7 – Diagonal of three variables premultiplied by

a quasi-orthogonal matrix), n = 12.

f3i−2(x) = 0.6x3i−2 + 1.6x3
3i−1 − 7.2x2

3i−1 + 9.6x3i−1 − 4.8

f3i−1(x) = 0.48x3i−2−0.72x3
3i−1+3.24x2

3i−1−4.32x3i−1−x3i+0.2x3
3i+2.16

f3i(x) = 1.25x3i − 0.25x3
3i,

i = 1, . . . , n
3

x(0) = (50, 0.5,−1, 50, 0.5,−1, . . .)T

D = ([−5, 5], . . . , [−5, 5])T

Problem 9. ([3], Problem D8 – Diagonal of three variables premultiplied

by an orthogonal matrix, combined with inverse trigonometric function),

n = 12.

f3i−2(x) = 64(x3i−2 + x3i−1 + x3i)− 0.64 + 0.48 arctan(x3i)+

0.60(c1 + c2x3i−1 + c3x
2
3i−1 + c4x

3
3i−1)

f3i−1(x) = 0.48− 48(x3i−2 + x3i−1 + x3i) + 0.36 arctan(x3i)+

CHAPTER 3: PSO Performance for Solving NSEs 36

0.80(c1 + c2x3i−1 + c3x
2
3i−1 + c4x

3
3i−1)

f3i(x) = 0.60− 60(x3i−2 + x3i−1 + x3i) + 0.80 arctan(x3i),

i = 1, . . . , n
3

c1 = 13.901020408163270000

c2 = −1.4056122448979600000
c3 = −2.2183673469387760000
c4 = −0.27704081632653060000
x(0) = (10,−5.223,−1.393, 10,−5.223,−1.393, . . .)T

D = ([−200, 200], . . . , [−200, 200])T

Problem 10. ([10], 22 – Extended Powell singular function), n = 12.

f4i−3(x) = x4i−3 + 10x4i−2

f4i−2(x) =
√
5(x4i−1 − x4i)

f4i−1(x) = (x4i−2 − 2x4i−1)
2

f4i(x) =
√
10(x4i−3 − x4i)

2,

i = 1, . . . , 5

x(0) = (3,−1, 0, 1, . . . , 3,−1, 0, 1)T

D = ([−100, 100], . . . , [−100, 100])T

Problem 11. ([10], 25 – Variable dimensioned function), n = 12.

fi(x) = xi − 1, i = 1, . . . , n

fn+1(x) =
n∑

j=1

j(xj − 1)

fn+2(x) =

(
n∑

j=1

j(xj − 1)

)2

x(0) = (1− 1

n
, 1− 2

n
, . . . , 0)T

D = ([−100, 100], . . . , [−100, 100])T

Problem 12. ([10], 28 – Discrete boundary value function), n = 12.

f1(x) = 2x1 − x2 + h2(x1 + h+ 1)3/2

fn(x) = 2xn − xn−1 + h2(xn + nh+ 1)3/2

fi(x) = 2xi − xi−1 − xi+1 + h2(xi + ti + 1)3/2, i = 2, . . . , n− 1,

where h = 1
n+1

e ti = ih.

x(0) = (φj), φj = tj(tj − 1), j = 1, . . . , n

D = ([0, 5], . . . , [0, 5])T

CHAPTER 3: PSO Performance for Solving NSEs 37

Problem 13. ([15], Example 4.2), n = 12.

fi(x) = xi −
1

2n

(
n∑

j=1

x3
j + i

)
, i = 1, . . . , n

D = ([−10, 10], . . . , [−10, 10])T

3.6 Results obtained

The problem functions were tested with two segments. The average and

minimum values found are presented in Table 3.2.

From the results, we can see that, especially for the problems where PSO

has a tendency to get stuck in a local minimum, such as the Problems 2

and 3, the segmented alternative does not get stuck, but at the cost of not

being able to explore much further, due to the smaller number of particles

and iterations.

The premature convergence of PSO is widely acknowledged. Therefore, it

is relevant to understand whether a modification to suppress this convergence

would yield better results. For this, the same test problems were run, on

the same conditions, with the exception of the swarm topology. Instead of

using the gbest topology, where every particle communicates with every other

particle, the von Neumann topology was chosen. The results obtained are

presented in Table 3.3.

In the comparison of topologies for PSO, the von Neumann with rank 4

has often been found to be better performing than the alternatives [8]. In the

von Neumann topology, each particle does not communicate with every other

particle, but only with n particles (see Figure 3.3), with n being the rank of

the topology. So, in this experiment, each particle was connected with four

other particles, which delays the convergence of the algorithm, allowing for

better exploration of the search space of the problems.

C
H
A
P
T
E
R

3:
P
S
O

P
erform

an
ce

for
S
olv

in
g
N
S
E
s

38

Table 3.2: Results for PSO with Gbest topology

Problem Average Minimum

SPSO Segmented SPSO Segmented

Problem 1 1.037663071 0.698486804 0.421814871 0.408340722

Problem 2 1.62 1.608352444 1.62 1.360405712

Problem 3 3 2.903333419 3 2.373871397

Problem 4 6.637033787 6.326612765 6.282627128 6.112016672

Problem 5 5.192528753 4.62293342 4.477480166 3.882171641

Problem 6 15.53367649 10.14796265 10.07173459 7.302318603

Problem 7 17.75618911 10.94764561 12.13551478 6.732026598

Problem 8 6.405438188 4.674562396 4.725153885 3.249000098

Problem 9 77.85882864 72.15770647 72.40134433 47.19050689

Problem 10 9.5408E-15 1.86324E-14 3.38E-15 4.55E-15

Problem 11 4.517171951 3.027601273 3.111794099 1.820649757

Problem 12 0.190782092 0.175340087 0.159467829 0.163692495

Problem 13 9.202443211 6.399087192 6.05988822 4.466427714

C
H
A
P
T
E
R

3:
P
S
O

P
erform

an
ce

for
S
olv

in
g
N
S
E
s

39
Table 3.3: Results for segmented PSO with von Neumann topology

Problem Average Minimum

SPSO Segmented SPSO Segmented

Problem 1 1.43115E-16 0.000440838 1.43115E-16 5.74899E-05

Problem 2 2.37131E-07 0.841533489 1.66395E-13 0.484539158

Problem 3 1.1831E-08 0.985771992 3.81643E-14 0.420933694

Problem 4 0.000549438 0.000611278 0.000479778 0.000485759

Problem 5 0.038483924 0.024097009 0.002670834 0.000711316

Problem 6 0.077170719 0.225986715 0.059364707 0.078127327

Problem 7 4.273857164 1.420858728 0.684416557 0.55435223

Problem 8 3.11286E-07 0.033136903 8.40785E-08 0.001336032

Problem 9 1.263340747 4.164705179 4.77684E-08 2.778112461

Problem 10 6.69532E-18 4.017634796 1.91271E-18 0.176367453

Problem 11 7.42295E-15 8.570062293 3.55271E-15 2.720638905

Problem 12 1.48766E-15 0.223516272 3.60822E-16 0.048649465

Problem 13 2.8702E-15 0.624939653 9.57567E-16 0.084652142

CHAPTER 3: PSO Performance for Solving NSEs 40

Figure 3.3: Diagram of von Neumann topology with rank 4 (extracted from
[7])

3.7 Conclusion

The effects of adding many particles and of reducing the search space, and

iteratively running PSO, has been compared on a set of large nonlinear

systems of equations. While segmenting the search space does prevent PSO

from suffering from premature converge to local minima, the computational

cost of this operation is very large, and increases exponentially with the

number of variables in the system. A better alternative is to increase the

number of particles with a topology that makes PSO more resistant to

premature convergence.

The benefit of this decision comes not only from better results, but

also from a lower computational cost, because the time complexity of PSO

increases linearly with the number of particles used.

References

[1] Eberhart, R., and Kennedy, J. A new optimizer using particle

swarm theory. In 6th International Symposium on Micro Machine

and Human Science, Nagoya, Japan, 4–6 October 1995 (1995), IEEE,

pp. 39–43.

[2] Freitas, D., Lopes, L., and Morgado-Dias, F. Particle swarm

optimisation: A historical review up to the current developments.

CHAPTER 3: PSO Performance for Solving NSEs 41

Entropy 22, 3 (2020), 362.

[3] Friedlander, A., Gomes-Ruggiero, M., Kozakevich, D.,

Mart́ınez, J., and Santos, S. Solving nonlinear systems of equations

by means of quasi-Newton methods with a nonmonotone strategy.

Optimization Methods & Software 8, 1 (1997), 25–51.

[4] Gong, W., Liao, Z., Mi, X., Wang, L., and Guo, Y. Nonlinear

equations solving with intelligent optimization algorithms: A survey.

Complex System Modeling and Simulation 1, 1 (2021), 15–32.

[5] Li, A.-D., Xue, B., and Zhang, M. Improved binary particle swarm

optimization for feature selection with new initialization and search

space reduction strategies. Applied Soft Computing 106 (2021), 107302.

[6] Li, Y., Wei, Y., and Chu, Y. Research on solving systems of

nonlinear equations based on improved PSO. Mathematical Problems

in Engineering 2015 (2015), 727218.

[7] Lima, A., Medeiros, Y., Silva, L., and Araújo, W. Estudo

comparativo sobre a convergência e o custo computacional das estruturas

topológicas aplicadas à otimização por enxame de part́ıculas (PSO).

Revista Cient́ıfica Semana Acadêmica 1 (2016), 1–18.

[8] Liu, Q., Wei, W., Yuan, H., Zhan, Z.-H., and Li, Y. Topology

selection for particle swarm optimization. Information Sciences 363

(2016), 154–173.

[9] Mai, X., and Li, L. Bacterial foraging algorithm based on PSO

with adaptive inertia weigh for solving nonlinear equations systems. In

Advanced Materials Research, vol. 655–657. Trans Tech Publishers, 2013,

pp. 940–947.

[10] Moré, J., Garbow, B., and Hillstrom, K. Testing unconstrained

optimization software. ACM Transactions on Mathematical Software 7,

1 (1981), 17–41.

CHAPTER 3: PSO Performance for Solving NSEs 42

[11] Piotrowski, A. P., Napiorkowski, J. J., and Piotrowska,

A. E. Population size in particle swarm optimization. Swarm and

Evolutionary Computation 58 (2020), 100718.

[12] Shi, Y., and Eberhart, R. A modified particle swarm optimizer.

In 1998 IEEE International Conference on Evolutionary Computation

Proceedings. IEEE World Congress on Computational Intelligence

(Cat. No. 98TH8360), 1998 (1998), IEEE, pp. 69–73.

[13] Silva, L. I., Belati, E. A., Gerez, C., and Silva Junior,

I. C. Reduced search space combined with particle swarm optimization

for distribution system reconfiguration. Electrical Engineering 103, 2

(2021), 1127–1139.

[14] van Hentenryck, P., McAllester, D., and Kapur, D. Solving

polynomial systems using a branch and prune approach. SIAM Journal

of Numerical Analysis 34, 2 (1997), 797–827.

[15] Yamamura, K., Kawata, H., and Tokue, A. Interval solution

of nonlinear equations using linear programming. BIT Numerical

Mathematics 38, 1 (1998), 186–199.

Chapter 4

PSO–FWA: A New Hybrid

Algorithm for Solving Nonlinear

Equation Systems

Nature-inspired optimization algorithms have been proposed for solving hard

optimization problems, including the optimization-based solution of difficult

systems of nonlinear equations. While there is no perfect optimization

algorithm, the hybridization of such metaheuristic optimization algorithms

has produced positive results by enhancing their capabilities and reducing

their weaknesses. This paper presents a novel hybridization of Particle Swarm

Optimization and the Fireworks Algorithm for solving nonlinear equation

systems. The experimental results obtained indicate that the proposed

hybrid algorithm outperforms both Particle Swarm Optimization and the

Fireworks Algorithm, as well as a previously developed hybridization of these

algorithms.

4.1 Introduction

Nonlinear equation systems are recognized as challenging problems to solve

using traditional iterative numerical methods, whose effectiveness largely

depends on the characteristics of the problem considered and the quality of

the initial approximations taken, with non-convergence occurring relatively

frequently.

43

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 44

In contrast, the use of population-based metaheuristic algorithms, such as

Particle Swarm Optimization (PSO) and the Fireworks Algorithm (FWA), for

solving this important class of problems, which have an extensive importance

in fields such as chemistry, physics, engineering, and economics, has the

advantage of being problem-independent, derivative-free, and not dependent

on good initial estimates. However, there is no guarantee of convergence with

these population-based stochastic algorithms, and each of them has different

advantages and drawbacks, which motivates their hybridization to capitalize

on their respective strengths and mitigate their weaknesses.

With this in mind, this article proposes a novel hybrid metaheuristic

algorithm for solving systems of nonlinear equations that is the result of the

combination of Particle Swarm Optimization and the Fireworks Algorithm.

Population-based approaches, such as the hybrid algorithm proposed in

this paper, can solve a system of n nonlinear equations by converting it into

an n-dimensional nonlinear optimization problem by minimizing the sum of

squares of the residuals, F (x) =
∑

[fi(x1, . . . , xn)]
2, or the sum of absolute

values of the residuals, F (x) =
∑
|fi(x1, . . . , xn)|. This optimization-

based approach for solving nonlinear equation systems was adopted, and

the performance of the proposed hybrid algorithm is here evaluated.

The structure of this paper is as follows. The next section describes the

PSO and FWA algorithms, which served as basis for the proposed algorithm.

Section 4.3 describes briefly some simple ways to combine PSO and FWA, as

well as a previous hybridization of these two algorithms. Section 4.4 presents

the proposed algorithm, and the experimental setup and test problems used

in this study are described in Section 4.5. The main results obtained are

presented and discussed in Section 4.6. Finally, the conclusion is given in

Section 4.7.

4.2 Background

4.2.1 Particle swarm optimization

Particle Swarm Optimization (PSO), proposed by Eberhart and Kennedy [3],

is a population-based stochastic algorithm, based on swarm intelligence, that

draws inspiration from the cooperative behavior of groups of animals when

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 45

searching for food. In PSO, each particle represents a candidate solution

to the problem, and “remembers” the best solution it found, as well as the

one by its group. At each iteration, the particles update their velocity and

position as follows:

vt+1
i = w · vti + r1

t
i · c1 · (pbestti − xti) + r2

t
i · c2 · (gbestt − xti), (4.1)

xt+1
i = xti + vt+1

i , (4.2)

where v is the velocity of the particle, x is its position, w is the inertia

weight introduced by Shi and Eberhart [12], r1 and r2 are random numbers

uniformly distributed in [0, 1], and c1 and c2 are the cognitive and social

factors, respectively. These affect how much the particle is drawn to their

own previous experience, compared to the one found by their group, with

pbest and gbest representing the particle’s best position and the group’s

best position, respectively.

This sharing of information is at the core of the flexibility of PSO. It

allows not only changes to the algorithm itself, but also different topologies

for the group of particles that communicate between themselves. The initial

topology is the gbest topology, where all particles communicate with each

other. Premature convergence was observed as a result of this [8].

The pseudocode of the standard PSO is given in Algorithm 1.

Other topologies that reduce the degree of communication have been

proposed. One of these topologies is the von Neumann topology [6], where

every particle is connected with a small fixed number of particles, typically

four. This topology was found to improve the performance of the algorithm

by allowing a more efficient search space exploration [8].

4.2.2 Fireworks optimization

The Fireworks Algorithm (FWA) [13] is a population-based swarm

intelligence algorithm inspired by the fireworks explosion, as each potential

solution “explodes”, creating a new sub-swarm. The amplitude of such

explosion is dependent on the performance of the fireworks, where

less-optimal solutions spread further apart, allowing for greater global

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 46

Algorithm 1 Pseudocode for the standard PSO algorithm

1: Initialize a swarm of N particles randomly;
2: while t < MaxIter and not terminate do
3: for each particle position xi in the swarm do
4: Evaluate f(xi)
5: if f(xi) < f(pbest) then
6: Update the particle pbest
7: if f(xi) < f(gbest) then
8: Update the particle gbest
9: end if
10: end if
11: end for
12: for i from 1 to N do
13: Calculate vt+1

i using Eq. 4.1;
14: Calculate xt+1

i using Eq. 4.2;
15: end for
16: end while
17: Return the best particle found;

exploration, whereas better performing fireworks spread much less, allowing

for better local exploitation.

The amplitude of explosion for each firework can be calculated as follows:

Ai = Â · f(xi)− ymin + ξ∑N
i=1 (f(xi)− ymin) + ξ

, (4.3)

where Â is the maximum explosion amplitude, f(xi) is the fitness value of

the firework xi, ymin = min f(xi) (i = 1, . . . , N) is the fitness value of the best

firework, and ξ is an arbitrarily small number used to avoid division by 0.

The number of sparks produced by the exploding firework is given by:

Si = m · ymax − f(xi) + ξ∑N
i=1 (ymax − f(xi)) + ξ

, (4.4)

where m is a parameter that control the number of sparks, and ymax is as in

(4.3).

Since the number of sparks must be an integer, there is an additional step

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 47

that limits the number of sparks that can be generated as follows:

Si =


round(a ·m) if Si < a ·m
round(b ·m) if Si > b ·m (a < b < 1)

round(Si) otherwise.

(4.5)

Algorithm 2 provides a pseudocode for the Fireworks Algorithm.

Algorithm 2 Pseudocode for the FWA algorithm

1: Initialize a swarm of N fireworks randomly;
2: Evaluate fitness f(x) of each firework;
3: while t < MaxIter and not terminate do
4: for each firework in the swarm do
5: Calculate Ap according to Eq. 4.3;
6: Calculate Sp according to Eq. 4.4 and Eq. 4.5;
7: Generate and evaluate new sparks;
8: for each spark do
9: Evaluate the fitness of the spark;
10: Select the best firework/sparks to be “Gaussian fireworks”;
11: Generate a few “Gaussian sparks” around the “Gaussian

fireworks” based on a Gaussian distribution;
12: Evaluate the fitness for each “Gaussian spark”;
13: end for
14: end for
15: Select the best points from the current fireworks and sparks to form

the next generation of fireworks;
16: end while
17: Return the best firework found;

FWA has been proposed as a better alternative to PSO, and boasts a

faster convergence. This is an advantage on some problems, but it can also

lead to premature convergence, which was one of the reasons that motivated

modifications to the PSO topology.

4.3 Related work

PSO and FWA are population-based optimization approaches that can be

combined to leverage their respective strengths. PSO is known for its

simplicity and efficiency, while FWA is known for its ability to prevent local

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 48

optima.

A simple way to combine these algorithms is to use FWA to initialize

the particles in PSO, providing the swarm with a good starting point for

exploration. Similarly, PSO can be used to influence the FWA explosion

operation, directing the sparks to promising areas of the search space.

In the newly Dynamic Fireworks Algorithm with Particle Swarm

Optimization (DFWPSO) [16], PSO was utilized in a new mechanism for

update fireworks, aiming to accelerate the convergence of the FWA algorithm

and reduce the computing time, thus improving the overall performance of

the fireworks algorithm.

By appropriately combining the strong exploitation abilities of PSO with

the strong exploration capabilities of FWA, it is possible to build more

sophisticated hybrid algorithms that achieve a better balance between the

exploration of the entire search space and exploitation, i.e., refinement of the

best-known solutions.

In the PS–FW algorithm [2], modified FWA operators are incorporated

into the PSO solution procedure. The concept behind this hybrid algorithm

is that at the start of each iteration, the velocity and position of each particle

are updated in the same way as in the PSO algorithm, and then the so-called

abandonment and supplement mechanism is applied aiming to balance the

exploration and exploitation ability of the PS–FW algorithm. These two

operations follow the logic of FWA. A number of particles with the worst fit

are discarded as a result of the abandonment operation, while a number of

particles with better fitness fit are retained for the subsequent iteration in

view of the supplement operation.

These best particles are used to implement a modified explosion operator,

a new mutation operator, and a fitness-based selection operator, of which

the first two were developed to accelerate global convergence and prevent

premature convergence to local optima. The new particles obtained by the

FWA operators are added to the original swarm in order to balance the

number of particles and generate a new particle swarm for the next algorithm

iteration.

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 49

4.4 Proposed PSO–FWA algorithm

Although the PS–FW algorithm [2] combines PSO and FWA and uses the

local exploitation of PSO and the global exploration of FWA to achieve better

results, the new PSO and FWA hybrid proposed in this paper, PSO–FWA,

does not follow the same principle.

In fact, the new hybrid approach here presented does in a way the

opposite, as PSO is here used for global exploration and FWA for local

exploitation. In PSO–FWA, the von Neumann topology [6] is assumed to

be used, but every few iterations, the bp best particles multiply using the

amplitude and number of new particles (i.e., sparks) randomly generated

within the amplitude Ai in the new swarm from FWA.

The PSO–FWA algorithm pseudocode is shown in Algorithm 3.

Algorithm 3 Pseudocode for the proposed PSO–FWA algorithm

1: Initialize N particles with von Neumann topology;
2: Evaluate the fitness value f(x) of each particle;
3: while t < maxIter and not terminate do
4: if t% k = 0 then
5: Sort particles by fitness;
6: ymin ← particles[1];
7: ymax ← particles[N/2];
8: best particles← particles[1 : bp];
9: for p in bp do
10: Calculate Ap according to Eq. 4.3;
11: Calculate Sp according to Eq. 4.4 and Eq. 4.5;
12: Generate new sub-swarm according to Algorithm 4;
13: end for
14: end if
15: Calculate vt+1

n for each particle according to Eq. 4.1;
16: Calculate xt+1

n for each particle according to Eq. 4.2;
17: Evaluate fitness of each particle;
18: end while
19: Return the best particle found;

Whenever creating new particles dynamically in PSO, these new particles

need belong to a group or sub-swarm, which can create problems in

recalculating a new group for every particle. To avoid this, as well as to

utilize the exploitation capabilities of FWA, since only the best particles

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 50

get to reproduce in this way, there is not a large concern with premature

convergence, so these new groups form a gbest topology with each other, as

well as with their “parent” particle.

For a newly created particle to be able to communicate, it must know

which particles belong to its group and make every existing particle aware

of its existence. To maintain the von Neumann topology, this would mean

recalculating the configuration of the entire swarm. Every time a particle

multiplies, each new particle is connected to its parent and the other

particles in the same sub-swarm via a gbest topology, in order to avoid this

computational effort. As only a small number of particles multiply, and those

selected to do so are the ones exploring the most promising regions, all new

particles originate from such regions.

The use of the gbest topology for the new particles does not affect the

general capacity of the swarm for global exploration, since the new particle

only share information directly with its parent. This iterative creation of new

sub-swarms connected to a single particle has an impact on the topology of

the swarm. In the case of a problem with numerous local minima, where

the particles are spread apart, the new sub-swarms will also be separated,

allowing for a faster exploitation of the promising regions.

Algorithm 4 Pseudocode for the sub-swarm algorithm

1: for s in Sp do
2: new particles[s] ← p · Gaussian() · Ap;
3: Connect all new particles in same group;
4: end for
5: Return new particles;

This does not impede the global exploration capabilities of the algorithm,

as the new particles only indirectly share information to the rest of the

particles while locally searching promising regions. This successive generation

of new particles connected to a single parent particle slowly morphs the

overall topology of the swarm. If the best particles are spread apart,

indicating an objective function with many local minima, the particles

that multiply will quickly explore these promising regions and further

multiplications will abandon the groups that got stuck in local minima. By

opposition, if the particles that multiply are close to each other, this will

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 51

result in an increase in the number of particles in the promising regions,

allowing for a fast convergence.

4.5 Experimental setup

4.5.1 Experimental setting

To allow for a fair comparison, the standard PSO, FWA, PS–FW, and PSO–

FWA algorithms were implemented and compared in the same experimental

setting. All algorithms were run 51 times each, as suggested in [7], using the

same control parameters. The maximum number of iterations allowed for

each algorithm was set to 1,000, the inertia weight w was set to 0.7, and the

acceleration coefficients c1 and c2 were both set to 1.8. In all experiments, a

tolerance of 1e−12 was adopted.

Regarding algorithm-specific parameters, the number of best particles bp

was set to 5 and a new sub-swarm was generated every 50 iterations.

The von Neumann topology was used in both the standard PSO and

PSO–FWA, whereas the gbest topology was utilized for PS–FW, as it was

used in the original algorithm [2].

The values used for the specific parameters in the FWA and PS–FW

algorithms were the same as in [13] and [2], respectively.

The comparison also included the Enhanced Jaya (EJAYA) algorithm

[15], a variant of the Jaya metaphor-less algorithm [10] that has recently been

demonstrated to be quite effective in solving systems of nonlinear equations

[11].

The implementation of the algorithms was done in Julia [1] using double-

precision floating-point arithmetic. All experiments were run on a portable

computer with an Intel® CoreTM i7-4720HQ processor at 2.60 GHz and 8 GB

RAM.

4.5.2 Test problems

The following systems of nonlinear equations, which are difficult to solve

using traditional iterative methods, were chosen as test problems for the

comparison performed in this study:

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 52

Problem 1. ([4], Problem D1 – Modified Rosenbrock), n = 12.

f2i−1(x) =
1

1 + exp(−x2i−1)
− 0.73

f2i(x) = 10(x2i − x2
2i−1), i = 1, . . . , n

2

D = ([−10, 10], . . . , [−10, 10])T

Problem 2. ([4], Problem D3 – Powell badly scaled), n = 12.

f2i−1(x) = 104x2i−1x2i − 1

f2i(x) = exp(−x2i−1) + exp(−x2i)− 1.0001, i = 1, . . . , n
2

D = ([0, 100], . . . , [0, 100])T

Problem 3. ([4], Problem D6 – Shifted and augmented trigonometric function

with an Euclidean sphere), n = 12.

fi(x) = n− 1−
n−1∑
j=1

cos(xj − 1) + i(1− cos(xi − 1))− sin(xi − 1),

i = 1, . . . , n− 1

fn(x) =
n∑

j=1

x2
j − 10000

D = ([−200, 200], . . . , [−200, 200])T

Problem 4. ([14], Economics modeling application), n = 12.

fi(x) =

(
xi +

n−i−1∑
k=1

xkxi+k

)
xn − ci, i = 1, . . . , n− 1

fn(x) =
n−1∑
j=1

xj + 1

where the constants ci can be chosen arbitrarily;

here ci = 0, i = 1, . . . , n− 1.

D = ([−100, 100], . . . , [−100, 100])T

Problem 5. ([5], Example 1 – The Bratu problem), n = 12.

f1(x) = −2x1 + x2 + αh2 exp(x1)

fn(x) = xn−1 − 2xn + αh2 exp(xn)

fi(x) = xi−1 − 2xi + xi+1 + αh2 exp(xi), i = 2, . . . , n− 1,

where α ≥ 0 is a parameter, assuming here α = 3.5, and h =
1

n+ 1
.

D = ([−100, 100], . . . , [−100, 100])T

Problem 6. ([5], Example 2 – The beam problem), n = 12.

f1(x) = −2x1 + x2 + αh2 sin(x1)

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 53

fn(x) = xn−1 − 2xn + αh2 sin(xn)

fi(x) = xi−1 − 2xi + xi+1 + αh2 exp(xi), i = 2, . . . , n− 1,

where h =
1

n+ 1
and α ≥ 0 is a parameter; here α = 11.

D = ([−100, 100], . . . , [−100, 100])T

Problem 7. ([9], 21 – Extended Rosenbrock function), n = 12.

f2i−1(x) = 10(x2i − x2
2i−1)

f2i(x) = 1− x2i−1, i = 1, . . . , n
2

D = ([−100, 100], . . . , [−100, 100])T

Problem 8. ([9], 26 – Trigonometric function), n = 12.

fi(x) = n−
n∑

j=1

cosxj + i(1− cosxi)− sinxi, i = 1, . . . , n

D = ([−100, 100], . . . , [−100, 100])T

Problem 9. ([9], 27 – Brown almost-linear function), n = 12.

fi(x) = xi +
n∑

j=1

xj − (n+ 1), i = 1, . . . , n− 1

fn(x) =

(
n∏

j=1

xj

)
− 1

D = ([−10, 10], . . . , [−10, 10])T

Problem 10. ([9], 28 – Discrete boundary value function), n = 12.

f1(x) = 2x1 − x2 + h2(x1 + h+ 1)3/2

fn(x) = 2xn − xn−1 + h2(xn + nh+ 1)3/2

fi(x) = 2xi − xi−1 − xi+1 + h2(xi + ti + 1)3/2, i = 2, . . . , n− 1,

where h = 1
n+1

and ti = ih.

D = ([0, 5], . . . , [0, 5])T

4.6 Results and discussion

The average fitness value for each pair algorithm/problem was calculated and

the results thus obtained are shown in Table 4.1. The best (i.e., minimum)

fitness values found for each different algorithm and problem are shown in

Table 4.2. The best result for each problem is bolded, while the second-best

value is underlined.

C
H
A
P
T
E
R

4:
P
S
O
–F

W
A
:
A

N
ew

H
y
b
rid

A
lgorith

m
for

S
olv

in
g
N
E
S
s

54

Table 4.1: Average performance of each algorithm

Problem PSO FWA PSO–FWA PS–FW EJAYA

01 0.093696602 8.231227429 0.023829129 2.688307333 0.786323905

02 0.000611303 10528.36554 0.053180425 4.929956145 5.845716462

03 0.673563009 17637.37896 0.813282593 7.37086e+15 24.94501395

04 7.68886e−13 121.161161 3.50538e−13 7.08888e+24 6.919e−13
05 2.472214572 405.3670455 0.017626657 0.180648169 18.40166643

06 0.629464887 449.2970073 0.708199283 0.554307947 16.3762457

07 0.740239982 1166.651425 1.946738341 4.30706e+11 11.87298727

08 0.003830296 0.032297347 0.03146428 0.025972228 4.244178222

09 3.08272e−05 27.63435204 4.73538e−06 4.77479e+66 0.019622826

10 0.001165984 0.156890307 6.90023e−05 7.32552e+14 0.237439165

C
H
A
P
T
E
R

4:
P
S
O
–F

W
A
:
A

N
ew

H
y
b
rid

A
lgorith

m
for

S
olv

in
g
N
E
S
s

55

Table 4.2: Best performance of each algorithm

Problem PSO FWA PSO–FWA PS–FW EJAYA

01 6.58917e−07 0.214234267 2.67113E-05 0.616052907 0.005183943

02 0.0006113 837.2544034 0.000413175 2.278576919 5.000485975

03 0.00467257 3447.14932 3.14072e−09 3.68477048 11.79736641

04 1.64973e−13 1.93052557 2.79099e−13 3.64338e−14 1.2451e−13
05 2.469796642 45.3698909 7.61427e−05 0.061573931 1.01676417

06 0.517634554 80.45977863 0.514741134 0.518018226 1.212673401

07 4.71128E-07 60.61553916 4.2838e−08 3.047900675 2.048738198

08 0.003270911 0.021813477 9.59711e−13 6.0212E-05 1.282223168

09 9.7311e−13 1.41803206 9.06386e−13 0.29030721 3.5519e−06
10 9.29977e−13 0.111856778 9.8634e−13 0.045728666 0.237439165

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 56

From the results obtained, a few conclusions can be drawn. PSO–FWA

achieved the best average result in half the problems, tied with PSO. While

this may indicate a failure of the other algorithms, it should be noted that

what these two algorithms have in common is the von Neumann topology,

used to allow for a better exploration.

Due to their rapid convergence, the remaining algorithms do not perform

well on challenging problems, such as nonlinear equation systems, for which

exploration plays a crucial role.

Even though PSO on average performed similarly to the PSO–FWA

algorithm, this approach has shown to have better convergence, as it achieved

either the best result or a result quite close to the best in almost all problems.

4.7 Conclusion

PSO–FWA, a novel optimization algorithm based on a hybridization of PSO

and FWA, was proposed to solve complex nonlinear equation systems. The

performance of the proposed PSO–FWA hybrid algorithm was compared to

PS–FW, another hybrid algorithm based on PSO and FWA, as well as to

PSO and FWA.

The Enhanced Jaya (EJAYA) algorithm [15], which was recently shown

quite effective at solving systems of nonlinear equations [11], was also

included in the computational comparison carried out.

While the previous algorithms considered for comparison appear to

perform better in simple optimization problems with few local minima,

PSO–FWA was able to achieve better results in more difficult problems, as

evidenced by the results obtained with the set of complex nonlinear equation

systems chosen for this study.

References

[1] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. Julia:

A fresh approach to numerical computing. SIAM Review 59, 1 (2017),

65–98.

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 57

[2] Chen, S., Liu, Y., Wei, L., and Guan, B. PS–FW: A hybrid

algorithm based on particle swarm and fireworks for global optimization.

Computational Intelligence and Neuroscience 2018 (2018), 6094685.

[3] Eberhart, R., and Kennedy, J. A new optimizer using particle

swarm theory. In 6th International Symposium on Micro Machine and

Human Science, Nagoya, Japan (1995), IEEE, pp. 39–43.

[4] Friedlander, A., Gomes-Ruggiero, M., Kozakevich, D.,

Mart́ınez, J., and Santos, S. Solving nonlinear systems of equations

by means of quasi-Newton methods with a nonmonotone strategy.

Optimization Methods and Software 8, 1 (1997), 25–51.

[5] Kelley, C., Qi, L., Tong, X., and Yin, H. Finding a stable

solution of a system of nonlinear equations. Journal of Industrial and

Management Optimization 7, 2 (2011), 497–521.

[6] Kennedy, J., and Mendes, R. Population structure and

particle swarm performance. In Proceedings of the 2002 Congress on

Evolutionary Computation. CEC’02 (Cat. No.02TH8600) (2002), vol. 2,

pp. 1671–1676.

[7] Liang, J., Qu, B., Suganthan, P., and Hernández-D́ıaz,

A. Problem definitions and evaluation criteria for the CEC 2013

special session on real-parameter optimization. Technical Report

201212, Computational Intelligence Laboratory, Zhengzhou University,

Zhengzhou, China, 2013.

[8] Liu, Q., Wei, W., Yuan, H., Zhan, Z.-H., and Li, Y. Topology

selection for particle swarm optimization. Information Sciences 363

(2016), 154–173.

[9] Moré, J., Garbow, B., and Hillstrom, K. Testing unconstrained

optimization software. ACM Transactions on Mathematical Software 7,

1 (1981), 17–41.

[10] Rao, R. Jaya: A simple and new optimization algorithm for solving

constrained and unconstrained optimization problems. International

Journal of Industrial Engineering Computations 7 (2016), 19–34.

CHAPTER 4: PSO–FWA: A New Hybrid Algorithm for Solving NESs 58

[11] Ribeiro, S., Silva, B., and Lopes, L. G. Solving systems

of nonlinear equations using Jaya and Jaya-based algorithms: A

computational comparison. In Proceedings of the International

Conference on Paradigms of Communication, Computing and Data

Analytics: PCCDA 2023 (Singapore, to appear, 2023), A. Yadav, S. J.

Nanda, and M.-H. Lim, Eds., Springer.

[12] Shi, Y., and Eberhart, R. A modified particle swarm optimizer.

In 1998 IEEE International Conference on Evolutionary Computation

Proceedings. IEEE World Congress on Computational Intelligence

(Cat. No. 98TH8360), 1998 (1998), IEEE, pp. 69–73.

[13] Tan, Y., and Zhu, Y. Fireworks algorithm for optimization. In

International Conference on Swarm Intelligence (2010), pp. 355–364.

[14] van Hentenryck, P., McAllester, D., and Kapur, D. Solving

polynomial systems using a branch and prune approach. SIAM Journal

on Numerical Analysis 34, 2 (1997), 797–827.

[15] Zhang, Y., Chi, A., and Mirjalili, S. Enhanced Jaya algorithm:

A simple but efficient optimization method for constrained engineering

design problems. Knowledge-Based Systems 233 (2021), 107555.

[16] Zhu, F., Chen, D., and Zou, F. A novel hybrid dynamic fireworks

algorithm with particle swarm optimization. Soft Computing 25 (2021),

2371–2398.

Chapter 5

Solving Systems of Nonlinear

Equations Using Jaya and

Jaya-Based Algorithms:

A Computational Comparison

Solving systems of nonlinear equations is a very challenging problem,

particularly as the size of the systems increases, and there is no general

numerical method that is both efficient and robust enough to tackle it.

On the other hand, metaheuristic algorithms are a broad class of high-level

techniques or heuristics for addressing hard and challenging problems. Some

of these algorithms are known to produce high-quality approximate solutions

for optimization problems, albeit without ensuring optimality. Jaya is a

simple, parameter-less metaheuristic algorithm that has proven to be effective

in solving a variety of real-world problems. However, its effectiveness in

solving nonlinear equation systems, perhaps the hardest class of numerical

problems to solve, needs to be assessed and verified. This study examines the

Jaya algorithm and some of its variants with respect to the problem of solving

a set of difficult scalable nonlinear equation systems. The results showed

that the so-called Enhanced Jaya algorithm produced the best results overall,

while the Modified Jaya algorithm had the worst outcomes, thereby not being

suitable for solving the important class of numerical problems considered.

59

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 60

5.1 Introduction

Nonlinear equations have an extensive importance in many domains of

knowledge, including Physics, Economics, Chemistry, and several branches of

Engineering [18], and appear in almost all simulations of physical processes

[11].

Nevertheless, there is no general numerical method that is robust and

efficient enough to solve systems of nonlinear equations (SNLEs), which

is perhaps the hardest problem in numerical mathematics [10]. Newton’s

method is a well-known and usual method for solving SNLEs [8]. As with

the majority of its variants, its success is dependent on the quality of the

initial approximations chosen [2].

However, a SNLE can be effortlessly converted into a homologous

optimization problem by adopting the sum of each system equation’s absolute

value as an objective function to be minimized:

min f(x) =
n∑

j=1

|ej(x)| , (5.1)

where ej(x) = 0 is the jth equation, and x = (x1, . . . , xn)
T .

The resulting optimization problem can be solved by stochastic

approaches such as pure or hybrid metaheuristic algorithms (see, e.g.,

the review in [5] and the references therein), which have a strong ability

to determine near-optimal solutions while being more flexible, effective,

and robust when comparing to deterministic optimization methods [15],

particularly on large-scale optimization problems, and without requiring

good initial approximations, albeit with the trade-off that the quality of the

obtained solutions cannot be guaranteed.

Newton’s method, with its aforementioned limitations, has been

hybridized with different metaheuristic algorithms in order to combine the

positive characteristics of both classes of methods when solving SNLEs. Its

hybridization with the Harris hawks algorithm [22] is a recent example.

All population-based metaheuristic algorithms require the adjustment

of parameters like number of iterations and population size, while other

requires the same with algorithmic-specific variables. The performance of

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 61

such algorithms can be negatively affected by the poor adjustment of these

parameters, with the added difficulty that there is sometimes a lack of

guidance on how to properly select them.

Various population-based algorithms have been successfully adapted to

efficiently solve SNLEs, including different hybridizations of the Particle

Swarm Optimization algorithm (see, e.g., [13, 17, 25]) and of the Sine

Cosine algorithm (see, e.g., [9, 23]). However, these algorithms require the

specification of a set of initial parameters, which has the disadvantage of

being determinant for the quality of the results.

To address such issue, the Jaya algorithm was proposed in [19] as a

parameter-less metaheuristic approach that is both efficient and easy to

set up. When compared to other population-based algorithms, Jaya has some

advantages, including being generic, simple to implement, and not relying on

algorithm-specific parameters [4]. As a result, it is considered a parameter-

less algorithm, as it only demands the most essential control parameters of a

population-based algorithm.

Different variants to the original Jaya algorithm have been proposed

intending to improve its effectiveness and performance, either by tweaking

some of its operators or by better balancing global and local search spaces.

This study examines some Jaya-based algorithms with various types of

modifications to the original Jaya algorithm. The chosen variants include the

refinement of the main equation, the use of additional population data and

an enhanced search strategy, the utilization of multiple populations, and the

use of an oppositional population.

The performance of Jaya and some Jaya-based variants in solving SNLEs

is here investigated, and a comparative analysis is performed on the results

produced by each algorithm. The aim is to assess whether the Jaya algorithm

and some of its variants can be used efficiently to deal with this type of

problem, and to answer which variant is more successful than others in this

particular application domain.

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 62

5.2 Related work

5.2.1 Jaya algorithm

Jaya is a population-based metaheuristic for optimizing different

unconstrained and constrained problems [19, 20]. The fundamental

tenet of the algorithm is that the solution obtained for a particular problem

should avoid the worst solution while tending towards the best one.

This strategy just relies on standard control parameters such as the

dimension popSize of the population and the maximum of iterations allowed

(maxIter), in order to achieve its main goal which is to optimize (i.e.,

minimize or maximize) an objective function f(x).

Considering the number of decision variables (numV ar), a design variable

index v ∈ [1, numV ar], a population index p ∈ [1, popSize], and an iteration

i ∈ [1,maxIter], let xv,p,i be the value of the v
th variable of the pth population

candidate during the ith iteration. Then the modified value xnew
v,p,i is obtained

as follows:

xnew
v,p,i = xv,p,i + r1,v,i (xv,best,i − |xv,p,i|)− r2,v,i (xv,worst,i − |xv,p,i|) , (5.2)

where r1,v,i and r2,v,i are random numbers in [0, 1] for the vth variable during

the ith iteration, while xv,best,i and xv,worst,i are the candidate solutions with

the best and the worst fitness values, respectively.

The Jaya pseudocode is presented in Algorithm 1.

5.2.2 Modified Jaya algorithm

One drawback of heuristic and nature-inspired algorithms is the exploration

phase, in which the algorithm may get trapped into local optima. Jaya

algorithm is not immune to premature convergence and this is one of the

main aspects addressed by its different variants, as is the case of the Modified

Jaya (MJAYA) algorithm [6].

MJAYA follows the same procedures of the original Jaya algorithm, but

proposes a modified main equation given by:

xnew
v,p,i = xv,p,i+ r1,v,i (xv,worst,i − |xv,p,i|)−L× r2,v,i

(
|xv,p,i|2−x2

v,best,i

)
, (5.3)

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 63

Algorithm 1 Jaya algorithm

1: Initialize numV ars, popSize and maxIters;
2: Generate initial population X;
3: Evaluate the fitness f(x) of each x ∈ X;
4: while i < maxIter and not terminate do
5: Determine xv,best,i and xv,worst,i;
6: for p← 1, popSize do
7: for v ← 1, numV ars do
8: Update xnew

v,p,i by Eq. (5.2);
9: end for
10: Calculate f(xnew

v,p,i);
11: if f(xnew

v,p,i) is better than f(xv,p,i) then
12: xv,p,i ← xnew

v,p,i;
13: f(xv,p,i)← f(xnew

v,p,i);
14: else
15: Keep xv,p,i and f(xv,p,i) values;
16: end if
17: end for
18: end while
19: Report solution found;

where the objective function term with the best fitness value is only used

to adjust the values of the remaining terms, and the coefficient L at every

iteration is determined as follows:

L =

{
1, if rand > 0.5

−1, otherwise.
(5.4)

5.2.3 Enhanced Jaya algorithm

The Enhanced Jaya (EJAYA) algorithm [28] improves upon the original

implementation of Jaya by making efficient use of additional information from

the population to prevent exploration from being trapped in local optima,

thereby minimizing the risk of premature convergence.

EJAYA uses the original Jaya algorithm parameters, such as the current

best and worst solutions, while introducing new parameters such as the mean

solution and historical solutions to balance its global exploration ability and

local exploitation strategy.

The exploitation strategy is used to try to inhibit the algorithm from

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 64

becoming entangled in a local optimum by removing the main function’s

absolute value symbol, and instead using an upper local (Pu) and a lower

local (Pl) attract points. Pu is determined in the following way:

Pu = λ3 × xv,best,i + (1− λ3)×M, (5.5)

where λ3 is an uniformly distributed random number in [0, 1], xv,best,i is the

best candidate in terms of fitness value, and M is the mean of the current

population, defined as:

M =
1

popSize

popSize∑
p=1

xp. (5.6)

The lower point Pl is written as:

Pl = λ4 × xv,worst,i + (1− λ4)×M, (5.7)

where λ4 is a random number in [0, 1] with uniform distribution, xv,worst,i is

the worst candidate in terms of fitness value, andM is the current population

mean, defined in Equation (5.6).

EJAYA’s local exploitation approach is as follows:

xnew
v,p,i = xv,p,i + λ5 (Pu − xv,p,i)− λ6 (Pl − xv,p,i) , (5.8)

where λ5 and λ6 are uniformly distributed random numbers in the interval

[0, 1].

The global exploration approach was inspired by the backtracking search

algorithm [3] and uses differential vectors between the current and historical

(i.e., old) populations, providing additional search space when compared to

vectors from the same generation population.

In the first interaction, the historical population Xold
v,p is the same as Xv,p.

Afterwards, they are selected in the following way:

Xold
v,p =

{
Xv,p, if Pswitch ≤ 0.5

Xold
v,p , otherwise,

(5.9)

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 65

where Pswitch is a random number with a uniform [0, 1] distribution, which

defines the switching probability between the two populations.

After selecting the population, the EJAYA algorithm randomly rearranges

the elements xold
v,p,i of the historical population Xold

v,p by applying a shuffling

function permuting(·) to the entire historical population, as shown below:

Xold
v,p = permuting

(
Xold

v,p

)
. (5.10)

The objective function for the global exploration strategy is expressed as:

xnew
v,p,i = xv,p,i + k ×

(
xold
v,p,i − xv,p,i

)
, (5.11)

where k is a standard normally distributed random number.

In EJAYA, the local exploitation (LES) and global exploration (GES)

strategies are both equally relevant and, as such, the update strategy is

selected as follows:

Strategy =

{
LES, if Pselect > 0.5

GES, otherwise,
(5.12)

where Pselect is a random number in [0, 1] with uniform distribution.

Furthermore, the historical population Xold
v,p and the current population Xv,p

are initialized by the same method.

5.2.4 SAMP–Jaya algorithm

The Self-Adaptive Multi-Population Jaya (SAMP–Jaya) combines the ideas

of Jaya with the island model from Genetic Algorithms (GA) [21], although

with some modifications.

Instead of dividing the population into only two groups, named

master island and slave island as in the basic island model from GA, in

SAMP–Jaya the number of sub-populations (or slave islands) is determined

programmatically on the basis of the current problem state’s characteristics.

The population migration between islands is based on the quality of the

fitness value and a greedy selection mechanism.

The number of sub-populations is adjusted along the search phase.

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 66

Attempting to maintain diversity and augment the exploratory process,

newly created solutions (which are randomly generated) are used to replace

duplicate ones. The variablem, whose value at the beginning of the execution

is m = 2, is used to specify the number of distinct sub-populations.

5.2.5 Oppositional Jaya algorithm

The Oppositional Jaya (OJaya) approach [27] offers two improvements

over the original Jaya algorithm. One is provided by the Oppositional

Learning (OL), a population-based algorithm that simultaneously calculates

and evaluates the current (X) and oppositional (Xo) populations to choose

the best one for the following generation, and another by the Distance–

Adaptive Coefficient (DAC), which is determined based on the best and worst

positions. The first method provides an expansion of the search space and

promotes population diversity and strength, whereas the second causes the

population to move faster in the direction of the best position and away from

the worst one.

In OJaya, the oppositional population elements are generated as follows:

xo
v,p,i = s× (Av,i +Bv,i)− xv,p,i, (5.13)

where s is a random number in [0, 1], and Av,i and Bv,i are dynamic bounds

for the population, which are given by:

Av,i = min (xv,p,i) , Bv,i = max (xv,p,i) . (5.14)

Both dynamic bounds Av,i and Bv,i are set to be updated every 50

iterations to prevent the population from becoming stuck in a local minimum

as the search space shrinks with each iteration.

As these dynamic bounds have the potential to cause xo
v,p,i to escape the

minimum and maximum limits of constrained problems, it is necessary to

reset xo
v,p,i in the following manner when this occurs:

xo
v,p,i = rand (Av,i, Bv,i) , (5.15)

where rand (Av,i, Bv,i) is a uniformly distributed random number in

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 67

[Av,i, Bv,i].

The oppositional learning is used when generating both the initial and

the current population of each iteration.

In order to achieve the benefits offered by DAC and provide fine-tuning of

the population convergence in the latter stages of the exploration to find the

global optima, the distance-adaptive coefficient di is determined as follows:

di =


(

f(xv,best,i)

f(xv,worst,i)

)2

, if f (xv,worst,i) ̸= 0

1, otherwise.

(5.16)

The main function of OJaya is comparable to that of the original Jaya,

with the addition of the di factor, as shown below:

xnew
v,p,i = xv,p,i+r1,v,i (xv,best,i − |xv,p,i|)−di×r2,v,i (xv,worst,i − |xv,p,i|) . (5.17)

As di is a function of xv,best,i and xv,worst,i, whose distance gradually

decreases during the iterations, its value is small at the beginning of the

search process and gradually converges to 1 as the process approaches the

end. This is the self-adaptive nature of di, which is achieved without the

need for additional parameters.

5.3 Computational experiments

5.3.1 Experimental setting and implementation

The population size adopted varied with the dimensionality of the test

problem. For all algorithms considered in this study, it was set to 10× the

problem dimension, which in this study was taken as equal to 4, 8, 12, 16

and 20.

The maximum number of iterations for every algorithm under

consideration was set to 1,000× the problem dimension, while the

number of independent runs for each algorithm and problem was equal to

51, as suggested in [14].

The implementation was done in Julia programming language using

double precision floating-point arithmetic. Computational experiments were

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 68

conducted on a computer with an AMD processor Ryzen 5 3500X and 16 GB

RAM DDR4.

5.3.2 Test problems

The methaphor-less optimization algorithms considered were tested on a set

of difficult nonlinear equation system problems. The benchmark problems

selected from the literature are presented below.

In addition to the definition of the functions, the domain D chosen for

each test problem is also indicated. The test problems are scalable with

respect to the number n of variables.

Taking into account that five different dimensions were considered for

each of the 14 problems shown below, the computational analysis carried out

involved a total of 70 different nonlinear equation system problems.

Problem 1. ([1], Schubert–Broyden function), n = 4, 8, 12, 16, 20.

f1(x) = (3− x1)x1 + 1− 2x2

fi(x) = (3− xi)xi + 1− xi−1 − 2xi+1, i = 2, . . . , n− 1

fn(x) = (3− xn)xn + 1− xn−1

D = ([−100, 100], . . . , [−100, 100])T

Problem 2. ([7], Problem D1 – Modified Rosenbrock), n = 4, 8, 12, 16, 20.

f2i−1(x) =
1

1 + exp(−x2i−1)
− 0.73

f2i(x) = 10(x2i − x2
2i−1), i = 1, . . . , n

2

D = ([−10, 10], . . . , [−10, 10])T

Problem 3. ([7], Problem D3 – Powell badly scaled), n = 4, 8, 12, 16, 20.

f2i−1(x) = 104x2i−1x2i − 1

f2i(x) = exp(−x2i−1) + exp(−x2i)− 1.0001, i = 1, . . . , n
2

D = ([0, 100], . . . , [0, 100])T

Problem 4. ([7], Problem D6 – Shifted and augmented trigonometric function

with an Euclidean sphere), n = 4, 8, 12, 16, 20.

fi(x) = n− 1−
n−1∑
j=1

cos(xj − 1) + i(1− cos(xi − 1))− sin(xi − 1),

i = 1, . . . , n− 1

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 69

fn(x) =
n∑

j=1

x2
j − 10000

D = ([−200, 200], . . . , [−200, 200])T

Problem 5. ([24], Economics modeling application), n = 4, 8, 12, 16, 20.

fi(x) =

(
xi +

n−i−1∑
k=1

xkxi+k

)
xn − ci, i = 1, . . . , n− 1

fn(x) =
n−1∑
j=1

xj + 1

where the constants ci can be chosen arbitrarily;

here ci = 0, i = 1, . . . , n− 1.

D = ([−100, 100], . . . , [−100, 100])T

Problem 6. ([12], Example 1 – The Bratu problem), n = 4, 8, 12, 16, 20.

f1(x) = −2x1 + x2 + αh2 exp(x1)

fn(x) = xn−1 − 2xn + αh2 exp(xn)

fi(x) = xi−1 − 2xi + xi+1 + αh2 exp(xi), i = 2, . . . , n− 1,

where α ≥ 0 is a parameter, assuming here α = 3.5, and h =
1

n+ 1
.

D = ([−100, 100], . . . , [−100, 100])T

Problem 7. ([12], Example 2 – The beam problem), n = 4, 8, 12, 16, 20.

f1(x) = −2x1 + x2 + αh2 sin(x1)

fn(x) = xn−1 − 2xn + αh2 sin(xn)

fi(x) = xi−1 − 2xi + xi+1 + αh2 exp(xi), i = 2, . . . , n− 1,

where h =
1

n+ 1
and α ≥ 0 is a parameter; here α = 11.

D = ([−100, 100], . . . , [−100, 100])T

Problem 8. ([16], 21 – Extended Rosenbrock function), n = 4, 8, 12, 16, 20.

f2i−1(x) = 10(x2i − x2
2i−1)

f2i(x) = 1− x2i−1, i = 1, . . . , n
2

D = ([−100, 100], . . . , [−100, 100])T

Problem 9. ([16], 26 – Trigonometric function), n = 4, 8, 12, 16, 20.

fi(x) = n−
n∑

j=1

cosxj + i(1− cosxi)− sinxi, i = 1, . . . , n

D = ([−100, 100], . . . , [−100, 100])T

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 70

Problem 10. ([16], 27 – Brown almost-linear function), n = 4, 8, 12, 16, 20.

fi(x) = xi +
n∑

j=1

xj − (n+ 1), i = 1, . . . , n− 1

fn(x) =

(
n∏

j=1

xj

)
− 1

D = ([−10, 10], . . . , [−10, 10])T

Problem 11. ([16], 28 – Discrete boundary value function),

n = 4, 8, 12, 16, 20.

f1(x) = 2x1 − x2 + h2(x1 + h+ 1)3/2

fn(x) = 2xn − xn−1 + h2(xn + nh+ 1)3/2

fi(x) = 2xi − xi−1 − xi+1 + h2(xi + ti + 1)3/2, i = 2, . . . , n− 1,

where h = 1
n+1

and ti = ih.

D = ([0, 5], . . . , [0, 5])T

Problem 12. ([16], 30 – Broyden tridiagonal function), n = 4, 8, 12, 16, 20.

f1(x) = (3− 2x1)x1 − 2x2 + 1

fn(x) = (3− 2xn)xn − xn−1 + 1

fi(x) = (3− 2xi)xi − xi−1 − 2xi+1 + 1, i = 2, . . . , n− 1

D = ([−1, 1], . . . , [−1, 1])T

Problem 13. ([26], Example 4.1 – Nonlinear resistive circuit),

n = 4, 8, 12, 16, 20.

fi(x) = g(xi) +
n∑

j=1

xj − i, i = 1, . . . , n,

where g(xi) = 2.5x3
i − 10.5x2

i + 11.8xi.

D = ([−100, 100], . . . , [−100, 100])T

Problem 14. ([26], Example 4.2), n = 4, 8, 12, 16, 20.

fi(x) = xi −
1

2n

(
n∑

j=1

x3
j + i

)
, i = 1, . . . , n

D = ([−10, 10], . . . , [−10, 10])T

5.4 Results and discussion

The average and best (i.e., minimum) fitness values found for each different

algorithm and problem function are shown below in Tables 5.1 through 5.10.

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 71

Tables 5.1 to 5.5 show the average fitness values for 51 runs of each

algorithm with each problem, while Tables 5.6 to 5.10 present the best fitness

values for every combination algorithm/problem in each dimension. In each

table, the best value obtained for every problem is bolded, while the second

best is underlined.

The best results were obtained by EJAYA, both in terms of average and

absolute values. This result can be explained by the nature of the class of

problems under consideration.

Because the problems are difficult scalable nonlinear equation systems, an

algorithm that focuses on balancing local and global exploration can better

explore the search space and avoid local minima.

Box plots were also used to show the results so that the performance of

each algorithm could be compared in more ways than just the average and

best fitness values. Since the results are at very different scales, a logarithmic

scale was used on the vertical axis to make it easier to compare them.

The Economics modeling application problem (Problem 5) is displayed on

Figure 5.1. This example shows a clear difference in results from the different

algorithms tested, with the worst result from Enhanced Jaya being smaller

than any result from the other algorithms.

Naturally, these results are highly problem-dependent. A different

example, the nonlinear resistive circuit problem (Problem 13) on Figure 5.2,

shows a more balanced result, where the choice of algorithm was not such a

decisive factor, with the exception of MJAYA, which performed significantly

worse than the alternatives on this particular problem.

The fact that one of the algorithms consistently produces the best results

indicates that there is a better strategy for approaching and solving problems

of this nature. It is noteworthy that the EJAYA algorithm consistently

achieved the best (minimum) fitness value, since it could be the case that a

more global search would produce a less satisfactory result due to not being

given enough time to lead to a more exact one.

The Friedman rank test was used to determine whether the differences in

algorithms’ performance observed in this study were statistically significant.

The test statistic and p-value for the mean results of each experiment were

205.828407 and 2.097028e−43, respectively. An experiment corresponds to

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 72

Figure 5.1: Algorithms performance for Problem 5 – Economics modeling
application

Figure 5.2: Algorithms performance for Problem 13 – Nonlinear resistive
circuit

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 73

a problem with a certain number of variables. For the best results from

each experiment, the obtained test statistic and p-value were 166.029499

and 7.438888e−35, respectively. These results indicate that the p-values are

lower than the the significance level considered, α = 0.05, which indicates

the existence of statistically significant performance differences between the

algorithms.

The Nemenyi post-hoc test was then utilized to validate the existence

of statistically significant differences between each pair of algorithms and

compare their performance. At α = 0.05, the p-values for each pairwise

comparison of means returned by the Nemenyi test indicate that all

groups with EJAYA have statistically significantly different means (p-value

for EJAYA–Jaya: 0.00423; EJAYA–MJAYA: 0.001; EJAYA–SAMP-Jaya:

0.011719; EJAYA-OJaya: 0.001). The Enhanced Jaya had the lowest mean

rank, confirming that it is the algorithm with the best performance.

In turn, the Modified Jaya algorithm was consistently outperformed.

Despite the fact that this Jaya variant also attempts to reduce population

premature convergence, the comparatively simple method used to achieve

this did not result in the desired effects on the set of problems used. The

other three algorithms were also quite ineffective in solving this important

class of numerical problems.

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

74

Table 5.1: Average fitness for each algorithm and problem with dimension 4

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 0.037301 759.5075 7.8e−13 0.082208 3.60415

02 0.061348 4.366276 0.013026 0.099944 1.98836

03 1.101062 1.700416 1.529441 0.9208 0.012071

04 3.172041 1285.801 0.794585 2.942294 3.060386

05 0.002189 97.55153 7.03e−13 0.002149 4.28393

06 0.02041 127.4752 0.020138 0.020458 28.08892

07 0.867158 112.8549 0.86427 0.867175 21.75779

08 2.293608 112.3845 0.211815 1.238739 18.14579

09 0.232556 1.066933 0.113705 0.231329 0.108791

10 6.56e−5 1.370445 7.96e−13 0.000155 1.100248

11 0.4248 0.472382 0.4248 0.4248 0.200767

12 1.106871 1.301978 0.823576 1.016749 0.916372

13 0.055345 76634 0.060916 0.061493 32.60203

14 0.005805 2.591199 7.8e−13 0.008878 2.037

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

75

Table 5.2: Average fitness for each algorithm and problem with dimension 8

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 1.82763 7726.655 1.7393 1.861864 152.2006

02 0.68266 72.27876 0.021869 0.716674 22.01862

03 2.367052 3.520389 3.196196 2.647138 863.877

04 10.48261 20889.06 4.073712 10.27806 197.7471

05 0.008329 121.0815 6.96e−13 0.009389 465.9061

06 73.93172 158.8989 0.001618 72.14528 163.2751

07 73.67055 158.4651 0.690457 72.24566 157.4344

08 21.74472 4420.537 0.590003 12.81173 418.4348

09 5.08573 7.992402 0.304068 5.011239 2.560319

10 0.432841 21.90249 9e−13 0.308484 7.468406

11 0.312071 0.702193 0.312071 0.312071 0.819976

12 1.401421 4.072288 1.383169 1.401567 2.409392

13 0.786868 906616.7 0.997937 0.716111 4334.69

14 0.030862 24.76336 8.59e−13 0.066765 8.036433

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

76

Table 5.3: Average fitness for each algorithm and problem with dimension 12

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 2.027671 15607.16 2.110943 2.026045 569.9055

02 2.715694 295.517 0.03217 1.562613 65.5981

03 3.777186 5.245614 5.058997 4.337887 807.2976

04 23.54298 48843.81 7.137143 23.94317 1777.321

05 0.007516 187.1631 7.38e−13 0.006327 2073.987

06 82.86831 445255.7 1.724116 82.52612 505.4965

07 82.21373 156.6737 0.528442 82.70787 387.7884

08 69.17203 28507.12 1.004769 70.81044 1078.883

09 18.32003 20.72244 0.73744 18.10252 17.07631

10 0.390616 74.52302 0.057542 0.413794 28.72603

11 0.237439 1.458474 0.237439 0.237439 2.653205

12 1.410814 8.467387 1.43527 1.409355 4.396191

13 5.564458 2058324 5.516597 5.433279 47757.1

14 0.066187 42.94972 9.01E−13 0.019483 20.28755

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

77

Table 5.4: Average fitness for each algorithm and problem with dimension 16

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 2.007063 24388.38 2.22222 2.008302 1845.694

02 4.779463 689.847 0.198708 3.872578 124.2643

03 5.631415 7.283231 6.980571 6.049226 322.6964

04 43.47981 85029.14 12.09548 45.29773 3149.952

05 0.004715 214.6964 5.5e−13 0.004928 3530.811

06 90.76954 1.07e+17 5.085716 91.11857 922.8598

07 91.57444 3.31e+14 5.248573 90.94256 748.7884

08 152.1592 60370.24 3.377784 133.6855 4192.898

09 37.74819 39.81277 0.907257 37.46247 44.7763

10 0.33721 456.7778 0.164283 0.258828 75.9037

11 0.192521 3.828483 0.190461 0.190461 3.588161

12 1.414091 13.25389 1.476021 1.414669 8.31018

13 14.43239 3176498 12.88087 14.87231 172534.6

14 0.351574 59.89378 0.039723 1.17e−12 30.05229

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

78

Table 5.5: Average fitness for each algorithm and problem with dimension 20

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 2.001243 32930.64 2.883153 1.999806 3107.198

02 7.587837 1118.439 0.492324 7.51904 236.5383

03 7.113975 9.746856 9.01987 7.835969 367279.4

04 74.74562 118316.4 13.83089 75.53196 10691.88

05 0.00403 212.8566 6.94e−9 0.004408 7312.667

06 109.2742 3.49e+21 5.42168 107.1104 1825.048

07 108.1948 1.46e+21 7.008227 108.5383 1441.275

08 284.1983 94117.88 8.325698 207.4755 8610.55

09 63.20463 65.21878 1.579544 63.49481 104.6752

10 0.286777 21340.98 0.08651 0.490721 132.5569

11 1.151586 6.011312 0.158707 0.701521 3.94693

12 1.413574 17.73365 1.650891 1.413914 12.11648

13 29.76446 4800462 22.13837 29.19197 295083.2

14 0.301565 76.89122 9.35e−9 9.47e−9 43.24111

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

79

Table 5.6: Best fitness value for each algorithm and problem with dimension 4

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 0.013514 23.91481 3.74e−13 0.008449 0.259312

02 0.015 1.261467 2.53e−13 0.011323 0.111472

03 0.076134 0.284877 1 0.000835 0.000125

04 0.639886 14.33572 2.48e−8 1.021443 0.333206

05 0.000202 10.17526 1.19e−13 0.000238 0.000344

06 0.020156 48.56258 0.020138 0.020166 0.020288

07 0.864726 41.85269 0.86427 0.864893 0.864809

08 0.000199 28.30774 4.4e−13 0.000171 0.060556

09 0.139507 0.407813 1.89e−8 0.032742 0.026646

10 4.37e−13 0.387378 3.2e−13 2.43e−13 9.33e−13
11 0.4248 0.4248 0.4248 0.4248 0.008097

12 0.408424 0.553353 5.3e−13 0.346904 0.048358

13 3.72e−13 1160.649 3.66e−13 2.37e−13 8.71e−13
14 3.13e−13 0.456107 4.11e−13 5.64e−13 7.74e−13

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

80

Table 5.7: Best fitness value for each algorithm and problem with dimension 8

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 1.746513 1163.029 1.642072 1.748557 1.855896

02 0.246311 28.06783 7.45e−13 0.236563 1.725815

03 1.098038 2.231975 2.000208 0.186106 0.00033

04 4.969094 3377.885 0.413205 4.770179 4.972168

05 0.000722 3.844443 1.11e−13 0.001467 0.405516

06 63.05564 100.3864 0.001618 35.50098 6.966559

07 59.56525 126.8712 0.690457 21.63332 43.54873

08 0.262853 1190.088 6.24e−13 0.417598 3.024152

09 3.030025 6.545709 9.08e−5 3.788699 0.379582

10 5.64e−13 5.82194 5.89e−13 5.85e−13 0.001798

11 0.312071 0.312071 0.312071 0.312071 0.174061

12 1.343339 2.189377 1.068989 1.343156 0.957273

13 0.258026 173194.6 8.79e−13 0.259604 5.784104

14 6.13e−13 8.706569 4.65e−13 4.42e−13 8.46e−13

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

81

Table 5.8: Best fitness value for each algorithm and problem with dimension 12

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 1.985728 8431.876 1.947732 1.995528 2.123706

02 0.707785 103.0104 7.09e−13 0.635289 4.309436

03 1.251606 4.093437 3.000423 1.032287 0.000523

04 18.03753 15107.65 0.131327 9.392153 14.96514

05 0.000994 11.22811 8.98e−14 0.000644 0.116536

06 66.17686 103.9643 0.008119 66.98294 144.4244

07 71.25037 101.1358 0.514594 68.91963 134.912

08 1.660379 4933.791 1.41e−8 1.747052 28.36734

09 12.73162 17.11407 7.52e−13 12.71641 6.227708

10 2.12e−9 23.16159 2.79e−12 4.82e−10 6.273952

11 0.237439 0.237439 0.237439 0.237439 1.01749

12 1.398442 5.837022 1.339655 1.398353 1.398094

13 3.090889 497417.5 1.595609 2.831569 41.32905

14 7.66e−13 28.86674 6.82e−13 6.26e−13 0.096067

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

82

Table 5.9: Best fitness value for each algorithm and problem with dimension 16

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 1.992515 18145.68 1.971647 1.992711 3.853688

02 1.467945 309.3021 1.29e−12 1.339854 8.824352

03 3.604961 5.762362 6.000153 0.067755 0.000767

04 25.55577 57483.21 0.150535 28.60737 12.6763

05 0.000681 14.83673 7.13e−14 0.000368 10.04305

06 77.52219 150 0.248488 70.53718 306.507

07 74.80778 101.4781 0.524374 78.48955 261.161

08 3.801844 17369.55 0.000242 3.580692 140.3054

09 32.29294 35.66817 9.39e−13 30.27802 14.05743

10 4.02e−7 46.58691 4.24e−7 5.3e−7 2.006934

11 0.190461 0.190461 0.190461 0.190461 1.029605

12 1.410731 9.530622 1.410497 1.410538 4.018768

13 9.35898 1258665 4.635214 9.351241 273.8042

14 8.03e−13 44.99119 7.65e−13 7.63e−13 1.215313

C
H
A
P
T
E
R

5:
S
olv

in
g
S
N
L
E
s
U
sin

g
J
aya

an
d
J
aya-B

ased
A
lgorith

m
s

83

Table 5.10: Best fitness value for each algorithm and problem with dimension 20

Problem Jaya MJAYA EJAYA SAMP-Jaya OJaya

01 1.997252 23424.63 1.996577 1.996677 5.199616

02 2.140845 488.0374 1.26e−6 2.039682 23.07343

03 4.001134 8.016777 8.000024 4.280304 0.000924

04 47.35422 78182.15 3.49e−7 50.47265 50.79653

05 0.000287 24.98126 1.21e−9 0.000554 2.709221

06 87.26843 102.406 0.724969 81.69802 662.5349

07 88.5846 101.4305 1.406232 94.15044 448.7978

08 25.19813 39450.97 0.074645 13.811 444.3823

09 56.32278 60.36546 9.02e−9 54.59069 43.4929

10 2.63e−5 112.4798 4.38e−6 3.89e−5 20.92637

11 0.158707 0.400519 0.158707 0.158707 2.098237

12 1.413378 12.25678 1.409187 1.41338 3.627609

13 21.80754 2819758 10.7863 19.81322 1063.36

14 7.85e−9 65.1341 8.21e−9 8.2e−9 20.35027

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 84

5.5 Conclusion

The Jaya algorithm and some of its variants were tested against a set

of difficult scalable nonlinear equation systems in order to evaluate their

performance, as well as understanding if a specific Jaya variant could be

better suited to this class of problems.

The Enhanced Jaya algorithm consistently performed better than the

other variants, both in finding the best result and obtaining good results

on average when compared to the other variants. The ability of EJAYA

to solve this class of problems demonstrates that, with enough iterations, a

degree of global exploration leads to better results without sacrificing local

exploration.

References

[1] Bodon, E., Del Popolo, A., Lukšan, L., and Spedicato, E.

Numerical performance of ABS codes for systems of nonlinear equations.

Technical Report DMSIA 01/2001, Universitá degli Studi di Bergamo,

Bergamo, Italy, 2001.

[2] Choi, H., Kim, S., and Shin, B.-C. Choice of an initial guess for

Newton’s method to solve nonlinear differential equations. Computers

& Mathematics with Applications 117 (2022), 69–73.

[3] Civicioglu, P. Backtracking search optimization algorithm

for numerical optimization problems. Applied Mathematics and

Computation 219, 15 (2013), 8121–8144.

[4] Degertekin, S., Lamberti, L., and Ugur, I. Sizing, layout

and topology design optimization of truss structures using the Jaya

algorithm. Applied Soft Computing 70 (2018), 903–928.

[5] Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., and Cosar, A.

A survey on new generation metaheuristic algorithms. Computers &

Industrial Engineering 137 (2019), 106040.

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 85

[6] Elattar, E. E., and ElSayed, S. K. Modified JAYA algorithm for

optimal power flow incorporating renewable energy sources considering

the cost, emission, power loss and voltage profile improvement. Energy

178 (2019), 598–609.

[7] Friedlander, A., Gomes-Ruggiero, M., Kozakevich, D.,

Mart́ınez, J., and Santos, S. Solving nonlinear systems of equations

by means of quasi-Newton methods with a nonmonotone strategy.

Optimization Methods and Software 8, 1 (1997), 25–51.

[8] Grau-Sánchez, M. Improving order and efficiency: Composition with

a modified Newton’s method. Journal of Computational and Applied

Mathematics 231, 2 (2009), 592–597.

[9] Jui, J., and Ahmad, M. A hybrid metaheuristic algorithm

for identification of continuous-time Hammerstein systems. Applied

Mathematical Modelling 95 (2021), 339–360.

[10] Karr, C., Weck, B., and Freeman, L. Solutions to systems of

nonlinear equations via genetic algorithms. Engineering Applications of

Artificial Intelligence 11, 3 (1998), 369–375.

[11] Kelley, C. Solving Nonlinear Equations with Newton’s Method. SIAM,

Philadelphia, PA, 2003.

[12] Kelley, C., Qi, L., Tong, X., and Yin, H. Finding a stable

solution of a system of nonlinear equations. Journal of Industrial and

Management Optimization 7, 2 (2011), 497–521.

[13] Kumar, N. An alternative computational optimization technique to

solve linear and nonlinear Diophantine equations using discrete WQPSO

algorithm. Soft Computing 26, 22 (2022), 12531–12544.

[14] Liang, J., Qu, B., Suganthan, P., and Hernández-D́ıaz,

A. Problem definitions and evaluation criteria for the CEC 2013

special session on real-parameter optimization. Technical Report

201212, Computational Intelligence Laboratory, Zhengzhou University,

Zhengzhou, China, 2013.

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 86

[15] Lin, M.-H., Tsai, J.-F., and Yu, C.-S. A review of deterministic

optimization methods in engineering and management. Mathematical

Problems in Engineering 2012 (2012), 756023.

[16] Moré, J., Garbow, B., and Hillstrom, K. Testing unconstrained

optimization software. ACM Transactions on Mathematical Software 7,

1 (1981), 17–41.

[17] Pan, L., Zhao, Y., and Li, L. Neighborhood-based particle swarm

optimization with discrete crossover for nonlinear equation systems.

Swarm and Evolutionary Computation 69 (2022), 101019.

[18] Pérez, R., and Lopes, V. Recent applications and numerical

implementation of quasi-Newton methods for solving nonlinear systems

of equations. Numerical Algorithms 35, 2 (2004), 261–285.

[19] Rao, R. Jaya: A simple and new optimization algorithm for solving

constrained and unconstrained optimization problems. International

Journal of Industrial Engineering Computations 7 (2016), 19–34.

[20] Rao, R. Jaya: An Advanced Optimization Algorithm and its

Engineering Applications. Springer, Cham, Switzerland, 2019.

[21] Rao, R., and Saroj, A. A self-adaptive multi-population based

Jaya algorithm for engineering optimization. Swarm and Evolutionary

Computation 37 (2017), 1–26.

[22] Sihwail, R., Solaiman, O., Omar, K., Ariffin, K., Alswaitti,

M., and Hashim, I. A hybrid approach for solving systems of nonlinear

equations using Harris hawks optimization and Newton’s method. IEEE

Access 9 (2021), 95791–95807.

[23] Suid, M., and Ahmad, M. A novel hybrid of nonlinear sine cosine

algorithm and safe experimentation dynamics for model order reduction.

Automatika 64, 1 (2023), 34–50.

[24] van Hentenryck, P., McAllester, D., and Kapur, D. Solving

polynomial systems using a branch and prune approach. SIAM Journal

on Numerical Analysis 34, 2 (1997), 797–827.

CHAPTER 5: Solving SNLEs Using Jaya and Jaya-Based Algorithms 87

[25] Verma, P., and Parouha, R. Solving systems of nonlinear equations

using an innovative hybrid algorithm. Iranian Journal of Science and

Technology, Transactions of Electrical Engineering 46, 4 (2022), 1005–

1027.

[26] Yamamura, K., Kawata, H., and Tokue, A. Interval solution

of nonlinear equations using linear programming. BIT Numerical

Mathematics 38, 1 (1998), 186–199.

[27] Yu, J., Kim, C., and Rhee, S.-B. Oppositional Jaya algorithm with

distance-adaptive coefficient in solving directional over current relays

coordination problem. IEEE Access 7 (2019), 150729–150742.

[28] Zhang, Y., Chi, A., and Mirjalili, S. Enhanced Jaya algorithm:

A simple but efficient optimization method for constrained engineering

design problems. Knowledge-Based Systems 233 (2021), 107555.

Chapter 6

Conclusions

6.1 Main findings

The use of PSO and Jaya shows good results for solving nonlinear equation

systems, but this relies heavily on both the population size and the

parameters of the functions, as well as the particular characteristics of the

problems.

Some proposed variants and hybridizations can achieve better results than

the original algorithms. It can be observed from the experimental results

that some algorithms perform consistently better than others. While this

cannot be extrapolated to different types of problems, it shows that for

solving nonlinear equation systems, some common strategies should be used

for better results. A pattern for the most successful algorithms seems to

be a good balance between local and global exploration. For particle swarm

optimization, the use of less interconnected topologies, like the von Neumann

topology, achieves this balance, while the EJaya algorithm provides both a

local and a global search strategy.

The comparison between the original algorithms and their variants shows

that the originals often perform quite well, which is an indication that some

variants sacrifice exploration in favor of exploitation and are tested on simpler

problems with fewer local minima.

A key parameter is the number of population, which greatly increases the

quality of the results at some computational cost. Because some algorithms

perform expensive computations at every iteration, it is reasonable to

88

CHAPTER 6: Conclusions 89

attempt to solve a problem using a larger number of particles with a simpler

algorithm.

A hybrid algorithm between PSO and FWA was proposed to achieve this

balance between an algorithm that performs computationally inexpensive

operations for most iterations while expanding the population at regular

intervals, as well as finding a balance between the exploration/exploitation

dichotomy.

6.2 Future work

One of the key aspects that was not explored in this thesis was a comparison

using not only the results but also the time expended in finding the result,

or possibly an average time per iteration of the algorithm.

The use of parallelization with GPUs, thus making the scaling of

population-based solutions more efficient, is another promising topic that

deserves further exploration.

Another potential approach is the use of a highly exploratory algorithm/

parameter combination, followed by an analysis of the distance between

the elements of the population. These locations could be clustered to find

approximations to be used as starting points in greedier or non-stochastic

approaches.

