67 research outputs found

    Investigating New Forms of Single-handed Physical Phone Interaction with Finger Dexterity

    Get PDF
    With phones becoming more powerful and such an essential part of our lives, manufacturers are creating new device forms and interactions to better support even more diverse functions. A common goal is to enable a larger input space and expand the input vocabulary using new physical phone interactions other than touchscreen input. This thesis explores how utilizing our hand and finger dexterity can expand physical phone interactions. To understand how we can physically manipulate a phone using the fine motor skills of finger, we identify and evaluate single-handed "dexterous gestures". Four manipulations are defined: shift, spin (yaw axis), rotate (roll axis) and flip (pitch axis), with a formative survey showing all except flip have been performed for various reasons. A controlled experiment examines the speed, behaviour, and preference of manipulations in the form of dexterous gestures, by considering two directions and two movement magnitudes. Using a heuristic recognizer for spin, rotate, and flip, a one-week usability experiment finds increased practice and familiarity improve the speed and comfort of dexterous gestures. With the confirmation that users can loosen their grip and perform gestures with finger dexterity, we investigate the performance of one-handed touch input on the side of a mobile phone. An experiment examines grip change and subjective preference when reaching for side targets using different fingers. Two following experiments examine taps and flicks using the thumb and index finger in a new two-dimensional input space. We simulate a side-touch sensor with a combination of capacitive sensing and motion tracking to distinguish touches on the lower, middle, or upper edges. We further focus on physical phone interaction with a new phone form factor by exploring and evaluating single-handed folding interactions suitable for "modern flip phones": smartphones with a bendable full screen touch display. Three categories of interactions are identified: only-fold, touch-enhanced fold, and fold-enhanced touch; in which gestures are created using fold direction, fold magnitude, and touch position. A prototype evaluation device is built to resemble current flip phones, but with a modified spring system to enable folding in both directions. A study investigates performance and preference for 30 fold gestures, revealing which are most promising. Overall, our exploration shows that users can loosen their grip to physically interact with phones in new ways, and these interactions could be practically integrated into daily phone applications

    Sketching as a support mechanism for the design and development of shape-changing interfaces

    Get PDF
    Shape-changing interfaces are a novel computational technology which incorporate physical, tangible, and dynamic surfaces to create a true 3-Dimensional experience. As is often the case with other novel hardware, the current research focus is on iterative hardware design, with devices taking many years to reach potential markets. Whilst the drive to develop novel hardware is vital, this usually occurs without consultation of end-users. Due to the prototypical nature of shape-change, there is no specific current practice of User-Centred Design (UCD). If this is not addressed, the resulting field may consist of undirected, research-focused hardware with little real world value to users. Therefore, the goal of this thesis is to develop an approach to inform the direction of shape-change research, which uses simple, accessible tools and techniques to connect researcher and user. I propose the development of an anticipatory, pre-UCD methodology to frame the field. Sketching is an established methodology. It is also accessible, universal, and provides us with a low-fidelity tool-kit. I therefore propose an exploration of how sketching can support the design and development of shape-changing interfaces. The challenge is approached over five stages: 1) Analysing and categorising shape-changing prototypes to provide the first comprehensive overview of the field; 2) Conducting a systematic review of sketching and HCI research to validate merging sketching, and its associated UCD techniques with highly technological computing research; 3) Using these techniques to explore if non-expert, potential end-users can ideate applications for shape change; 4) Investigating how researchers can utilise subjective sketching for shape-change; 5) Building on ideation and subjective sketching to gather detailed, sketched data from non-expert users with which to generate requirements and models for shape-change. To conclude, I discuss the dialogue between researcher and user, and show how sketching can bring these groups together to inform and elucidate research in this area

    Toolkit support for interactive projected displays

    Get PDF
    Interactive projected displays are an emerging class of computer interface with the potential to transform interactions with surfaces in physical environments. They distinguish themselves from other visual output technologies, for instance LCD screens, by overlaying content onto the physical world. They can appear, disappear, and reconfigure themselves to suit a range of application scenarios, physical settings, and user needs. These properties have attracted significant academic research interest, yet the surrounding technical challenges and lack of application developer tools limit adoption to those with advanced technical skills. These barriers prevent people with different expertise from engaging, iteratively evaluating deployments, and thus building a strong community understanding of the technology in context. We argue that creating and deploying interactive projected displays should take hours, not weeks. This thesis addresses these difficulties through the construction of a toolkit that effectively facilitates user innovation with interactive projected displays. The toolkit’s design is informed by a review of related work and a series of in-depth research probes that study different application scenarios. These findings result in toolkit requirements that are then integrated into a cohesive design and implementation. This implementation is evaluated to determine its strengths, limitations, and effectiveness at facilitating the development of applied interactive projected displays. The toolkit is released to support users in the real-world and its adoption studied. The findings describe a range of real application scenarios, case studies, and increase academic understanding of applied interactive projected display toolkits. By significantly lowering the complexity, time, and skills required to develop and deploy interactive projected displays, a diverse community of over 2,000 individual users have applied the toolkit to their own projects. Widespread adoption beyond the computer-science academic community will continue to stimulate an exciting new wave of interactive projected display applications that transfer computing functionality into physical spaces

    NASA Tech Briefs, February 1988

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Systems; and Life Sciences

    KINE[SIS]TEM'17 From Nature to Architectural Matter

    Get PDF
    Kine[SiS]tem – From Kinesis + System. Kinesis is a non-linear movement or activity of an organism in response to a stimulus. A system is a set of interacting and interdependent agents forming a complex whole, delineated by its spatial and temporal boundaries, influenced by its environment. How can architectural systems moderate the external environment to enhance comfort conditions in a simple, sustainable and smart way? This is the starting question for the Kine[SiS]tem’17 – From Nature to Architectural Matter International Conference. For decades, architectural design was developed despite (and not with) the climate, based on mechanical heating and cooling. Today, the argument for net zero energy buildings needs very effective strategies to reduce energy requirements. The challenge ahead requires design processes that are built upon consolidated knowledge, make use of advanced technologies and are inspired by nature. These design processes should lead to responsive smart systems that deliver the best performance in each specific design scenario. To control solar radiation is one key factor in low-energy thermal comfort. Computational-controlled sensor-based kinetic surfaces are one of the possible answers to control solar energy in an effective way, within the scope of contradictory objectives throughout the year.FC

    Cellulose-Based Biosensing Platforms

    Get PDF
    Cellulose empowers measurement science and technology with a simple, low-cost, and highly transformative analytical platform. This book helps the reader to understand and build an overview of the state of the art in cellulose-based (bio)sensing, particularly in terms of the design, fabrication, and advantageous analytical performance. In addition, wearable, clinical, and environmental applications of cellulose-based (bio)sensors are reported, where novel (nano)materials, architectures, signal enhancement strategies, as well as real-time connectivity and portability play a critical role

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken

    Essays on Creative Ideation and New Product Design

    Get PDF
    Creative ideation, i.e., the generation of novel ideas, represents the terminus-a-quo in the design and development of innovative products. In my dissertation essays, I examine two approaches employed by firms for creative ideation, (1) channeled ideation, a closed approach, which involves applying replicable patterns or properties observed in historical innovations and (2) idea crowdsourcing, an open approach where firms invite crowds to contribute ideas to solve a specific challenge. In my studies, I clarify how firms can incorporate market-related information in the channeled ideation process and examine how the selection of ideas in crowdsourcing challenges relates to local and global novelty. In Essay 1, “Attribute Auto-dynamics and New Product Ideation,” I introduce a replicable property – attribute auto-dynamics, observed in several novel products, where a product possesses the ability to modify its attributes automatically in response to changing customer, product-system, or environmental conditions. I propose a typology of attribute auto-dynamics, based on an analysis of U.S. utility patents. Based on this typology, I specify a procedural framework for new product ideation that integrates market-pull relevant knowledge and technology-push relevant knowledge. I also illustrate how managers and product designers can apply the framework to identify new product ideas for specific target markets using a channeled ideation approach. In Essay 2, “Selection in Crowdsourced Ideation: Role of Local and Global Novelty,” I examine how the selection of ideas in crowdsourced challenges depends on the form of novelty – local or global. Firms often turn to idea crowdsourcing challenges to obtain novel ideas. Yet prior research cautions that ideators and seeker firms may not select novel ideas. To reexamine the links between idea novelty and selection, I propose a bi-faceted notion of idea novelty that may be local or global. Examining data on OpenIDEO, I find that the selection of novel ideas differs according to the selector, the form of novelty, and the challenge task structure. I also specify a predictive model that seeker firms can leverage when ideator selection metrics such as likes are unavailable.Doctor of Philosoph
    • …
    corecore