10 research outputs found

    Transformer Condition Monitoring using Fiber Optic Sensors: A Review

    Get PDF
    Review for research in a specific field plays an important role to find out the future scope of research work in that direction. This paper gives an extensive review about the application of optical sensors for condition monitoring of transformers. Monitoring of different parameters of transformer oil using optical sensors as a part of transformer condition monitoring has been discussed. In addition, classification and sensing principle of different optical sensors is also described. This paper also attempts to present few methodologies adopting for condition monitoring of power transformer.Keywords:Transformer, Optical fiber, Condition monitorin

    Impact of unbalanced harmonic loads towards winding temperature rise using FEM modeling

    Get PDF
    This paper investigates the hot spot temperature of transformer thermal model due to unbalanced harmonic loads from the network. The finite element method has been used to solve the coupling multiphysic for heat transfer in solid and fluid. All material properties in the model were been took into consideration such as copper as the coil material, iron as the core material and transformer oil as the coolant material for the transformer. The transient study on the model has been set for 1minutes using 30 degree celcius as the ambient temperature reference. The simulation hot spot temperature result has been compared for rated load (without harmonic) versus the unbalanced load (with harmonic) which shown in 2D regime. It can be clearly seen the significant increment of the hotspot temperature of the transformer from the rated load to the unbalanced harmonic load. The result has successfully shows the detection of the prospect failure of the transformer due to the harmonic current load in a form of winding loss that contributes to the hotspot temperature of the transformer

    THE EFFECT OF MESA DIMENSIONS ON MEMS DIAPHRAGMS FOR FABRY-PEROT INTERFEROMETER-BASED FIBER OPTIC SENSORS

    Get PDF
    In this study, the effects of mesa dimensions on sensor response in diaphragm-based FabryPerot fiber optic sensors (FOSs) were investigated in detail. Mesa diaphragms, also called centerembossed diaphragms, have been discussed sufficiently in the literature, but the effect of mesa thickness on sensor performance has not been discussed in detail. Moreover, there is no precise analytical solution for such diaphragms. For this reason, diaphragms with different thicknesses and radii were selected, and the deflection and frequency responses of the diaphragm according to the applied acoustic pressure were analyzed using the ANSYS software, depending on whether the mesa is thinner or thicker than the diaphragm. If the thickness of the mesa is smaller than the thickness of the diaphragm, the center deflection changes drastically. However, if the thickness of the mesa is two times greater than the thickness of the diaphragm, there is no significant change in the deflection results. Similarly, if the mesa thickness is thinner than the diaphragm, the sensor’s frequency response changes drastically with increasing mesa radius. In cases where the mesa thickness is larger than the diaphragm thickness, the frequency response changes less. According to the results, mesa dimensions should be considered when designing a mesa diaphragm-based Fabry-Perot FOS

    Kuituoptiset lämpötila-anturit : paineriippuvuus ja käyttökohteet

    Get PDF
    Työn tavoitteena oli selvittää kuituoptisten lämpötila-anturien paineriippuvuutta joillekin optisia kuituja käyttäville anturityypeille. Toisena tavoitteena oli esittää mahdollisia käyttökohteita kuituoptisille lämpötila antureille. Tutkimuksen teoria pitkälti pohjautuu K.T.V. Grattanin ja B.T. Meggittin kirjasarjaan nimeltä Optical fiber sensor technology. Tarkempaa tutkimustietoa on etsitty Andor- ja Scopus-tietokannoista. Tiedot kaupallisista optisia kuituja käyttävistä anturijärjestelmistä on etsitty niitä tarjoavien yritysten omista esitteistä. Työn alussa lukijalle selostetaan perusteita lämpötilasta, sen mittaamisesta sekä optisista kuiduista. Työssä esitellyt anturityypit ovat FBG, spektrometrinen ja luminesenssiin perustuva anturityyppi. Työssä esiteltiin kattavasti ominaisuuksia, jotka erottavat kuituoptiset lämpötila-anturit perinteisistä elektronisista lämpötila-antureista. Kaupallisia edellä mainittuja menetelmiä käyttäviä lämpötilanmittauslaitteistoja käsiteltiin kaksi kappaletta. Yhdellekään optista kuitua käyttävälle anturityypille ei voitu osoittaa kvantitatiivista paineriippuvuuden arvoa tutkimustiedon puutteen vuoksi. Käyttökohteiksi teknologialle esitettiin vesistöjen ja merivirtojen lämpötilan seuranta, vedenpinnan alainen kaivostoiminta ja suurjännitemuuntajien operointilämpötilan seuranta. Parhain suorituskyky tutkituista antureista oli optista kuitua käyttävällä lämpötila-anturilla, joka käytti lämpötilan aistimiseen Fabry-Perot’in interferometriä. Sillä todettiin olevan hyvä, alle 1 mK:in resoluutio ja sen antamien tulosten todettiin olevan verrattavissa kaupalliseen anturin tuottamiin tuloksiin. Kuituoptisten anturien paineensietokykyä tutkittiin ja sen todettiin olevan eräälle anturille 7 Mpa:ta. Erittäin korkeita paineita kestävän FP-interferometriin perustuvan lämpötila-anturin hypoteettistä toteutusta pohdittiin kuorella suojattuun paineanturiin pohjautuen. Aiheen lisätutkimus on tervetullutta, jotta voidaan tarkemmin kartoittaa teknologian mahdollisuuksia ja rajoitteita. Painekammiossa suoritettavat testit vaikuttavat olevan välttämättömiä uudenlaisten optisten lämpötila-anturien paineriippuvuuden todentamiseksi

    Determination Of Hot-spot Temperature For Onan Distribution Transformers With Dynamic Thermal Modelling

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2012Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2012Transformatörler, elektrik dağıtım ve iletim şebekelerindeki en değerli elemanlardandır. Günümüzde enerji kesintileri, elektrik enerjisi dağıtım firmalarına büyük maliyetler doğurmaktadır, transformatörlerin güvenilebilir olması, enerji kesintilerinin asgariye indirilebilmesi için büyük önem taşır. Transformatör kayıpları yükte kayıplar ve boşta kayıplar olarak ikiye ayrılır. Boşta kayıplar, transformatörün anma geriliminde ve yüksüz şekilde çalışması durumunda ortaya çıkan kayıplardır. Yükte kayıplar ise, transformatörün anma gücünde çalışması durumunda oluşan kayıplardır. Bu kayıplar, transformatörün ısıl davranışına farklı şekilde etki etmektedirler. Transformatörlerin aşırı ısınması, transformatörler için en ciddi sorunlardan biridir. Transformatörler tasarım aşamasında belirli koşullarda çalışmak üzere tasarlanırlar. Transformatörlerin pratikte çalışma koşulları, tasarlanan çalışma koşullarından farklı olabilir. Transformatörün çalışma koşulları hem yüklenme karakteristiğine hem de ortam sıcaklığı gibi ortam şartlarına bağlıdır. Transformatörlerin aşırı ısınmasının engellenmesi için transformatörlerin tepe yağ sıcaklığı ve sıcak nokta sıcaklıkları çok önemlidir, çünkü transformatörün yaşlanmasına doğrudan etki etmektedir. Yağlı tip transformatörlerde yaygın olarak A sınıfı izolasyon malzemeleri kullanılmaktadır. A sınıfı izolasyon malzemelerinin, sistem sıcaklığı 105 ºC’dir ve genel olarak selülozik içerikli maddelerden üretilmektedir. Bu tip izolasyon malzemeleri, sıcaklık 110 ºC’yi aştığında çok hızlı bir şekilde yaşlanmakta ve ömür kaybına uğramaktadır. Transformatörün planlanandan erken yaşlanması ise öngörülen ömrünün kısalmasına neden olacaktır. Tepe yağ sıcaklığını ve sargı sıcak nokta sıcaklığını belirlemenin bir yöntemi, sürekli çevrimiçi ölçüm yapılmasıdır. Fakat sargı sıcak nokta sıcaklığının sürekli çevrimiçi ölçülebilmesi için sargı içine fiber optik ölçüm cihazlarının monte edilmiş olması gerekir. Büyük güç transformatörlerinde bu yöntem uygulanabilir olsa da dağıtım transformatörleri için bu çözüm çok yüksek maliyetli olacaktır. Bu nedenle dağıtım transformatörlerinin kritik sıcaklıklarının belirlenebilmesi ve öngörülebilmesi için dinamik ısıl modeller gereklidir. IEEE C57.91-1995 standardı ve IEC 60076-7 standardı, değişken yük durumları için transformatörlerin tepe yağ ve en sıcak nokta sıcaklarının belirlenmesine yardımcı olan ısıl modeller sunmaktadır. Bu modeller, transformatör kullanıcıları tarafından yaygın olarak kullanmaktadır. Böylece transformatörün kritik sıcaklıkları belirlenmektedir. Öte yandan, bu modeller, yağ sıcaklık değişiminin kayıplara ve yağın özelliklerine olan etkilerini dikkate almayan göreceli olarak basit modellerdir. D. Susa tarafından önerilen model ise, temel ısıl prensipler ve temel elektriki prensipler arasındaki benzerliği kullanarak, transformatörlerin ısıl analizi için direnç ve kapasite içeren bir devre sunar. Bu devrede, direnç, yağ sıcaklığına bağlı olarak değişkendir. Bu devrenin çözümü ile bir diferansiyel denklem elde edilir. Sonuç olarak karmaşık ısıl problem, bir elektrik devresine benzetilerek, diferansiyel denklem ile çözülür. Bu yöntemde, standartlarda önerilen yöntemden farklı olarak, yağ sıcaklığı değişiminin yükte kayıplara ve yağ viskozitesine etkisi dikkate alınmıştır. Bu çalışmanın kapsamı, yukarıda belirtilen üç farklı ısıl modelin, üreticiden alınabilecek veriler kullanılarak, doğal soğutmalı dağıtım transformatörlerinin optimum olarak yüklenebilmesinin sağlanması amacı ile doğrulanmasıdır. Bu çalışmada, 1000 kVA gücünde 33/0.4 kV değiştirme oranına sahip, ONAN soğutmalı (doğal yağ soğutmalı) bir dağıtım transformatörü kullanılmıştır. Transformatör ülkemizde yaygın olarak kullanılan aynı güçteki transformatörlere eşdeğer nitelikte seçilmiştir. Söz konusu transformatörün dışında ve içinde sıcaklık ölçümü için ısı sensörleri monte edilmiştir. Transformatör içindeki sensörler, her bir sargının alçak gerilim ve yüksek gerilim kısımlarına konulmuştur. Sargı içindeki sensörlerin yerlerinin seçiminde, daha önce yapılan çalışmalar ve tecrübeler dikkate alınarak en sıcak noktaların oluşması beklenen bölgeler seçilmiştir. Özellikle en sıcak noktanın beklendiği sargılara, ilave olarak ikişer sensör daha konulmuştur. Sargı içindeki ısı sensörlerine ek olarak, çeşitli noktalardaki yağ sıcaklıklarını ölçebilmek için, transformatör kapak ve kazanına da ısı sensörleri yerleştirilmiştir. Bu sensörler ile tepe yağ sıcaklığı üç farklı noktadan ölçülebilmiştir. Dip yağ sıcaklığı ise iki farklı noktadan sensörlerin yardımı ile ölçülmüştür. Toplamda on beş sensör kullanılmıştır. Bu sensörler, görüntüleme ve kaydetme cihazlarına bağlanmıştır. Ölçümler sırasında sürekli olarak ortam sıcaklığı da ölçülerek kaydedilmiştir. Ortam sıcaklığının değişimi etkisi, transformatörün kritik sıcaklıklarını doğrudan etkileyeceği için bütün modellerde, ortam sıcaklığı etkisi dikkate alınmıştır. Testler sırasında ısıl kamera kullanılarak, ısı dağılımı gözlenmiştir. Isıl kamera ile transformatörün kazanın içinde yağın etkisi ile beklenen dengeli sıcaklık dağılımı doğrulanmıştır. Transformatör üzerinde iki farklı sıcaklık artış deneyi uygulanmıştır. Birinci deneyde, toplam kayıplar transformatör üzerinden geçirilmiştir ve söz konusu transformatörün ısıl modelleri için gerekli değişkenler ve sabitler elde edilmiştir. Transformatörün ısıl özelliklerinin belirlenmesi için bu test kullanılmıştır. Sensörler yardımı ile yapılan ölçümlere ek olarak, transformatörün alçak gerilim ve yüksek gerilim sargılarının doğru akım dirençleri soğuk ve sıcak durumlarda ölçülerek ortalama sargı sıcaklık artış değerleri belirlenmiştir. İkinci test sırasında ise farklı akımlar transformatöre uygulanarak değişken yük durumu deneyi gerçekleştirilmiştir. Bu test sırasında transformatör üç saat boyunca anma gücü ile yüklenmiştir ardından 105 dakika boyunca iki katı yük ile yüklenmiştir. Ardındam transformatör iki katı yüklenmesi kesilerek, son yarım saat transformatör yüksüz durumda bırakılarak ölçümlere devam edilmiştir. Testler transformatörün sekonder tarafı kısa devre edilmek sureti ile primerden akım uygulanması şeklinde gerçekleştirilmiştir. İkinci test sonucunda elde edilen tepe yağ sıcaklığı ve alçak gerilim ve yüksek gerilim sargıları için en sıcak nokta sıcaklıkları, matematiksel model ile elde edilen sonuçlarla karşılaştırılmıştır. Bu çalışmada, üç farklı matematiksel model kullanılmıştır. Bunlardan ilki IEEE C58.91 standardında belirtilen modeldir, ikincisi IEC 60076-7 standardında belirtilen modeldir. Bu iki modele ek olarak, D. Susa tarafından geliştirilen model kullanılmıştır. Bu modelde ısıl devre ile elektrik devreleri arasındaki benzerlik kullanılmıştır. Bu benzerliğe göre ısı kaynağı, akım kaynağı olarak; sıcaklık, gerilim olarak; ısıl direnç, elektriksel direnç olarak ve ısıl kapasite; elektriksel kapasite olarak modellenmiştir. Bu şekilde karmaşık ısıl problem, basit bir R-C elektrik devresine indirgenmiştir. Bu devre, devre analizi yöntemleri ile çözülerek diferansiyel denklemler elde edilmiştir. Tepe yağ sıcaklığı ve en sıcak nokta sıcaklıkları ise bu diferansiyel denklemler çözüşerek elde edilmiştir. Bu modelde, standartlarda verilen modellerden farklı olarak sıcaklıkla, yağın fiziksel özelliklerindeki değişim de dikkate alınmıştır. Yağın fiziksel değerlerindeki en etkin değişim viskozite değerinde olduğu için, modelde viskozitenin sıcaklık ile değişim etkisi kullanılmıştır. Buna ek olarak, transformatör kayıplarının da sıcaklık ile değişimi modelde dikkate alınmıştır. Standartlarda verilen modeller kullanılırken, gerekli olan değişkenler, deneyler ile elde edilen veriler ve optimizasyon yöntemleri kullanılarak belirlenmiştir. Testte uygulanan ile aynı değişken yük durumu, söz konusu üç ısıl modelde gerçeklenmiştir. Modeller ile hem tepe yağ sıcaklığı hem de alçak gerilim ve yüksek gerilim sargıları için sıcak nokta sıcaklıkları hesaplanmıştır. Elde edilen sonuçlar, ölçüm sonucu ile elde edilen sonuçlar ile karşılaştırılmıştır. Bu çalışmanın önemli bir üstünlüğü, uygulanacak ısıl modeller için değişkenler, gerçekleştirilen test sayesinde, doğru bir şekilde elde edilmiştir. Isıl modellerin karşılaştırılması için gerekli olan ölçümler yapılmıştır. Bu nedenle her üç model de aynı şartlar altında karşılaştırılabilmiştir.Transformers are one of the largest capital investment part of distribution networks. Transformers’ reliability is very important for electrical networks considering cost impact of power outages. High temperature rise problem, one of the most serious problems for transformers. Loading cycles and ambient conditions of transformers can be different than design conditions. Transformer top-oil temperature and winding hot spot temperatures are most critical parameters for transformer because it causes aging and therefore affects life time of transformer. It is very important to determine hot-spot temperature and oil temperature accurately which depends on ambient conditions and loading conditions to avoid loss of life on transformer. One solution to determine top-oil temperature and winding hot-spot temperature is to use on-line monitoring devices like fiber optical measurement devices. Other solution is to use dynamic thermal models to define top-oil temperature and winding hot-spot temperatures. Considering that fiber optical measurement solutions are very costly for distribution transformers, generally thermal models are mandatory to define critical temperatures of distribution transformers. IEEE C57.91-1995 and IEC 60076-7 standards present thermal models for defining critical temperatures in transformers. These models are widely used in industry. On the other hand these methods are solved with exponential equations and they do not take into account the affects of change on oil temperature. Dynamic thermal model which is proposed by D. Susa, requires similar input parameters with IEEE C57.91-1995 model and IEC 60076-7 model, in addition to this, this thermal model takes into account the effects of change on oil temperature. Scope of this study is to verify three different temperature rise models for distribution transformers to allow optimum loading of natural oil cooled transformers by using the data which could be obtained from manufacturer. In this study, on a 1000 kVA 33/0.4 kV ONAN cooled distribution transformer, two temperature rise tests are realized. In first test, total losses are injected and necessary data to determine transformers specific parameters for thermal models obtained. In the second test, a varying load test is realized. Three different thermal models are used for same varying loading characteristic and results are compared with measurement results. Significant advantage of this study is, necessary parameters for all thermal models are determined with proper measurements of tested unit, therefore all three models are compared under same conditions.Yüksek LisansM.Sc

    Dynamic thermal modelling of power transformers

    Get PDF
    Power transformers represent the largest portion of capital investment in transmission and distribution substations. In addition, power transformer outages have a considerable economic impact on the operation of an electrical network. One of the most important parameters governing a transformer's life expectancy is the hot-spot temperature value. The classical approach has been to consider the hot-spot temperature as the sum of the ambient temperature, the top-oil temperature rise in tank, and the hot-spot-to-top-oil (in tank) temperature gradient. When fibre optic probes were taken into use to record local hot-spots in windings and oil ducts, it was noticed that the hot-spot temperature rise over top-oil temperature due to load changes is a function depending on time as well as the transformer loading (overshoot time dependent function). It has also been noticed that the top-oil temperature time constant is shorter than the time constant suggested by the present IEC loading guide, especially in cases where the oil is guided through the windings in a zigzag pattern for the ONAN and ONAF cooling modes. This results in winding hottest spot temperatures higher than those predicted by the loading guides during transient states after the load current increases, before the corresponding steady states have been reached. This thesis presents new and more accurate temperature calculation methods taking into account the findings mentioned above. The models are based on heat transfer theory, application of the lumped capacitance method, the thermal-electrical analogy and a new definition of nonlinear thermal resistances at different locations within a power transformer. The methods presented in this thesis take into account oil viscosity changes and loss variation with temperature. The changes in transformer time constants due to changes in the oil viscosity are also accounted for in the thermal models. In addition, the proposed equations are used to estimate the equivalent thermal capacitances of the transformer oil for different transformer designs and winding-oil circulations. The models are validated using experimental results, which have been obtained from a series of thermal tests performed on a range of power transformers. Most of the tested units were equipped with fibre optic sensors in the main windings. Some of them also had thermocouples in the core and structural parts. A significant advantage of the suggested thermal models is that they are tied to measured parameters that are readily available (i.e., data obtained from a normal heat run test performed by the transformer manufacturer).reviewe
    corecore